プラズマ処理システムの例示的実施形態は、概して、図1に示される。描写されるように、プラズマ電力供給部102は、プラズマ処理チャンバ104に結合され、スイッチモード電力供給部106は、チャンバ104内において、その上に基板110が置かれている支持部108に結合される。また、スイッチモード電力供給部106に結合される、コントローラ112も示される。
この例示的実施形態では、プラズマ処理チャンバ104は、実質的に従来の構造のチャンバ(例えば、ポンプまたは複数のポンプ(図示せず)によって真空にされる、真空封入体を含む)によって実現され得る。また、当業者が理解するように、チャンバ104内のプラズマ励起は、例えば、ヘリコン型プラズマ源等の種々の源のうちの任意の1つによるものであり得、種々の源は、反応炉内でプラズマ114を点火し、持続させるための磁気コイルおよびアンテナを含み、ガス注入口がチャンバ104内にガスを導入するために提供され得る。
描写されるように、例示的プラズマチャンバ104は、基板110のエネルギーイオン衝撃および他のプラズマ処理(例えば、プラズマ蒸着およびプラズマ支援イオン注入)を利用して、材料のプラズマ支援エッチングを行うように配列および構成される。本実施形態におけるプラズマ電力供給部102は、プラズマ114を点火し、持続させるように、1つ以上の周波数(例えば、13.56MHz)において、整合回路(図示せず))を介して、チャンバ104に電力(例えば、RF電力)を印加するように構成される。本発明は、チャンバ104に電力を結合するための任意の特定の種類のプラズマ電力供給部102または源に限定されるものではなく、種々の周波数および電力レベルが、プラズマ114に容量的または誘導的に結合され得ることを理解されたい。
描写されるように、処理される誘電性基板110(例えば、半導体ウエハ)は、従来のウエハチャック(例えば、半導体ウエハ処理のため)の一部を含み得る支持部108によって、少なくとも部分的に支持される。支持部108は、支持部108と基板110との間に絶縁層を有し、基板110は、プラットフォームに容量的に結合されるように形成され得るが、支持部108と異なる電圧で浮動し得る。
前述のように、基板110および支持部108が、導体である場合、支持部108に不変電圧を印加することが可能であり、基板110を通しての電気伝導の結果、支持部108に印加される電圧は、基板110の表面にも印加される。
しかしながら、基板110が、誘電性である場合、支持部108への不変電圧の印加は、処理される基板110の表面全体にわたる電圧をかけるために有効ではない。その結果、例示的スイッチモード電力供給部106は、基板110の制御されたエッチングおよび/または蒸着および/または他のプラズマ支援プロセスを行うように、プラズマ114内でイオンを引きつけて基板110と衝突させることが可能である電圧を基板110の表面上にもたらすように制御されるように構成される。
さらに、本明細書でさらに論じられるように、スイッチモード電力供給部106の実施形態は、プラズマ電力供給部102によって(プラズマ114に)印加される電力と、スイッチモード電力供給部106によって基板110に印加される電力との間にごくわずかな相互作用があるように動作するように構成される。スイッチモード電力供給部106によって印加される電力は、例えば、プラズマ114の密度に実質的に影響を及ぼすことなく、イオンエネルギーの制御を可能にするように制御可能である。
さらに、図1に描写される例示的スイッチモード電力供給部106の多くの実施形態は、比較的に単純な制御アルゴリズムによって制御され得る、比較的に安価な構成要素によって実現される。また、従来技術のアプローチと比較して、スイッチモード電力供給部106の多くの実施形態は、はるかに効率的である。つまり、エネルギーコストと、過剰な熱エネルギーを除去することに関連付けられる高価な材料とを削減する。
誘電性基板に電圧を印加するための公知の技術の1つは、基板の表面において電圧を誘発する、基板支持部への電力を印加するための複雑な制御方式とともに、高出力線形増幅器を利用する。しかしながら、この技術は、コスト効率的ではなく、または十分に管理可能ではないことが分かっているため、商業用事業体によって採用されていない。特に、利用される線形増幅器は、典型的には、大型、非常に高価、非効率的、かつ制御が困難である。さらに、線形増幅器は、本質的に、AC結合(例えば、阻止コンデンサ)と、チャッキングのような補助機能とを要求し、チャッキングのような補助機能は、並列給電回路によって達成され、並列給電回路は、チャックとともに、源に対するシステムのACスペクトル純度を害する。
検討されている別の技術は、(例えば、1つ以上の線形増幅器によって)基板に高周波電力を印加することである。しかしながら、基板に印加される高周波電力は、プラズマ密度に影響を及ぼすため、この技術は、プラズマ密度に悪影響を及ぼすことが分かっている。
いくつかの実施形態では、図1に描写されるスイッチモード電力供給部106は、降圧、昇圧、および/または降圧−昇圧型電力技術によって実現され得る。これらの実施形態では、スイッチモード電力供給部106は、可変レベルのパルス電力を印加し、基板110の表面上に電位を誘発するように制御され得る。
他の実施形態では、スイッチモード電力供給部106は、他のより高度なスイッチモード電力および制御技術によって実現される。次に、図2を参照すると、例えば、図1を参照して説明されるスイッチモード電力供給部は、基板110に電力を印加し、基板110に衝突するイオンの1つ以上の所望のエネルギーをもたらすために利用される、スイッチモードバイアス供給部206によって実現される。また、イオンエネルギー制御構成要素220、アーク検出構成要素222、ならびにスイッチモードバイアス供給部206および波形メモリ224の両方に結合されるコントローラ212も示される。
これらの構成要素の例証される配列は、論理的である。したがって、構成要素は、実際の実装では、組み合わされるか、またはさらに分離されることが可能であり、構成要素は、システムの基本動作を変更せずに、種々の方法で接続可能である。いくつかの実施形態では、例えば、ハードウェア、ソフトウェア、ファームウェア、またはそれらの組み合わせによって実現され得るコントローラ212は、電力供給部202およびスイッチモードバイアス供給部206の両方を制御するために利用され得る。しかしながら、代替実施形態では、電力供給部202およびスイッチモードバイアス供給部206は、完全に分離された機能的ユニットによって実現される。さらなる実施例として、コントローラ212、波形メモリ224、イオンエネルギー制御部分220、およびスイッチモードバイアス供給部206は、単一構成要素に統合され得(例えば、共通筐体内に常駐する)、または個別的な構成要素間に分散され得る。
本実施形態におけるスイッチモードバイアス供給部206は、概して、基板の表面に衝突するイオンのエネルギーの所望の(または定義された)分布をもたらすように、制御可能な様式で、支持部208に電圧を印加するように構成される。より具体的には、スイッチモードバイアス供給部206は、特定の電力レベルにおいて、基板に1つ以上の特定の波形を印加することによって、イオンエネルギーの所望の(または定義された)分布をもたらすように構成される。さらにより具体的には、イオンエネルギー制御部分220からの入力に応答して、スイッチモードバイアス供給部206は、特定の電力レベルを印加することにより、特定のイオンエネルギーをもたらし、波形メモリ224内の波形データによって定義される1つ以上の電圧波形を使用して、特定の電力レベルを印加する。その結果、1つ以上の特定のイオン衝撃エネルギーが、基板の制御されたエッチング(または他の形態のプラズマ処理)を実行するように、イオン制御部分によって選択され得る。
描写されるように、スイッチモード電力供給部206は、対応する駆動構成要素228’、228’’からの駆動信号に応答して、基板210の支持部208への電力を切り替えるように適合されるスイッチ構成要素226’、226’’(例えば、高出力電界効果トランジスタ)を含む。また、駆動構成要素228’、228’’によって生成される駆動信号230’、230’’は、波形メモリ224の内容によって定義されるタイミングに基づいて、コントローラ212によって制御される。例えば、多くの実施形態におけるコントローラ212は、波形メモリの内容を解釈し、駆動制御信号232’、232’’を生成するように適合され、駆動制御信号232’、232’は、切り替え構成要素226’、226’’への駆動信号230’、230’’を制御するために、駆動構成要素228’、228’’によって利用される。ハーフブリッジ構成に配列され得る、2つのスイッチ構成要素226’、226’’が、例示的目的のために描写されるが、当然ながら、より少ないまたは追加スイッチ構成要素が、種々のアーキテクチャ(例えば、H−ブリッジ構成)内で実装され得ることが想定される。
多くの動作モードでは、コントローラ212(例えば、波形データを使用する)は、基板210の支持部208において所望の波形をもたらすように、駆動制御信号232’、232’’のタイミングを変調する。加えて、スイッチモードバイアス供給部206は、DC信号または時変波形であり得る、イオンエネルギー制御信号234に基づいて、基板210に電力を供給するように適合される。したがって、本実施形態は、切り替え構成要素へのタイミング信号を制御し、切り替え構成要素226’、226’’によって印加される、(イオンエネルギー制御構成要素220によって制御される)電力を制御することによって、イオン分布エネルギーの制御を可能にする。
加えて、本実施形態におけるコントローラ212は、アーク検出構成要素222によって検出される、プラズマチャンバ204内のアークに応答して、アーク管理機能を行うように構成される。いくつかの実施形態では、アークが検出されると、コントローラ212は、スイッチモードバイアス供給部206の出力236において印加される波形が、プラズマ214内のアークを消すように、駆動制御信号232’、232’’を変更する。他の実施形態では、スイッチモードバイアス供給部206の出力236における電力の印加が中断されるように、コントローラ212は、駆動制御信号232’、232’’の印加を単に中断することによって、アークを消す。
次に、図3を参照すると、これは、図2を参照して説明されるスイッチモードバイアス供給部206を実現するために利用され得る、構成要素の略図である。示されるように、本実施形態における切り替え構成要素T1およびT2は、ハーフブリッジ(また、トーテムポールとも称される)型トポロジにおいて配列される。集合的に、R2、R3、C1、およびC2は、プラズマ負荷を表し、C10は、有効容量(本明細書では直列容量またはチャック容量とも称される)であり、C3は、基板の表面上に誘発される電圧または静電チャック(図示せず)の電圧からのDC電流が、回路を通して流動するのを防止するための任意の物理的コンデンサである。C10は、基板支持部および静電チャック(またはEチャック)の直列容量(チャック容量とも称される)、ならびに絶縁および基板等のバイアスの印加に固有の他の容量を含むため、有効容量と称される。描写されるように、L1は、漂遊インダクタンス(例えば、負荷に電力を給電する導体の自然インダクタンス)である。また、本実施形態では、3つの入力:Vbus、V2、およびV4が存在する。
V2およびV4は、駆動信号(例えば、図2を参照して説明される駆動構成要素228’、228’’によって出力される、駆動信号230’、230’’)を表し、本実施形態では、V2およびV4は、T1およびT2の閉鎖が変調され、基板支持部に印加される、Voutでの電圧出力の形状を制御し得るように、タイミングをとられることが可能である(例えば、パルスの長さおよび/または相互遅延)。多くの実装では、切り替え構成要素T1およびT2を実現するために使用されるトランジスタは、理想的スイッチではなく、したがって、所望の波形に到達するために、トランジスタ特有の特性が考慮される。多くの動作モードでは、単に、V2およびV4のタイミングを変更することが、Voutでの所望の波形の印加を可能にする。
例えば、スイッチT1、T2は、基板110、210の表面における電圧が、概して負であり、周期的電圧パルスが、正電圧基準に接近し、および/またはそれを若干超えるように動作され得る。基板110、210の表面における電圧の値は、イオンのエネルギーを定義するものであり、それは、イオンエネルギー分布関数(IEDF)の観点から特徴付けられ得る。基板110、210の表面において所望の電圧をもたらすために、Voutでのパルスは、基板110、210の表面に十分な電子を引きつけ、所望の電圧および対応するイオンエネルギーを達成するように、概して矩形であり、基板110、210の表面において短時間の正電圧を誘発するために十分な長さの幅を有し得る。
正電圧基準に接近する、および/またはそれを若干超える周期的電圧パルスは、スイッチT1、T2の切り替え能力によって限定される最小時間を有し得る。電圧がスイッチを損傷するレベルまで蓄積しない限り、電圧の概して負の部分が延長することができる。同時に、電圧の負の部分の長さは、イオン転移時間を超えるべきである。
本実施形態におけるVbusは、Voutで測定されるパルスの振幅を定義し、パルスの振幅は、基板の表面における電圧、その結果、イオンエネルギーを定義する。再び、図2を簡単に参照すると、Vbusは、イオンエネルギー制御部分に結合され得、イオンエネルギー制御部分は、VbusにDC信号または時変波形を印加するように適合されるDC電力供給部によって実現され得る。
パルス幅、パルス形状、および/または2つの信号V2、V4の相互遅延は、Vout(本明細書では修正された周期的電圧関数とも称される)において、所望の波形に到達するように変調され得、Vbusに印加される電圧は、パルスの特性に影響を及ぼし得る。言い換えると、電圧Vbusは、パルス幅、パルス形状、および/または信号V2、V4の相対的位相に影響を及ぼし得る。図4を簡単に参照すると、例えば、図4に描写されるように、Voutにおいて周期的電圧関数を生成するように、T1およびT2に印加され得る2つの駆動信号波形(V2およびV4として)を描写するタイミング略図が示される。Voutでのパルスの形状を変調するために(例えば、Voutにおいて、パルスの最小時間を達成するが、パルスのピーク値に到達するために)、2つのゲート駆動信号V2、V4のタイミングが、制御され得る。
例えば、パルスの各々が、Voutで印加される時間が、パルス間の時間Tと比較して短いが、基板110、210の表面において、正電圧を誘発し、基板110、210の表面に電子を引きつけるために十分に長くなり得るように、2つのゲート駆動信号V2、V4が、切り替え構成要素T1、T2に印加され得る。さらに、パルス間のゲート電圧レベルを変更することによって、パルス間でVoutに印加される電圧の勾配を制御可能であることが分かっている(例えば、パルス間で、基板の表面において、実質的に一定の電圧を達成するために)。いくつかの動作モードでは、ゲートパルスの反復速度は、約400kHzであるが、この速度は、当然ながら、印加毎に変化し得る。
必須ではないが、実際は、実際の実装のモデル化および改良に基づいて、所望の(または定義された)イオンエネルギー分布を生成するために使用され得る波形が、定義され得、波形は、(例えば、電圧レベルの連続として、図1を参照して説明される波形メモリ部分内に)記憶可能である。加えて、多くの実装では、波形は、直接生成可能である(例えば、Voutからのフィードバックを伴わずに)。したがって、フィードバック制御システムの望ましくない側面を回避する(例えば、整定時間)。
再び、図3を参照すると、Vbusは、イオンのエネルギーを制御するために変調可能であり、記憶された波形が、ゲート駆動信号V2、V4を制御し、Voutにおける所望のパルス振幅を達成する一方、パルス幅を最小限にするために使用され得る。再び、これは、モデル化または実装され、実験的に確立され得るトランジスタの特定の特性に従って行われる。図5を参照すると、例えば、Vbus対時間、基板110、210の表面における電圧対時間、および対応するイオンエネルギー分布を描写するグラフが示される。
図5のグラフは、特定のイオンエネルギーに集中するイオンエネルギー分布をもたらす、スイッチモードバイアス供給部106、206を動作させる単一モードを描写する。描写されるように、この実施例におけるイオンエネルギーの単一集中をもたらすために、Vbusに印加される電圧は、一定に維持される一方、V2およびV4に印加される電圧は、図5に示される対応するイオンエネルギー分布をもたらす、スイッチモードバイアス供給部106、206の出力におけるパルスを生成するように制御される(例えば、図3に描写される駆動信号を使用して)。
図5に描写されるように、基板110、210の表面における電位は、概して、負であり、基板110、210の表面に衝突し、エッチングするイオンを引きつける。基板110、210に印加される周期的短パルス(パルスをVoutに印加することによって)は、Vbusに印加される電位によって定義される規模を有し、これらのパルスは、基板110、210の電位に短時間の変化を生じさせ(例えば、正に近いまたは弱正電位)、電位の短時間の変化は、基板110、210の表面に沿って、概して、負の電位を達成するように、基板の表面に電子を引きつける。図5に描写されるように、Vbusに印加される一定電圧は、特定のイオンエネルギーにおける単一集中のイオンフラックスをもたらす。したがって、特定のイオン衝撃エネルギーは、特定の電位にVbusを単に設定することによって選択され得る。他の動作モードでは、イオンエネルギーの2つ以上の別個の集中が生成され得る(例えば、図49参照)。
当業者であれば、電力供給部は、スイッチモード電力供給部に限定される必要もなく、したがって、あるイオンエネルギーを達成するために、電力供給部の出力も制御されることができることを認識するであろう。したがって、電力供給部の出力は、スイッチモードであろうと別様のモードであろうと、イオン電流補償またはイオン電流と組み合わせられることなく考慮されるとき、電力供給部電圧VPSと称されることもできる。
次に、図6を参照すると、例えば、イオンエネルギー分布において2つの別個のピークが生成される、動作の二峰性モードを描写するグラフが示される。示されるように、この動作モードでは、基板は、2つの異なるレベルの電圧および周期的パルスを被り、その結果、イオンエネルギーの2つの別個の集中が生成される。描写されるように、2つの異なるイオンエネルギー集中をもたらすために、Vbusで印加される電圧は、2つのレベル間を交互し、各レベルは、2つのイオンエネルギー集中のエネルギーレベルを定義する。
図6は、各パルス後(例えば、図48)に交互するように、基板110、210における2つの電圧を描写するが、これは、必ずしも、必要ではない。他の動作モードでは、例えば、V2およびV4に印加される電圧は、基板の表面で誘発される電圧が、2つ以上のパルス後(例えば、図49)に、第1の電圧から第2の電圧(逆も然り)に交互するように、Voutに印加される電圧に対して切り替えられる(例えば、図3に描写される駆動信号を使用して)。
従来技術では、多重イオンエネルギーをもたらすために、線形増幅器に2つの波形(波形発生器によって生成される)の組み合わせを印加し、基板に増幅された2つ以上の波形の組み合わせを印加することが試みられている。しかしながら、このアプローチは、図6を参照して説明されるアプローチはより非常に複雑となり、したがって、高価な線形増幅器および波形発生器を要求する。
次に、図7Aおよび7Bを参照すると、それぞれ、Vbusに印加されるDC電圧の単一エネルギー調整および二重レベル調整に対応する、プラズマ中で行われた実際の直接イオンエネルギー測定を描写する、グラフが示される。図7Aに描写されるように、イオンエネルギー分布は、Vbusへの電圧の不変印加に応答して、約80eVに集中する(例えば、図5に描写されるように)。また、図7Bでは、イオンエネルギーの2つの別個の集中が、Vbusの二重レベル調整に応答して、約85eVおよび115eVに存在する(例えば、図6に描写されるように)。
次に、図8を参照すると、本発明の別の実施形態を描写する、ブロック図が、示される。描写されるように、スイッチモード電力供給部806は、コントローラ812、イオンエネルギー制御構成要素820、およびアーク検出構成要素822を介する基板支持部808に結合される。コントローラ812、スイッチモード供給部806、およびイオンエネルギー制御構成要素820は、集合的に、時間平均に基づいて、基板810の表面において、所望の(または定義された)イオンエネルギー分布をもたらすように、電力を基板支持部808にもたらすように動作する。
例えば、図9Aを簡単に参照すると、約400kHzの周波数を伴う周期的電圧関数が示され、周期的電圧関数は、周期的電圧関数の複数のサイクルにわたって約5kHzの正弦波変調関数によって変調される。図9Bは、図9Aにおいて丸で囲まれる、周期的電圧関数の部分の分解図であり、図9Cは、周期的電圧関数の正弦波変調から生じる、時間平均に基づく、イオンエネルギーの結果として生じる分布を描写する。また、図9Dは、周期的電圧関数が、正弦波変調関数によって変調される場合に結果として生じる時間平均IEDFの、プラズマ中で行われた実際の直接イオンエネルギー測定を描写する。さらに本明細書に論じられるように、時間平均に基づく所望の(または定義された)イオンエネルギー分布を達成することは、周期的電圧に印加される、変調関数を単に変化させることによって、達成され得る。
別の実施例として、図10Aおよび10Bを参照すると、400kHzの周期的電圧関数は、時間平均に基づく、図10Cに描写されるイオンエネルギーの分布を達成するように、約5kHzの鋸歯状波変調関数によって変調される。描写されるように、図10に関連して利用される周期的電圧関数は、図9におけるものと同一であるが、図10における周期的電圧関数は、正弦波関数の代わりに、鋸歯状波関数によって変調される。
図9Cおよび10Cに描写されるイオンエネルギー分布関数は、基板810の表面におけるイオンエネルギーの瞬間的分布を表さないが、代わりに、イオンエネルギーの時間平均を表すことを認識されたい。図9Cを参照すると、例えば、特定の時間的瞬間において、イオンエネルギーの分布は、変調関数の1サイクルの過程にわたって存在する、描写されるイオンエネルギーの分布の部分集合であろう。
また、変調関数は、固定関数または固定周波数である必要はないことを認識されたい。例えば、いくつかの事例では、特定の変調関数の1つ以上のサイクルによって、周期的電圧関数を変調し、特定の時間平均イオンエネルギー分布をもたらし、次いで、別の変調関数の1つ以上のサイクルによって、周期的電圧関数を変調し、別の時間平均イオンエネルギー分布をもたらすことが望ましいことがある。そのような変調関数(周期的電圧関数を変調する)への変更は、多くの事例において、有益となり得る。例えば、特定のイオンエネルギーの分布が、特定の幾何学的構造をエッチングするために、または特定の材料を通してエッチングするために必要である場合、第1の変調関数が使用され、次いで、続いて、別の変調関数が、異なるエッチング幾何学形状をもたらすために、または別の材料を通してエッチングするために使用され得る。
同様に、周期的電圧関数(例えば、図9A、9B、10A、および10Bにおける400kHz成分、ならびに図4におけるVout)は、厳密に固定される必要はない(例えば、周期的電圧関数の形状および周波数は、変動し得る)が、概して、その周波数は、チャンバ内のイオンが、基板810に印加される電圧によって影響を受けるように、チャンバ内のイオンの経過時間によって確立される。
図8に戻って参照すると、コントローラ812は、スイッチモード供給部806が、周期的電圧関数を生成するように、駆動制御信号832’、832’’をスイッチモード供給部806に提供する。スイッチモード供給部806は、図3に描写される構成要素によって実現され得る(例えば、図4に描写される周期的電圧関数を作成するために)が、他の切り替えアーキテクチャが利用され得ることは、当然、想起される。
一般に、イオンエネルギー制御構成要素820は、変調関数を周期的電圧関数(スイッチモード電力供給部806と関連して、コントローラ812によって生成される)に印加するように機能する。図8に示されるように、イオンエネルギー制御構成要素820は、カスタムIEDF部分850、IEDF関数メモリ848、ユーザインターフェース846、および電力構成要素844と通信する変調コントローラ840を含む。これらの構成要素の描写は、実際には、共通または別個の構成要素によってもたらされ得る、機能的構成要素を伝えることを意図することを認識されたい。
本実施形態における変調コントローラ840は、概して、変調関数を定義するデータに基づいて、電力構成要素844(ひいては、その出力834)を制御し、電力構成要素844は、スイッチモード供給部806によって生成される、周期的電圧関数に印加される変調関数834(変調コントローラ840からの制御信号842に基づく)を生成する。本実施形態におけるユーザインターフェース846は、ユーザが、IEDF関数メモリ848内に記憶される、所定のIEDF関数を選択すること、またはカスタムIEDF構成要素850と関連して、カスタムIEDFを定義することを可能にするように構成される。
多くの実装では、電力構成要素844は、変調関数(例えば、可変DC電圧)をスイッチモード電力供給部(例えば、図3に描写されるスイッチモード電力供給部のVbus)に印加するDC電力供給部(例えば、DCスイッチモード電力供給部または線形増幅器)を含む。これらの実装では、変調コントローラ840は、電力構成要素844が、変調関数に一致する電圧を印加するように、電力構成要素844によって出力される、電圧レベルを制御する。
いくつかの実装では、IEDF関数メモリ848は、複数のIEDF分布関数の各々に対応する、複数のデータセットを含み、ユーザインターフェース846は、ユーザが、所望の(または定義された)IEDF関数を選択することを可能にする。例えば、図11を参照すると、右欄に、ユーザが選択するために利用可能であり得る、例示的IEDF関数が、示される。また、左欄は、変調コントローラ840が、電力構成要素844と関連して、周期的電圧関数に印加し、対応するIEDF関数をもたらすであろう、関連付けられた変調関数を描写する。図11に描写されるIEDF関数は、例示にすぎず、他のIEDF関数も、選択のために利用可能であり得ることを認識されたい。
カスタムIEDF構成要素850は、概して、ユーザが、ユーザインターフェース846を介して、所望の(または定義された)イオンエネルギー分布関数を定義することを可能にするように機能する。例えば、いくつかの実装では、カスタムIEDF構成要素850は、ユーザが、イオンエネルギーの分布を定義する、特定のパラメータのための値を確立することを可能にする。
例えば、カスタムIEDF構成要素850は、フラックスの相対的レベルに関して(例えば、高レベル(IF−high)、中間レベル(IF−mid)、および低レベル(IF−low)におけるフラックスの割合に関して)、これらのエネルギーレベル間のIEDFを定義する関数と関連して、IEDF関数が定義されることを可能にし得る。多くの事例では、IF−high、IF−low、およびこれらのレベル間のIEDF関数のみでも、IEDF関数を定義するために十分である。具体的実施例として、ユーザは、20%寄与率レベル(全体的IEDFに対する寄与率)において1200eV、30%寄与率レベルにおいて700eVを、これらの2つのレベル間の正弦波IEDFとともに要求し得る。
また、カスタムIEDF部分850は、ユーザが、1つ以上の(例えば、複数の)エネルギーレベルと、IEDFに対する各エネルギーレベルの対応する割合寄与率とのリストを伴う表を作ることを可能にし得ることが想起される。また、さらなる代替実施形態では、カスタムIEDF構成要素850は、ユーザインターフェース846と関連して、ユーザに、ユーザが所望の(または定義された)IEDFを描くことを可能にする、グラフィカルツールを提示することによって、ユーザが、所望の(または定義された)IEDFをグラフィック的に生成することを可能にすることが想起される。
加えて、また、IEDF関数メモリ848およびカスタムIEDF構成要素850は、ユーザが、所定のIEDF関数を選択し、次いで、所定のIEDF関数から導出される、カスタムIEDF関数を生み出すように、所定のIEDF関数を改変することを可能にするように、相互動作し得ることが想起される。
IEDF関数が定義されると、変調コントローラ840は、所望の(または定義された)IEDF関数を定義するデータを、電力構成要素844が所望の(または定義された)IEDFに対応する変調関数をもたらすように、電力構成要素844を制御する制御信号842に変換する。例えば、制御信号842は、電力構成要素844が変調関数によって定義される電圧を出力するように、電力構成要素844を制御する。
次に、図12を参照すると、イオン電流補償構成要素1260が、プラズマチャンバ1204内のイオン電流を補償する、実施形態のブロック図が、描写される。本出願人は、高いエネルギーレベルでは、チャンバ内のイオン電流の高いレベルが、基板の表面における電圧に影響を及ぼし、結果として、イオンエネルギー分布もまた、影響を受けることを見出した。例えば、図15A−15Cを簡単に参照すると、基板1210またはウエハの表面に現れるような電圧波形と、IEDFに対するそれらの関係が、示される。
より具体的には、図15Aは、イオン電流IIが、補償電流Icに等しい場合の基板1210の表面における周期的電圧関数を描写し、図15Bは、イオン電流IIが、補償電流Icを上回る場合の基板1210の表面における電圧波形を描写し、図15Cは、イオン電流が、補償電流Ic未満である場合の基板の表面における電圧波形を描写する。
図15Aに描写される、II=Icの場合、イオンエネルギー1470の広がりは、図15Bに描写される、II>Icの場合のイオンエネルギーの均一広がり1472、または図15Cに描写される、II<Icの場合のイオンエネルギーの均一広がり1474と比較して、比較的に狭い。したがって、イオン電流補償構成要素1260は、イオン電流が高い場合、イオンエネルギーの狭広がりを可能にし(例えば、イオン電流の影響を補償することによって)、また、均一イオンエネルギーの広がり1572、1574の幅を制御可能にする(例えば、イオンエネルギーの広がりを有することが望ましい場合)。
図15Bに描写されるように、イオン電流補償を伴わない場合(II>Icの場合)、周期的電圧関数の正の部分間の基板の表面における電圧は、漸次的により絶対値の小さい負値になり、イオンエネルギーのより広い広がり1572を生み出す。同様に、イオン電流補償が、図15Cに描写されるように、補償電流のレベルをイオン電流を超えるレベル(II<Ic)に上昇させるために利用される場合、基板の表面における電圧は、周期的電圧関数の正の部分間において、漸次的により絶対値の大きい負値になり、均一イオンエネルギーのより広い広がり1574が、生み出される。
図12に戻って参照すると、イオン電流補償構成要素1260は、随意に、スイッチモード電力供給部1206およびコントローラ1212に追加され得る、別個の付属として実現され得る。他の実施形態では(例えば、図13に描写されるように)、イオン電流補償構成要素1260は、共通筐体1366を本明細書に説明される他の構成要素(例えば、スイッチモード電力供給部106、206、806、1206およびイオンエネルギー制御220、820構成要素)と共有し得る。本実施形態では、プラズマチャンバ1204に提供される周期的電圧関数は、イオン電流補償構成要素1260からのイオン電流補償によって修正される周期的電圧関数を備えているので、修正された周期的電圧関数と称することができる。コントローラ1212は、スイッチモード電力供給部1206の出力とイオン電流補償1260の出力とが合体する、電気ノードにおいて、異なる時間に電圧をサンプリングすることができる。
図13に描写されるように、スイッチモード供給部の出力1336に結合される、電流源1364と、電流源1364および出力1336の両方に結合される、電流コントローラ1362とを含む、例示的イオン電流補償構成要素1360が、示される。また、図13には、プラズマチャンバ1304が、描写され、プラズマチャンバ内には、容量要素C1、C2、およびイオン電流IIがある。描写されるように、C1は、絶縁、基板、基板支持部、および静電チャックを含み得るが、それらに限定されない、チャンバ1304に関連付けられた構成要素の固有容量(本明細書では有効容量とも称される)を表し、C2は、シース容量および浮遊容量を表す。本実施形態では、プラズマチャンバ1304に提供され、V0で測定可能である周期的電圧関数は、イオン電流補償Icによって修正される周期的電圧関数を備えているため、修正された周期的電圧関数と称されることができる。
シース(本明細書ではプラズマシースとも称される)は、基板表面、および、おそらくプラズマ処理チャンバの壁の近くのプラズマの層であり、正イオンの高い密度、したがって全体的に過剰な正電荷を伴う。シースが接触している表面は、典型的には、圧倒的多数の負電荷を有する。シースは、正イオンより速い電子の速度により生じ、したがって、電子の大部分が基板表面または壁に到達することをもたらし、したがって、シースを電子が奪われたままにする。シースの厚さλsheathは、プラズマ密度およびプラズマ温度等のプラズマ特性の関数である。
本実施形態におけるC1は、チャンバ1304に関連付けられた構成要素の固有の(本明細書では有効とも称される)容量であるので、処理の制御を得るために追加される、アクセス可能容量ではないことに留意されたい。例えば、線形増幅器を利用するいくつかの従来技術アプローチは、基板へのバイアス電力を阻止コンデンサと結合し、次いで、その線形増幅器を制御するためのフィードバックとして、阻止コンデンサの監視電圧を利用する。コンデンサが、本明細書に開示される実施形態の多くにおいて、スイッチモード電力供給部を基板支持部に結合し得るが、阻止コンデンサを使用するフィードバック制御は、本発明のいくつかの実施形態では、要求されないため、そのように行うことは、不必要である。
図13を参照しながら、図13に描写されるVoにおける例示的電圧(例えば、修正された周期的電圧関数)を描写するグラフである図14も同時に参照する。動作において、電流コントローラ1362は、Voにおける電圧を監視し、イオン電流が、以下のように、間隔t(図14に描写される)にわたって計算される。
イオン電流IIおよび固有容量C1(有効容量とも称される)のいずれかまたは両方は、時間的に変化することができる。C1は、実質的に、所与のツールに対する定数であり、測定可能であるので、Voのみ、補償電流の継続的制御を可能にするために監視される必要がある。前述のように、イオンエネルギーのより単一エネルギー的分布(例えば、図15Aに描写されるように)を得るために、電流コントローラは、Icが、実質的に、IIと同一である(または代替案では、方程式2に関係付けられる)ように、電流源1364を制御する。このように、イオンエネルギーの狭広がりは、イオン電流が、基板の表面において、電圧に影響を及ぼすレベルに到達する場合にも、維持され得る。また、加えて、所望に応じて、イオンエネルギーの広がりは、追加のイオンエネルギーが、基板の表面において実現されるように、図15Bおよび15Cに描写されるように、制御され得る。
また、図13には、イオンエネルギー分布の制御に関連して利用され得るフィードバックライン1370が描写される。例えば、図14に描写されるΔVの値(本明細書では電圧ステップまたは第3の部分1406とも称される)は、瞬間的イオンエネルギーを示し、フィードバック制御ループの一部として、多くの実施形態において使用され得る。一実施形態では、電圧ステップΔVは、方程式4に従ってイオンエネルギーに関係付けられる。他の実施形態では、ピーク間電圧VPPは、瞬間的イオンエネルギーに関係付けることができる。代替として、ピーク間電圧VPPと、第4の部分1408の傾きdV0/dtと時間tとの積との間の差は、瞬間的イオンエネルギーに関連付けられることができる(例えば、VPP−dV0/dt・t)。
次に、図16を参照すると、図13を参照して説明される、電流源1364を実現するために実装され得る電流源1664の例示的実施形態が示される。本実施形態では、制御可能負DC電圧源は、直列インダクタL2と関連して、電流源として機能するが、当業者は、本明細書に照らして、電流源が、他の構成要素および/または構成によって実現され得ることを理解するであろう。
図43は、基板の表面に影響を及ぼすイオンのイオンエネルギー分布を制御する方法の一実施形態を図示する。方法4300は、修正された周期的電圧関数4302(図44の修正された周期的電圧関数4402参照)を、プラズマ処理チャンバ内の基板を支持する基板支持部に適用することから始まる。修正された周期的電圧関数は、イオン電流補償IC(図44のIC4404参照)および電力供給部電圧VPS(図44の電力供給部電圧4406参照)等の少なくとも2つの「ノブ」を介して制御されることができる。電力供給部電圧を生成するための例示的構成要素は、図1のスイッチモード電力供給部106である。電力供給部電圧VPSを説明することに役立つために、これは、イオン電流およびイオン電流補償に結合することなく測定された場合として本明細書で図示される。次いで、修正された周期的電圧関数は、イオン電流補償IC4304の第1および第2の値においてサンプリングされる。修正された周期的電圧関数の電圧の少なくとも2つのサンプルが、イオン電流補償ICの各値について得られる。サンプリング4304は、イオン電流IIおよびシース容量Csheath4306の計算4306(または決定)を可能にするために行われる。そのような決定は、基板支持部に印加された場合に(または基板支持部に印加されると)狭小(例えば、最小)イオンエネルギー分布関数(IEDF)幅を生成するであろう、イオン電流補償ICを見出すことを伴い得る。計算4306はまた、随意に、修正された周期的電圧関数の波形のサンプリング4304に基づいて、電圧ステップΔV(修正された周期的電圧関数1406の第3の部分としても知られている)を決定することを含むこともできる。電圧ステップΔVは、基板の表面に到達するイオンのイオンエネルギーに関係付けることができる。最初にイオン電流IIを見出すとき、電圧ステップΔVを無視することができる。サンプリング4304および計算4306の詳細を、以下の図30の議論で提供する。
いったんイオン電流IIおよびシース容量Csheathが把握されると、方法4300は、イオンエネルギーおよびIEDFの形状(例えば、幅)を設定し、監視することを伴う、図31の方法3100へ移動し得る。例えば、図46は、どのようにして電力供給部電圧の変化がイオンエネルギーの変化をもたらすことができるかを図示する。特に、図示した電力供給部電圧の規模が減少させられ、イオンエネルギーの規模の減少をもたらす。加えて、図47は、狭小IEDF4714を考慮すると、イオン電流補償ICを調節することによってIEDFを拡大できることを図示する。代替として、または並行して、方法4300は、イオン電流II、シース容量Csheath、および修正された周期的電圧関数の波形の他の側面を利用する、図32−41を参照して説明されるように、種々の測定法を行うことができる。
イオンエネルギーおよび/またはIEDF幅を設定することに加えて、方法4300は、イオンエネルギーおよびIEDF幅を維持するために、修正された周期的電圧関数4308を調節し得る。特に、イオン電流補償構成要素によって提供されるイオン電流補償ICの調節および電力供給部電圧の調節が、行われ得る4308。いくつかの実施形態では、電力供給部電圧は、電力供給部のバス電圧Vbus(例えば、図3のバス電圧Vbus)によって制御されることができる。イオン電流補償ICは、IEDF幅を制御し、電力供給部電圧は、イオンエネルギーを制御する。
これらの調節4308の後、修正された周期的電圧関数を再度サンプリングすることができ4304、イオン電流II、シース容量Csheath、および電圧ステップΔVの計算を再度行うことができる4306。イオン電流IIまたは電圧ステップΔVが定義された値(または代替案では所望の値)以外である場合、イオン電流補償ICおよび/または電力供給部電圧を調節することができる4308。サンプリング4304、計算4306、および調節4308のループが、イオンエネルギーeV、および/またはIEDF幅を維持するために起こり得る。
図30は、基板の表面に影響を及ぼすイオンのイオンエネルギー分布を制御する方法の別の実施形態を図示する。いくつかの実施形態では、上記で議論されるように、狭小IEDF幅(例えば、最小IEDF幅または代替案では約6%半値全幅)を達成することが望ましくあり得る。したがって、方法3000は、一定の基板電圧、したがって、シース電圧が、基板の表面に存在するように、修正された周期的電圧関数をチャンバおよび基板支持部に提供することができる。これは、順に、実質的に一定の電圧でシースにわたってイオンを加速し、したがって、イオンが実質的に同一のイオンエネルギーで基板に影響を及ぼすことを可能にし、順に、狭小IEDF幅を提供する。例えば、図45では、イオン電流補償ICを調節することが、パルス間の基板電圧Vsubに一定または実質的に一定の電圧を持たせ、したがって、IEDFを狭くさせることができることが分かる。
そのような修正された周期的電圧関数は、いかなる浮遊容量も仮定せず、イオン電流補償ICがイオン電流IIに等しいときに達成される(図45の周期的電圧関数(V0)の最後の5つのサイクルを参照)。浮遊容量Cstrayが考慮される代替案では、イオン電流補償ICは、方程式2に従って、イオン電流IIに関係付けられる。
式中、C1は、有効容量(例えば、図3および13を参照して説明される固有容量)である。有効容量C1は、時間変動し得るか、または一定であり得る。本開示の目的で、狭小IEDF幅は、II=ICであるとき、または代替案では、方程式2が満たされるときのいずれかで存在することができる。図45−50は、具体的には、II=ICを使用するが、これらの等式は、方程式2の単純化にすぎず、したがって、方程式2は、図45−50で使用される等式の代わりになり得ることを理解されたい。浮遊容量Cstrayは、電力供給部によって見られるようなプラズマチャンバの累積容量である。図45で図示される8つのサイクルがある。
方法3000は、基板支持部3002(例えば、図1の基板支持部108)への修正された周期的電圧関数(例えば、図14で描写される修正された周期的電圧関数または図44の修正された周期的電圧関数4402)の適用から始まることができる。修正された周期的電圧関数の電圧を2回以上サンプリングすることができ3004、このサンプリングから、修正された周期的電圧関数のサイクルの少なくとも一部分に対する傾きdV0/dtを計算することができる3006(例えば、パルスの間の一部分または第4の部分1408の傾き)。決定3010前のある時点で、有効容量C1(例えば、図13の固有容量C1および図3の固有容量C10)の以前に決定された値に(例えば、メモリから、またはユーザ入力から)アクセスすることができる3008。傾きdV0/dt、有効容量C1、およびイオン電流補償ICに基づいて、関数f(方程式3)が、以下のように、イオン電流補償ICの各値について評価されることができる。
関数fが真である場合、イオン電流補償ICは、イオン電流IIに等しく、または代替案では、方程式2を真にし、狭小IEDF幅が達成されている3010(例えば、図45参照)。関数fが真ではない場合、関数fが真になるまで、イオン電流補償ICをさらに調節することができる3012。これの別の見方としては、イオン電流IIに合致するまで(または代替案では方程式2の関係を満たすまで)イオン電流補償ICを調節することができ、その時点で狭小IEDF幅が存在するであろう。イオン電流補償Icへのそのような調節およびIEDFの結果として生じる狭小化を図45で見ることができる。イオン電流IIおよび対応するイオン電流補償Icを、記憶動作3014で(例えば、メモリに)記憶することができる。イオン電流ICは、有効容量C1と同様に、時間変動し得る。
方程式3が満たされると、(IC=IIであるため、または方程式2が真であるためのいずれかで)イオン電流IIが把握される。したがって、方法3000は、プラズマに影響を及ぼすことなく、リアルタイムでイオン電流IIの遠隔かつ非侵襲的測定を可能にする。これは、図32−41を参照して説明されるであろうもの等のいくつかの新規の測定基準につながる(例えば、プラズマ密度の遠隔監視およびプラズマ源の遠隔故障検出)。
補償電流ICを調節している間に3012、イオンエネルギーは、デルタ関数より広くなる可能性が高く、イオンエネルギーは、図15B、15C、または44のいずれかのものに類似するであろう。しかしながら、いったん方程式2を満たす補償電流ICが見出されると、IEDFが、図15Aまたは図45の右部分で図示されるように、狭小IEDF幅(例えば、最小IEDF幅)を有するものとして現れるであろう。これは、IC=IIであるときに(または代替として、方程式2が真であるときに)、修正された周期的電圧関数のパルス間の電圧が、実質的に一定のシースまたは基板電圧、したがって、イオンエネルギーを引き起こすためである。図46では、基板電圧4608は、定電圧部分の間のパルスを含む。これらのパルスは、非常に短い持続時間を有するため、イオンエネルギーおよびIEDFへのそれらの影響は、ごくわずかであり、したがって、基板電圧4608は、実質的に一定と称される。
以下は、図30で図示される方法ステップの各々についてのさらなる詳細を提供する。一実施形態では、修正された周期的電圧関数は、図14で図示されるもののような波形を有することができ、第1の部分(例えば、第1の部分1402)、第2の部分(例えば、1404)、第3の部分(例えば、第3の部分1406)、および第4の部分(例えば、第4の部分1408)を含むことができ、第3の部分は、電圧ステップΔVを有することができ、第4の部分は、傾きdV0/dtを有することができる。傾きdV0/dtは、正、負、またはゼロであり得る。修正された周期的電圧関数1400はまた、第1の部分1402、第2の部分1404、および第3の部分1406、ならびにパルス間の部分(第4の部分1408)を備えている、パルスを有するものとして表すことができる。
修正された周期的電圧関数は、図3ではV0として測定することができ、図44では修正された周期的電圧関数4402として現れることができる。修正された周期電圧関数4402は、電力供給部電圧4406(周期的電圧関数として知られている)をイオン電流補償4404と組み合わせることによって生成される。電力供給部電圧4406は、大部分が、修正された周期的電圧関数4402のパルスを生成して成形することに関与し、イオン電流補償4404は、大部分が、多くの場合は、真っ直ぐな傾き電圧である、パルス間の部分を生成して成形することに関与する。イオン電流補償Icを増加させることは、図45で見られるように、パルス間の部分の傾きの規模の減少を引き起こす。電力供給部電圧4606の規模を減少させることは、図46で見られるように、修正された周期的電圧関数4602のパルスおよびピーク間電圧の振幅の規模の減少を引き起こす。
電力供給部がスイッチモード電力供給部である場合において、第1のスイッチT1および第2のスイッチT2の切り替え図4410が適用されることができる。例えば、第1のスイッチT1は、図3でスイッチT1として実装されることができ、第2のスイッチT2は、図3で第2のスイッチT2として実装されることができる。2つのスイッチは、同一の切り替え時間を有するが、180°位相がずれているものとして図示される。他の実施形態では、スイッチは、図4で図示されるもの等のわずかな位相オフセットを有し得る。第1のスイッチT1がオンであるとき、電力供給部が負のバス電圧を有するため、電力供給部電圧は、図44の負の値である、最大規模に引き込まれる。第2のスイッチT2は、電力供給部電圧4406が接地から隔離されるように、この期間中にオフにされる。スイッチが逆転するとき、電力供給部電圧4406は、接地に接近し、わずかに通過する。図示した実施形態では、2つのパルス幅があるが、これは必要とはされない。他の実施形態では、パルス幅は、全てのサイクルについて同一であり得る。他の実施形態では、パルス幅は、時間を変動または変調させることができる。
修正された周期的電圧関数を基板支持部3002に適用し、修正された周期的電圧関数が(例えば、スイッチモード電力供給部と有効容量との間の)基板支持部に到達する前に、最後のアクセス可能な点でV0としてサンプリングすることができる3004。修正されていない周期的電圧関数(または図44の電力供給部電圧)は、図12のスイッチモード電力供給部1206等の電力供給部から供給されることができる。図44のイオン電流補償4404は、図12のイオン電流補償構成要素1260または図13の1360等の電流源から供給されることができる。
修正された周期的電圧関数の一部分または全体をサンプリングすることができる3004。例えば、第4の部分(例えば、第4の部分1408)をサンプリングすることができる。サンプリング3004は、電力供給部と基板支持部との間で行われることができる。例えば、図1では、サンプリング3004は、スイッチモード電力供給部106と支持部108との間で行われることができる。図3では、サンプリング3004は、インダクタL1と固有容量C10との間で行うことができる。一実施形態では、サンプリング3004は、容量C3と固有容量C10との間のV0で行われることができる。固有容量C10、およびプラズマを表す要素(R2、R3、C1、およびC2)がリアルタイム測定のためにアクセス可能ではないため、サンプリング3004は、典型的には、図3の固有容量C10の左側で行われる。固有容量C10は、典型的には、処理中に測定されないが、典型的には、既知の定数であり、したがって、製造中に設定されることができる。同時に、場合によっては、固有容量C10は経時的に変動し得る。
いくつかの実施形態では、修正された周期的電圧関数の2つだけのサンプルが必要とされるが、他の実施形態では、何百、何千、または何万個ものサンプルを修正された周期的電圧関数の各サイクルについて得ることができる。例えば、サンプリングレートは、400kHzより大きくあり得る。これらのサンプリングレートは、修正された周期的電圧関数およびその形状のより正確かつ詳細な監視を可能にする。同様に、周期的電圧関数のより詳細な監視は、サイクル間、異なるプロセス条件間、異なるプロセス間、異なるチャンバ間、異なるソース間等での波形のより正確な比較を可能にする。例えば、これらのサンプリングレートで、図14で図示される周期的電圧関数の第1、第2、第3、および第4の部分1402、1404、1406、1408を区別することができ、これは、従来のサンプリングレートでは可能ではない場合がある。いくつかの実施形態では、より高いサンプリングレートが、従来技術では可能ではない、電圧ステップΔVおよび傾きdV0/dtの解決を可能にする。いくつかの実施形態では、修正された周期的電圧関数の一部分をサンプリングすることができる一方で、他の部分はサンプリングされない。
傾きdV0/dtの計算3006は、時間t(例えば、第4の部分1408)の間に得られる複数のV0測定値に基づき得る。例えば、線をV0値に適合させるように、線形適合を行うことができ、線の傾きは、傾きdVo/dtを生じる。別の事例では、図14の時間t(例えば、第4の部分1408)の始めおよび終わりのV0値が解明されることができ、dVo/dtとして求められる線の傾きを用いてこれらの2つの点の間で線が適合させられることができる。これらは、パルス間の部分の傾きdVo/dtを計算することができる、多数の方法のうちの2つにすぎない。
決定3010は、IEDFを狭小幅(例えば、最小幅、または代替案では6%半値全幅)に調節するために使用される、反復ループの一部であり得る。方程式3は、イオン電流補償Icがイオン電流IIに等しい(または代替案では方程式2に従ってIIに関係付けられる)場合のみ当てはまり、これは、一定の基板電圧、したがって、一定かつ実質的に単数のイオンエネルギー(狭小IEDF幅)がある場合のみ起こる。一定の基板電圧4608(Vsub)を図46で見ることができる。したがって、イオン電流IIまたは代替としてイオン電流補償Icのいずれか一方を方程式3で使用することができる。
代替として、第4の部分1408(パルス間の部分とも称される)に沿った2つの値を、第1のサイクルおよび第2のサイクルについてサンプリングすることができ、それぞれ、第1および第2の傾きを各サイクルについて決定することができる。これら2つの傾きから、第3のまだ測定されていない傾きに対して方程式3を真にすることを期待されるイオン電流補償Icを決定することができる。したがって、狭小IEDF幅に対応することが予測されるイオン電流IIを推定することができる。これらは、狭小IEDF幅を決定することができる多くの方法のうちの2つにすぎず、対応するイオン電流補償Icおよび/または対応するイオン電流IIを見出すことができる。
イオン電流補償Icへの調節3012は、イオン電流補償Icの増加または減少のいずれか一方を伴うことができ、各調節のためのステップサイズには制限がない。いくつかの実施形態では、イオン電流補償を増加または減少させるかどうかを決定するために、方程式3における関数fの符号を使用することができる。符号が負である場合、イオン電流補償Icを減少させることができる一方で、正符号は、イオン電流補償Icを増加させる必要性を示すことができる。
いったんイオン電流IIに等しい(または代替案では方程式2に従ってそれに関係付けられる)イオン電流補償Icが識別されると、方法3000は、さらなる設定点動作(図31参照)または遠隔チャンバおよびソース監視動作(図32−34参照)へ前進することができる。さらなる設定点動作は、イオンエネルギー(図46も参照)およびイオンエネルギーの分布またはIEDF幅(図47も参照)を設定することを含むことができる。ソースおよびチャンバ監視は、プラズマ密度、ソース供給部異常、プラズマアーク放電、およびその他を監視することを含むことができる。
さらに、方法3000は、随意に、連続的に(または代替案として周期的に)イオン電流補償Icを更新するためにサンプリング3004に戻ることができる。例えば、サンプリング3004、計算3006、決定3010、および調節3012は、方程式3が満たされ続けることを確実にするために、電流イオン電流補償Icを考慮して周期的に行うことができる。同時に、方程式3を満たすイオン電流補償Icが更新される場合、イオン電流IIも更新されることができ、更新された値は、記憶されることができる3014。
方法3000は、イオン電流IIに等しいように、または代替案では方程式2を満たすように、イオン電流補償Icを見出して設定することができるが、狭小IEDF幅を達成するために必要とされるイオン電流補償Icの値は、イオン電流ICをその値に設定することなく(または代替案ではその前に)決定されることができる。例えば、第1のサイクルについて第1のイオン電流補償Ic1を適用し、パルス間の電圧の第1の傾きdV01/dtを測定し、かつ、第2のサイクルについて第2のイオン電流補償Ic2を適用し、パルス間の電圧の第2の傾きdV02/dtを測定することによって、方程式3が真であることが期待される、第3のイオン電流補償Ic3に関連付けられる第3の傾きdV03/dtが決定されることができる。第3のイオン電流補償Ic3は、適用された場合に狭小IEDF幅をもたらすであろうものであり得る。したがって、イオン電流補償の単一の調節のみを用いて、方程式3を満たし、したがって、イオン電流IIに対応するイオン電流補償Icを決定することができる。次いで、方法3000は、イオン電流ICを、狭小IEDF幅を達成するために必要とされる値に設定することさえなく、図31および/または図32−41で説明される方法へ移動することができる。そのような実施形態は、調節速度を増加させるために実行され得る。
図31は、IEDF幅およびイオンエネルギーを設定する方法を図示する。本方法は、図30で図示される方法3000が起源であり、それぞれ、IEDF幅およびイオンエネルギーの設定を伴う、左の経路3100(IEDF分岐とも称される)または右の経路3101(イオンエネルギー分岐とも称される)のいずれか一方をとることができる。イオンエネルギーeVは、電圧ステップΔVまたは図14の修正された周期的電圧関数1400の第3の部分1406に比例する。イオンエネルギーeVと電圧ステップΔVとの間の関係は、方程式4として表されることができる。
式中、C1は、有効容量(例えば、チャック容量、図3の固有容量C10、または図13の固有容量C1)であり、C2は、シース容量(例えば、図3のシース容量C4、または図13のシース容量C2)である。シース容量C2は、浮遊容量を含み得、イオン電流IIに依存する。電圧ステップΔVは、修正された周期的電圧関数1400の第2の部分1404と第4の部分1408との間の電圧の変化として測定されることができる。電圧ステップΔV(電力供給部電圧または図3のバス電圧Vbus等のバス電圧の関数である)を制御および監視することによって、イオンエネルギーeVを制御し、把握することができる。
同時に、IEDF幅を方程式5に従って概算することができる。
式中、Iは、CがCseriesである場合IIであり、CがCeffectiveである場合ICである。時間tは、パルス間の時間であり、VPPは、ピーク間電圧であり、ΔVは、電圧ステップである。
加えて、シース容量C2は、種々の計算および監視動作で使用されることができる。例えば、デバイシース距離λsheathを以下のように推定することができる。
式中、εは、真空誘電率であり、Aは、基板の面積(または代替案では基板支持部の表面積)である。いくつかの高電圧用途では、方程式6は、方程式7として表される。
加えて、シース内の電場を、シース容量C2、シース距離λsheath、およびイオンエネルギーeVの関数として推定することができる。シース容量C2は、イオン電流IIとともに、方程式8(単独にイオン化されたプラズマに対して飽和電流Isatが補償電流ICに直線的に関係付けられる)から、プラズマ密度neを決定するために使用されることもできる。
シース容量C2および飽和電流Isatを使用して、基板表面におけるイオンの有効質量を計算することができる。プラズマ密度ne、シース内の電場、イオンエネルギーeV、イオンの有効質量、および基板のDC電位VDCは、典型的には、当技術分野で間接的手段を介してのみ監視される、基本的プラズマパラメータである。本開示は、これらのパラメータの直接測定を可能にし、したがって、リアルタイムでプラズマ特性のより正確な監視を可能にする。
方程式4で見られるように、シース容量C2はまた、図31のイオンエネルギー分岐3101で図示されるように、イオンエネルギーeVを監視して制御するために使用することもできる。イオンエネルギー分岐3101は、イオンエネルギーのユーザ選択を受信することによって開始する3102。次いで、イオンエネルギー分岐3101は、周期的電圧関数を供給するスイッチモード電力供給部のための初期電力供給部電圧を設定することができる3104。周期的電圧サンプリング動作3108前のある時点で、イオン電流がアクセスされる(例えば、メモリからアクセスされる)こともできる3106。周期的電圧がサンプリングされることができ3108、修正された周期的電圧関数の第3の部分の測定値を測定することができる3110。イオンエネルギーIIは、修正された周期的電圧関数の電圧ステップΔV(第3の部分(例えば、第3の部分1406)とも称される)から計算されることができる3112。次いで、イオンエネルギー分岐3101は、イオンエネルギーが定義されたイオンエネルギーに等しいかどうかを決定することができ3114、もしそうであれば、イオンエネルギーは所望の設定点にあり、イオンエネルギー分岐3101は終了することができる。イオンエネルギーが定義されたイオンエネルギーに等しくない場合、イオンエネルギー分岐3101は、電力供給部電圧を調節し3116、再度、周期的電圧をサンプリングすることができる3108。次いで、イオンエネルギー分岐3101は、イオンエネルギーが定義されたイオンエネルギーに等しくなるまで、サンプリング3108、測定3110、計算3112、決定3114、および設定3116を循環することができる。
IEDF幅を監視して制御する方法が、図31のIEDF分岐3100で図示されている。IEDF分岐3100は、IEDF幅のユーザ選択を受信し3150、電流IEDF幅をサンプリングすること3152を含む。次いで、決定3154は、定義されたIEDF幅が電流IEDF幅に等しいかどうかを決定し、決定3152が満たされる場合、IEDF幅は所望される(または定義される)通りであり、IEDF分岐3100は終了することができる。しかしながら、電流IEDF幅が定義されたIEDF幅に等しくない場合、イオン電流補償Icを調節することができる3156。この決定3154および調節3156は、電流IEDF幅が定義されたIEDF幅に等しくなるまで、循環様式で継続されることができる。
いくつかの実施形態では、IEDF分岐3100はまた、所望のIEDF形状を確保するように実装されることもできる。種々のIEDF形状が生成されることができ、各々は、異なるイオンエネルギーおよびIEDF幅に関連付けられることができる。例えば、第1のIEDF形状が、デルタ関数であり得る一方で、第2のIEDF形状は、二乗関数であり得る。他のIEDF形状は、カップ状であり得る。種々のIEDF形状の実施例を図11で見ることができる。
イオン電流IIおよび電圧ステップΔVの知識を用いて、方程式4をイオンエネルギーeVについて解くことができる。電圧ステップΔVは、電力供給部電圧を変化させることによって制御されることができ、そして、電力供給部電圧を変化させることは、電圧ステップΔVを変化させる。より大きい電力供給部電圧は、電圧ステップΔVの増加を引き起こし、電力供給部電圧の減少は、電圧ステップΔVの減少を引き起こす。言い換えると、電力供給部電圧を増加させることにより、より大きいイオンエネルギーeVをもたらす。
さらに、上記システムおよび方法が連続的に変化するフィードバックループ上で動作するので、プラズマ源またはチャンバ条件に対する変動または意図的な調節による、プラズマの変化にもかかわらず、所望の(または定義された)イオンエネルギーおよびIEDF幅を維持することができる。
図30−41は、単一のイオンエネルギーに関して説明されているが、当業者であれば、所望の(または定義された)IEDF幅(またはIEDF形状)およびイオンエネルギーを生成して監視するこれらの方法はさらに、各々が各自のIEDF幅(またはIEDF形状)を有する2つ以上のイオンエネルギーを産生して監視するために利用できることを認識するであろう。例えば、第1、第3、および第5のサイクルで第1の電力供給部電圧VPS、第2、第4、および第6のサイクルで第2の電力供給部電圧を提供することによって、基板の表面に到達するイオンについて、2つの異なる狭小イオンエネルギーを達成することができる(例えば、図42A)。3つの異なる電力供給部電圧を使用することは、3つの異なるイオンエネルギーをもたらす(例えば、図42B)。複数の電力供給部電圧の各々が印加される時間または各電力供給部電圧レベルが印加されるサイクルの数を変化させることによって、異なるイオンエネルギーのイオンフラックスが制御されることができる(例えば、図42C)。
上記の議論は、プラズマ処理中に基板の表面に到達するイオンのイオンエネルギーならびにIEDF幅および/またはIEDF形状を制御するために、電力供給部によって提供される周期的電圧関数を、イオン電流補償構成要素によって提供されるイオン電流補償と組み合わせることがどのように使用されることができるかを示している。
これまで記述された制御のうちのいくつかは、(1)固定波形(波形の連続サイクルが同一である)、(2)イオンエネルギーおよびIEDFに比例する少なくとも2つの部分(例えば、図14で図示される第3および第4の部分1406および1408)を有する波形、および(3)波形の異なる特徴の正確な監視を可能にする高いサンプリングレート(例えば、125MHz)のいくつかの組み合わせを使用することによって、可能にされる。例えば、線形増幅器等の従来技術が、修正された周期的電圧関数に類似する波形を基板に送信する場合、サイクル間の望ましくない変動が、イオンエネルギーまたはIEDF幅(またはIEDF形状)を特徴付けるために、これらの従来技術の波形を使用することを困難にする。
線形増幅器が基板支持部にバイアスをかけるために使用されている場合、波形がサイクル毎に一貫しておらず、したがって、波形の特徴(例えば、パルス間の部分の傾き)が典型的には有用な情報を提供しないであろうため、高い割合でサンプリングする必要性が認められていない。本開示および関連開示で見られるような、そのような有用な情報は、固定波形が使用されるとき、生じない。
本明細書で開示された固定波形および高いサンプリングレートはさらに、より正確な統計観察を可能にさせる。この増加した精度により、修正された周期的電圧関数の種々の特性を監視することを介して、プラズマ源およびチャンバ内のプラズマの動作および処理特性を監視することができる。例えば、修正された周期的電圧関数の測定は、シース容量およびイオン電流の遠隔監視を可能にし、チャンバプロセスまたは他のチャンバ詳細の知識を伴わずに監視されることができる。いくつかの実施例が、続き、ソースおよびチャンバの非侵襲的監視および故障検出のために、これまで記述されたシステムおよび方法を使用されることができる、多数の方法のうちのいくつかのみを例証する。
監視の実施例として、図14を参照すると、波形1400のDCオフセットは、プラズマ源(以降では「ソース」と称される)の健全性を表すことができる。別の実施例では、修正された周期的電圧関数のパルスの最上部分1404(第2の部分)の傾きは、ソース内の減衰効果に関連させられることができる。(0に等しい傾きを有するものとして図示される)水平からの最上部分1404の傾きの標準偏差は、波形1400のある側面に基づいてソースの健全性を監視する別の方法である。別の側面は、修正された周期的電圧関数の第4の部分1408に沿ってサンプリングされたV0点の標準偏差を測定し、標準偏差をチャンバ共鳴に関連させることを伴う。例えば、この標準偏差が連続パルスの間で監視され、標準偏差が経時的に増加する場合、これは、チャンバ内、例えば、静電チャック内に共鳴があることを示し得る。共鳴は、チャンバへの、またはチャンバ内の不良な電気接続の兆候、あるいは付加的な不要インダクタンスまたは容量の兆候であり得る。
図32は、本開示の一実施形態による、基板支持部に送達される2つの修正された周期的電圧関数波形を図示する。比較されたとき、2つの修正された周期的電圧関数は、チャンバ整合、または原位置異常あるいは故障検出に使用されることができる。例えば、2つの修正された周期的電圧関数のうちの1つは、基準波形であり得、第2の関数は、較正中にプラズマ処理チャンバから得ることができる。2つの修正された周期的電圧関数の間の差(例えば、ピーク間電圧VPPの差)は、プラズマ処理チャンバを較正するために使用されることができる。代替として、第2の修正された周期的電圧関数が、処理中に基準波形と比較されることができ、波形特性の任意の差(例えば、シフト)は、故障を示すことができる(例えば、修正された周期的電圧関数の第4の部分3202の傾きの差)。
図33は、プラズマ源の不安定性またはプラズマ密度の変化を示すことができる、イオン電流波形を図示する。本システムの故障および異常を識別するために、図33で図示されるもの等のイオン電流IIの変動が分析されることができる。例えば、図33の周期的変動は、プラズマ源(例えば、プラズマ電力供給部102)における低周波数不安定性を示し得る。そのようなイオン電流IIの変動はまた、プラズマ密度の周期的変化を示すこともできる。この指標およびそれが示し得る可能性として考えられる故障または異常は、特に有利にイオン電流IIの遠隔監視が使用されることができる多くの方法のうちの1つにすぎない。
図34は、非周期的形状を有する、修正された周期的電圧関数波形のイオン電流IIを図示する。イオン電流IIの本実施例は、プラズマ源の不安定性またはプラズマ密度の変化等の非周期的変動を示すことができる。そのような変動はまた、アーク放電、寄生プラズマの形成、またはプラズマ密度のドリフト等の種々のプラズマの不安定性を示し得る。
図35は、バイアス供給部内の故障を示すことができる修正された周期的電圧関数波形を図示する。第3の図示したサイクルの最上部分(第2の部分とも称される)は、バイアス供給部(例えば、図12の電力供給部1206)内の共鳴を示し得る異常挙動を示す。この共鳴は、バイアス供給部内の故障の指示であり得る。共鳴のさらなる分析は、電力システム内の故障を識別することに役立つ特性を識別し得る。
図36は、システムの容量の動的(または非線形)変化を示すことができる修正された周期的電圧関数波形を図示する。例えば、電圧に非線形に依存する浮遊容量が、そのような修正された周期的電圧関数をもたらし得る。別の実施例では、チャックにおけるプラズマ破壊または故障もまた、そのような修正された周期的電圧関数をもたらし得る。3つの図示したサイクルの各々では、各サイクルの第4の部分3602における非線形性が、システム容量の動的変化を示すことができる。例えば、システム容量の他の構成要素は、大部分が固定されるため、非線形性が、シース容量の変化を示すことができる。
図37は、プラズマ密度の変化を示し得る修正された周期的電圧関数波形を図示する。図示した修正された周期的電圧関数は、プラズマ密度の変化を示すことができる、傾きdV0/dtの単調なシフトを示す。これらの単調なシフトは、プロセスエッチング終点等の予測事象の直接指示を提供することができる。他の実施形態では、これらの単調なシフトは、いかなる予測事象も存在しない場合、プロセスの故障を示すことができる。
図38は、異なるプロセス実行に対するイオン電流のサンプリングを図示し、イオン電流のドリフトは、システムドリフトを示すことができる。各データ点は、所与の実行に対するイオン電流を表すことができ、許容限界は、許容イオン電流を定義するユーザ定義または自動限界である。イオン電流を許容限界の上方に徐々に押し上げる、イオン電流のドリフトは、基板損傷が起こり得ることを示し得る。このタイプの監視はまた、光学的発光厚さ測定等の任意の数の他の従来のモニタと組み合わせられることもできる。イオン電流ドリフトを監視することに加えて、これらの従来のタイプのモニタは、既存の監視および統計制御を増進することができる。
図39は、異なるプロセスパラメータに対するイオン電流のサンプリングを図示する。この説明図では、イオン電流は、異なるプロセスおよび異なるプロセス特性を区別するための性能指数として使用されることができる。そのようなデータは、プラズマレシピおよびプロセスの開発で使用されることができる。例えば、11個の図示したイオン電流データ点をもたらす11個のプロセス条件が試験されることができ、理想的なプロセスとして、または代替案では好ましいプロセスとして、好ましいイオン電流をもたらすプロセスが選択されることができる。例えば、最低イオン電流が理想的なプロセスとして選択され得、その後、プロセスが好ましいプロセス条件を用いて実行されているかどうかを判断するために、好ましいプロセスに関連付けられるイオン電流を測定基準として使用することができる。この性能指数は、いくつか非限定的な実施例を挙げると、割合、選択性、およびプロファイル角度等の類似する従来の測定基準特性に加えて、またはその代替案として、使用することができる。
図40は、チャンバ内にプラズマを伴わずに監視された、2つの修正された周期的電圧関数を図示する。これら2つの修正された周期的電圧関は、プラズマチャンバを特徴付けるために比較され、使用されることができる。実施形態では、第1の修正された周期的電圧関数が、基準波形であり得る一方で、第2の修正された周期的電圧関数は、現在監視されている波形であり得る。これらの波形は、処理チャンバ内にプラズマを伴わずに、例えば、チャンバ清掃または予防保守後に得られることができ、したがって、第2の波形は、産生への(または産生へ戻す)チャンバの解放に先立って、チャンバの電気的状態の検証を提供するために使用されることができる。
図41は、プラズマプロセスの正当性を立証するために使用されることができる2つの修正された周期的電圧関数を図示する。第1の修正された周期的電圧関数が、基準波形であり得る一方で、第2の修正された周期的電圧関数は、現在監視されている波形であり得る。現在監視されている波形は、基準波形と比較されることができ、任意の差は、別様に従来の監視方法を使用して検出可能ではない、寄生および/または非寄生インピーダンス問題を示し得る。例えば、図35の波形上で見られる共鳴が検出され得、それは、電力供給部内の共鳴を表すことができる。
イオン電流補償Ic、イオン電流II、および/またはシース容量Csheathを更新するために方法3000が循環している間、図32−41で図示される測定基準のうちのいずれかを監視することができる。例えば、各イオン電流IIサンプルが図38で得られた後、方法3000は、更新されたイオン電流IIを決定するためにサンプリング3004に戻ることができる。別の実施例では、監視動作の結果として、イオン電流II、イオンエネルギーeV、またはIEDF幅の補正が所望され得る。対応する補正を行うことができ、方法3000は、方程式3を満たす新しいイオン電流補償Icを見出すためにサンプリング3004に戻ることができる。
当業者であれば、図30、31、および43で図示される方法が、いかなる特定の、または説明された動作順も必要とせず、または図によって図示される、あるいは図中で示唆されるいかなる順番にも限定されないことを認識するであろう。例えば、測定基準(図32−41)は、IEDF幅および/またはイオンエネルギーeVを設定し、監視する前、間、または後に監視されることができる。
図44は、本明細書で開示されるシステムにおける異なる点での種々の波形を図示する。スイッチモード電力供給部の切り替え構成要素に対する図示した切り替えパターン4410、電力供給部電圧VPS4406(本明細書では周期的電圧関数とも称される)、イオン電流補償Ic4404、修正された周期的電圧関数4402、および基板電圧Vsub4412を考慮すると、IEDFは、図示した幅4414(一定の縮尺で描かれない場合がある)またはIEDF形状4414を有する。この幅は、本開示が「狭小幅」と称しているものより広い。示されるように、イオン電流補償Ic4404がイオン電流IIより大きいとき、基板電圧Vsub4412は一定ではない。IEDF幅4414は、基板電圧Vsub4412のパルス間の傾き部分の電圧差に比例する。
この非狭小IEDF幅4414を考慮すると、本明細書で開示される方法は、IC=IIとなる(または代替案では方程式2に従って関係付けられる)まで、イオン電流補償Icが調節されることを要求する。図45は、イオン電流IIに一致させるために、イオン電流補償Icの最終増加的変化を生じることの効果を図示する。IC=IIであるとき、基板電圧Vsub4512は、実質的に一定になり、IEDF幅4514は、非狭小幅から狭くなる。
いったん狭小IEDFが達成されると、図46で図示されるように、イオンエネルギーを所望の値または定義された値に調節することができる。ここで、電力供給部電圧(または代替案ではスイッチモード電力供給部のバス電圧Vbus)の規模が減少させられる(例えば、電力供給部電圧4606のパルスの最大負振幅が低減させられる)。結果として、ΔV1は、ピーク間電圧がVPP1からVPP2まで減少するように、ΔV2まで減少する。その結果として、実質的に一定の基板電圧Vsub4608の規模が減少し、したがって、狭小IEDF幅を維持しながら、イオンエネルギーの規模を4615から4614へ減少させる。
イオンエネルギーが調節されようとされまいと、図47に示されるように狭小IEDF幅が達成された後に、IEDF幅を広げることができる。ここで、II=IC(または代替案では、IIとICとの間の関係を生じる方程式2)を考慮して、ICを調節することができ、したがって、修正された周期的電圧関数4702のパルス間の部分の傾きを変化させる。イオン電流補償Icおよびイオン電流IIが等しくないことの結果として、基板電圧は、実質的に一定から非一定に移動する。さらなる結果は、IEDF幅4714が狭小IEDF4714から非狭小IEDF4702まで拡張することである。ICがIIから離れて調節されるほど、IEDF4714幅が大きくなる。
図48は、各イオンエネルギーレベルが狭小IEDF4814幅を有する、1つより多くのイオンエネルギーレベルを達成するために使用されることができる電力供給部電圧の1つのパターンを図示する。電力供給部電圧4806の規模が、各サイクルで交互する。これは、修正された周期的電圧関数4802の各サイクルに対して交互するΔVおよびピーク間電圧をもたらす。基板電圧4812は、順に、基板電圧のパルス間で交互する2つの実質的に一定の電圧を有する。これは、各々が狭小IEDF4814幅を有する、2つの異なるイオンエネルギーをもたらす。
図49は、各イオンエネルギーレベルが狭小IEDF4914幅を有する、1つより多くのイオンエネルギーレベルを達成するために使用されることができる、電力供給部電圧の別のパターンを図示する。ここで、電力供給部電圧4906は、2つの異なる規模の間で交互するが、交互する前の2つのサイクルに対して1度にそのようにする。示されるように、平均イオンエネルギーは、VPS4906がサイクル毎に交互させられた場合と同一である。これは、同一のイオンエネルギーを達成するために、VPS4906の種々の他のパターンがどのようにして使用されることができるかの一実施例のみを示す。
図50は、定義されたIEDF5014を生成するために使用されることができる電力供給部電圧VPS5006およびイオン電流補償IC5004の1つの組み合わせを図示する。ここで、交互する電力供給部電圧5006が、2つの異なるイオンエネルギーをもたらす。加えて、イオン電流IIから離してイオン電流補償5004を調節することによって、各イオンエネルギーのIEDF5014幅を拡張することができる。イオンエネルギーが、図示した実施形態のように十分に近い場合、両方のイオンエネルギーのIEDF5014が重なり、1つの大きいIEDF5014をもたらすであろう。他の実施例が可能であるが、本実施例は、定義されたイオンエネルギーおよび定義されたIEDF5014を達成するために、VPS5006およびIC5004への調節の組み合わせをどのようにして使用することができるかを示すように意図されている。
次に、図17Aおよび17Bを参照すると、本発明の他の実施形態を描写する、ブロック図が、示される。示されるように、これらの実施形態における基板支持部1708は、静電チャック1782を含み、静電チャック供給部1780は、電力を静電チャック1782に印加するために利用される。いくつかの変形例では、図17Aに描写されるように、静電チャック供給部1780は、電力を直接基板支持部1708に印加するように位置付けられ、他の変形例では、静電チャック供給部1780は、スイッチモード電力供給部と関連して、電力を印加するように位置付けられる。直列チャッキングは、別個の供給部によって、またはコントローラの使用によって行われることができ、正味DCチャッキング関数をもたらすことに留意されたい。このDC結合された(例えば、阻止コンデンサなし)直列チャッキング機能では、他のRF源との望ましくない干渉を最小限にすることができる。
図18には、概して、プラズマ密度を生成するように機能するプラズマ電力供給部1884も、スイッチモード電力供給部1806および静電チャック供給部1880とともに、基板支持部1808を駆動するように構成されている本発明のさらに別の実施形態を描写するブロック図が示される。この実装では、プラズマ電力供給部1884、静電チャック供給部1880、およびスイッチモード電力供給部1806の各々は、別個のアセンブリ内に常駐し得るか、または供給部1806、1880、1884のうちの2つ以上は、同一物理的アセンブリ内に常駐するように構築され得る。有利には、図18に描写される実施形態は、上部電極1886(例えば、シャワーヘッド)を電気的に接地させ、電気的対称性とより少ないアーク放電事象による低減された損傷レベルとを得ることを可能にする。
図19を参照すると、本発明のなおも別の実施形態を描写するブロック図が示される。描写されるように、本実施形態におけるスイッチモード電力供給部1906は、追加のプラズマ電力供給部の必要性なく(例えば、プラズマ電力供給部102、202、1202、1702、1884を伴わずに)、基板にバイアスをかけ、プラズマを点火(および、持続)するように電力を基板支持部およびチャンバ1904に印加するよう構成される。例えば、スイッチモード電力供給部1806は、プラズマを点火し、持続させる一方、バイアスを基板支持部に提供するために十分である、デューティサイクルで動作され得る。
次に、図20を参照すると、図1−19を参照して説明された実施形態に関連して利用され得る、制御部分の入力パラメータおよび制御出力のブロック図が、描写される。制御部分の描写は、本明細書で論じられる実施形態に関連して利用され得る、例示的制御入力および出力の簡略化された描写を提供することが意図される。すなわち、ハードウェア略図であることは、意図されない。実際の実装では、描写される制御部分は、ハードウェア、ソフトウェア、ファームウェア、またはそれらの組み合わせによって実現され得る、いくつかの個別的な構成要素間に分散され得る。
本明細書で以前に論じられる実施形態を参照すると、図20に描写されるコントローラは、図1を参照して説明される、コントローラ112、図2を参照して説明される、コントローラ212およびイオンエネルギー制御220構成要素、図8を参照して説明される、コントローラ812およびイオンエネルギー制御部分820、図12を参照して説明される、イオン電流補償構成要素1260、図13を参照して説明される、電流コントローラ1362、図16に描写される、Icc制御、それぞれ、図17Aおよび17Bに描写される、コントローラ1712A、1712B、ならびにそれぞれ、図18および19に描写される、コントローラ1812、1912のうちの1つ以上の機能性を提供し得る。
示されるように、制御部分への入力として利用され得る、パラメータは、図13および14を参照してより詳細に説明される、dVo/dtおよびΔVを含む。論じられるように、dVo/dtは、イオンエネルギー分布広がり入力ΔEと関連して利用され、図12、13、14、15A−C、および図16を参照して説明されるように、イオンエネルギー分布広がりの幅を制御する制御信号Iccを提供し得る。加えて、イオンエネルギー制御入力(Ei)は、随意のフィードバックΔVに関連して利用され、図1−11を参照してより詳細に説明されるように、イオンエネルギー制御信号(例えば、図3に描写されるVbusに影響を及ぼす)を生成し、所望の(定義された)イオンエネルギー分布をもたらし得る。また、多くの静電チャッキング実施形態と関連して利用され得る、別のパラメータは、効率的熱制御のために、静電力を提供し、ウエハをチャックに保持する、DCオフセット入力である。
図21は、本開示のある実施形態による、プラズマ処理システム2100を図示する。システム2100は、基板2106(および他のプラズマプロセス)の上部表面2118をエッチングするために、プラズマ2104を封入する、プラズマ処理チャンバ2102を含む。プラズマは、プラズマ電力供給部2122によって給電されるプラズマ源2112によって生成される(例えば、原位置で、または遠隔で、または投射される)。プラズマ2104と基板2106の上部表面2118との間で測定されたプラズマシース電圧Vsheathは、プラズマ2104から、プラズマシース2115を横断するイオンを加速し、加速されたイオンを基板2106(または、フォトレジストによって保護されていない基板2106の一部)の上部表面2118に衝突させ、基板2106をエッチングさせる。プラズマ2104は、接地(例えば、プラズマ処理チャンバ2102壁)に対して、プラズマ電位V3にある。基板2106は、底部表面2120を有し、底部表面2120は、静電チャック2111と、静電チャック2111の上部表面2121と基板2106との間のチャッキング電位Vchuckとを介して、支持部2108に静電的に保持される。基板2106は、誘電性であり、したがって、上部表面2118の第1の電位V1と、底部表面2120の第2の電位V2とを有し得る。静電チャック2121の上部表面は、基板の底部表面2120と接触し、したがって、これらの2つの表面2120、2121は、同一の電位V2である。第1の電位V1、チャッキング電位Vchuck、および第2の電位V2は、スイッチモード電力供給部2130によって生成され、第1の導体2124を介して、静電チャック2111に提供される、DCバイアスまたはオフセットを伴うAC波形を介して制御される。随意に、AC波形は、第1の導体2124を介して提供され、DC波形は、随意の第2の導体2125を介して提供される。スイッチモード電力供給部2130のACおよびDC出力は、同様に、スイッチモード電力供給部2130の種々の側面を制御するように構成されているコントローラ2132を介して、制御されることができる。
イオンエネルギーおよびイオンエネルギー分布は、第1の電位V1の関数である。スイッチモード電力供給部2130は、所望の(または定義された)イオンエネルギーおよびイオンエネルギー分布を生成することが分かっている所望の第1の電位V1をもたらすように調整されたAC波形を提供する。AC波形は、RFであり、図5、6、11、14、15a、15b、および15cに図示されるもの等の非正弦波波形を有することができる。第1の電位V1は、図14に図示される電圧ΔVの変化に比例し得る。第1の電位V1はまた、プラズマ電圧V3からプラズマシース電圧Vsheathを引いたものに等しい。しかし、プラズマ電圧V3は、多くの場合、プラズマシース電圧Vsheath(例えば、50V−2000V)と比較して、小さい(例えば、20V未満)ので、第1の電位V1およびプラズマシース電圧Vsheathは、ほぼ等しく、実装の目的のため、等しいとして処理され得る。したがって、プラズマシース電圧Vsheathは、イオンエネルギーを左右するので、第1の電位V1は、イオンエネルギー分布に比例する。一定の第1の電位V1を維持することによって、プラズマシース電圧Vsheathは、一定であり、したがって、実質的に、全イオンが、同一のエネルギーを介して加速され、故に、狭域イオンエネルギー分布が、達成される。プラズマ電圧V3は、プラズマ源2112を介して、プラズマ2104に与えられるエネルギーから生じる。
基板2106の上部表面2118における第1の電位V1は、静電チャック2111からの容量性充電とシース2115を通過する電子およびイオンからの電荷蓄積との組み合わせを介して形成される。スイッチモード電力供給部2130からのAC波形は、第1の電位V1が、実質的に一定のままであるように、シース2115を通るイオンおよび電子移動の影響と、基板2106の上部表面2118において結果として生じる電荷蓄積をオフセットするように調整される。
基板2106を静電チャック2111に保持するチャッキング力は、チャッキング電位Vchuckの関数である。スイッチモード電力供給部2130は、第2の電位V2が、第1の電位V1と異なる電位にあるように、DCバイアス、すなわち、DCオフセットをAC波形に提供する。この電位差は、チャッキング電圧Vchuckを生じさせる。チャッキング電圧Vchuckは、静電チャック2111の上部表面2221から基板2106の内側の基準層まで測定され得、基準層は、基板2106の底部表面2120を除く、基板の内側の任意の高度を含む(基準層の基板2106内の正確な場所は、変動し得る)。したがって、チャッキングは、第2の電位V2によって制御され、それに比例する。
ある実施形態では、第2の電位V2は、AC波形によって修正される、スイッチモード電力供給部2130のDCオフセットに等しい(言い換えると、DCオフセットを伴うAC波形であり、DCオフセットは、AC波形のピーク間電圧を上回る)。DCオフセットは、スイッチモード電力供給部2130出力のDC成分が、第2の電位V2を支配し、AC成分が、除外または無視され得るように、実質的に、AC波形より大きくあり得る。
基板2106内の電位は、第1および第2の電位V1、V2間で変動する。チャッキング電位Vchuck極性にかかわらず、基板2106と静電チャック2111との間のクーロン引力が存在するので、チャッキング電位Vchuckは、正または負(例えば、V1>V2またはV1<V2)であり得る。
スイッチモード電力供給部2130は、コントローラ2132とともに、決定論的に、かつセンサを伴わずに、種々の電圧を監視することができる。特に、イオンエネルギー(例えば、平均エネルギーおよびイオンエネルギー分布)は、AC波形のパラメータ(例えば、勾配および段階)に基づいて、決定論的に監視される。例えば、プラズマ電圧V3、イオンエネルギー、およびイオンエネルギー分布は、スイッチモード電力供給部2130によって生み出されるAC波形のパラメータに比例する。特に、AC波形の立ち下がりエッジのΔV(例えば、図14参照)は、第1の電位V1、したがって、イオンエネルギーに比例する。第1の電位V1を一定に維持することによって、イオンエネルギー分布は、狭域に維持される。
第1の電位V1は、直接、測定されることができず、スイッチモード電力供給部出力と第1の電圧V1との間の相関は、基板2106の静電容量および処理パラメータに基づいて、変動し得るが、ΔVと第1の電位V1との間の比例定数は、短い処理時間の経過後、実験的に決定されることができる。例えば、AC波形の立ち下がりエッジΔVが、50Vであって、比例定数が、所与の基板およびプロセスに対して、2であることが実験的に見出される場合、第1の電位V1は、100Vであることが予期され得る。ステップ電圧ΔVと第1の電位V1(したがって、イオンエネルギーeV)との間の比例は、方程式4によって表される。したがって、イオンエネルギーおよびイオンエネルギー分布とともに、第1の電位V1は、プラズマ処理チャンバ2102の内側に任意のセンサを伴わずに、スイッチモード電力供給部のAC波形の知識に基づいて、決定されることができる。加えて、スイッチモード電力供給部2130は、コントローラ2132とともに、チャッキングが生じているかどうか(例えば、基板2106が、チャッキング電位Vchuckを介して、静電チャック2111に保持されているかどうか)を監視することができる。
デチャッキングは、チャッキング電位Vchuckを排除または低下させることによって行なわれる。これは、第2の電位V2を第1の電位V1に等しく設定することによって行なわれることができる。言い換えると、DCオフセットおよびAC波形は、チャッキング電圧Vchuckを0Vに近づかせるために、調節されることができる。従来のデチャッキング方法と比較して、システム2100は、DCオフセットおよびAC波形の両方が、デチャッキングを達成するように調節されることができるため、より高速のデチャッキング、したがって、より多くの処理量を達成する。また、DCおよびAC電源が、スイッチモード電力供給部2130内にあるとき、それらの回路は、より統合され、より一緒に近接し、単一コントローラ2132を介して制御され(DCおよびAC電源の典型的並列配列と比較して)、出力をより高速で変化させることができる。本明細書に開示される実施形態によって可能にされるデチャッキングの速度はまた、プラズマ2104が消弧された後、または少なくともプラズマ源2112からの電力がオフにされた後、デチャッキングを可能にする。
プラズマ源2112は、種々の形態をとることができる。例えば、ある実施形態では、プラズマ源2112は、プラズマ処理チャンバ2102の内側に電極を含み、電極は、プラズマ2104の点火および持続の両方を行なうチャンバ2102内のRF場を確立する。別の実施形態では、プラズマ源2112は、イオン化電磁場を遠隔で生成し、イオン化電磁場を処理チャンバ2102内に投射または延長し、イオン化電磁場を使用して、プラズマ処理チャンバ内でプラズマ2104の点火および持続の両方を行なう、遠隔投射されるプラズマ源を含む。さらに、遠隔投射されるプラズマ源はまた、イオン化電磁場が、プラズマ処理チャンバ2102へ向かう途中に通過する、場伝達部分(例えば、導電管)を含み、その間、イオン化電磁場は、減衰され、プラズマ処理チャンバ2102内の場強度は、場が最初に遠隔投射されるプラズマ源内に生成されたときの場強度のわずか10分の1、または100分の1、または1,000分の1、またはさらに小さい割合となる。プラズマ源2112は、正確な縮尺で描かれていない。
スイッチモード電力供給部2130は、浮動することができ、したがって、接地とスイッチモード電力供給部2130との間に直列に接続されるDC電源(図示せず)によって、任意のDCオフセットでバイアスされることができる。スイッチモード電力供給部2130は、スイッチモード電力供給部2130の内部のACおよびDC電源を介して(例えば、図22、23、26参照)、またはスイッチモード電力供給部2130の内部のAC電源およびスイッチモード電力供給部2130の外部のDC電力供給部を介して(例えば、図24、27参照)のいずれかによって、DCオフセットを伴うAC波形を提供することができる。ある実施形態では、スイッチモード電力供給部2130は、接地され、スイッチモード電力供給部2130と静電チャック2111との間に直列に結合された浮動DC電源に直列に結合されることができる。
コントローラ2132は、スイッチモード電力供給部2130が、ACおよびDC電源の両方を含むとき、スイッチモード電力供給部のACおよびDC出力を制御することができる。スイッチモード電力供給部2130が、DC電源と直列に接続される場合、コントローラ2132は、スイッチモード電力供給部2130のAC出力のみ制御し得る。代替実施形態では、コントローラ2130は、スイッチモード電力供給部2130に結合されたDC電力供給部と、スイッチモード電力供給部2130の両方を制御することができる。当業者は、単一コントローラ2132が図示されるが、他のコントローラもまた、静電チャック2111に提供されるAC波形およびDCオフセットを制御するために実装されることができることを認識するであろう。
静電チャック2111は、誘電性(例えば、セラミック)であり、したがって、実質的に、DC電圧の通過を遮断することができるか、または、それは、ドープされたセラミック等の半伝導性材料であることができる。いずれの場合も、静電チャック2111は、電圧を基板2106の上部表面2118(通常、誘電性)に容量結合し、第1の電圧V1を形成する、静電チャック2111の上部表面2121上の第2の電圧V2を有することができる。
プラズマ2104の形状およびサイズは、必ずしも、正確な縮尺で描かれていない。例えば、プラズマ2104のエッジは、あるプラズマ密度によって定義されることができるが、その場合、図示されるプラズマ2104は、どんな特定のプラズマ密度も考慮に入れて描かれていない。同様に、少なくともいくつかのプラズマ密度は、図示されるプラズマ2104の形状にかかわらず、プラズマ処理チャンバ2102全体を充填する。図示されるプラズマ2104の形状は、主に、実質的に、プラズマ2104より小さいプラズマ密度を有する、シース2115を示すように意図される。
図22は、プラズマ処理システム2200の別の実施形態を図示する。図示される実施形態では、スイッチモード電力供給部2230は、直列に接続されたDC電源2234およびAC電源2236を含む。コントローラ2232は、AC電源2236波形およびDC電源2234バイアスまたはオフセットの両方を制御することによって、スイッチモード電力供給部2230のDCオフセット出力を伴うAC波形を制御するように構成される。本実施形態はまた、チャック2211内に埋め込まれたグリッドまたはメッシュ電極2210を有する静電チャック2211を含む。スイッチモード電力供給部2230は、ACおよびDCバイアスの両方をグリッド電極2210に提供する。実質的にDCバイアスより小さく、したがって無視され得るAC成分を伴うDCバイアスは、グリッド電極2210上に第3の電位V4を確立する。第3の電位V4が、基板2206内のいずれかの場所の基準層(基板2206の底部表面2220を除く)における電位と異なるとき、チャッキング電位Vchuckおよびクーロンチャッキング力が、確立され、基板2206を静電チャック2211に保持する。基準層は、グリッド電極2210に平行な仮想平面である。AC波形は、グリッド電極2210から、静電チャック2211の一部を通して、かつ基板2206を通して容量結合し、基板2206の上部表面2218上の第1の電位V1を制御する。プラズマ電位V3は、プラズマシース電圧Vsheathに対して無視可能であるため、第1の電位V1およびプラズマシース電圧Vsheathは、ほぼ等しく、実践的目的のために、等しいと見なされる。したがって、第1の電位V1は、シース2215を通してイオンを加速するために使用される、電位に等しい。
ある実施形態では、静電チャック2211は、チャック2211の本体を通してかなる電位差も無視可能であるよう十分に伝導性であるようにドープされ得、したがって、グリッドまたはメッシュ電極2210は、実質的に、第2の電位V2と同一の電圧であり得る。
グリッド電極2210は、静電チャック2211内に埋め込まれ、基板2206に平行であり、スイッチモード電力供給部2230によってバイアスされ、チャッキング電位Vchuckを確立するように構成される任意の伝導性平面デバイスであることができる。グリッド電極2210は、静電チャック2211の下側部分に埋め込まれるように図示されるが、グリッド電極2210は、基板2206からより近くまたはより遠くに位置することができる。グリッド電極2210はまた、グリッドパターンを有する必要はない。ある実施形態では、グリッド電極2210は、固体電極であるか、または非グリッド形状(例えば、チェッカー盤パターン)を伴う非固体構造を有することができる。ある実施形態では、静電チャック2211は、セラミックまたは他の誘電体であり、したがって、グリッド電極2210上の第3の電位V4は、静電チャック2211の上部表面2221上の第1の電位V1と等しくない。別の実施形態では、静電チャック2211は、若干伝導性である、ドープされたセラミックであり、したがって、グリッド電極2210上の第3の電位V4は、静電チャック2211の上部表面2221上の第2の電位V2に等しくあり得る。
スイッチモード電力供給部2230は、非正弦波であり得るAC出力を生成する。スイッチモード電力供給部2230は、DC電源2234がAC伝導性であり、AC電源2236がDC伝導性であるため、DCおよびAC源2234、2236を直列に動作させることが可能である。DC伝導性ではない例示的AC電源は、ある線形増幅器であり、それは、DC電圧または電流が提供されると、損傷され得る。AC伝導性およびDC伝導性電源の使用は、スイッチモード電力供給部2230内で使用される構成要素の数を低減させる。例えば、DC電源2234がAC遮断を行なう場合、ACバイパスまたはDC遮断構成要素(例えば、コンデンサ)が、DC電源2234と並列に配列される必要があり得る。AC電源2236がDC遮断を行なう場合、DCバイパスまたはAC遮断構成要素(例えば、インダクタ)が、AC電源2236と並列に配列される必要があり得る。
本実施形態では、AC電源2238は、概して、基板2206の上部表面2218に衝打するイオンのための所望の(定義された)イオンエネルギー分布をもたらすように、制御可能な様式において、電圧バイアスを静電チャック2211に印加するように構成される。より具体的には、AC電源2236は、特定の電力レベルにおける1つ以上の特定の波形をグリッド電極2210に印加することによって、所望の(定義された)イオンエネルギー分布をもたらすように構成される。また、より具体的には、AC電源2236は、特定の電力レベルを印加し、特定のイオンエネルギーをもたらし、波形メモリ(図示せず)内に記憶された波形データによって定義される1つ以上の電圧波形を使用して、特定の電力レベルを印加する。その結果、1つ以上の特定のイオン衝打エネルギーが、基板2206(または他のプラズマ支援プロセス)の制御されたエッチングを実施するように選択され得る。一実施形態では、AC電源2236は、切り替え式モード構成を利用することができる(例えば、図25−27参照)。スイッチモード電力供給部2230、特に、AC電源2236は、本開示の種々の実施形態に説明されるようなAC波形を生み出すことができる。
当業者は、グリッド電極2210が必要ではなく、他の実施形態も、グリッド電極2210を伴わずに実装されることができることを認識するであろう。当業者はまた、グリッド電極2210が、チャッキング電位Vchuckを確立するために使用されることができる、多数のデバイスの一実施例にすぎないことを認識するであろう。
図23は、プラズマ処理システム2300の別の実施形態を図示する。図示される実施形態は、AC波形およびDCバイアスを静電チャック2311に提供するためのスイッチモード電力供給部2330を含む。スイッチモード電力供給部2330は、DC電源2334およびAC電源2336を含み、両方とも、接地され得る。AC電源2336は、第1の導体2324を介して、静電チャック2311内に埋め込まれる第1のグリッドまたはメッシュ電極2310に提供される、AC波形を生成する。AC電源2336は、第1のグリッドまたはメッシュ電極2310上に電位V4を確立する。DC電源2334は、第2の導体2325を介して、静電チャック2311内に埋め込まれる第2のグリッドまたはメッシュ電極2312に提供される、DCバイアスを生成する。DC電源2334は、第2のグリッドまたはメッシュ電極2312上に電位V5を確立する。電位V4およびV5は、それぞれ、ACおよびDC電源2336、2334を介して、独立して、制御されることができる。しかしながら、第1および第2のグリッドまたはメッシュ電極2310、2312はまた、容量結合されることができるか、および/または静電チャック2311の一部を介して、グリッドまたはメッシュ電極2310、2312間に、DC結合が存在し得る。ACまたはDC結合のいずれかが存在する場合、電位V4およびV5は、結合され得る。当業者は、第1および第2のグリッド電極2310、2312が、第1のグリッド電極2310を第2のグリッド電極2312より基板2306に近接して配列することを含め、静電チャック2311全体を通して、種々の場所に配列されることができることを認識するであろう。
図24は、プラズマ処理システム2400の別の実施形態を図示する。本実施形態では、スイッチモード電力供給部2430は、AC波形を静電チャック2411に提供し、スイッチモード電力供給部2430出力は、DC電力供給部2434によって提供されるDCバイアスによってオフセットされる。スイッチモード電力供給部2430のAC波形は、基板2406に、狭域イオンエネルギー分布を有するプラズマ2404からのイオンを衝打させるために、コントローラ2435によって選択される波形を有する。AC波形は、非正弦波(例えば、矩形波またはパルス状)であることができ、スイッチモード電力供給部2430のAC電源2436を介して生成されることができる。チャッキングは、コントローラ2433によって制御される、DC電力供給部2434からのDCオフセットを介して制御される。DC電力供給部2434は、接地とスイッチモード電力供給部2430との間に直列に結合されることができる。スイッチモード電力供給部2430は、そのDCバイアスがDC電力供給部2434によって設定され得るように、浮動している。
当業者は、図示される実施形態が、2つの独立コントローラ2433、2435を示すが、これらが、随意のコントローラ2432等の単一機能ユニット、デバイス、またはシステム内に組み合わせられ得ることを認識するであろう。加えて、コントローラ2433および2435は、互に通信し、処理リソースを共有するように結合されることができる。
図25は、プラズマ処理システム2500のさらなる実施形態を図示する。図示される実施形態は、DC電力供給部(図示せず)によって提供されるDCオフセットを有し得るAC波形を生み出す、スイッチモード電力供給部2530を含む。スイッチモード電力供給部は、電圧および電流コントローラ2537、2539を包含する、随意のコントローラ2535を介して、制御されることができる。スイッチモード電力供給部2530は、電圧コントローラ2537によって制御される電圧出力を有する、制御可能電圧源2538と、電流コントローラ2539によって制御される電流出力を有する、制御可能電流源2540とを含むことができる。制御可能電圧および電流源2538、2540は、並列配列であることができる。制御可能電流源2540は、プラズマ2504と基板2506との間のイオン電流を補償するように構成される。
電圧および電流コントローラ2537、2539は、互に結合され、通信することができる。電圧コントローラ2537はまた、制御可能電圧源2538の切り替え式出力2539を制御することができる。切り替え式出力2539は、図示されるように、2つのスイッチを並列に含むことができるか、または制御可能電圧源2538の出力を所望のAC波形(例えば、非正弦波)に変換する、任意の回路を含むことができる。2つのスイッチを介して、制御可能電圧源2538からの制御された電圧またはAC波形は、制御可能電流源2540の制御された電流出力と組み合わせられ、スイッチモード電力供給部2530のAC波形出力を生成することができる。
制御可能電圧源2538は、所与の極性を有するように図示されるが、当業者は、反対極性も、図示されるものに相当することを認識するであろう。随意に、制御可能電圧および電流源2538、2540は、切り替え式出力2539とともに、AC電源2536の一部であることができ、AC電源2536は、スイッチモード電力供給部2530の内側または外側にあるDC電源(図示せず)と直列に配列されることができる。
図26は、プラズマ処理システム2600のさらに別の実施形態を図示する。図示される実施形態では、スイッチモード電力供給部2630は、DCオフセットを有するAC波形を静電チャック2611に提供する。波形のAC成分は、切り替え式出力2639を通して互に接続された制御可能電圧源2638および制御可能電流源2640の並列組み合わせを介して、生成される。DCオフセットは、接地と制御可能電圧源2638との間に直列に結合されるDC電源2634によって生成される。ある実施形態では、DC電源2634は、接地されるのではなく、浮動していることができる。同様に、スイッチモード電力供給部2630も、浮動しているか、または接地されることができる。
システム2600は、スイッチモード電力供給部2630の出力を制御するための1つ以上のコントローラを含むことができる。第1のコントローラ2632は、例えば、第2のコントローラ2633および第3のコントローラ2635を介して、スイッチモード電力供給部2630の出力を制御することができる。第2のコントローラ2633は、DC電源2634によって生成されるようなスイッチモード電力供給部2630のDCオフセットを制御することができる。第3のコントローラ2635は、制御可能電圧源2638および制御可能電流源2640を制御することによって、スイッチモード電力供給部2630のAC波形を制御することができる。ある実施形態では、電圧コントローラ2637は、制御可能電圧源2638の電圧出力を制御し、電流コントローラ2639は、制御可能電流源2640の電流を制御する。電圧および電流コントローラ2637、2639は、互に通信することができ、第3のコントローラ2635の一部であることができる。
当業者は、電源2634、2638、2640に対するコントローラの種々の構成を説明する、前述の実施形態が、限定ではなく、種々の他の構成もまた、本開示から逸脱することなく、実装されることができることを認識するであろう。例えば、第3のコントローラ2635または電圧コントローラ2637は、制御可能電圧源2638と制御可能電流源2640との間の切り替え式出力2639を制御することができる。別の実施例として、第2および第3のコントローラ2633、2635は、互に通信することができる(そのように図示されないが)。また、制御可能電圧および電流源2638、2640の極性は、例証にすぎず、限定を意味するものではないことも理解されたい。
切り替え式出力2639は、AC波形を成形するために、2つの並列スイッチを交互に切り替えることによって、動作することができる。切り替え式出力2639は、限定されないが、MOSFETおよびBJTを含む、任意の種々のスイッチを含むことができる。一変形例では、DC電源2634は、制御可能電流源2640と静電チャック2611との間に配列されることができ(言い換えると、DC電源2634は、浮動することができる)、スイッチモード電力供給部2630は、接地されることができる。
図27は、プラズマ処理システム2700の別の実施形態を図示する。本変形例では、スイッチモード電力供給部2734は、再び、接地されるが、スイッチモード電力供給部2730に統合される代わりに、ここでは、DC電源2734は、別個の構成要素であり、スイッチモード電力供給部2730内の構成要素だけではなく、スイッチモード電力供給部2730全体に、DCオフセットを提供する。
図28は、本開示のある実施形態による、方法2800を図示する。方法2800は、基板をプラズマチャンバ内に載置する動作2802を含む。方法2800はさらに、プラズマをプラズマチャンバ内で形成する動作2804を含む。そのようなプラズマは、原位置で、または遠隔投射源を介して、形成されることができる。方法2800はまた、スイッチ電力動作2806を含む。スイッチ電力動作2806は、周期的電圧関数を基板に印加するように、基板に対する電力を制御可能に切り替えることを伴う。周期的電圧関数は、パルス状波形(例えば、矩形波)またはAC波形と見なされ、スイッチモード電力供給部と直列のDC電源によって生成されるDCオフセットを含み得る。ある実施形態では、DC電源は、スイッチモード電力供給部に組み込まれ、したがって、スイッチモード電力供給部のAC電源と直列であることができる。DCオフセットは、静電チャックの上部表面と基板内の基準層との間に電位差を生成し、この電位差は、チャッキング電位と称される。静電チャックと基板との間のチャッキング電位は、基板を静電チャックに保持し、したがって、処理の間、基板が移動することを防止する。方法2800はさらに、周期的電圧関数が複数のサイクルにわたって変調される、変調する動作2808を含む。変調は、時間平均に基づく所望の(または定義された)イオンエネルギー分布をもたらすように、基板の表面における所望の(または定義された)イオンエネルギー分布に応答する。
図29は、本開示のある実施形態による、別の方法2900を図示する。方法2900は、基板をプラズマチャンバ内に載置する動作2902を含む。方法2900はさらに、プラズマをプラズマチャンバ内で形成する動作2904を含む。そのようなプラズマは、原位置で、または遠隔投射源を介して、形成されることができる。方法2900はまた、少なくとも1つのイオンエネルギー分布設定を受信する動作2906を含む。受信動作2906において受信された設定は、基板の表面における1つ以上のイオンエネルギーを示し得る。方法2900はさらに、基板に対する電力が、(1)時間平均に基づくイオンエネルギーの所望の(または定義された)分布、および(2)時間平均に基づく所望のチャッキング電位をもたらすように、制御可能に切り替えられる、スイッチ電力動作2908を含む。電力は、AC波形およびDCオフセットを有することができる。
結論として、本発明は、とりわけ、スイッチモード電力供給部を使用して、所望の(または定義された)イオンエネルギーを選択的に生成する方法および装置を提供する。当業者であれば、本明細書で説明される実施形態によって達成されるものと実質的に同一の結果を達成するように、本発明、その使用、およびその構成に多数の変形例および置換が行われ得ることを容易に認識することができる。したがって、本発明を開示された例示的形態に限定する意図はない。多くの変形例、修正、および代替的な構造が、開示された発明の範囲および精神内に入る。