JP2015530554A - Natural gas processing method and apparatus - Google Patents

Natural gas processing method and apparatus Download PDF

Info

Publication number
JP2015530554A
JP2015530554A JP2015525399A JP2015525399A JP2015530554A JP 2015530554 A JP2015530554 A JP 2015530554A JP 2015525399 A JP2015525399 A JP 2015525399A JP 2015525399 A JP2015525399 A JP 2015525399A JP 2015530554 A JP2015530554 A JP 2015530554A
Authority
JP
Japan
Prior art keywords
nitrogen
methane
column
heat exchanger
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015525399A
Other languages
Japanese (ja)
Other versions
JP5985752B2 (en
Inventor
ヴラジミロヴィッチ レベデフ,ユーリ
ヴラジミロヴィッチ レベデフ,ユーリ
ヴィアチェスラヴォヴィッチ ノヴィコフ,デニス
ヴィアチェスラヴォヴィッチ ノヴィコフ,デニス
ボリソヴィッチ ユマシェフ,アレクセイ
ボリソヴィッチ ユマシェフ,アレクセイ
ヴラジミロヴィッチ ママエフ,アナトリー
ヴラジミロヴィッチ ママエフ,アナトリー
アレクセエヴィッチ シロチン,セルゲイ
アレクセエヴィッチ シロチン,セルゲイ
ペトロヴィッチ バクメチエフ,アンドレイ
ペトロヴィッチ バクメチエフ,アンドレイ
ヴァシリエブナ ゴゴレヴァ,イリーナ
ヴァシリエブナ ゴゴレヴァ,イリーナ
ヴァシリエヴィッチ ブリノフ,ヴラジミール
ヴァシリエヴィッチ ブリノフ,ヴラジミール
Original Assignee
オトクリトエ アクツィオネルノエ オブスチェストヴォ “ガズプロム”
オトクリトエ アクツィオネルノエ オブスチェストヴォ “ガズプロム”
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オトクリトエ アクツィオネルノエ オブスチェストヴォ “ガズプロム”, オトクリトエ アクツィオネルノエ オブスチェストヴォ “ガズプロム” filed Critical オトクリトエ アクツィオネルノエ オブスチェストヴォ “ガズプロム”
Publication of JP2015530554A publication Critical patent/JP2015530554A/en
Application granted granted Critical
Publication of JP5985752B2 publication Critical patent/JP5985752B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0238Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0257Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/028Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of noble gases
    • F25J3/029Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of noble gases of helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • F25J2200/06Processes or apparatus using separation by rectification in a dual pressure main column system in a classical double column flow-sheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/32Processes or apparatus using separation by rectification using a side column fed by a stream from the high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/70Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/78Refluxing the column with a liquid stream originating from an upstream or downstream fractionator column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/80Processes or apparatus using separation by rectification using integrated mass and heat exchange, i.e. non-adiabatic rectification in a reflux exchanger or dephlegmator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/60Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being (a mixture of) hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/60Expansion by ejector or injector, e.g. "Gasstrahlpumpe", "venturi mixing", "jet pumps"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/88Quasi-closed internal refrigeration or heat pump cycle, if not otherwise provided

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

本発明は、化学品、ガス及び油の分野に関し、粗製ヘリウム、窒素、メタン及び液体炭化水素(CV)を天然ガスから抽出するために利用される。本発明の技術的結果は、窒素回収率の増加、並びに2.1パーセントの窒素を含み32.5mJ/mの低熱量を有する商用メタンを単一の流れで装置で生産することによる機能的な将来性の拡大である。本発明の付加的な技術的結果は、遠隔の消費者へのガス輸送の設備投資とエネルギーコストの減少、並びに供給されたガスの品質及び不活性不純物の減少に付随した消費者のコストの減少である。その上、本発明は、ヘリウム抽出率の増加(97.0パーセント)と純ヘリウム生産コストの削減に貢献する。装置は、18の熱交換器、脱メタン塔、5つの分離器、メタン冷却サイクルの圧縮機、窒素富化カラム、2つの膨張機−圧縮機アセンブリ、エゼクタ、窒素−メタン分離カラム、ヘリウムカラム、ポンプ及び7つの絞り弁を備える。The present invention relates to the field of chemicals, gases and oils and is used to extract crude helium, nitrogen, methane and liquid hydrocarbons (CV) from natural gas. The technical result of the present invention is an increase in nitrogen recovery as well as a functional by producing in a single stream commercial methane containing 2.1 percent nitrogen and having a low heat of 32.5 mJ / m. This is an expansion of the future. Additional technical results of the present invention include reduced capital costs and energy costs for gas transport to remote consumers, as well as reduced consumer costs associated with the quality of supplied gas and reduced inert impurities. It is. Moreover, the present invention contributes to increased helium extraction rate (97.0 percent) and reduced pure helium production costs. The equipment consists of 18 heat exchangers, demethanizer tower, 5 separators, compressor for methane cooling cycle, nitrogen enriched column, 2 expander-compressor assemblies, ejector, nitrogen-methane separation column, helium column, It has a pump and seven throttle valves.

Description

本発明は、化学品、ガス及び油の分野に関し、粗製ヘリウム、窒素、メタン及び液体炭化水素(C2+)を天然ガスから抽出するために利用されるものである。   The present invention relates to the fields of chemicals, gases and oils and is used to extract crude helium, nitrogen, methane and liquid hydrocarbons (C2 +) from natural gas.

従来の天然ガス処理方法は、冷却器における熱回収による凝縮、分離、絞られ膨張する間のガス膨張によるガス流における圧力降下、分留カラムを通じたすべての冷却された流れの通過、をもたらす多段の低温ガス冷却を備えている。分留カラムにおける大規模温度交換プロセスにより、揮発性メタン画分、並びに、エタン、プロパン及びより重い炭化水素成分の一部からなる画分が得られる(米国特許第4889545号A公報、C07C7/04、1989年12月26日)。   Conventional natural gas processing methods are multi-stage that provides condensation by heat recovery in the cooler, separation, pressure drop in the gas stream due to gas expansion during constriction and expansion, and the passage of all cooled streams through the fractionation column. With low temperature gas cooling. A large-scale temperature exchange process in a fractionation column yields a volatile methane fraction and a fraction consisting of ethane, propane and a portion of heavier hydrocarbon components (US Pat. No. 4,889,545 A, C07C7 / 04). , December 26, 1989).

予備的に部分的に液化され、圧縮されて冷却される、別の従来の天然ガス処理方法が多くの人に知られている。その方法は、分離、分離後の速やかなガス流の分割、最終的に得られた液流と混合された最終的に得られた大きなガス流の冷却、を経る、多段の低温天然ガス凝縮を備えている。冷却器において、メタン画分の熱回収及び絞りを通過する圧力降下、並びに、脱メタン塔における精留のために膨張機を通過し冷却され膨張した流れを供給することにより分離器からの小さい方の流れを冷却することによって、メタン画分は、冷却を与えるための次の熱回収とともに生じ、エタン−ブタン画分も同様である(英国特許第1532335号A公報、F25J3/02、1978年11月15日)。   Other conventional natural gas processing methods that are preliminarily partially liquefied, compressed and cooled are known to many. The method involves multi-stage low temperature natural gas condensation through separation, rapid splitting of the gas stream after separation, and cooling of the finally obtained large gas stream mixed with the resulting liquid stream. I have. In the cooler, the smaller one from the separator by supplying a cooled and expanded stream through the expander for heat recovery of the methane fraction and pressure drop through the throttle, and rectification in the demethanizer tower. The methane fraction is produced with the subsequent heat recovery to provide cooling, as is the ethane-butane fraction (UK 1532335 A, F25J3 / 02, 1978 11). May 15).

しかしながら、先行技術は、商業的な最終製品として利用可能な純粋なエタン画分を製造するための方法を示していない。   However, the prior art does not show a method for producing a pure ethane fraction that can be used as a commercial end product.

同時にC2+画分、窒素及びヘリウムを回収して天然ガスからヘリウムを抽出するための従来技術の装置は、リンデ・アーゲー(ドイツ)によって開発された(Techniques to Process Natural Gas and Condensate. Guidebook. Edited by V.I. Murin. Moscow, Nedra-BusinessCenter Publishing House, 2002, part 1 , pp. 205207, Fig. 3.44)。以下のプロセスが利用される。   A prior art device for simultaneously extracting C2 + fractions, nitrogen and helium and extracting helium from natural gas was developed by Linde AG (Germany) (Techniques to Process Natural Gas and Condensate. Guidebook. Edited by VI Murin. Moscow, Nedra-BusinessCenter Publishing House, 2002, part 1, pp. 205207, Fig. 3.44). The following process is used.

二酸化炭素から分離され4.4MPaの圧力下で乾燥された後、ガスは2,988kMol/h(71,830m/h)の速度で以下の含量を有して装置内に供給される:ヘリウム−0.5モルパーセント、窒素−10.2モルパーセント、メタン−73.02モルパーセント、エタン−6.94モルパーセント、プロパン−5.16モルパーセント及びC4+−4.18モルパーセント。予備的な精製された天然ガスは、5MPaの圧力まで膨張タービンによって駆動される圧縮機中で圧縮される。前記ガスは、逆のガス流によって冷却され、プロパンは230Kの温度まで低下する。凝縮する炭化水素は、分離器から除去され、加温されて0.9MPaの動作圧を有するメタンカラムへ移される。分離器から出て冷却され凝縮されたガスは、3.1MPaの動作圧を有する窒素濃縮カラムに通される。前記カラムの底からの液体画分は、4MPaの圧力で熱交換器へポンプで送られ、そこで部分的に蒸発して膨張タービンの入口外周内に組み込まれた分離器に移る。加温された後の前記分離器内で生成した液体画分は、C2+画分を抽出するためにメタンカラムへ移る。分離器からの蒸気は、膨張タービン内で膨張しメタンカラムへ移る。ガス膨張の結果として生成した液体は、カラムの還流として用いられる。メタンカラムの底部生成物(C2+画分)は、0.9MPaの圧力で抜かれる。メタンカラムの頂部生成物は、加温され商業的な製品ガスとして0.8MPaの圧力で抜かれる。 After being separated from carbon dioxide and dried under a pressure of 4.4 MPa, the gas is fed into the apparatus at a rate of 2,988 kmol / h (71,830 m 3 / h) with the following content: helium -0.5 mole percent, nitrogen-10.2 mole percent, methane-73.02 mole percent, ethane-6.94 mole percent, propane-5.16 mole percent and C4 +-4.18 mole percent. The pre-purified natural gas is compressed in a compressor driven by an expansion turbine to a pressure of 5 MPa. The gas is cooled by the reverse gas flow and the propane drops to a temperature of 230K. The condensing hydrocarbon is removed from the separator, warmed and transferred to a methane column having an operating pressure of 0.9 MPa. The cooled and condensed gas leaving the separator is passed through a nitrogen concentrating column having an operating pressure of 3.1 MPa. The liquid fraction from the bottom of the column is pumped to a heat exchanger at a pressure of 4 MPa, where it partially evaporates and passes to a separator built into the inlet perimeter of the expansion turbine. The liquid fraction produced in the separator after being warmed is transferred to a methane column in order to extract the C2 + fraction. Vapor from the separator is expanded in the expansion turbine and transferred to the methane column. The liquid produced as a result of gas expansion is used as the reflux for the column. The bottom product (C2 + fraction) of the methane column is withdrawn at a pressure of 0.9 MPa. The top product of the methane column is warmed and vented at a pressure of 0.8 MPa as a commercial product gas.

窒素富化カラム5からのガスは、冷却され高圧カラム9(2.7MPa)へ移る。ヘリウムが富化されたガスと希薄なヘリウムを含む液体窒素は、前記カラムの頂部生成物であり、ヘリウムカラム7(2.7MPa)へ移る。その高圧カラムの底部生成物は、低圧カラム8(0.2MPa)へ移る。純粋なガス状窒素と、窒素とメタンからなる液体は、前記カラム内で生成する。前記底部生成物は、0.9MPaの圧力で圧縮され、蒸発した後に燃料ガスとして抜かれる。商用ガスの開放循環系は、窒素富化カラム還流を与えるために使用される。   The gas from the nitrogen-enriched column 5 is cooled and transferred to the high-pressure column 9 (2.7 MPa). Liquid nitrogen containing helium-enriched gas and dilute helium is the top product of the column and moves to helium column 7 (2.7 MPa). The bottom product of the high pressure column is transferred to the low pressure column 8 (0.2 MPa). Pure gaseous nitrogen and a liquid consisting of nitrogen and methane are produced in the column. The bottom product is compressed at a pressure of 0.9 MPa and evaporated as fuel gas after evaporation. An open circulation system of commercial gas is used to provide nitrogen enriched column reflux.

この設計の主要な限界は、窒素抽出が低速であることと、その結果として装置の出口における低発熱性窒素含有燃料ガスがかなり大きい体積であることである(10パーセントの燃料ガス又は12.9パーセントの総メタン流産出量)。このガスは、近くの発電所とボイラー室プラントの燃料の要求をカバーすることになる。この方法は、燃料ガス中の窒素の増加とC2+濃度の減少、装置の生産速度の上昇、遠隔の消費者へのほぼすべてのメタンガスの輸送の必要性、に伴いその効率性と経済性を損失する。   The main limitation of this design is that the nitrogen extraction is slow and consequently the low exothermic nitrogen-containing fuel gas at the outlet of the device is a fairly large volume (10 percent fuel gas or 12.9). Percent total methane yield). This gas will cover the fuel requirements of nearby power plants and boiler room plants. This method loses its efficiency and economics as the nitrogen in the fuel gas increases and the C2 + concentration decreases, the production rate of the equipment increases, the need to transport almost all methane gas to remote consumers To do.

本発明の一連の技術的結果は、単一の流れにおいて32.5mJ/mの低い熱量を有する付加的な商用のメタン(2.1パーセントの窒素濃度を有する)の抽出により機能性が拡大する中で、窒素抽出速度が増加(従来技術の53.6パーセントに対して93.3パーセント)することである。それに従って、これらの発明は、遠隔の消費者へのガス輸送の設備投資とエネルギーコストや、供給されたガスの品質及び不活性不純物の減少に付随した消費者に対するコストの減少、を提供する。付加的な技術的結果は、ヘリウム抽出の増加(96.8パーセントに代わり97.0パーセント)と、純ヘリウム生産コストの削減である。   The series of technical results of the present invention is expanded in functionality by the extraction of additional commercial methane (having a 2.1 percent nitrogen concentration) with a low calorific value of 32.5 mJ / m in a single stream. Among them, the nitrogen extraction rate is increased (93.3 percent versus 53.6 percent of the prior art). Accordingly, these inventions provide capital investment and energy costs for gas transport to remote consumers, as well as reduced costs for consumers associated with the quality of supplied gas and the reduction of inert impurities. Additional technical results are an increase in helium extraction (97.0 percent instead of 96.8 percent) and a reduction in pure helium production costs.

図面は、この天然ガス処理方法のために提案された装置の概略構成図であり、前記方法に関する以下の説明において参照される。   The drawing is a schematic block diagram of an apparatus proposed for this natural gas processing method, and will be referred to in the following description of the method.

その天然ガス処理方法によれば、
・天然ガスの供給は2つの部分に分離され、
・その流れの小さい方の部分は第4の熱交換器(4)で冷却され部分的に脱メタン塔(5)で凝縮され、
・天然ガスの流れの大きい方の部分は第1から第3までの熱交換器(1,2,3)で連続的に冷却され、
・第4と第3の熱交換器(4,3)で冷却された後の流れは混合されて分離器(6)に移り、そこで液体炭化水素は除去されて絞られて(絞り弁38を通って)脱メタン塔(5)に移り、
・分離器(6)の出口からの蒸気は2つの流れに分離され、それに応じて第5と第9の熱交換器(7,13)で、その1つは冷却され別の流れは窒素が富化され、
・前記2つの流れは一緒に混合されて分離のために移され(分離器15)、
・分離からの液体生成物は絞られ(絞り弁39)蒸気は第2の膨張機(16A)で膨張されて窒素富化カラム(21)に移されて、メタン−窒素混合物、並びに、エタン及びより重い炭化水素を有する窒素を含まない液体メタンの流れを生成し、
・前記流れは絞られ(絞り弁41を通って)第12と第9の熱交換器(19,13)で部分的に気化され、
・分離(分離器14)を経由して液体画分は除去され、絞られ(絞り弁42を通って)第8の熱交換器(12)で部分的に気化された後の前記画分は脱メタン塔へ移りメタン、並びに、エタン及びより重い炭化水素の液体画分を生成し、
・分離器(23)によって除去されたメタン−窒素蒸気はリボイラー(29)と第16の熱交換器(31)で連続的に冷却され分離器(30)へ移り、そこでその大きい方の部分と液体のすべては窒素−メタン分離カラム(27)の底部(27Б)へ移り、
・分離器(30)から回収されたガスの小さい方の部分はヘリウムカラム(34)のリボイラー(36)で冷却された後に窒素−メタン分離カラムの底部(27Б)の上方の部分へ移り、そこで窒素−ヘリウム蒸気は次のヘリウムカラム(34)への入力、その後の粗製のヘリウムの生成及び商用のヘリウムの生産、並びに、その底部からの液体窒素の除去、のために除去され、
・前記液体窒素は第18の熱交換器(37)で冷却され、絞られ(絞り弁43を通って)2つの部分に分けられ、小さい方の部分は回収部(35)で気化された後に窒素−メタン分離カラムの上部(27A)へ供給物として移され、大きい方の部分は還流するために窒素−メタン分離カラムの上部(27A)に移され、
・窒素−メタン分離カラム(27)の底部で生成した窒素−メタン液体は第17の熱交換器(33)で冷却され絞られ(絞り弁44を通って)窒素−メタン分離カラムの中央部(27A)へ移され、そこで液体メタンは回収部(28)から除去され圧縮され(32)、第17、第16及び第14の熱交換器(33,31,25)で気化され加温された後に、脱メタン塔(5)からのメタンの流れに注入され(エゼクタ24によって)、
・エゼクタ(24)の出口からのメタンの混合された流れは、第13の熱交換器(22)でメタン−窒素蒸気を冷却した後に生じる循環メタンと混合され、連続的に第14、第11及び第7の熱交換器(26,18,11)で冷却され、連続的に圧縮機(8Б及び16Б)で圧縮されて放出ガスを生成し、放出ガスの一部は移動され、メタン冷却循環圧縮機(9)での追加の圧縮と第6、第7、第10、第11、第12、第8、第15及び第14の熱交換機(10,11,17,18,19,12,26,25)での冷却と凝縮、絞り(40)、第13の熱交換器(22)での気化を経由して、前記循環メタンを与える。
According to the natural gas processing method,
The natural gas supply is separated into two parts,
The smaller part of the flow is cooled in the fourth heat exchanger (4) and partially condensed in the demethanizer tower (5),
-The larger part of the natural gas flow is continuously cooled by the first to third heat exchangers (1, 2, 3),
The streams after being cooled in the fourth and third heat exchangers (4, 3) are mixed and transferred to the separator (6), where the liquid hydrocarbons are removed and throttled (the throttle valve 38 is Go through) to the demethanizer tower (5)
The vapor from the outlet of the separator (6) is separated into two streams, correspondingly in the fifth and ninth heat exchangers (7, 13), one of which is cooled and the other stream is nitrogen Enriched,
The two streams are mixed together and transferred for separation (separator 15);
The liquid product from the separation is squeezed (throttle valve 39) and the vapor is expanded in the second expander (16A) and transferred to the nitrogen-enriched column (21), the methane-nitrogen mixture, and ethane and Producing a nitrogen-free liquid methane stream with heavier hydrocarbons,
The flow is throttled (through the throttle valve 41) and partially vaporized in the twelfth and ninth heat exchangers (19, 13);
The liquid fraction is removed via separation (separator 14) and squeezed (through the throttle valve 42), and the fraction after being partially vaporized in the eighth heat exchanger (12) is Move to demethanizer tower to produce methane and liquid fractions of ethane and heavier hydrocarbons,
The methane-nitrogen vapor removed by the separator (23) is continuously cooled by the reboiler (29) and the sixteenth heat exchanger (31) and transferred to the separator (30), where the larger part All of the liquid moves to the bottom (27Б) of the nitrogen-methane separation column (27)
-The smaller part of the gas recovered from the separator (30) is cooled by the reboiler (36) of the helium column (34) and then moves to the upper part of the bottom (27Б) of the nitrogen-methane separation column. Nitrogen-helium vapor is removed for input to the next helium column (34), followed by crude helium production and commercial helium production, and removal of liquid nitrogen from its bottom,
The liquid nitrogen is cooled in the 18th heat exchanger (37), throttled (through the throttle valve 43) and divided into two parts, and the smaller part is vaporized in the recovery part (35) Transferred to the top of the nitrogen-methane separation column (27A) as feed, the larger part being transferred to the top of the nitrogen-methane separation column (27A) for reflux,
The nitrogen-methane liquid produced at the bottom of the nitrogen-methane separation column (27) is cooled and throttled (through the throttle valve 44) in the seventeenth heat exchanger (33) (at the center of the nitrogen-methane separation column ( 27A) where the liquid methane was removed from the recovery section (28), compressed (32), vaporized and heated in the 17th, 16th and 14th heat exchangers (33, 31, 25). Later injected into the methane stream from the demethanizer tower (5) (by ejector 24)
-The mixed stream of methane from the outlet of the ejector (24) is mixed with the circulating methane generated after cooling the methane-nitrogen vapor in the thirteenth heat exchanger (22), and the fourteenth, eleventh, And the seventh heat exchanger (26, 18, 11), and continuously compressed by the compressors (8Б and 16Б) to produce release gas, a part of the release gas is moved, methane cooling circulation The additional compression in the compressor (9) and the sixth, seventh, tenth, eleventh, twelfth, eighth, fifteenth and fourteenth heat exchangers (10, 11, 17, 18, 19, 12, The circulating methane is provided via cooling and condensation at 26, 25), throttling (40), and vaporization at the thirteenth heat exchanger (22).

ガス処理装置は、18の熱交換器(第1−1、第2−2、第3−3、第4−4、第5−7、第6−10、第7−11、第8−12、第9−13、第10−17,第11−18、第12−19、第13−22、第14−25、第15−26、第16−31、第17−33、第18−37)、脱メタン塔(5)、5つの分離器(第1−6、第2−14、第3−15、第4−23、第5−30)、メタン冷却循環圧縮機(9)、備え付けの熱交換器(20)を有する窒素富化カラム(21)、膨張駆動部(8A,16A)を有する圧縮機(8Б,16Б)を備えた第1及び第2の膨張機−圧縮機アセンブリ、頂部(27A)と底部(27Б)からなり備え付けの熱交換器(29)を含む窒素−メタン分離カラム(27)の回収部(28)、回収部(35)と備え付けの熱交換器(36)を有するヘリウムカラム(34)、ポンプ(32)、7つの絞り弁(第1−38、第2−39、第3−40、第4−41、第5−42、第6−43、第7−44)を備える。装置の入口において天然ガスの供給は2つの部分に分けられる。前記天然ガスの流れの大きい方の部分は第1から第3までの熱交換器(1,2,3)で連続的に冷却され、前記流れの小さい方の部分は第4の熱交換器(4)で冷却され脱メタン塔(5)へ移される。第3(3)及び第4(4)の熱交換器からの冷却されたガスの混合された流れは、第1の分離器(6)の入口に移る。第1の絞り弁(38)を通った分離器(6)からの液化炭化水素は、底部の出口がエタンとより重い炭化水素の液体画分を除去するために設計された脱メタン塔(5)に移る。第1の分離器からの蒸気は3つの流れに分離される。前記流れの1つは第5の熱交換器(7)を通過し、2つ目は第9の熱交換器(13)を通過し、3つ目は窒素富化カラム(21)の備え付けの熱交換器(20)を通過する。第5(7)、第9(13)及び窒素富化カラム(21)の備え付けの熱交換器からの流れは、1つの流れに混合され、第3の分離器(15)の入口に移される。第3の分離器(15)から液体画分は、第2の絞り弁(39)を通って窒素富化カラム(21)の底部に移動する。第3の分離器から蒸気は、第2の膨張機−圧縮機アセンブリの膨張駆動部(16A)を通って窒素富化カラム(21)の頂部に移動する。前記カラムから移動したメタン−窒素蒸気は、第13の熱交換器(22)と第4の分離器(23)を通って窒素−メタン分離カラム(27)の底部(27Б)の備え付けの熱交換器(29)に入り、そして第16の熱交換器(31)に入り、その第1の出口は第14の熱交換器(25)を通ってエゼクタ(24)に接続している。エゼクタの出口から移動したメタンと第13の熱交換器(22)の出口から移動したメタンの混合された流れは、第15の熱交換器(26)で加温され、その後、第11(18)と第7(11)の熱交換器で分割された流れの一部が連続して加温され、第5(7)、第3(3)及び第1(1)の熱交換器で前記流れのほかの部分が加温される。第1の熱交換器(1)の出口の1つは、窒素を抜くために設けられている。第1の熱交換器(1)のほかの出口からと第7の熱交換器(11)の出口からの結合されたガスの流れは、第1及び第2の膨張機−圧縮機アセンブリ(8A−8Б及び16A−16Б)の圧縮機(8Б−16Б)において連続して圧縮されるために供給される。第2の膨張機−圧縮機アセンブリの圧縮機から移動したメタンの全体の流れの一部は、放出ガスとして回収されるように設計されている。前記流れのほかの部分は、連続してメタン冷却循環(9)を通り、第6(10)、第7(11)、第10(17)、第11(18)、第12(19)、第8(12)、第15(26)、第14(25)の熱交換器を通り、第3の絞り弁を通って、第13(22)の熱交換器へ送られる。窒素を含まない液化メタンの流れはエタンとより重い炭化水素成分とともに窒素富化カラム(21)の底部を離れ、第4の絞り弁(41)を通って連続的に第12(19)及び第9(13)の熱交換器を通って第2の分離器(14)へ移る。後者は液体画分を除去してそれを第5の絞り弁(42)と第8の熱交換器(12)を通って脱メタン塔(5)の頂部へ移動させるように設計されている。第2の分離器(14)を離れたガスは、第1の膨張機−圧縮機アセンブリ(8)の膨張機(8A)の入口を通って、脱メタン塔(5)の還流部の入口に移動する。脱メタン塔(5)の頂部を離れたメタンは、エゼクタ(24)に移動する。第16の熱交換器(31)の第2の出口は、第5の分離器(30)に接続し、その出口から蒸気のほとんどの部分は窒素−メタン分離カラム(27Б)の底部に移動する。その蒸気の小さい方の部分は、ヘリウムカラム(34)の備え付けの熱交換器(36)を通って窒素−メタン分離カラム(27Б)の底部の頂部へ移動する。窒素−ヘリウム蒸気は前記カラム(27Б)の底部(27Б)の頂部からヘリウムカラム(34)の回収部の入口に移動し、その頂部は粗製のヘリウム回収を目的に設計されている。窒素−ヘリウム蒸気のこのほかの部分は、窒素−メタン分離カラム(27Б)の底部の頂部からヘリウムカラム(34)へ移動する。回収された液化窒素は、ヘリウムカラムの底部から連続して第18の熱交換器(37)と第6の絞り弁(43)を通り、分割された流れの小さい方の部分はヘリウムカラム(34)の回収部(35)を通って窒素−メタン分離カラム(27A)の頂部へ供給物として移動し、大きい方の部分は窒素−メタン分離カラム(27A)の頂部へ還流分として移動する。窒素−メタン分離カラム(27A)の底部の下部で生成した窒素−メタン液体は、第17の熱交換器(33)と第7の絞り弁(44)を通って窒素−メタン分離カラム(27A)の頂部の中央部へ移り、ガス状の窒素は前記カラム(27A)の頂部から、後のパージ又は利用のために、連続的に第18、第17、第15、第5、第3及び第1の熱交換器(37,33,26,7,3,1)を通過する。窒素−メタン分離カラム(27A)の回収部によって生成された液化メタンは、連続的にポンプ(32)、第17(33)及び第16(31)の熱交換器を通過する。第4の分離器(23)で生成された凝縮物は、窒素富化カラム(21)の頂部へ移動する。第5の分離器(30)から分離された液体は、窒素−メタン分離カラムの底部(27Б)の下部へ移動する。   The gas processing apparatus has 18 heat exchangers (1-1, 2-2, 3-3, 4-4, 5-7, 6-10, 7-11, 8-12. 9-13, 10-17, 11-18, 12-19, 13-22, 14-22, 14-25, 15-26, 16-31, 17-33, 18-37 ), Demethanizer (5), five separators (1-6, 2-14, 3-15, 4-23, 5-30), methane cooling circulation compressor (9), A first and second expander-compressor assembly with a nitrogen-enriched column (21) having a heat exchanger (20), a compressor (8Б, 16Б) having an expansion drive (8A, 16A), The recovery part (28) of the nitrogen-methane separation column (27) comprising the top (27A) and the bottom (27Б) and including the installed heat exchanger (29), the recovery part (35) and the installed heat exchanger (36) Helium column (34) with pump (32), One of the throttle valve (the 1-38, the 2-39 second 3-40, the 4-41 second 5-42, the 6-43 second 7-44) a. The natural gas supply at the inlet of the device is divided into two parts. The larger part of the natural gas flow is continuously cooled by the first to third heat exchangers (1, 2, 3), and the smaller part of the flow of the natural gas is the fourth heat exchanger ( It is cooled in 4) and transferred to the demethanizer tower (5). The mixed flow of cooled gas from the third (3) and fourth (4) heat exchangers passes to the inlet of the first separator (6). The liquefied hydrocarbons from the separator (6) through the first throttle valve (38) are demethanized in the bottom outlet (5) designed to remove ethane and heavier hydrocarbon liquid fractions. ) The vapor from the first separator is separated into three streams. One of the streams passes through a fifth heat exchanger (7), the second passes through a ninth heat exchanger (13), and the third is equipped with a nitrogen-rich column (21). Pass through heat exchanger (20). The streams from the heat exchangers equipped with the fifth (7), ninth (13) and nitrogen-rich column (21) are mixed into one stream and transferred to the inlet of the third separator (15). . The liquid fraction from the third separator (15) moves through the second throttle valve (39) to the bottom of the nitrogen enriched column (21). Vapor from the third separator travels through the expansion drive (16A) of the second expander-compressor assembly to the top of the nitrogen enriched column (21). The methane-nitrogen vapor transferred from the column passes through the thirteenth heat exchanger (22) and the fourth separator (23), and the heat exchange provided in the bottom (27Б) of the nitrogen-methane separation column (27). Into the heat exchanger (29) and into the sixteenth heat exchanger (31), the first outlet of which is connected to the ejector (24) through the fourteenth heat exchanger (25). The mixed flow of methane moved from the outlet of the ejector and methane moved from the outlet of the thirteenth heat exchanger (22) is heated in the fifteenth heat exchanger (26), and then heated in the eleventh (18 ) And the seventh (11) heat exchanger, a part of the flow is continuously heated, and the fifth (7), third (3) and first (1) heat exchangers The other part of the flow is heated. One of the outlets of the first heat exchanger (1) is provided for removing nitrogen. The combined gas flows from the other outlets of the first heat exchanger (1) and from the outlet of the seventh heat exchanger (11) are connected to the first and second expander-compressor assemblies (8A). -8 Б and 16A-16 Б) compressors (8 Б-16 Б) are supplied for continuous compression. A portion of the overall flow of methane transferred from the compressor of the second expander-compressor assembly is designed to be recovered as an exhaust gas. The other part of the flow passes through the methane cooling circulation (9) continuously, and the sixth (10), seventh (11), tenth (17), eleventh (18), twelfth (19), The heat passes through the eighth (12), fifteenth (26), and fourteenth (25) heat exchangers, and is sent to the thirteenth (22) heat exchanger through the third throttle valve. The nitrogen-free liquefied methane stream leaves the bottom of the nitrogen-enriched column (21) along with ethane and heavier hydrocarbon components and continuously passes through the fourth throttle valve (41) to the twelfth (19) and second 9 (13) through the heat exchanger to the second separator (14). The latter is designed to remove the liquid fraction and move it through the fifth throttle valve (42) and the eighth heat exchanger (12) to the top of the demethanizer tower (5). The gas leaving the second separator (14) passes through the inlet of the expander (8A) of the first expander-compressor assembly (8) to the inlet of the reflux section of the demethanizer tower (5). Moving. The methane leaving the top of the demethanizer tower (5) moves to the ejector (24). The second outlet of the sixteenth heat exchanger (31) connects to the fifth separator (30), from which most of the steam moves to the bottom of the nitrogen-methane separation column (27Б). . The smaller part of the vapor travels through the heat exchanger (36) installed in the helium column (34) to the top of the bottom of the nitrogen-methane separation column (27Б). Nitrogen-helium vapor moves from the top of the bottom (27Б) of the column (27Б) to the inlet of the recovery section of the helium column (34), the top of which is designed for the recovery of crude helium. The other part of the nitrogen-helium vapor moves from the top of the bottom of the nitrogen-methane separation column (27Б) to the helium column (34). The recovered liquefied nitrogen passes continuously from the bottom of the helium column through the eighteenth heat exchanger (37) and the sixth throttle valve (43), and the smaller part of the divided flow is the helium column (34). ) Through the recovery section (35) to the top of the nitrogen-methane separation column (27A) and the larger part moves as reflux to the top of the nitrogen-methane separation column (27A). The nitrogen-methane liquid produced at the bottom of the bottom of the nitrogen-methane separation column (27A) passes through the seventeenth heat exchanger (33) and the seventh throttle valve (44), and the nitrogen-methane separation column (27A) The gaseous nitrogen is continuously transferred from the top of the column (27A) to the 18th, 17th, 15th, 5th, 3rd and 3rd for subsequent purging or use. Pass through one heat exchanger (37, 33, 26, 7, 3, 1). The liquefied methane produced | generated by the collection | recovery part of a nitrogen-methane separation column (27A) passes a heat exchanger of a pump (32), 17th (33), and 16th (31) continuously. The condensate produced in the fourth separator (23) moves to the top of the nitrogen enriched column (21). The liquid separated from the fifth separator (30) moves to the lower part of the bottom (27Б) of the nitrogen-methane separation column.

特に、第2及び第10の熱交換器はプロパン冷却ユニット設計であり、第4の熱交換器は間接熱交換式であり(4)、第1、第3、第5、第7〜第9及び第11〜第18の熱交換器は熱回収ユニットであり(1,3,7,11,12,13,18,19,22,25,26,31,33,37)、第6の熱交換器(10)は空冷である。   In particular, the second and tenth heat exchangers are of propane cooling unit design and the fourth heat exchanger is an indirect heat exchange type (4), first, third, fifth, seventh to ninth. The 11th to 18th heat exchangers are heat recovery units (1, 3, 7, 11, 12, 13, 18, 19, 22, 25, 26, 31, 33, 37) and the sixth heat. The exchanger (10) is air cooled.

図1はガス処理装置の概略を図示するものである。その装置は、
・第1(1)、第2(2)、第3(3)、第4(4)、第5(7)、第6(10)、第7(11)、第8(12)、第9(13)、第10(17)、第11(18)、第12(19)、第13(22)、第14(25)、第15(26)、第16(31)、第17(33)、第18(37)の熱交換器、
・脱メタン塔(5)、
・第1(6)、第2(14)、第3(15)、第4(23)及び第5(30)の分離器、
・メタン冷却循環圧縮機(9)、
・窒素富化カラム(21)、
・膨張駆動部(8A,16A)を有する圧縮機(18Б,16Б)を備えた第1及び第2の膨張機−圧縮機アセンブリ、
・リボイラー設計の備え付けの熱交換器(20)、
・エゼクタ(24)、
・頂部(27A)と底部(27Б)を備えリボイラー設計の備え付けの熱交換器(29)を有する窒素−メタン分離カラム(27)の回収部(28)、
・回収部(35)とリボイラー設計の備え付けの熱交換器(36)を有するヘリウムカラム(34)、
・ポンプ(32)、
・第1(38)、第2(39)、第3(40)、第4(41)、第5(42)、第6(43)及び第7(44)の絞り弁、
を適宜備えている。
FIG. 1 schematically shows a gas processing apparatus. The device is
First (1), second (2), third (3), fourth (4), fifth (7), sixth (10), seventh (11), eighth (12), first 9 (13), 10 (17), 11 (18), 12 (19), 13 (22), 14 (25), 15 (26), 16 (31), 17 ( 33), 18th (37) heat exchanger,
・ Demethanizer tower (5),
First (6), second (14), third (15), fourth (23) and fifth (30) separators,
・ Methane-cooled circulating compressor (9),
・ Nitrogen-rich column (21),
First and second expander-compressor assemblies with compressors (18Б, 16Б) having expansion drives (8A, 16A);
-Heat exchanger (20) with reboiler design,
・ Ejecta (24),
A recovery section (28) of a nitrogen-methane separation column (27) having a top (27A) and a bottom (27Б) and having a heat exchanger (29) equipped with a reboiler design;
A helium column (34) having a recovery section (35) and a heat exchanger (36) equipped with a reboiler design,
・ Pump (32),
First (38), second (39), third (40), fourth (41), fifth (42), sixth (43) and seventh (44) throttle valves,
Is provided as appropriate.

熱交換器(2,17)はプロパン冷却ユニットである。熱交換器((1,3,7,11,12,13,18,19,22,25,26,31,33,37)は熱回収設計である。熱交換器(4)は間接熱交換式(リボイラー)である。熱交換器(10)は空冷である。   The heat exchanger (2, 17) is a propane cooling unit. The heat exchanger ((1, 3, 7, 11, 12, 13, 18, 19, 22, 25, 26, 31, 33, 37) is a heat recovery design. The heat exchanger (4) is indirect heat exchange. The heat exchanger (10) is air-cooled.

6.1MPaの圧力及び303Kの温度の天然ガスは装置に入り、そこで2つの部分に分けられる。   Natural gas at a pressure of 6.1 MPa and a temperature of 303 K enters the apparatus, where it is divided into two parts.

ガスの小さい方の部分は脱メタン塔5のリボイラー4に入り、それによって227Kの温度に冷却され部分的に凝縮する。ガスの大きい方の部分は熱交換器1−3を通って、メタン画分及びパージされた窒素からの冷気、並びにプロパン冷却ユニット設計の第2の熱交換器2によって供給される0.31MPaの圧力下で沸騰する液体プロパンからの冷気を回収することによって、251K、242K、及び230Kの温度に冷却される。   The smaller part of the gas enters the reboiler 4 of the demethanizer tower 5, thereby being cooled to a temperature of 227K and partially condensed. The larger part of the gas passes through the heat exchanger 1-3, cold air from the methane fraction and purged nitrogen, and 0.31 MPa supplied by the second heat exchanger 2 of the propane cooling unit design. By recovering cold air from liquid propane boiling under pressure, it is cooled to temperatures of 251K, 242K, and 230K.

熱交換器3とリボイラー4からの冷却されたガスの流れは混合されて分離器6へ移動し、そこで液化炭化水素は分離され絞られ38、1.02MPaの圧力に落とされた後に脱メタン塔5の底部に入る。分離器6からの蒸気は、メタンと窒素の画分からの冷気を回収することによって熱交換器7と13によって193Kの温度に冷却され、窒素富化カラム21のリボイラー20でも同様に冷却され分離器15へ移動する。   The cooled gas streams from the heat exchanger 3 and the reboiler 4 are mixed and move to the separator 6 where the liquefied hydrocarbons are separated and squeezed 38 and dropped to a pressure of 1.02 MPa before being demethanized. Enter the bottom of 5. The vapor from the separator 6 is cooled to a temperature of 193 K by the heat exchangers 7 and 13 by recovering the cold air from the methane and nitrogen fractions, and is similarly cooled in the reboiler 20 of the nitrogen enriched column 21. Move to 15.

分離器15の出口で回収された液体の圧力は絞り弁39を通過した後に3.05MPaに落とされ、その後、前記液体は窒素富化カラム21の底部に移動する。分離器15からの蒸気は膨張機16Aで膨張され3.05MPaの圧力に落とされ、169Kの温度を有し、前記カラム21の頂部へ移動する。   The pressure of the liquid recovered at the outlet of the separator 15 is dropped to 3.05 MPa after passing through the throttle valve 39, and then the liquid moves to the bottom of the nitrogen-enriched column 21. The vapor from the separator 15 is expanded by an expander 16A, dropped to a pressure of 3.05 MPa, has a temperature of 169 K, and moves to the top of the column 21.

窒素富化カラム21の還流を与えるために、還流冷却器22が用いられ、そこでは0.98−0.93MPaの圧力で沸騰するメタン冷却サイクルの液化メタンの冷気が利用される。   To provide reflux for the nitrogen-enriched column 21, a reflux cooler 22 is used, where liquefied methane cool air in a methane cooling cycle boiling at a pressure of 0.98-0.93 MPa is utilized.

分離器23での凝縮物分離後、メタン−窒素蒸気はカラム21の頂部から回収され、窒素(49.71パーセント)メタン(49.06パーセント)を含み、窒素を含まない液化メタンは、エタンとより重い炭化水素とともに底部から回収される。後者の流れは、絞られ41、2.56MPaの圧力に落とされ、部分的に熱交換器19,13において177K−180Kの温度範囲で蒸発する。   After condensate separation in separator 23, methane-nitrogen vapor is recovered from the top of column 21 and contains nitrogen (49.71 percent) methane (49.06 percent) and nitrogen-free liquefied methane is ethane and Recovered from the bottom with heavier hydrocarbons. The latter stream is squeezed and reduced to a pressure of 41, 2.56 MPa and partially evaporates in the heat exchangers 19, 13 in the temperature range of 177K-180K.

その後、液体画分は分離器14で分離され、1.06MPaの圧力に絞られ42、157K−165Kの温度範囲で熱交換器12において部分的に蒸発し、脱メタン塔5の上部トレイへ移動する。   Thereafter, the liquid fraction is separated by a separator 14, throttled to a pressure of 1.06 MPa, partially evaporated in a heat exchanger 12 in the temperature range of 42, 157 K-165 K, and transferred to the upper tray of the demethanizer tower 5. To do.

分離器14で回収されたガスは、膨張機8Aで膨張し、還流としてカラム5へ供給される。メタンは、1.02MPaの圧力及び157.8Kの温度においてカラム5の頂部で生産される。250Kの温度のカラム5の底部において、エタンとより重い炭化水素の液体画分が生産され、その後者は分離した商品を生産するために、送液後にガス分画カラムで分画されてもよい。   The gas recovered by the separator 14 is expanded by the expander 8A and supplied to the column 5 as reflux. Methane is produced at the top of column 5 at a pressure of 1.02 MPa and a temperature of 157.8K. At the bottom of the column 5 at a temperature of 250 K, a liquid fraction of ethane and heavier hydrocarbons is produced, and the latter may be fractionated in the gas fractionation column after feeding to produce separated goods. .

分離器23からのガスは、段階的に155Kから154.49K及び142.24Kに、カラム27Б、リボイラー、熱交換器31で冷却され、分離器30に移動する。   The gas from the separator 23 is cooled stepwise from 155 K to 154.49 K and 142.24 K by the column 27 Б, the reboiler, the heat exchanger 31, and moves to the separator 30.

分離器30からの蒸気のほとんどの部分と、分離されたすべての液体は、カラム27Бの底部へ移動し、そこでは高圧(2.9MPa)が維持される。分離器30からの小さい方の部分は、ヘリウムカラム34のリボイラー36で127.7Kの温度に冷却された後、カラム27Бの上部へ移動する。   Most of the vapor from the separator 30 and all separated liquid move to the bottom of the column 27Б where high pressure (2.9 MPa) is maintained. The smaller part from the separator 30 is cooled to a temperature of 127.7 K by the reboiler 36 of the helium column 34 and then moves to the top of the column 27 Б.

窒素−ヘリウムガスは、ヘリウム(14.79モルパーセント)、窒素(84.85モルパーセント)、メタン(0.35モルパーセント)を含んでおり、カラム27Бの上部から除去され、117.3Kの温度で、2.85MPaの圧力で動作するヘリウムカラム34へ移動する。   Nitrogen-helium gas contains helium (14.79 mole percent), nitrogen (84.85 mole percent), methane (0.35 mole percent) and is removed from the top of column 27Б and has a temperature of 117.3K. To the helium column 34 operating at a pressure of 2.85 MPa.

ヘリウム(70.01パーセント)と窒素(29.99パーセント)を含む粗製ヘリウムは、ヘリウムカラム34の頂部から除去され、99Kの温度で商用ヘリウムを生産するための仕上げアセンブリへ移動する。   Crude helium containing helium (70.01 percent) and nitrogen (29.99 percent) is removed from the top of the helium column 34 and transferred to a finishing assembly for producing commercial helium at a temperature of 99K.

液体窒素は、カラム34の底部から除去され、熱交換器37で123Kから84.9Kの温度に冷却され、0.18MPaの圧力に絞られ43、2つの部分に分割される。小さい方の部分は、カラム34の回収部35で蒸発し窒素−メタン分離カラム27Aの上部へ供給物として供給される。大きい方の部分は、還流としてカラム27Aの上部へ移動する。   Liquid nitrogen is removed from the bottom of the column 34, cooled in a heat exchanger 37 to a temperature of 123K to 84.9K, squeezed to a pressure of 0.18 MPa 43 and divided into two parts. The smaller part is evaporated in the recovery part 35 of the column 34 and supplied as a feed to the upper part of the nitrogen-methane separation column 27A. The larger part moves to the top of column 27A as reflux.

カラム27Бの底部からの窒素−メタン液体は、熱交換器33で143Kから125Kに冷却され0.19MPaに絞られた44後に、分離のためにカラム27Aの中央部へ移動する。   The nitrogen-methane liquid from the bottom of the column 27 Б is cooled from 143 K to 125 K in the heat exchanger 33 and throttled to 0.19 MPa 44 and then moves to the center of the column 27 A for separation.

窒素−メタンの流れの窒素とメタンへの最後の分離は、カラム27Aで0.19MPaの圧力で起こる。99.86の純度を有するガス状の窒素は、カラム27Aの頂部の製品であり、それはその冷気の利用のために引き続き熱交換器37,33,26,7,3,1を通過し、83Kから297Kまで温度を取り戻す。前記窒素は排出され又は利用される。   The final separation of the nitrogen-methane stream into nitrogen and methane occurs at a pressure of 0.19 MPa in column 27A. Gaseous nitrogen with a purity of 99.86 is the product at the top of column 27A, which continues to pass through heat exchangers 37, 33, 26, 7, 3, 1 for the use of its cold air, 83K The temperature is regained to 297K. The nitrogen is exhausted or used.

98.1パーセントの純度を有する液体メタンは、カラム27Aの底部から除去され、ポンプ32により0.8MPaに加圧され、熱交換器33,31,25で気化及び115Kから168Kに加温された後、(エゼクタ24を手段として)より高い圧力(1.02MPa)を有するカラム5からのガスの流れに注入される。   Liquid methane having a purity of 98.1 percent was removed from the bottom of column 27A, pressurized to 0.8 MPa by pump 32, vaporized in heat exchangers 33, 31, 25 and heated from 115K to 168K. Later, it is injected into the gas stream from the column 5 having higher pressure (1.02 MPa) (by means of the ejector 24).

0.93MPaの圧力でエゼクタ24を離れた結合されたメタンの混合物は、還流冷却器22を離れた開放メタン冷却サイクルの循環メタンと混合される。その後、段階的なガスの加温が152Kから300Kまで連続した熱回収熱交換器26,18,11及び7,3,1で起こり、ガスは適宜に膨張機8A及び16Aによって駆動される圧縮機8Б及び16Бによって0.89MPa及び0.98MPaの圧力まで圧縮される。これらの圧縮機と膨張機は、膨張機−圧縮機アセンブリ16A−16Б及び8A−8Бに結合されている。   The combined methane mixture leaving the ejector 24 at a pressure of 0.93 MPa is mixed with the circulating methane of the open methane cooling cycle leaving the reflux condenser 22. Thereafter, stepwise gas heating takes place in the heat recovery heat exchangers 26, 18, 11 and 7, 3 and 1 from 152K to 300K, and the gas is appropriately driven by the expanders 8A and 16A. Compressed to a pressure of 0.89 MPa and 0.98 MPa by 8 Б and 16 Б. These compressors and expanders are coupled to expander-compressor assemblies 16A-16Б and 8A-8Б.

圧縮機16Бを離れた全体の流れの64パーセントは、次に続く圧縮のために放出ガス(2.09パーセントの窒素、97.25パーセントのメタン、及び0.66パーセントのエタン)として除去され、遠隔の消費者へガス供給を与えるためにガスの元栓に投入される圧縮機16Бを離れたガス体積の36パーセントは、メタン冷却サイクルでの循環のために3.2MPaの圧力まで圧縮機9で圧縮されて除去され、つぎに連続して空冷10、熱交換器11,17で(0.31MPaの圧力で沸騰する液体プロパンにより供給される冷気により)156Kの温度まで冷却、凝縮され、(プロパン冷却アセンブリ17から熱交換器18,19,12,26,25へ搬送され、)0.98MPaの圧力まで絞られ40、還流冷却器22で(146K−149Kの温度範囲で)気化され、エゼクタ24を離れたメタンの流れと混合される。   64 percent of the total stream leaving the compressor 16Б is removed as emissions (2.09 percent nitrogen, 97.25 percent methane, and 0.66 percent ethane) for subsequent compression, 36 percent of the gas volume leaving the compressor 16Б that is fed into the gas mains to provide a gas supply to the remote consumer is at the compressor 9 up to a pressure of 3.2 MPa for circulation in the methane cooling cycle. Compressed and removed, then continuously cooled and condensed to a temperature of 156 K (by cold air supplied by liquid propane boiling at a pressure of 0.31 MPa) in air cooling 10, heat exchangers 11 and 17 (propane It is transported from the cooling assembly 17 to the heat exchangers 18, 19, 12, 26, 25 and is squeezed to a pressure of 0.98 MPa 40 and vaporized in the reflux cooler 22 (in the temperature range of 146K-149K). The ejector 24 is mixed with a stream of separated methane.

Claims (5)

天然ガス処理方法であって、天然ガスの供給は2つの部分に分離され、その小さい方の部分は冷却され部分的に凝縮され、その天然ガスの供給の大きい方の部分は連続的に冷却され、冷却されたガスの2つの流れは混合され、分離されて液化された炭化水素は抽出されて絞られた後に脱メタン塔に移り、分離されたガスは2つの流れに分離されその1つは冷却され他方は窒素が富化されてその後に前記の2つの流れは混合されて分離のために移され、分離後の液体生成物は絞られ分離後に生成したガスはメタン−窒素ガス混合物並びにエタン及びより重い炭化水素を有する窒素を含まない液体メタンの流れを得るために膨張されて窒素富化カラムに移され、前記流れは絞られ部分的に気化されてその後に液体画分は分離工程を経由して除去され、絞られ部分的に気化された後の液体画分はメタン並びにエタン及びより重い炭化水素の液体画分を生成するために脱メタン塔へ移り、分離されたメタン−窒素蒸気は段階的に冷却されてその後に続く分離の後にその大きい方の部分とすべての液体画分は窒素−メタン分離カラムへ移り、分離されたガスの小さい方の部分はヘリウムカラムで冷却された後に窒素−メタン分離カラムへ移り、そこで窒素−ヘリウム蒸気は粗製ヘリウムの生成と商用ヘリウムの生産のため並びに液体窒素の抽出のための、次に続くヘリウムカラムへの供給のために回収され、液体窒素は冷却され絞られ2つの部分に分けられ、小さい方の部分は気化の後に供給物として、大きい方の部分は還流の流れとして、窒素−メタン分離カラムへ移り、窒素−メタン分離カラムからの窒素−メタン液体は冷却され絞られ窒素−メタン分離カラムに再注入され、そこから液体メタンは除去され、前記メタンは圧縮され気化され加温された後にメタンの流れに注入され、前記結合されたメタンの流れはメタン−窒素蒸気の冷却の後に得られる循環メタンと混合され、送出ガスの生産量を与えるために段階的に冷却され圧縮され、一方その一部は前記循環メタンを生成するために追加の圧縮、冷却、凝縮、絞り、気化を経由して回収される、天然ガス処理方法。 Natural gas processing method, wherein the natural gas supply is separated into two parts, the smaller part is cooled and partially condensed and the larger part of the natural gas supply is continuously cooled. The two streams of cooled gas are mixed, separated and liquefied hydrocarbons are extracted and squeezed and then transferred to a demethanizer tower, and the separated gas is separated into two streams, one of which is The other stream is cooled and enriched with nitrogen, after which the two streams are mixed and transferred for separation, the liquid product after separation is squeezed, and the gas produced after separation is methane-nitrogen gas mixture and ethane And expanded to obtain a nitrogen-free liquid methane stream with heavier hydrocarbons and transferred to a nitrogen-enriched column, where the stream is squeezed and partially vaporized, after which the liquid fraction undergoes a separation step. Removed via The liquid fraction after being squeezed and partially vaporized is transferred to a demethanizer tower to produce a liquid fraction of methane and ethane and heavier hydrocarbons, and the separated methane-nitrogen vapor is cooled in stages. After the subsequent separation, the larger part and all liquid fractions are transferred to the nitrogen-methane separation column, and the smaller part of the separated gas is cooled in the helium column before the nitrogen-methane separation column. Where the nitrogen-helium vapor is recovered for crude helium production and commercial helium production as well as for extraction of liquid nitrogen and subsequent supply to the helium column, where the liquid nitrogen is cooled and squeezed. Divided into two parts, the smaller part as feed after vaporization, the larger part as reflux stream and transferred to the nitrogen-methane separation column for nitrogen-methane separation The nitrogen-methane liquid from the ram is cooled and squeezed and re-injected into the nitrogen-methane separation column, from which the liquid methane is removed, the methane is compressed, vaporized and warmed before being injected into the methane stream, The combined methane stream is mixed with the circulating methane obtained after cooling of the methane-nitrogen vapor and cooled and compressed in stages to give output gas production, while some of it produces the circulating methane Natural gas processing methods that are recovered via additional compression, cooling, condensation, squeezing and vaporization. 請求項1記載の方法を実施するための装置であって、2つの分離器、メタン冷却サイクルの圧縮機、備え付けの熱交換器を有する窒素富化カラム、膨張機によって駆動される圧縮機を備えた第1及び第2の膨張機−圧縮機アセンブリ、8つの熱交換器、ポンプ、6つの絞り弁、頂部及び底部並びに追加の10の熱交換器と異なる備え付けの熱交換器を有する窒素−メタン分離カラム、脱メタン塔、3つの分離器、エゼクタ、窒素−メタン分離カラム内の回収カラム、ヘリウムカラムが回収部と備え付けの熱交換器を有する箇所における7つ目の絞り弁を備え、装置の入口において天然ガスの供給は2つの部分に分けられ、大きい方の部分は第1から第3までの熱交換器で連続的に冷却され、小さい方の部分は第4の熱交換器で冷却され連続的に脱メタン塔へ供給され、第3及び第4の熱交換器からの冷却されたガスの混合された流れは第1の分離器の入口に移り、そこから液化炭化水素は第1の絞り弁を通って、底部の出口がエタンとより重い炭化水素の液体画分を除去するために設計された脱メタン塔に移り、第1の分離器から除去された気体画分は3つの流れに分割され、その1つは配送ガスとして意図されて第5の熱交換器を通過し、2つ目は第9の熱交換器を通過し、3つ目は窒素富化カラムの備え付けの熱交換器を通過し、その後に第3の分離器の入口において1つの流れに混合され、第3の分離器の液体画分の出口は第2の絞り弁を通じて窒素富化カラムの底部に接続し、第3の分離器のガス画分の出口は第2の膨張機−圧縮機アセンブリを通じて窒素富化カラムの頂部に接続し、そのメタン−窒素蒸気の出口は連続して第13の熱交換器と第4の分離器を通じて窒素−メタン分離カラムの底部の備え付けの熱交換器、及び、第16の熱交換器に接続し、第16の熱交換器はその第1の出口から第14の熱交換器を通じてエゼクタに接続し、エゼクタの出口からのメタンと第13の熱交換器の出口からの循環メタンを結合した流れは第15の熱交換器で加温され、その後、第11と第7の熱交換器で分割されたガスの流れの一部が連続して加温され、第5、第3及び第1の熱交換器で前記流れのほかの部分が加温され、第1の熱交換器の出口の1つは窒素を抜くために設けられており、第1の熱交換器のほかの出口からと第7の熱交換器の出口からの結合されたガスの流れは、第1及び第2の膨張機−圧縮機アセンブリの圧縮機において連続して圧縮され、第2の膨張機−圧縮機アセンブリの圧縮機から移動したメタンの全体の流れの一部は送出ガスとして回収され、前記流れのほかの部分は、連続してメタン冷却循環、第6、第7、第10、第11、第12、第8、第15、第14の熱交換器に接続し、第3の絞り弁を通って、第13の熱交換器に接続し、窒素を含まずエタンとより重い炭化水素成分を含む液化メタンの出口は窒素富化カラムの底部から第4の絞り弁を通って連続的に第12及び第9の熱交換器と第2の分離器の入口に接続し、第2の分離器は液体画分を分離してそれを第5の絞り弁と第8の熱交換器を通って脱メタン塔の頂部へ届けるように設計され、第2の分離器からのガスの出口は第1の膨張機−圧縮機アセンブリの膨張機を通じて脱メタン塔の還流部の入口に接続し、脱メタン塔の頂部からのメタンの出口はエゼクタに接続し、第16の熱交換器の第2の出口は第5の分離器に接続し、第5の分離器の出口から蒸気の大部分は窒素−メタン分離カラムの底部に向けられ、その蒸気の小さい方の部分はヘリウムカラムの備え付けの熱交換器を通じて窒素−メタン分離カラムの底部の頂部に向けられ、窒素−ヘリウム蒸気の出口は前記カラムの底部の頂部からヘリウムカラムの回収部の入口に接続し、ヘリウムカラムの頂部は粗製のヘリウム回収を目的に設計されており、窒素−メタン分離カラムの底部の頂部からの窒素−ヘリウム蒸気のこのほかの出口はヘリウムカラムへ供給物を与えるように設計されており、ヘリウムカラムの底部からの液体窒素の出口は連続して第18の熱交換器と第6の絞り弁に接続し、分割された流れの小さい方の部分はヘリウムカラムの回収部を供給物として通って窒素−メタン分離カラムの頂部へ移動し、前記流れの大きい方の部分は窒素−メタン分離カラムの頂部へ還流分として届けられるようになっており、窒素−メタン分離カラムの底部の下部からの窒素−メタン液体の出口は第17の熱交換器と第7の絞り弁を通って窒素−メタン分離カラムの頂部の中央部に接続し、窒素−メタン分離カラムの頂部からのガス状の窒素の出口は後のパージ又は利用のために連続的に第18、第17、第15、第5、第3及び第1の熱交換器に接続し、窒素−メタン分離カラムの回収部からの液体メタンの出口は連続的にポンプ、第17及び第16の熱交換器に接続し、第4の分離器の凝縮物の出口は窒素富化カラムの頂部の入口に接続し、第5の分離器からの液体の出口は窒素−メタン分離カラムの底部の下部に接続している、装置。 An apparatus for carrying out the method according to claim 1, comprising two separators, a compressor for a methane cooling cycle, a nitrogen-enriched column with an installed heat exchanger, a compressor driven by an expander. Nitrogen-methane having different heat exchangers than the first and second expander-compressor assemblies, eight heat exchangers, pumps, six throttle valves, top and bottom, and an additional ten heat exchangers A separation column, a demethanizer, three separators, an ejector, a recovery column in a nitrogen-methane separation column, and a seventh throttle valve at the point where the helium column has a recovery unit and a heat exchanger provided, At the inlet, the natural gas supply is divided into two parts, the larger part being continuously cooled by the first to third heat exchangers and the smaller part being cooled by the fourth heat exchanger. Continuous The mixed stream of cooled gas supplied to the demethanizer tower from the third and fourth heat exchangers passes to the inlet of the first separator, from which the liquefied hydrocarbons pass through the first throttle valve. Through, the bottom outlet moves to a demethanizer designed to remove the liquid fraction of ethane and heavier hydrocarbons, and the gas fraction removed from the first separator is divided into three streams. One through the fifth heat exchanger, intended as the delivery gas, the second through the ninth heat exchanger, and the third through the heat exchanger installed in the nitrogen-rich column. And then mixed into one stream at the inlet of the third separator, the outlet of the liquid fraction of the third separator is connected to the bottom of the nitrogen-enriched column through the second throttle valve, The outlet of the gas fraction of the separator at the top of the nitrogen-enriched column through a second expander-compressor assembly And the outlet of the methane-nitrogen vapor is continuously connected to the bottom of the nitrogen-methane separation column through the thirteenth heat exchanger and the fourth separator, and the sixteenth heat exchanger. The sixteenth heat exchanger is connected to the ejector through its fourteenth heat exchanger from its first outlet, and combines the methane from the ejector outlet and the circulating methane from the thirteenth heat exchanger outlet. The heated flow is heated by the fifteenth heat exchanger, and then a part of the gas flow divided by the eleventh and seventh heat exchangers is continuously heated, and the fifth, third and third The other part of the flow is heated in one heat exchanger, one of the outlets of the first heat exchanger is provided for degassing nitrogen and from the other outlet of the first heat exchanger And the combined gas flow from the outlets of the seventh heat exchanger are the first and second expander-compressor assemblies. A portion of the total flow of methane that is continuously compressed in the compressor of the assembly and moved from the compressor of the second expander-compressor assembly is recovered as a delivery gas, and the other portion of the flow is continuous. And connected to the sixth, seventh, tenth, eleventh, twelfth, eighth, fifteenth, and fourteenth heat exchangers, through the third throttle valve, and the thirteenth heat. Connected to the exchanger, the outlet of the liquefied methane containing nitrogen-free ethane and heavier hydrocarbon components from the bottom of the nitrogen-enriched column through the fourth throttle valve continuously through the twelfth and ninth heat exchange And a second separator that separates the liquid fraction and delivers it to the top of the demethanizer tower through the fifth throttle valve and the eighth heat exchanger. The gas outlet from the second separator is the expander of the first expander-compressor assembly Connected to the inlet of the reflux section of the demethanizer tower, the outlet of methane from the top of the demethanizer tower connected to the ejector, and the second outlet of the sixteenth heat exchanger connected to the fifth separator. , From the outlet of the fifth separator, the majority of the steam is directed to the bottom of the nitrogen-methane separation column, and the smaller part of the steam passes through the heat exchanger provided in the helium column to the bottom of the nitrogen-methane separation column. Directed to the top, the outlet of the nitrogen-helium vapor is connected from the top of the bottom of the column to the inlet of the recovery of the helium column, the top of the helium column is designed for crude helium recovery, The other outlet of nitrogen-helium vapor from the top of the bottom of the separation column is designed to provide a feed to the helium column, and the outlet of liquid nitrogen from the bottom of the helium column is continuous. Connected to the eighteenth heat exchanger and the sixth throttle valve, and the smaller part of the divided flow passes through the recovery part of the helium column as feed and moves to the top of the nitrogen-methane separation column, The larger part of the flow is delivered to the top of the nitrogen-methane separation column as reflux, and the nitrogen-methane liquid outlet from the bottom bottom of the nitrogen-methane separation column is the seventeenth heat exchanger. And through a seventh throttle valve to the center of the top of the nitrogen-methane separation column, the gaseous nitrogen outlet from the top of the nitrogen-methane separation column is continuously connected for later purging or utilization. Connected to the eighteenth, seventeenth, fifteenth, fifth, third and first heat exchangers, the outlet of liquid methane from the recovery part of the nitrogen-methane separation column is continuously pumped, the seventeenth and sixteenth Connected to the heat exchanger of the fourth separator The condensate outlet is connected to the top inlet of the nitrogen-rich column and the liquid outlet from the fifth separator is connected to the bottom bottom of the nitrogen-methane separation column. 第2及び第10の熱交換器はプロパン冷却ユニットである請求項2記載の装置。 The apparatus of claim 2, wherein the second and tenth heat exchangers are propane cooling units. 第3、第5、第7〜第9及び第11〜第18の熱交換器は熱回収ユニットである請求項2記載の装置。 The apparatus according to claim 2, wherein the third, fifth, seventh to ninth, and eleventh to eighteenth heat exchangers are heat recovery units. 第6の熱交換器は空冷ユニットである請求項2記載の装置。 The apparatus of claim 2, wherein the sixth heat exchanger is an air cooling unit.
JP2015525399A 2012-08-08 2012-10-31 Natural gas processing method and apparatus Active JP5985752B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
RU2012134078 2012-08-08
RU2012134078/05A RU2502545C1 (en) 2012-08-08 2012-08-08 Method of natural gas processing and device to this end
PCT/RU2012/000891 WO2014025284A2 (en) 2012-08-08 2012-10-31 Method of natural gas processing and apparatus therefor

Publications (2)

Publication Number Publication Date
JP2015530554A true JP2015530554A (en) 2015-10-15
JP5985752B2 JP5985752B2 (en) 2016-09-06

Family

ID=47997754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015525399A Active JP5985752B2 (en) 2012-08-08 2012-10-31 Natural gas processing method and apparatus

Country Status (3)

Country Link
JP (1) JP5985752B2 (en)
RU (1) RU2502545C1 (en)
WO (1) WO2014025284A2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2570795C1 (en) * 2014-07-15 2015-12-10 Игорь Анатольевич Мнушкин Gas refining and gas chemical complex
RU2576428C1 (en) * 2015-01-12 2016-03-10 Игорь Анатольевич Мнушкин Method for complex processing of natural hydrocarbon gas with high nitrogen content
FR3038973B1 (en) * 2015-07-16 2019-09-27 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude HELIUM PRODUCTION FROM NATURAL GAS CURRENT
AU2016342139B2 (en) * 2015-10-21 2020-02-13 Shell Internationale Research Maatschappij B.V. Method and system for preparing a lean methane-containing gas stream
RU2614947C1 (en) * 2016-05-11 2017-03-31 Публичное акционерное общество "Газпром" Method for natural gas processing with c2+ recovery and plant for its implementation
RU2648077C9 (en) * 2017-08-29 2018-07-04 Игорь Анатольевич Мнушкин Gas chemical complex
RU2685098C1 (en) * 2018-08-06 2019-04-16 Андрей Владиславович Курочкин Hydrocarbon c2+ extraction unit from natural gas (versions)
RU2727501C1 (en) * 2019-01-31 2020-07-22 Андрей Владиславович Курочкин Ltdr installation for separation of hydrocarbons c2+ from main gas (embodiments)
RU2723654C1 (en) * 2019-12-30 2020-06-17 Андрей Владиславович Курочкин Low-temperature fractionation unit for main gas deethanization (versions)
RU2733710C1 (en) * 2020-05-28 2020-10-06 Андрей Владиславович Курочкин Apparatus for separating hydrocarbons from a gas mixture (versions)
RU2739748C1 (en) * 2020-05-28 2020-12-28 Андрей Владиславович Курочкин Apparatus for extracting helium concentrate from hydrocarbon-containing gas mixture
RU2733711C1 (en) * 2020-05-28 2020-10-06 Андрей Владиславович Курочкин Apparatus for separating hydrocarbons from a gas mixture
RU2736682C1 (en) * 2020-06-05 2020-11-19 Андрей Владиславович Курочкин Natural gas preparation unit with helium extraction
RU2741460C1 (en) * 2020-08-20 2021-01-26 Общество С Ограниченной Ответственностью "Пегаз Инжиниринг" Apparatus for separating a hydrocarbon-containing gas mixture to produce helium
CN114659338B (en) * 2022-03-24 2022-12-13 浙江大学 Refrigeration system and method for separating heavy hydrocarbon and methane in natural gas BOG

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3543528A (en) * 1965-03-11 1970-12-01 Pullman Inc Separation of low-boiling gas mixtures
CA1048397A (en) * 1976-08-09 1979-02-13 Ortloff Corporation (The) Hydrocarbon gas processing
US4889545A (en) 1988-11-21 1989-12-26 Elcor Corporation Hydrocarbon gas processing
SU1645796A1 (en) * 1989-01-26 1991-04-30 Всесоюзный научно-исследовательский институт природных газов Process of simultaneous production of heliun ethan and heavier hydrocarbons
CA2294742C (en) * 1997-07-01 2005-04-05 Exxon Production Research Company Process for separating a multi-component gas stream containing at least one freezable component
RU2286377C1 (en) * 2005-05-30 2006-10-27 Общество с ограниченной ответственностью "Оренбурггазпром" Method of the low-temperature separation of the hydrocarbon gas
US20080016910A1 (en) * 2006-07-21 2008-01-24 Adam Adrian Brostow Integrated NGL recovery in the production of liquefied natural gas

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6015051777; RATHMANN U et al.: '"Separation of NGL, Nitrogen and Helium from Natural Gases and Associated Gas"' Chemical Economy & Engineering Review Vol.16, No.6, 198401, pp.15-25 *
JPN6015051778; GRIMM P et al.: '"Abtrennung von Ethan, schweren Kohlenwasserstoffen, Stickstoff und Helium aus Erdgasen und Erdoelbe' Erdoel & Kohle. Erdgas. Petrochemie Bd.36, Heft 2, 198302, pp.75-84 *

Also Published As

Publication number Publication date
WO2014025284A2 (en) 2014-02-13
WO2014025284A3 (en) 2015-04-09
RU2502545C1 (en) 2013-12-27
JP5985752B2 (en) 2016-09-06

Similar Documents

Publication Publication Date Title
JP5985752B2 (en) Natural gas processing method and apparatus
JP5997798B2 (en) Nitrogen removal by isobaric open frozen natural gas liquid recovery
JP4216765B2 (en) Method and apparatus for removing nitrogen from condensed natural gas
RU2362954C2 (en) Treating of liquefied natural gas
JP3602807B2 (en) Method for separating a raw material gas mixture
JP5909227B2 (en) Treatment of hydrocarbon gas
US10047673B2 (en) Production of low pressure liquid carbon dioxide from a power production system and method
RU2743086C1 (en) Extraction of helium from natural gas
RU2010150141A (en) IMPROVED NITROGEN REMOVAL IN A PLANT FOR PRODUCING LIQUEFIED NATURAL GAS
US10808999B2 (en) Process for increasing ethylene and propylene yield from a propylene plant
RU2614947C1 (en) Method for natural gas processing with c2+ recovery and plant for its implementation
US20200032704A1 (en) Production of low pressure liquid carbon dioxide from a power production system and method
CA2912171A1 (en) Methods for separating hydrocarbon gases
RU2630202C1 (en) Method of extracting c2+ fraction from raw gas and plant for its implementation
RU2640969C1 (en) Method for extraction of liquefied hydrocarbon gases from natural gas of main gas pipelines and plant for its implementation
RU2749628C1 (en) Method and installation for separation of target fractions from natural gas
RU2010138604A (en) METHOD AND DEVICE FOR COOLING AND SEPARATION OF A HYDROCARBON FLOW
RU49609U1 (en) INSTALLATION OF LOW-TEMPERATURE SEPARATION OF A HYDROCARBON GAS
RU2615703C2 (en) Method of gas condensate deposits complex processing with c3+ hydrocarbons deep extraction and plant for its implementation
CN105423700B (en) Single-stage rectification equipment for separating air
RU2757211C1 (en) Integrated gas treatment plant with lng production and increased extraction of gas condensate (options)
RU32583U1 (en) Installation of low-temperature separation of hydrocarbon gas
WO2023242144A1 (en) Method and plant for separation of carbon dioxide (co2)
EA043146B1 (en) METHOD AND INSTALLATION FOR SEPARATION OF TARGET FRACTIONS FROM NATURAL GAS
KR20230136153A (en) Method and apparatus for separating a carbon dioxide-rich stream by distillation to produce liquid carbon dioxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160803

R150 Certificate of patent or registration of utility model

Ref document number: 5985752

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250