JP2015517714A - 燃料電池スタックの臨界運転状態を測定する方法 - Google Patents
燃料電池スタックの臨界運転状態を測定する方法 Download PDFInfo
- Publication number
- JP2015517714A JP2015517714A JP2015509443A JP2015509443A JP2015517714A JP 2015517714 A JP2015517714 A JP 2015517714A JP 2015509443 A JP2015509443 A JP 2015509443A JP 2015509443 A JP2015509443 A JP 2015509443A JP 2015517714 A JP2015517714 A JP 2015517714A
- Authority
- JP
- Japan
- Prior art keywords
- fuel cell
- cell stack
- voltage
- thda
- index
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 85
- 238000000034 method Methods 0.000 title claims abstract description 40
- 210000004027 cell Anatomy 0.000 claims abstract description 127
- 239000012528 membrane Substances 0.000 claims abstract description 33
- 238000002847 impedance measurement Methods 0.000 claims abstract description 6
- 210000000170 cell membrane Anatomy 0.000 claims abstract 2
- 238000005259 measurement Methods 0.000 claims description 31
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 23
- 238000013528 artificial neural network Methods 0.000 claims description 19
- 230000001419 dependent effect Effects 0.000 claims description 12
- 230000032683 aging Effects 0.000 claims description 11
- 239000007788 liquid Substances 0.000 claims description 11
- 238000012549 training Methods 0.000 claims description 10
- 238000004458 analytical method Methods 0.000 claims description 9
- 230000015572 biosynthetic process Effects 0.000 claims description 8
- 238000004364 calculation method Methods 0.000 claims description 8
- 101100443238 Caenorhabditis elegans dif-1 gene Proteins 0.000 claims description 5
- 230000002596 correlated effect Effects 0.000 claims description 5
- 230000008021 deposition Effects 0.000 claims description 5
- WQFYAGVHZYFXDO-UHFFFAOYSA-N 2'-anilino-6'-(diethylamino)-3'-methylspiro[2-benzofuran-3,9'-xanthene]-1-one Chemical compound C=1C(N(CC)CC)=CC=C(C2(C3=CC=CC=C3C(=O)O2)C2=C3)C=1OC2=CC(C)=C3NC1=CC=CC=C1 WQFYAGVHZYFXDO-UHFFFAOYSA-N 0.000 claims 7
- 239000007789 gas Substances 0.000 description 14
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 239000003570 air Substances 0.000 description 5
- 238000004422 calculation algorithm Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 238000009499 grossing Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 239000007800 oxidant agent Substances 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 238000001566 impedance spectroscopy Methods 0.000 description 3
- 210000002569 neuron Anatomy 0.000 description 3
- 239000005518 polymer electrolyte Substances 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000007635 classification algorithm Methods 0.000 description 1
- 238000007621 cluster analysis Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000011157 data evaluation Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 230000002431 foraging effect Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000007620 mathematical function Methods 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 238000000275 quality assurance Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
- 238000012731 temporal analysis Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000000700 time series analysis Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04664—Failure or abnormal function
- H01M8/04679—Failure or abnormal function of fuel cell stacks
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/385—Arrangements for measuring battery or accumulator variables
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/3644—Constructional arrangements
- G01R31/3647—Constructional arrangements for determining the ability of a battery to perform a critical function, e.g. cranking
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/382—Arrangements for monitoring battery or accumulator variables, e.g. SoC
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/389—Measuring internal impedance, internal conductance or related variables
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/392—Determining battery ageing or deterioration, e.g. state of health
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/396—Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04305—Modeling, demonstration models of fuel cells, e.g. for training purposes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04537—Electric variables
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04537—Electric variables
- H01M8/04544—Voltage
- H01M8/04552—Voltage of the individual fuel cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04537—Electric variables
- H01M8/04544—Voltage
- H01M8/04559—Voltage of fuel cell stacks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04537—Electric variables
- H01M8/04574—Current
- H01M8/04582—Current of the individual fuel cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04537—Electric variables
- H01M8/04574—Current
- H01M8/04589—Current of fuel cell stacks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04537—Electric variables
- H01M8/04634—Other electric variables, e.g. resistance or impedance
- H01M8/04641—Other electric variables, e.g. resistance or impedance of the individual fuel cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04537—Electric variables
- H01M8/04634—Other electric variables, e.g. resistance or impedance
- H01M8/04649—Other electric variables, e.g. resistance or impedance of fuel cell stacks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04664—Failure or abnormal function
- H01M8/04671—Failure or abnormal function of the individual fuel cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04992—Processes for controlling fuel cells or fuel cell systems characterised by the implementation of mathematical or computational algorithms, e.g. feedback control loops, fuzzy logic, neural networks or artificial intelligence
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Automation & Control Theory (AREA)
- Computing Systems (AREA)
- Evolutionary Computation (AREA)
- Fuzzy Systems (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Theoretical Computer Science (AREA)
- Fuel Cell (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Description
* カソード又はアノードにおける酸化剤又は燃料の供給不足(化学量論比不足)。その影響は、UI特性曲線が低い電流において早期に低下してしまうことにある。
* 膜の電気的短絡又はガス短絡の形成。その影響は、U0(電流=0での電圧)が変化することにある。
* 電極の経年変化。その影響は、UI特性曲線がより急峻に降下し、腐食作用によってオーム抵抗値が高くなることにある。
* スタックのアノード/カソードにおける化学量論比不足
* スタックの膜のドライアウト(dryout)
* 膜上における、水の堆積、水滴の形成
* 平均セル電圧からの現在の最小セル電圧の偏移
極めて単純には、PEM燃料電池は、陽子交換膜(Proton Exchange Membrane(PEM))と、陽子伝導膜とによって分離された二つの電極から構成される。
式中、システム依存の加重α0,α1は0<α0,α1<1、α0+α1=1であり、fは多項対数関数である。システム依存の加重α0,α1はシステム依存性が高い。平滑化関数(スライド平均(sliding average)、log,...)の使用は、それによって信号の質が影響を受けうることから、システムの構造およびコンポーネントに高度に依存する。加重パラメータおよび平滑化関数は、可能な最も有意性の高いデータをサポートするために、特別なテストプログラムに従う較正測定によって適宜調節される。式1の第1項は、通常、より強力に加重される。
燃料電池スタックは化学反応エネルギを電気エネルギに変換する。この目的のために、二つの媒質、即ち、燃料(水素)と酸化剤(通常は大気中の酸素)とを連続的に供給しなければならない。従って、媒質の最適な供給は、燃料電池スタックの効率的運転において重要な役割を有する。
式中、システム依存の加重α1,α2,α3は、0<α1,α2,α3<1、α1+α2+α3=1であり、f1,f2,f3は評価関数である。内部抵抗R1はオーム抵抗Rm,R1およびR2の総和として得られ、下記の式によりオンラインで計算される。
適正な水の管理は、PEM燃料電池の運転において重要な役割をはたす。一方では、カソード側において水が副産物として生成され、これを適切に排出する必要があり、他方では、ガスの加湿の結果として、水が燃料電池スタックに侵入する。
式中、a0,a1,a2,a3はシステム依存のパラメータであり、0<a0,a1,a2,a3<1である。fは信号を平滑化しフィルタリングするための多項又は対数関数、thddif0およびthddif1は二つの測定ルート(電流、電圧)の電流および電圧の歪率の線型結合である。平滑化関数fおよび加重a0,a1,a2,a3はシステム依存性が高く、計算結果の精度と解釈可能性とを最適化するべく特殊なテストプログラムに従う較正測定によって判定又は調節することができる。
健全性の測定結果は、スタックの経年変化の度合いを反映するものである。この場合、新しいスタックを100%SOHとし、その運転寿命の最後にあるスタック(たとえば、90%の性能低下)を0%SoHとする。単純化電気等価回路のインピーダンス測定(図1を参照)によって下記の式を形成することができる。
− 極めて多くの副次的影響、すなわち、オーム抵抗も、同様に、圧力、温度、および媒質化学量論比等の運転パラメータと強く相関する。
− 非常に低い周波数(たとえば1Hz以下)は、オーム抵抗の信頼性の高い測定にとっては不要である。欠点は、測定時間が長すぎて、負荷動特性から引き出される擾乱の影響が極めて大きすぎることである。
式中、システム依存の加重α1,α2は0<α1,α2<1、α1+α2=1であり、C1’およびC2’は出発地である。加重α1,α2は、システム依存であり、その二つの項がトータルな結果に対してより大きな影響を与える初期較正測定によって決定することができる。第2項は、通常、より有意であるため、より強力に加重される。
本発明は、更に、燃料電池スタックの平均セル電圧からのセル電圧最小値の偏移の数値的測定のための方法に関する。この方法は、個別セル電圧測定装置に対する代替として使用される。
Claims (14)
- 直列にスイッチングされる単セルからなる燃料電池スタックの臨界運転状態を測定する方法であって、低周波電流又は電圧信号を前記燃料電池スタックに加え、それによって得られる電圧又は電流信号を測定し、歪率thdを決定する方法において、
インピーダンス測定によって検出される膜抵抗Rmに依存する項と、前記歪率thdに依存する項との加重和を使用して、前記燃料電池スタックの燃料電池の膜のドライアウトに相関する指標THDAdryoutを決定することを特徴とする方法。 - 直列にスイッチングされる単セルからなる燃料電池スタックの臨界運転状態を測定する方法であって、低周波電流又は電圧信号を前記燃料電池スタックに加え、それによって得られる電圧又は電流信号を測定し、歪率thdを決定する方法において、
内部抵抗Riに依存する項と、前記歪率thdに依存する項と、前記低周波信号のインピーダンスRimに依存する項との加重和を使用して、前記燃料電池スタックのアノード及び/又はカソード側における化学量論比的供給不足に相関する指標THDAlow mediaを決定することを特徴とする方法。 - 直列にスイッチングされる単セルからなる燃料電池スタックの臨界運転状態を測定する方法であって、低周波電流又は電圧信号を前記燃料電池スタックに加え、それによって得られる電圧又は電流信号を測定し、歪率thdを決定する方法において、
それぞれ電流および電圧の歪率の線型結合に関連するパラメータthddif0およびthddif1と、更に、前記測定電圧曲線における変動fd(V)とを使用して、前記燃料電池スタックの膜上の許容できない水の堆積と水滴の形成とに相関する指標THDAliquidを決定することを特徴とする方法。 - 少なくとも、カソード側およびアノード側におけるオーム抵抗R1,R2と、アノードおよびカソード側の二重層容量C1,C2と、インダクタンスLmとを考慮した、前記燃料電池スタックの単純化電気等価回路を使用して、更に前記燃料電池スタックの経年変化に相関する指標SoHを決定し、
測定される前記変数R1,R2,C1,C2,Lmの式の設定は、少なくとも3つの測定周波数でのインピーダンス測定から決定され、前記指標SoHを計算するために使用される請求項1〜6のいずれかに記載の方法。 - 3つの測定周波数は、前記単純化等価回路のインピーダンス曲線が前記燃料電池スタックの実際のインピーダンス曲線と実質的に一致する計算のために選択される請求項7又は8に記載の方法。
- 前記燃料電池スタックの前記アノード側の化学量論比的供給不足が、前記指標THDAdryoutによる膜抵抗Rmの上昇と、前記指標THDAlow mediaによる前記参照値からの内部抵抗Riの偏移との複合発生によって決定される請求項1〜3のいずれかに記載の方法。
- 前記燃料電池スタックの前記カソード側の化学量論比的供給不足が、前記指標THDAliqiuidによる歪率thdの上昇と、前記指標THDAlow mediaによる前記参照値からの内部抵抗Riの偏移との複合発生によって決定される請求項1〜5のいずれかに記載の方法。
- 人工ニューラルネットワーク(Artificial Neural Network,ANN)を使用して、前記燃料電池セルの前記平均セル電圧からの最小セル電圧の偏移に相関する指標avg−minを更に決定し、
前記歪率分析THDAから導出される測定量と、与えられた前記電流/電圧信号の実数成分および虚数成分から導出されるインピーダンス値とが前記ネットワークの入力量として使用され、
前記ニューラルネットワークは、内部ネットワークパラメータを測定するための前記単セル電圧測定値からの信号によってトレーニングされる請求項1〜6のいずれかに記載の方法。 - 二重層のフィードフォワード人工ニューラルネットワーク(Feed−Forward Artificial Neural Network,FFANN)を使用して、前記燃料電池スタックの単セルのセル電圧の最小値と相関する指標avg−minをシミュレートし、
前記ニューラルネットワークは、トレーニング関数、好ましくは、レーベンバーグ・マーカート・トレーニング関数、による単セル電圧測定によって検出された測定値に調節される請求項12に記載の方法。 - トレーニングデータの量は、物理モデルからの計算結果によってモジュラー的に拡張される請求項12又は13に記載の方法。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ATA50154/2012A AT512888B1 (de) | 2012-05-03 | 2012-05-03 | Verfahren zur Bestimmung kritischer Betriebszustände an einem Brennstoffzellenstack |
ATA50154/2012 | 2012-05-03 | ||
PCT/EP2013/059172 WO2013164415A1 (de) | 2012-05-03 | 2013-05-02 | Verfahren zur bestimmung kritischer betriebszustände an einem brennstoffzellenstack |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015517714A true JP2015517714A (ja) | 2015-06-22 |
JP6195905B2 JP6195905B2 (ja) | 2017-09-13 |
Family
ID=48430703
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015509443A Expired - Fee Related JP6195905B2 (ja) | 2012-05-03 | 2013-05-02 | 燃料電池スタックの臨界運転状態を測定する方法 |
Country Status (7)
Country | Link |
---|---|
US (3) | US10145900B2 (ja) |
EP (3) | EP2845255B1 (ja) |
JP (1) | JP6195905B2 (ja) |
KR (1) | KR101969741B1 (ja) |
CN (3) | CN106684405B (ja) |
AT (1) | AT512888B1 (ja) |
WO (1) | WO2013164415A1 (ja) |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101592641B1 (ko) * | 2013-12-17 | 2016-02-12 | 현대자동차주식회사 | 연료 전지 스택 진단 방법 |
US10279702B2 (en) * | 2013-12-17 | 2019-05-07 | Hyundai Motor Company | Technique of diagnosing fuel cell stack |
JP6135645B2 (ja) | 2014-11-13 | 2017-05-31 | トヨタ自動車株式会社 | 燃料電池システム |
KR101704224B1 (ko) * | 2015-06-26 | 2017-02-07 | 현대자동차주식회사 | 연료전지 시스템 운전 제어 장치 및 방법 |
EP3133411B1 (de) | 2015-08-18 | 2018-12-19 | AVL List GmbH | Verfahren zum überwachen des betriebszustands von brennstoffzellen |
KR102553031B1 (ko) | 2016-01-14 | 2023-07-06 | 삼성전자주식회사 | 배터리의 상태 추정 장치 및 방법 |
DE102016106735A1 (de) * | 2016-04-12 | 2017-10-12 | Thyssenkrupp Marine Systems Gmbh | Ersatzschaltbasiertes Brennstoffzellen-Prognosemodell |
JP6686920B2 (ja) * | 2017-02-01 | 2020-04-22 | 株式会社Soken | 燃料電池システム |
US10249893B2 (en) * | 2017-04-26 | 2019-04-02 | GM Global Technology Operations LLC | Fuel cell architectures, monitoring systems, and control logic for characterizing fluid flow in fuel cell stacks |
JP6543671B2 (ja) * | 2017-09-29 | 2019-07-10 | 本田技研工業株式会社 | 燃料電池の出力検査方法 |
AT522011A3 (de) | 2018-12-20 | 2021-03-15 | Avl List Gmbh | Betriebsvorrichtung, Brennstoffzellensystem, Kraftfahrzeug und Verfahren zum Betreiben eines Brennstoffzellensystems |
KR102638936B1 (ko) | 2019-08-27 | 2024-02-27 | 삼성전자 주식회사 | 배터리의 상태 파라미터를 결정하는 방법 및 장치 |
DE102019135300A1 (de) * | 2019-12-19 | 2021-06-24 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren zur Diagnose zumindest eines Brennstoffzellenstapels einer Brennstoffzellenvorrichtung, computerlesbares Speichermedium sowie Brennstoffzellendiagnosesystem |
CN111007404B (zh) * | 2019-12-24 | 2023-01-10 | 萱柯氢能科技(北京)有限公司 | 一种基于关键频率点的燃料电池阻抗测量分析系统及方法 |
DE102020106563A1 (de) | 2020-03-11 | 2021-09-16 | Audi Aktiengesellschaft | Verfahren zum Betreiben eines Kraftfahrzeuges mit einer Brennstoffzellenvorrichtung sowie Kraftfahrzeug |
DE102020112916A1 (de) | 2020-05-13 | 2021-11-18 | Audi Aktiengesellschaft | Verfahren zum Betreiben einer Brennstoffzellenvorrichtung, Brennstoffzellenvorrichtung sowie Kraftfahrzeug mit einer solchen |
CN111693880A (zh) * | 2020-07-17 | 2020-09-22 | 北京新研创能科技有限公司 | 一种具备在线内阻检测功能的电堆测试平台、系统及方法 |
DE102020124075A1 (de) | 2020-09-16 | 2022-03-17 | Audi Aktiengesellschaft | Bestimmung des Membranwiderstands einer Brennstoffzelle |
DE102020128268A1 (de) | 2020-10-28 | 2022-04-28 | Audi Aktiengesellschaft | Verfahren zum Betreiben eines Brennstoffzellenstapels |
CN114914491B (zh) * | 2021-02-07 | 2024-03-26 | 广州汽车集团股份有限公司 | 燃料电池电压监测方法、装置及计算机存储介质 |
US11422199B1 (en) * | 2021-06-17 | 2022-08-23 | Hong Kong Applied Science and Technology Research Institute Company Limited | State of health evaluation of retired lithium-ion batteries and battery modules |
DE102021209031A1 (de) | 2021-08-18 | 2023-02-23 | Robert Bosch Gesellschaft mit beschränkter Haftung | Verfahren zur Überwachung einer elektrochemischen Zelleneinheit |
FR3135165B1 (fr) | 2022-04-28 | 2024-04-19 | Commissariat Energie Atomique | Dispositif et procédé de détermination de l’état de santé d’une pile à combustible. |
CN115032553B (zh) * | 2022-05-25 | 2023-09-15 | 上海氢晨新能源科技有限公司 | 一种车载燃料电池在线诊断方法和系统 |
WO2023241780A1 (en) | 2022-06-13 | 2023-12-21 | Volvo Truck Corporation | A computer-implemented method for controlling operation of at least two fuel cell systems |
DE102022208221A1 (de) | 2022-08-08 | 2024-02-08 | Robert Bosch Gesellschaft mit beschränkter Haftung | Verfahren zum Ermitteln eines elektrischen Widerstands zumindest einer Brennstoffzelle, Brennstoffzellensystem sowie Fahrzeug |
CN115411305B (zh) * | 2022-09-19 | 2023-05-16 | 中国汽车工程研究院股份有限公司 | 一种燃料电池启动过程的等效电路模型 |
CN115221816B (zh) * | 2022-09-19 | 2023-03-03 | 国网浙江省电力有限公司宁波供电公司 | 确定燃料电池水管理状态操作条件组合的方法和装置 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001076752A (ja) * | 1999-07-06 | 2001-03-23 | Matsushita Electric Ind Co Ltd | 電池素子の検査装置及び検査方法 |
JP2006024437A (ja) * | 2004-07-07 | 2006-01-26 | Matsushita Electric Ind Co Ltd | 燃料電池システムの寿命推定法、及び燃料電池システムの運転方法 |
JP2006049259A (ja) * | 2004-07-09 | 2006-02-16 | Toyota Motor Corp | 燃料電池システム |
US20060078788A1 (en) * | 2004-10-07 | 2006-04-13 | Erich Ramschak | Method for monitoring the operational state of a fuel cell stack |
JP2006252864A (ja) * | 2005-03-09 | 2006-09-21 | Toyota Motor Corp | 燃料電池システム |
JP2007048628A (ja) * | 2005-08-10 | 2007-02-22 | Toyota Motor Corp | 燃料電池電源制御装置、燃料電池システム及び燃料電池電源制御方法 |
JP2008282675A (ja) * | 2007-05-10 | 2008-11-20 | Toyota Motor Corp | 燃料電池システム |
JP2011014284A (ja) * | 2009-06-30 | 2011-01-20 | Nissan Motor Co Ltd | 燃料電池内部状態検出装置 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6456988B1 (en) * | 1997-03-12 | 2002-09-24 | U.S. Nanocorp Inc. | Method for determining state-of-health using an intelligent system |
DE10036572A1 (de) * | 2000-07-27 | 2002-02-14 | Bosch Gmbh Robert | Brennstoffzellenanlage |
WO2002027814A2 (en) * | 2000-09-28 | 2002-04-04 | Proton Energy Systems, Inc. | Regenerative electrochemical cell system and method for use thereof |
US6696190B2 (en) * | 2001-06-29 | 2004-02-24 | Plug Power Inc. | Fuel cell system and method |
US20030184307A1 (en) * | 2002-02-19 | 2003-10-02 | Kozlowski James D. | Model-based predictive diagnostic tool for primary and secondary batteries |
US20070259256A1 (en) * | 2004-11-29 | 2007-11-08 | Jean-Marc Le Canut | Systems and methods for detecting and indicating fault conditions in electrochemical cells |
JP4807000B2 (ja) * | 2005-08-09 | 2011-11-02 | トヨタ自動車株式会社 | 性能劣化判定装置及びその方法 |
US8111037B2 (en) * | 2008-06-27 | 2012-02-07 | GM Global Technology Operations LLC | Method for battery state-of-health monitoring using battery voltage during vehicle starting |
FI20085976L (fi) * | 2008-10-17 | 2010-04-18 | Waertsilae Finland Oy | Polttokennopinoja käsittävä polttokennojärjestely |
FR2942545B1 (fr) * | 2009-02-24 | 2012-08-03 | Helion | Procede de determination d'un etat de sante d'un dispositif electrochimique. |
US8206860B2 (en) * | 2009-10-09 | 2012-06-26 | GM Global Technology Operations LLC | Method to perform adaptive voltage suppression of a fuel cell stack based on stack parameters |
US20120064424A1 (en) * | 2010-09-15 | 2012-03-15 | Gm Global Technology Operations, Inc. | Low cost method and signal processing algorithm to rapidly detect abnormal operation of an individual fuel cell in a plurality of series connected fuel cells |
CN201828651U (zh) * | 2010-10-26 | 2011-05-11 | 上海天晶电力科技发展有限公司 | 变电站直流系统数字化全功能状态监测及安全评估装置 |
KR101090705B1 (ko) | 2010-11-25 | 2011-12-08 | 강남대학교 산학협력단 | 연료전지 스택의 상태 진단 방법 |
-
2012
- 2012-05-03 AT ATA50154/2012A patent/AT512888B1/de not_active IP Right Cessation
-
2013
- 2013-05-02 WO PCT/EP2013/059172 patent/WO2013164415A1/de active Application Filing
- 2013-05-02 EP EP13722342.6A patent/EP2845255B1/de not_active Not-in-force
- 2013-05-02 EP EP17193144.7A patent/EP3285321B1/de not_active Not-in-force
- 2013-05-02 EP EP17193193.4A patent/EP3285322B1/de not_active Not-in-force
- 2013-05-02 JP JP2015509443A patent/JP6195905B2/ja not_active Expired - Fee Related
- 2013-05-02 CN CN201710063565.8A patent/CN106684405B/zh not_active Expired - Fee Related
- 2013-05-02 US US14/398,038 patent/US10145900B2/en not_active Expired - Fee Related
- 2013-05-02 KR KR1020147033872A patent/KR101969741B1/ko active IP Right Grant
- 2013-05-02 CN CN201380032641.9A patent/CN104396073B/zh not_active Expired - Fee Related
- 2013-05-02 CN CN201710063564.3A patent/CN107064807B/zh not_active Expired - Fee Related
-
2018
- 2018-10-18 US US16/163,852 patent/US10416240B2/en not_active Expired - Fee Related
- 2018-10-18 US US16/164,375 patent/US10345389B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001076752A (ja) * | 1999-07-06 | 2001-03-23 | Matsushita Electric Ind Co Ltd | 電池素子の検査装置及び検査方法 |
JP2006024437A (ja) * | 2004-07-07 | 2006-01-26 | Matsushita Electric Ind Co Ltd | 燃料電池システムの寿命推定法、及び燃料電池システムの運転方法 |
JP2006049259A (ja) * | 2004-07-09 | 2006-02-16 | Toyota Motor Corp | 燃料電池システム |
US20060078788A1 (en) * | 2004-10-07 | 2006-04-13 | Erich Ramschak | Method for monitoring the operational state of a fuel cell stack |
JP2006252864A (ja) * | 2005-03-09 | 2006-09-21 | Toyota Motor Corp | 燃料電池システム |
JP2007048628A (ja) * | 2005-08-10 | 2007-02-22 | Toyota Motor Corp | 燃料電池電源制御装置、燃料電池システム及び燃料電池電源制御方法 |
JP2008282675A (ja) * | 2007-05-10 | 2008-11-20 | Toyota Motor Corp | 燃料電池システム |
JP2011014284A (ja) * | 2009-06-30 | 2011-01-20 | Nissan Motor Co Ltd | 燃料電池内部状態検出装置 |
Also Published As
Publication number | Publication date |
---|---|
AT512888B1 (de) | 2014-11-15 |
EP2845255A1 (de) | 2015-03-11 |
CN106684405A (zh) | 2017-05-17 |
US20150153418A1 (en) | 2015-06-04 |
CN106684405B (zh) | 2019-06-18 |
US20190049521A1 (en) | 2019-02-14 |
US10416240B2 (en) | 2019-09-17 |
EP3285321A1 (de) | 2018-02-21 |
KR101969741B1 (ko) | 2019-04-17 |
CN104396073B (zh) | 2017-03-15 |
CN107064807A (zh) | 2017-08-18 |
CN104396073A (zh) | 2015-03-04 |
CN107064807B (zh) | 2019-06-21 |
US20190049522A1 (en) | 2019-02-14 |
US10145900B2 (en) | 2018-12-04 |
KR20150013224A (ko) | 2015-02-04 |
JP6195905B2 (ja) | 2017-09-13 |
AT512888A1 (de) | 2013-11-15 |
EP2845255B1 (de) | 2017-10-04 |
US10345389B2 (en) | 2019-07-09 |
EP3285321B1 (de) | 2019-03-27 |
WO2013164415A1 (de) | 2013-11-07 |
EP3285322A1 (de) | 2018-02-21 |
EP3285322B1 (de) | 2019-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6195905B2 (ja) | 燃料電池スタックの臨界運転状態を測定する方法 | |
US10581099B2 (en) | Use of neural network and EIS signal analysis to quantify H2 crossover in-situ in operating PEM cells | |
Fouquet et al. | Model based PEM fuel cell state-of-health monitoring via ac impedance measurements | |
Yuan et al. | Quantitative analysis of internal polarization dynamics for polymer electrolyte membrane fuel cell by distribution of relaxation times of impedance | |
Liu et al. | Prognostics of proton exchange membrane fuel cells using a model-based method | |
US20190393526A1 (en) | Closed loop control for fuel cell water management | |
Detti et al. | Classification based method using fast Fourier transform (FFT) and total harmonic distortion (THD) dedicated to proton exchange membrane fuel cell (PEMFC) diagnosis | |
Akimoto et al. | Simple on-board fault-detection method for proton exchange membrane fuel cell stacks using by semi-empirical curve fitting | |
KR20190077384A (ko) | 기술 시스템을 진단하기 위한 방법 | |
CN115425267A (zh) | 燃料电池质子交换膜故障诊断方法 | |
Mänken et al. | Impact of Electrochemical Impedance Spectroscopy Dataset Curation on Solid Oxide Cell Degradation Assessment | |
Petrone et al. | Data-driven multi-fault approach for H2/O2 PEM Fuel Cell diagnosis | |
Yahia et al. | The identification of randles impedance model parameters of a PEM fuel cell by the least square method | |
Ferrero et al. | Comparison between electrical and pressure measurements to detect PEM fuel cell flooding | |
Ma et al. | Development of online fault diagnosis method for pem fuel cell based on impedance at optimal frequency | |
Zhou et al. | Proton Exchange Membrane Fuel Cell Fault Rapid Diagnosis Method Based on Electrochemical Impedance Spectroscopy and Fuzzy C-Means Algorithm | |
Zhang et al. | A Coursework Report by Harsh Mahendra Zaveri–(F036149) GREY-BOX MODELLING FOR PEM FUEL CELL MONITORING | |
Mao et al. | Investigation of an indicator for on-line diagnosis of polymer electrolyte membrane (PEM) fuel cell flooding using model based techniques | |
O'Rourke | Real-time estimation, diagnostics, and optimization for fuel cell systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160425 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170316 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170404 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170630 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170718 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170816 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6195905 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |