JP2015514420A - 複製可能な水疱性口内炎ウイルス - Google Patents

複製可能な水疱性口内炎ウイルス Download PDF

Info

Publication number
JP2015514420A
JP2015514420A JP2015506998A JP2015506998A JP2015514420A JP 2015514420 A JP2015514420 A JP 2015514420A JP 2015506998 A JP2015506998 A JP 2015506998A JP 2015506998 A JP2015506998 A JP 2015506998A JP 2015514420 A JP2015514420 A JP 2015514420A
Authority
JP
Japan
Prior art keywords
polypeptide
nucleic acid
vsv
template
acid sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015506998A
Other languages
English (en)
Inventor
カ−ホワイエ ペン
カ−ホワイエ ペン
スティーブン ジェイムズ ラッセル
スティーブン ジェイムズ ラッセル
カミロ アヤラ ブレトン
カミロ アヤラ ブレトン
Original Assignee
メイヨ・ファウンデーション・フォー・メディカル・エデュケーション・アンド・リサーチ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by メイヨ・ファウンデーション・フォー・メディカル・エデュケーション・アンド・リサーチ filed Critical メイヨ・ファウンデーション・フォー・メディカル・エデュケーション・アンド・リサーチ
Publication of JP2015514420A publication Critical patent/JP2015514420A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/76Viruses; Subviral particles; Bacteriophages
    • A61K35/766Rhabdovirus, e.g. vesicular stomatitis virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/18011Paramyxoviridae
    • C12N2760/18411Morbillivirus, e.g. Measles virus, canine distemper
    • C12N2760/18422New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/20011Rhabdoviridae
    • C12N2760/20211Vesiculovirus, e.g. vesicular stomatitis Indiana virus
    • C12N2760/20221Viruses as such, e.g. new isolates, mutants or their genomic sequences
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/20011Rhabdoviridae
    • C12N2760/20211Vesiculovirus, e.g. vesicular stomatitis Indiana virus
    • C12N2760/20222New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/20011Rhabdoviridae
    • C12N2760/20211Vesiculovirus, e.g. vesicular stomatitis Indiana virus
    • C12N2760/20232Use of virus as therapeutic agent, other than vaccine, e.g. as cytolytic agent
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/20011Rhabdoviridae
    • C12N2760/20211Vesiculovirus, e.g. vesicular stomatitis Indiana virus
    • C12N2760/20271Demonstrated in vivo effect
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2810/00Vectors comprising a targeting moiety
    • C12N2810/50Vectors comprising as targeting moiety peptide derived from defined protein
    • C12N2810/60Vectors comprising as targeting moiety peptide derived from defined protein from viruses
    • C12N2810/6072Vectors comprising as targeting moiety peptide derived from defined protein from viruses negative strand RNA viruses
    • C12N2810/6081Vectors comprising as targeting moiety peptide derived from defined protein from viruses negative strand RNA viruses rhabdoviridae, e.g. VSV
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2810/00Vectors comprising a targeting moiety
    • C12N2810/50Vectors comprising as targeting moiety peptide derived from defined protein
    • C12N2810/80Vectors comprising as targeting moiety peptide derived from defined protein from vertebrates
    • C12N2810/85Vectors comprising as targeting moiety peptide derived from defined protein from vertebrates mammalian
    • C12N2810/859Vectors comprising as targeting moiety peptide derived from defined protein from vertebrates mammalian from immunoglobulins

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Virology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本文書は、水疱性口内炎ウイルスに関する方法および材料を提供する。例えば、複製可能な水疱性口内炎ウイルス、複製可能な水疱性口内炎ウイルスをコードする核酸分子、複製可能な水疱性口内炎ウイルスを作製する方法、および、癌または感染性疾患を処置するために複製可能な水疱性口内炎ウイルスを使用する方法が、提供される。

Description

関連出願の相互参照
本出願は、2012年4月18日に出願された米国特許仮出願第61/635,164号の恩典を主張する。先行出願の開示は、本出願の開示の一部とみなされる(かつ参照により本出願の開示に組み入れられる)。
連邦政府支援研究についての表明
本発明は、National Institutes of Healthにより授与された助成金番号CA129193の下、政府の支持でなされた。政府は、本発明においてある特定の権利を有する。
1.技術分野
本文書は、複製可能な水疱性口内炎ウイルスを作製する工程および使用する工程に関与する、方法および材料に関する。例えば、本文書は、複製可能な水疱性口内炎ウイルス、核酸分子、複製可能な水疱性口内炎ウイルスを作製する方法、および、癌または感染性疾患を処置するために複製可能な水疱性口内炎ウイルスを使用する方法に関する。
2.背景情報
水疱性口内炎ウイルス(VSV)は、ラブドウイルス科(Rhabdoviridae)のメンバーである。VSVのゲノムは、5種の主要なポリペプチド:ヌクレオキャプシド(N)ポリペプチド、リンタンパク質(P)ポリペプチド、マトリクス(M)ポリペプチド、糖タンパク質(G)ポリペプチド、およびウイルスポリメラーゼ(L)ポリペプチドをコードするマイナスセンスRNAの単一分子である。
概要
本文書は、複製可能な水疱性口内炎ウイルスに関する方法および材料を提供する。例えば、本文書は、複製可能な水疱性口内炎ウイルス、複製可能な水疱性口内炎ウイルスをコードする核酸分子、複製可能な水疱性口内炎ウイルスを作製する方法、および、癌またはHIVなどの感染性疾患を処置するために複製可能な水疱性口内炎ウイルスを使用する方法を提供する。
本明細書において記載されるように、水疱性口内炎ウイルスは、VSV Nポリペプチド、VSV Pポリペプチド、VSV Mポリペプチド、パラミクソウイルスFポリペプチド(例えば、麻疹ウイルスFポリペプチドなどのモルビリウイルスFポリペプチド)、パラミクソウイルスHポリペプチド(例えば、麻疹ウイルスHポリペプチドなどのモルビリウイルスHポリペプチド)、およびVSV Lポリペプチドをコードする核酸分子を有するように、設計されることができる。そのような核酸分子は、機能的なVSV Gポリペプチドを欠いていてよく、かつ/または、完全長VSV Gポリペプチドをコードする核酸配列を欠いていてよい。例えば、本明細書において提供される水疱性口内炎ウイルスは、VSV Nポリペプチド、VSV Pポリペプチド、VSV Mポリペプチド、パラミクソウイルスFポリペプチド(例えば、麻疹ウイルスFポリペプチドなどのモルビリウイルスFポリペプチド)、パラミクソウイルスHポリペプチド(例えば、麻疹ウイルスHポリペプチドなどのモルビリウイルスHポリペプチド)、およびVSV Lポリペプチドをコードしかつ機能的なVSV Gポリペプチドをコードする能力を欠いている核酸分子を有するように、設計されることができる。いくつかの場合に、本明細書において提供される水疱性口内炎ウイルスは、VSV Nポリペプチド、VSV Pポリペプチド、VSV Mポリペプチド、パラミクソウイルスFポリペプチド(例えば、麻疹ウイルスFポリペプチドなどのモルビリウイルスFポリペプチド)、パラミクソウイルスHポリペプチド(例えば、麻疹ウイルスHポリペプチドなどのモルビリウイルスHポリペプチド)、およびVSV Lポリペプチドをコードする核酸分子を有しかつここでパラミクソウイルスFポリペプチドおよびパラミクソウイルスHポリペプチドをコードする核酸配列が、完全長VSV Gポリペプチドをコードする核酸配列が野生型水疱性口内炎ウイルスにおいて通常配置されている位置に配置されているように、設計されることができる。いくつかの場合に、本明細書において提供される水疱性口内炎ウイルスは、VSV Gポリペプチドをコードする核酸配列が、パラミクソウイルスFポリペプチド(例えば、麻疹ウイルスFポリペプチドなどのモルビリウイルスFポリペプチド)およびパラミクソウイルスHポリペプチド(例えば、麻疹ウイルスHポリペプチドなどのモルビリウイルスHポリペプチド)をコードする核酸で置換されている核酸分子を有するように、設計されることができる。
本明細書において記載されるように、水疱性口内炎ウイルス/麻疹ウイルスハイブリッドは、麻疹ウイルスの腫瘍選択性と野生型または親の水疱性口内炎ウイルスで観察されるような迅速な複製とを有するように設計されることができる。いくつかの場合に、本明細書において提供される水疱性口内炎ウイルス/麻疹ウイルスハイブリッドは、あらかじめ選択された親和性を有するように設計されることができる。例えば、CD46、SLAM、および/またはネクチン-4についてノックアウトされた特異性を有するパラミクソウイルス(例えば麻疹ウイルス)Fおよび/またはHポリペプチドを、使用することができる。そのような場合に、一本鎖抗体(scFv)またはポリペプチドリガンドを、例えば、パラミクソウイルス(例えば麻疹ウイルス)HポリペプチドのC末端に付着させることができる。そのような場合に、scFvまたはポリペプチドリガンドは、水疱性口内炎ウイルス/麻疹ウイルスハイブリッドの親和性を決定することができる。水疱性口内炎ウイルス/麻疹ウイルスハイブリッドを細胞受容体(例えば腫瘍関連細胞受容体)に方向づけるために使用することができるscFvの例は、非限定的に、抗EGFR、抗αFR、および抗PSMA scFvを含む。水疱性口内炎/麻疹ウイルスハイブリッドを方向づけるために使用することができるポリペプチドリガンドの例は、非限定的に、ウロキナーゼプラスミノーゲンアクチベーターuPAポリペプチド、IL-13またはIL-6などのサイトカイン、一本鎖T細胞受容体(scTCR)、エキスタチンポリペプチド、およびインテグリン結合ポリペプチドを含む。
いくつかの場合に、本明細書において提供される水疱性口内炎ウイルス/麻疹ウイルスハイブリッドは、インターフェロン(IFN)ポリペプチド(例えばヒトIFN-βポリペプチド)、ヨウ化ナトリウム共輸送体(NIS)ポリペプチド(例えばヒトNISポリペプチド)、蛍光ポリペプチド(例えばGFPポリペプチド)、任意の適切な治療用導入遺伝子(例えばHSV-TKもしくはシトシンデアミナーゼ)、宿主免疫に拮抗するポリペプチド(例えば、インフルエンザNS1、HSVγ34.5、もしくはSOCS1)、または腫瘍抗原(例えば癌ワクチン成分)をコードする配列を含む核酸分子を有することができる。IFNポリペプチドをコードする核酸は、VSV Mポリペプチドをコードする核酸とVSV Lポリペプチドをコードする核酸との間に位置づけることができる。そのような位置により、ウイルスは、癌細胞における効率的なウイルス複製を妨害することなく、非癌性組織において抗ウイルス自然免疫応答を活性化させ、従って潜在的なウイルス毒性を軽減するために有効である量のIFNポリペプチドを発現することが可能になり得る。NISポリペプチドをコードする核酸は、VSV MポリペプチドとVSV Lポリペプチドをコードする核酸の間に位置づけることができる。そのような位置により、ウイルスは、(a)感染した細胞におけるヨウ化物の選択的蓄積を可能にし、それにより放射性同位元素を用いたウイルス分布の画像化および感染癌細胞を標的とした放射線療法の両方を可能にするために有効な量でありかつ(b)感染した細胞にとって毒性であるほど多くはない量である、NISポリペプチドを発現することが可能になり得る。水疱性口内炎ウイルスのゲノム内で、IFNポリヌクレオチドをコードする核酸を、VSV Mポリペプチドをコードする核酸とVSV Lポリペプチドをコードする核酸との間に位置づけること、および、NISポリペプチドをコードする核酸を、VSV MポリペプチドとVSV Lポリペプチドをコードする核酸の間に位置づけることによって、生存可能であり、複製および拡散する能力を有し、適切なレベルの機能的なIFNポリペプチドを発現し、かつ、画像化および放射線ウイルス療法の両方のために放射性ヨウ素を吸収するのに適切なレベルの機能的なNISポリペプチドを発現する、水疱性口内炎ウイルスを得ることができる。
概して、本文書の1つの局面は、RNA分子を含む複製可能な水疱性口内炎ウイルスを特徴とする。RNA分子は、VSV Nポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、VSV Pポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、VSV Mポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、パラミクソウイルスFポリペプチド(例えば、麻疹ウイルスFポリペプチドなどのモルビリウイルスFポリペプチド)をコードするプラスセンス転写物のための鋳型である核酸配列、パラミクソウイルスHポリペプチド(例えば、麻疹ウイルスHポリペプチドなどのモルビリウイルスHポリペプチド)をコードするプラスセンス転写物のための鋳型である核酸配列、およびVSV Lポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列を含むかまたはそれから本質的になり、該RNA分子は、機能的なVSV Gポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列を欠いている。パラミクソウイルスHポリペプチドは、野生型麻疹ウイルスHポリペプチドに対してY481AおよびR533Aのアミノ酸置換を含む、麻疹ウイルスHポリペプチドであることができる。パラミクソウイルスHポリペプチドは、一本鎖抗体のアミノ酸配列を含むことができる。一本鎖抗体は、EGFR、αFR、またはPSMAに対する一本鎖抗体であることができる。RNA分子ウイルスは、NISポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列を含むことができる。
別の局面において、本文書は、RNA分子を含む複製可能な水疱性口内炎ウイルスを含むかまたはそれから本質的になる組成物を特徴とし、該RNA分子は、VSV Nポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、VSV Pポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、VSV Mポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、パラミクソウイルスFポリペプチド(例えば、麻疹ウイルスFポリペプチドなどのモルビリウイルスFポリペプチド)をコードするプラスセンス転写物のための鋳型である核酸配列、パラミクソウイルスHポリペプチド(例えば、麻疹ウイルスHポリペプチドなどのモルビリウイルスHポリペプチド)をコードするプラスセンス転写物のための鋳型である核酸配列、およびVSV Lポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列を含み、かつ、機能的なVSV Gポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列を欠いている。パラミクソウイルスHポリペプチドは、野生型麻疹ウイルスHポリペプチドに対してY481AおよびR533Aのアミノ酸置換を含む麻疹ウイルスHポリペプチドであることができる。パラミクソウイルスHポリペプチドは、一本鎖抗体のアミノ酸配列を含むことができる。一本鎖抗体は、EGFR、αFR、またはPSMAに対する一本鎖抗体であることができる。RNA分子ウイルスは、NISポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列を含むことができる。
別の局面において、本文書は、VSV Nポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、VSV Pポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、VSV Mポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、パラミクソウイルスFポリペプチド(例えば、麻疹ウイルスFポリペプチドなどのモルビリウイルスFポリペプチド)をコードするプラスセンス転写物のための鋳型である核酸配列、パラミクソウイルスHポリペプチド(例えば、麻疹ウイルスHポリペプチドなどのモルビリウイルスHポリペプチド)をコードするプラスセンス転写物のための鋳型である核酸配列、およびVSV Lポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列を含むかまたはそれから本質的になる核酸鎖を含み、該核酸鎖が、機能的なVSV Gポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列を欠いている、核酸分子を特徴とする。核酸鎖は、NISポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列を含むことができる。NISポリペプチドは、ヒトNISポリペプチドであることができる。
別の局面において、本文書は、癌を処置する方法を特徴とする。方法は、複製可能な水疱性口内炎ウイルスを含む組成物を、癌細胞を含む哺乳動物に投与する工程を含むかまたはそれから本質的になり、該水疱性口内炎ウイルスは、VSV Nポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、VSV Pポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、VSV Mポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、パラミクソウイルスFポリペプチド(例えば、麻疹ウイルスFポリペプチドなどのモルビリウイルスFポリペプチド)をコードするプラスセンス転写物のための鋳型である核酸配列、パラミクソウイルスHポリペプチド(例えば、麻疹ウイルスHポリペプチドなどのモルビリウイルスHポリペプチド)をコードするプラスセンス転写物のための鋳型である核酸配列、およびVSV Lポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列を含むRNA分子を含み、該RNA分子は、機能的なVSV Gポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列を欠いており、該組成物の該哺乳動物への投与は、該水疱性口内炎ウイルスが該癌細胞に感染して感染癌細胞を形成する条件下であり、かつ、該哺乳動物内の該癌細胞の数は、該投与後に低減する。哺乳動物は、ヒトであることができる。RNA分子は、NISポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列を含むことができる。NISポリペプチドは、ヒトNISポリペプチドであることができる。
別の局面において、本文書は、哺乳動物において腫瘍退縮を誘導する方法を特徴とする。方法は、複製可能な水疱性口内炎ウイルスを含む組成物を、腫瘍を含む哺乳動物に投与する工程を含むかまたはそれから本質的になり、該水疱性口内炎ウイルスは、VSV Nポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、VSV Pポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、VSV Mポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、パラミクソウイルスFポリペプチド(例えば、麻疹ウイルスFポリペプチドなどのモルビリウイルスFポリペプチド)をコードするプラスセンス転写物のための鋳型である核酸配列、パラミクソウイルスHポリペプチド(例えば、麻疹ウイルスHポリペプチドなどのモルビリウイルスHポリペプチド)をコードするプラスセンス転写物のための鋳型である核酸配列、およびVSV Lポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列を含むRNA分子を含み、該RNA分子は、機能的なVSV Gポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列を欠いており、該組成物の該哺乳動物への投与は、該水疱性口内炎ウイルスが該腫瘍の腫瘍細胞に感染して感染腫瘍細胞を形成する条件下である。哺乳動物は、ヒトであることができる。RNA分子は、NISポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列を含むことができる。NISポリペプチドは、ヒトNISポリペプチドであることができる。
別の局面において、本文書は、複製可能な水疱性口内炎ウイルスを細胞からレスキューする(rescuing)方法を特徴とし、該水疱性口内炎ウイルスは、VSV Nポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、VSV Pポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、VSV Mポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、パラミクソウイルスFポリペプチド(例えば、麻疹ウイルスFポリペプチドなどのモルビリウイルスFポリペプチド)をコードするプラスセンス転写物のための鋳型である核酸配列、パラミクソウイルスHポリペプチド(例えば、麻疹ウイルスHポリペプチドなどのモルビリウイルスHポリペプチド)をコードするプラスセンス転写物のための鋳型である核酸配列、およびVSV Lポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列を含むRNA分子を含み、該RNA分子は、機能的なVSV Gポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列を欠いている。方法は、(a)RNA分子をコードする核酸を、複製可能な水疱性口内炎ウイルスが産生される条件下で細胞中に挿入する工程、および(b)複製可能な水疱性口内炎ウイルスを採取する工程、を含む。
別の方法で定義されない限り、本明細書において使用されるすべての技術用語および科学用語は、本発明が属する分野における当業者により一般的に理解されるものと同一の意味を有する。本明細書において記載されるものと同様または同等の方法および材料を、本発明を実施するために使用することができるが、適当な方法および材料が、以下に記載される。本明細書において言及されるすべての刊行物、特許出願、特許、および他の参照文献は、全体として参照により組み入れられる。矛盾する場合は、定義を含み本明細書が制御する。加えて、材料、方法、および実施例は、例証となるだけであり、限定するようには意図されない。
本発明の1つまたは複数の態様の詳細が、添付の図面および以下の説明に示される。本発明の他の特徴、対象、および利点は、説明および添付の図面から、ならびに添付の特許請求の範囲から明らかであろう。
(A)MVまたはVSV糖タンパク質でVSVΔGを偽型化するためのプロトコルの略図。回収された上清は、標的細胞に感染してウイルスタンパク質を発現することができるが、ウイルスゲノムからのVSV-G遺伝子の欠失のためにウイルス子孫を産生することができない、VSVΔG-FHまたはVSVΔG-Gベクターを含有する。(B)親のMV-HおよびFポリペプチドを有するか、または切断された細胞質尾部(MV-HΔ24またはMV-FΔ30)を有するMV F/H糖タンパク質で偽型化されたVSVの力価。ウイルス力価は、ベロ-αHis細胞上で測定した。結果は、2回の実験からの代表的なデータを示す。 再ターゲティングVSVベクターの力価。VSVを、VSV-G、MV-F単独、または、scFvを有するおよび有さないMV-FとMV-Hの組み合わせで偽型化し、力価をベロ-αHis細胞上で測定した。結果は、4回の独立した実験の平均を示す。 VSV偽型の免疫化学解析。ウイルス上清を精製し、ポリペプチドをSDS-PAGEにより分画した。MVおよびVSVポリペプチドを、抗MVまたは抗VSVポリクローナル抗体で検出した。 受容体陽性細胞に優先的に形質導入された再ターゲティングVSV偽型。(A)再ターゲティングVSV偽型(MOI 3.0)による形質導入後24時間の、SKOV3.ip.1、KAS 6/1、PC3、およびPC3-PSMA細胞の写真。GFPシグナルを、落射蛍光顕微鏡下で観察した。(B)感染(MOI 0.1)後24時間の、VSVで形質導入されたGFP発現細胞の数の定量化。データは、3回の独立した実験の平均を示す。 ヒト神経細胞は、αFRまたはαPSMA再ターゲティングVSVΔG偽型(MOI 1.0)により形質導入されなかった。落射蛍光顕微鏡下で形質導入後48時間に撮られた、GFP発現細胞の代表的な写真(100×倍率)を示す。 再ターゲティングVSV偽型の特異性は、インビボで保持されていた。皮下のSKOV3.ip.1、KAS 6/1、PC3、またはPC3-PSMA腫瘍に、一用量の106再ターゲティングVSVベクターを腫瘍内注射した。腫瘍を48時間後に採取し、GFPシグナルを、蛍光顕微鏡を用いて検出した。代表的な画像を示す(100×倍率)。 水疱性口内炎ウイルス/麻疹ウイルスハイブリッドの、予想されるゲノム配置の概略図である。 CHO細胞に、MV、複製可能なVSV-FH、またはVSVmIFNを、MOI=1で感染させた。感染後72時間の細胞を固定し、クリスタルバイオレットアッセイを用いて染色した。 Kas 6/1腫瘍を、SCIDマウスの右側腹部に皮下移植した。腫瘍が0.5 cmの容積に達した際に、MV-NISまたは複製可能なVSV-FHを、示された用量で静脈内注射した。腫瘍容積を、移植後の様々な日に測定した。 図10A。VSVの完全長の感染性cDNAクローン、ならびにそれぞれ位置4および位置5でのMV-FおよびMV-HによるGタンパク質の置換の略図。図10B。VSV-FHゲノム中への遺伝子のPCRクローニングのために、FおよびHを隣接させるように使用されるプライマー。 VSV-FHハイブリッドウイルスの特徴。示された抗体を用いた精製ビリオンの免疫ブロット。 VSV-FHハイブリッドウイルスの特徴。精製ビリオンの透過型電子顕微鏡検査。矢印は、拡大された領域を示す(下記に示す)。バー=100 nm。 VSV-FHハイブリッドウイルスの特徴。VSV-FHは、ベロ細胞上で融合性である。細胞を、感染後の示された時点に、クリスタルバイオレットで染色し、写真撮影した。 VSV-FHハイブリッドウイルスの特徴。VSV-FHによる受容体使用の特異性。CHO細胞に各ウイルス(MOI 0.1)を感染させ、感染後3日目にクリスタルバイオレットで染色した。 VSV-FHおよび親ウイルスのウイルス複製および細胞変性効果。(a)ベロ細胞上での経時的なウイルス子孫の産生。細胞および上清を示された時点に採取し、感染性粒子の量をTCID50滴定により測定した(平均+SEM、n=3)。(b)様々な感染多重度(MOI)での感染後3日目の、および(c)示されたMOIでの様々な感染後時点の、ウイルス感染後のベロ細胞に対する細胞変性効果。クリスタルバイオレット染色された細胞の代表的な写真を示す。 ヒト細胞のVSV-FH感染。感染後3日目の、感染した結腸直腸(LoVo)、頭頸部(SW579)、卵巣癌細胞(SKOV3.ip1)、および多発性骨髄腫(KAS 6/1)の生存率。バーは、3回の実験の平均を表す(平均±SEM)。 ヒト細胞のVSV-FH感染。ウイルス感染後3日目の、多発性骨髄腫細胞株の群の生存率。バーは、3回の実験の平均を表す(平均±SEM)。 ヒト細胞のVSV-FH感染。多発性骨髄腫患者の骨髄に由来する、CD138形質細胞(骨髄腫)およびCD138非形質細胞に対するVSV-FHの特異性。2回の反復からの代表的な例を示す。 CD46トランスジェニック麻疹感受性マウスにおけるウイルスの神経毒性研究。(a)107 TCID50のVSV-FH、VSV-M51-NIS、およびVSV-GFPを静脈内に与えられたマウスの生存曲線。神経毒性症候が観察された時点で、マウスを安楽死させた。(b)実験の開始時のベースラインからの体重変化のパーセント。マウスを、処置後の示された日に秤量した。(c)ウイルス後30日目の、処置されたマウスの血清における抗VSVまたは抗MV抗体。力価を、MVまたはVSV特異的ELISAアッセイにより、およびプラーク低減中和PRNアッセイにより測定した。 静脈内送達後の、(a, b)皮下のおよび(c)全身のヒト多発性骨髄腫KAS 6/1腫瘍に対するウイルスの抗腫瘍活性の比較研究。(a)皮下腫瘍の容積を測定し、対数目盛上にプロットした。エラーバーは、SEMを表す。(b)皮下のまたは(c)全身の骨髄腫を有するマウスの生存曲線。(c)における矢印は、マウスが処置された時点の移植後の日数を示す。処置群あたりのマウスの数およびウイルス用量を、括弧に示す。 皮下KAS 6/1腫瘍におけるウイルス複製および拡散の評定。各ウイルスの静脈内送達後3および6日目の、処置された腫瘍における(a)抗VSVまたは抗MVタンパク質についての免疫組織化学染色および(b)ウイルス力価。3個の異なる腫瘍からの個別のTCID50計算値を示す。(c)VSV(m51=VSV-M51、FH=VSV-FH)が感染した骨髄腫細胞株によるインターフェロンα(IFNα)またはβ(IFNβ)産生の解析(平均±SEM、n=2)。
詳細な説明
本文書は、水疱性口内炎ウイルスに関する方法および材料を提供する。例えば、本文書は、複製可能な水疱性口内炎ウイルス、複製可能な水疱性口内炎ウイルスをコードする核酸分子、複製可能な水疱性口内炎ウイルスを作製する方法、および、癌または感染性疾患を処置するために複製可能な水疱性口内炎ウイルスを使用する方法を提供する。
本明細書において記載されるように、水疱性口内炎ウイルスは、VSV Nポリペプチド、VSV Pポリペプチド、VSV Mポリペプチド、パラミクソウイルス(例えば麻疹ウイルス)Fポリペプチド、パラミクソウイルス(例えば麻疹ウイルス)Hポリペプチド、およびVSV Lポリペプチドをコードし、かつ機能的なVSV Gポリペプチドをコードしない核酸分子を有するように、設計されることができる。水疱性口内炎ウイルスについて本明細書において記載される配列は、ウイルスゲノムのプラスセンスcDNAをコードするプラスミド中に組み込まれ、水疱性口内炎ウイルスのマイナスセンスゲノムの生成を可能にすることが、認識されるであろう。従って、VSVポリペプチドをコードする核酸配列は、例えば、そのポリペプチドを(例えば直接翻訳を介して)コードするプラスセンス転写物のための鋳型であるRNA配列を指し得ることが、認識されるであろう。
パラミクソウイルス(例えば麻疹ウイルス)Fポリペプチドおよびパラミクソウイルス(例えば麻疹ウイルス)Hポリペプチドをコードする核酸を、VSVゲノム内の任意の場所に位置づけることができる。いくつかの場合に、パラミクソウイルス(例えば麻疹ウイルス)Fポリペプチドおよびパラミクソウイルス(例えば麻疹ウイルス)Hポリペプチドをコードする核酸を、VSV Mポリペプチドをコードする核酸の下流に位置づけることができる。例えば、パラミクソウイルス(例えば麻疹ウイルス)Fポリペプチドをコードする核酸およびパラミクソウイルス(例えば麻疹ウイルス)Hポリペプチドをコードする核酸を、VSV Mポリペプチドをコードする核酸とVSV Lポリペプチドをコードする核酸との間に位置づけることができる。
パラミクソウイルス(例えば麻疹ウイルス)Fポリペプチドをコードする任意の適切な核酸を、水疱性口内炎ウイルスのゲノム中に挿入することができる。例えば、エドモンストン(Edmonston)株由来の野生型麻疹ウイルスFポリペプチドをコードする核酸を、水疱性口内炎ウイルスのゲノム中に挿入することができる。水疱性口内炎ウイルスのゲノム中に挿入することができる麻疹ウイルスFポリペプチドをコードする核酸の例は、非限定的に、GenBank(登録商標)アクセッション番号EU332930(GI番号18660438)に示される麻疹ウイルスFポリペプチドをコードする核酸を含む。
パラミクソウイルス(例えば麻疹ウイルス)Hポリペプチドをコードする任意の適切な核酸を、水疱性口内炎ウイルスのゲノム中に挿入することができる。例えば、エドモンストン株由来の野生型麻疹ウイルスHポリペプチドをコードする核酸を、水疱性口内炎ウイルスのゲノム中に挿入することができる。水疱性口内炎ウイルスのゲノム中に挿入することができる麻疹ウイルスHポリペプチドをコードする核酸の例は、非限定的に、GenBank(登録商標)アクセッション番号EU332935(GI番号186660446)に示される麻疹ウイルスHポリペプチドをコードする核酸を含む。いくつかの場合に、CD46、SLAM、ネクチン-4、またはこれらの任意の組み合わせについての特異性を欠いている麻疹ウイルスHポリペプチドをコードする核酸を、水疱性口内炎ウイルスのゲノム中に挿入することができる。例えば、Y481A(CD46結合を欠失)およびR533A(SLAM結合を欠失)を有する麻疹ウイルスHポリペプチドをコードする核酸を、水疱性口内炎ウイルスのゲノム中に挿入することができる。いくつかの場合に、本明細書において提供される水疱性口内炎ウイルス/パラミクソウイルスハイブリッド(例えば、水疱性口内炎ウイルス/麻疹ウイルスハイブリッド)は、あらかじめ選択された親和性を有するように設計されることができる。例えば、CD46、SLAM、ネクチン-4、またはこれらの任意の組み合わせについてノックアウトされた特異性を有するパラミクソウイルス(例えば麻疹ウイルス)Fおよび/またはHポリペプチドを、scFvまたはポリペプチドリガンドが例えば該パラミクソウイルス(例えば麻疹ウイルス)HポリペプチドのC末端に付着され得るように、使用することができる。そのような場合に、scFvまたはポリペプチドリガンドは、水疱性口内炎ウイルス/パラミクソウイルスハイブリッド(例えば、水疱性口内炎ウイルス/麻疹ウイルスハイブリッド)の親和性を決定することができる。水疱性口内炎ウイルス/パラミクソウイルスハイブリッド(例えば、水疱性口内炎ウイルス/麻疹ウイルスハイブリッド)を細胞受容体(例えば腫瘍関連細胞受容体)に方向づけるために使用することができるscFvの例は、非限定的に、抗EGFR、抗αFR、抗PSMA、抗HER-2、抗CD19、抗CD20、または抗CD38 scFvを含む。水疱性口内炎/パラミクソウイルスハイブリッド(例えば、水疱性口内炎ウイルス/麻疹ウイルスのハイブリット)を方向づけるために使用することができるポリペプチドリガンドの例は、非限定的に、ウロキナーゼプラスミノーゲンアクチベーターuPAポリペプチド、IL-13などのサイトカイン、一本鎖T細胞受容体(scTCR)、エキスタチンポリペプチド、およびインテグリン結合ポリペプチドを含む。
いくつかの場合に、本明細書において提供される水疱性口内炎ウイルスの核酸分子は、IFNポリペプチド、蛍光ポリペプチド(例えばGFPポリペプチド)、NISポリペプチド、治療用ポリペプチド、自然免疫拮抗ポリペプチド、腫瘍抗原、またはこれらの組み合わせをコードすることができる。IFNポリペプチドをコードする核酸は、VSV Mポリペプチドをコードする核酸の下流に位置づけることができる。例えば、IFNポリペプチドをコードする核酸を、VSV Mポリペプチドをコードする核酸と、パラミクソウイルス(例えば麻疹ウイルス)Fポリペプチドをコードする核酸またはパラミクソウイルス(例えば麻疹ウイルス)Hポリペプチドをコードする核酸との間に位置づけることができる。そのような位置により、ウイルスは、癌細胞における効率的なウイルス複製を妨害することなく、非癌性組織において抗ウイルス自然免疫応答を活性化させかつ従って潜在的なウイルス毒性を軽減するために有効である量のIFNポリペプチドを発現することが可能になり得る。
IFNポリペプチドをコードする任意の適切な核酸を、水疱性口内炎ウイルスのゲノム中に挿入することができる。例えば、IFNβポリペプチドをコードする核酸を、水疱性口内炎ウイルスのゲノム中に挿入することができる。水疱性口内炎ウイルスのゲノム中に挿入することができるIFNβポリペプチドをコードする核酸の例は、非限定的に、GenBank(登録商標)アクセッション番号NM_002176.2(GI番号50593016)に示される核酸配列のヒトIFNβポリペプチドをコードする核酸、GenBank(登録商標)アクセッション番号NM_010510.1(GI番号6754303)、BC119395.1(GI番号111601321)、またはBC119397.1(GI番号111601034)に示される核酸配列のマウスIFNβポリペプチドをコードする核酸、およびGenBank(登録商標)アクセッション番号NM_019127.1(GI番号9506800)に示される核酸配列のラットIFNβポリペプチドをコードする核酸を含む。
NISポリペプチドをコードする核酸は、パラミクソウイルス(例えば麻疹ウイルス)Fポリペプチドをコードする核酸またはパラミクソウイルス(例えば麻疹ウイルス)Hポリペプチドをコードする核酸の下流に位置づけることができる。例えば、NISポリペプチドをコードする核酸を、パラミクソウイルス(例えば麻疹ウイルス)FまたはHポリペプチドをコードする核酸とVSV Lポリペプチドをコードする核酸との間に位置づけることができる。そのような位置により、ウイルスは、(a)感染した細胞におけるヨウ化物の選択的蓄積を可能にし、それにより放射性同位元素を用いたウイルス分布の画像化および感染癌細胞を標的とした放射線療法の両方を可能にするために有効な量でありかつ(b)感染した細胞にとって毒性であるほど多くはない量である、NISポリペプチドを発現することが可能になり得る。
NISポリペプチドをコードする任意の適切な核酸を、水疱性口内炎ウイルスのゲノム中に挿入することができる。例えば、ヒトNISポリペプチドをコードする核酸を、水疱性口内炎ウイルスのゲノム中に挿入することができる。水疱性口内炎ウイルスのゲノム中に挿入することができるNISポリペプチドをコードする核酸の例は、非限定的に、GenBank(登録商標)アクセッション番号NM_000453.2(GI番号164663746)、BC105049.1(GI番号85397913)、またはBC105047.1(GI番号85397519)に示される核酸配列のヒトNISポリペプチドをコードする核酸、GenBank(登録商標)アクセッション番号NM_053248.2(GI番号162138896)、AF380353.1(GI番号14290144)、またはAF235001.1(GI番号12642413)に示される核酸配列のマウスNISポリペプチドをコードする核酸、GenBank(登録商標)アクセッション番号XM_524154(GI番号114676080)に示される核酸配列のチンパンジーNISポリペプチドをコードする核酸、GenBank(登録商標)アクセッション番号XM_541946(GI番号73986161)に示される核酸配列のイヌNISポリペプチドをコードする核酸、GenBank(登録商標)アクセッション番号XM_581578(GI番号297466916)に示される核酸配列のウシNISポリペプチドをコードする核酸、GenBank(登録商標)アクセッション番号NM_214410(GI番号47523871)に示される核酸配列のブタNISポリペプチドをコードする核酸、およびGenBank(登録商標)アクセッション番号NM_052983(GI番号158138504)に示される核酸配列のラットNISポリペプチドをコードする核酸を含む。
VSV Nポリペプチド、VSV Pポリペプチド、VSV Mポリペプチド、およびVSV Lポリペプチドをコードする、本明細書において提供される水疱性口内炎ウイルスの核酸配列は、GenBank(登録商標)アクセッション番号NC_001560(GI番号9627229)に示されるようなVSVインディアナ株由来であることができるか、またはVSVニュージャージー株由来であることができる。
1つの局面において、本文書は、VSV Nポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、VSV Pポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、VSV Mポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、パラミクソウイルス(例えば麻疹ウイルス)Fポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、パラミクソウイルス(例えば麻疹ウイルス)Hポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、およびVSV Lポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列を(例えば3'から5'の方向に)有するが機能的なVSV Gポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列を欠いている核酸分子(例えばRNA分子)を含有する、水疱性口内炎ウイルスを提供する。そのような水疱性口内炎ウイルスは、細胞(例えば癌細胞)に感染することができ、かつ複製可能であることができる。
任意の適切な方法を、核酸(例えば、パラミクソウイルス(例えば麻疹ウイルス)Fポリペプチドをコードする核酸、パラミクソウイルス(例えば麻疹ウイルス)Hポリペプチドをコードする核酸、IFNポリペプチドをコードする核酸、および/またはNISポリペプチドをコードする核酸)を水疱性口内炎ウイルスのゲノム中に挿入するために使用することができる。例えば、他の場所に記載されている方法(Schnell et. al., PNAS, 93:11359-11365 (1996)、Obuchi et al., J. Virol., 77(16):8843-56 (2003);Goel et al., Blood, 110(7):2342-50 (2007);およびKelly et al., J. Virol., 84(3):1550-62 (2010))を、核酸を水疱性口内炎ウイルスのゲノム中に挿入するために使用することができる。任意の適切な方法を、本明細書において記載される核酸分子を含有する水疱性口内炎ウイルスを同定するために使用することができる。そのような方法は、非限定的に、PCR、ならびに、ノーザン解析およびサザン解析などの核酸ハイブリダイゼーション技術を含む。いくつかの場合には、免疫組織化学および生化学的技術を、特定の核酸分子によりコードされるポリペプチドの発現を検出することによって、水疱性口内炎ウイルスがその特定の核酸分子を含有するかどうかを判定するために使用することができる。
別の局面において、本文書は、VSV Nポリペプチド、VSV Pポリペプチド、VSV Mポリペプチド、パラミクソウイルス(例えば麻疹ウイルス)Fポリペプチド、パラミクソウイルス(例えば麻疹ウイルス)Hポリペプチド、およびVSV Lポリペプチドをコードするが、機能的なVSV Gポリペプチドをコードする能力を欠いている、核酸分子を提供する。例えば、本明細書において提供される核酸分子は、VSV Nポリペプチドをコードする核酸配列、VSV Pポリペプチドをコードする核酸配列、VSV Mポリペプチドをコードする核酸配列、パラミクソウイルス(例えば麻疹ウイルス)Fポリペプチドをコードする核酸配列、パラミクソウイルス(例えば麻疹ウイルス)Hポリペプチドをコードする核酸配列、およびVSV Lポリペプチドをコードする核酸配列を含むが、機能的なVSV Gポリペプチドをコードする核酸配列を欠いている、単一の核酸分子であることができる。
別の局面において、本文書は、VSV Nポリペプチド、VSV Pポリペプチド、VSV Mポリペプチド、IFNポリペプチド、パラミクソウイルス(例えば麻疹ウイルス)Fポリペプチド、パラミクソウイルス(例えば麻疹ウイルス)Hポリペプチド、NISポリペプチド、およびVSV Lポリペプチドをコードするが、機能的なVSV Gポリペプチドをコードする能力を欠いている、核酸分子を提供する。例えば、本明細書において提供される核酸分子は、VSV Nポリペプチドをコードする核酸配列、VSV Pポリペプチドをコードする核酸配列、VSV Mポリペプチドをコードする核酸配列、IFNポリペプチドをコードする核酸配列、パラミクソウイルス(例えば麻疹ウイルス)Fポリペプチドをコードする核酸配列、パラミクソウイルス(例えば麻疹ウイルス)Hポリペプチドをコードする核酸配列、NISポリペプチドをコードする核酸配列、およびVSV Lポリペプチドをコードする核酸配列を含むが、機能的なVSV Gポリペプチドをコードする能力を欠いている、単一の核酸分子であることができる。
本明細書において使用される「核酸」という用語は、RNA(例えばウイルスRNA)、ならびに、cDNA、ゲノムDNA、および合成(例えば化学的に合成された)DNAを含むDNAの両方を包含する。核酸は、二本鎖または一本鎖であることができる。一本鎖核酸は、センス鎖またはアンチセンス鎖であることができる。加えて、核酸は、環状または直線状であることができる。
本文書はまた、(例えば、腫瘍サイズを低減させるため、腫瘍増殖を阻害するため、または生存可能な腫瘍細胞の数を低減させるために)癌を処置する方法、癌に対する宿主免疫を誘導する方法、およびHIVまたは麻疹などの感染性疾患を処置する方法も提供する。例えば、本明細書において提供される水疱性口内炎ウイルスを、腫瘍サイズを低減させるため、癌細胞または腫瘍の増殖を阻害するため、哺乳動物内の生存可能な癌細胞の数を低減させるため、および/または腫瘍に対する宿主の免疫原性応答を誘導するために、癌を有する哺乳動物に投与することができる。本明細書において提供される水疱性口内炎ウイルスは、そのウイルスのコピーの利用可能な数を、典型的には少なくとも2倍に(例えば、5〜10倍に、50〜100倍に、500〜1,000倍に、またはさらに5,000〜10,000倍も多くに)増大させるために、宿主細胞において増殖させることができる。いくつかの場合に、本明細書において提供される水疱性口内炎ウイルスは、標準的な細胞培養培地(例えば、5〜10%胎児ウシ血清を補給したDMEMまたはRPMI-1640、37℃で5%CO2中)において望ましい濃度が得られるまで、拡大させることができる。ウイルス力価は、典型的に、培養中の細胞(例えばベロ細胞)に接種することによりアッセイする。
本明細書において提供される水疱性口内炎ウイルスは、例えば、癌細胞群(例えば腫瘍)中への直接注射、または癌細胞への静脈内送達により、癌患者に投与することができる。本明細書において提供される水疱性口内炎ウイルスは、非限定的に、骨髄腫(例えば多発性骨髄腫)、黒色腫、神経膠腫、リンパ腫、中皮腫、ならびに、肺、脳、胃、結腸、直腸、腎臓、前立腺、卵巣、乳、膵臓、肝臓、および頭頸部の癌を含む、様々なタイプの癌を処置するために使用することができる。
本明細書において提供される水疱性口内炎ウイルスは、癌細胞群へ直接(例えば腫瘍内)または全身的に(例えば静脈内)投与することにより、生物学的に適合性の溶液または薬学的に許容される送達媒体において、患者に投与することができる。適当な薬学的製剤は、用途および侵入の経路、例えば、経皮かまたは注射によるかに、一部依存する。そのような形式は、組成物または製剤が、標的細胞(すなわち、ウイルスがそこに送達されることが望ましい細胞)に達すること、またはその効果を発揮することを妨げてはならない。例えば、血流中に注射される薬学的組成物は、可溶性であるべきである。
投与される投薬量は、患者によって(例えば腫瘍のサイズに応じて)変動すると考えられるが、有効用量は、安全であると証明されたウイルスの濃度を下限として設定し、いずれかの有害な副作用の存在と共に癌細胞の増殖の低減をモニタリングしながら、1012 pfuまでのより高い用量に増加させることにより、決定することができる。治療的有効用量は、典型的に、癌細胞の数または腫瘍サイズにおいて少なくとも10%の低減を提供する。用量増加研究を、所定のウイルス処置について望ましい効果を得るために使用することができる(例えば、Nies and Spielberg, "Principles of Therapeutics," In Goodman & Gilman's The Pharmacological Basis of Therapeutics, eds. Hardman, et al., McGraw-Hill, NY, 1996, pp 43-62を参照されたい)。
本明細書において提供される水疱性口内炎ウイルスは、例えば、約103 pfu〜約1012 pfu(例えば、約105 pfu〜約1012 pfu、約106 pfu〜約1011 pfu、または約106 pfu〜約1010 pfu)の範囲の用量で送達することができる。治療的有効用量は、反復される用量で提供されることができる。反復投与は、臨床症候もしくは腫瘍サイズの知見、またはモニタリングアッセイが、癌細胞群もしくは腫瘍が縮小を停止していること、または腫瘍がまだ存在するがウイルス活性の程度が減退していることのいずれかを示す場合に、適切である。反復用量は、最初に使用されたものと同一の経路により、または別の経路により投与することができる。治療的有効用量は、(例えば何日または何週か空けて)いくつかの別々の用量で送達することができ、1つの態様において、1回〜約12回の用量が提供される。あるいは、本明細書において提供される水疱性口内炎ウイルスの治療的有効用量は、徐放性製剤により送達することができる。いくつかの場合に、本明細書において提供される水疱性口内炎ウイルスは、癌細胞内でのウイルスの複製および拡散を促進する薬学的作用物質、または非癌細胞をウイルス毒性から保護する作用物質と組み合わせて送達することができる。そのような作用物質の例は、他の場所に記載されている(Alvarez-Breckenridge et al., Chem. Rev., 109(7):3125-40 (2009))。
本明細書において提供される水疱性口内炎ウイルスは、徐放を提供するための装置を用いて投与することができる。水疱性口内炎ウイルスの徐放のための製剤は、例えば、ポリマー賦形剤(例えば、膨潤性もしくは非膨潤性のゲル、またはコラーゲン)を含むことができる。水疱性口内炎ウイルスの治療的有効用量は、ポリマー賦形剤内で提供することができ、賦形剤/ウイルス組成物を、癌細胞の部位(例えば、腫瘍の近くまたは腫瘍内)に移植する。体液の作用が徐々に賦形剤を溶解させ、ある期間にわたって有効用量のウイルスを継続的に放出する。あるいは、徐放装置は、一連の交互の活性層およびスペーサー層を含有することができる。そのような装置の各活性層は、典型的に、賦形剤に埋め込まれた一用量のウイルスを含有し、他方、各スペーサー層は、賦形剤のみまたは低濃度のウイルス(すなわち有効用量より低い)を含有する。装置の各連続的な層が溶解するにつれて、パルス用量のウイルスが送達される。スペーサー層のサイズ/製剤が、用量間の時間間隔を決定し、これは使用される治療レジメンに従って最適化される。
本明細書において提供される水疱性口内炎ウイルスは、直接投与することができる。例えば、ウイルスを、皮膚を通して触知可能である腫瘍(例えば乳癌腫瘍)中に直接注射することができる。超音波ガイドもまた、そのような方法において使用することができる。あるいは、ウイルスの直接投与を、カテーテルラインまたは他の医療用アクセス装置を介して達成することができ、癌細胞群の場所を突き止めるための画像化システムと組み合わせて使用することができる。この方法により、医療用アクセス装置中に挿入されたガイドワイヤーを用いて、移植可能な投与装置を、典型的に、癌細胞群の近くに設置する。本明細書において提供される水疱性口内炎ウイルスの有効用量は、露出した手術野において目に見える癌細胞群に直接投与することができる。
いくつかの場合に、本明細書において提供される水疱性口内炎ウイルスは、全身に送達することができる。例えば、全身送達は、注射を介してまたは複数用量の薬剤の投与のために設計された静脈内送達装置を介して、静脈内で達成することができる。そのような装置は、翼付き点滴針、末梢静脈カテーテル、ミッドラインカテーテル、末梢挿入中心静脈カテーテル、および外科的に設置されたカテーテルまたはポートを含むが、これらに限定されない。
本明細書において提供される水疱性口内炎ウイルスでの治療経過を、臨床症候における変化を評定することにより、または癌細胞の数もしくは腫瘍のサイズの直接モニタリングにより、モニタリングすることができる。固形腫瘍については、ウイルス処置の有効性を、処置の前後に腫瘍のサイズまたは重量を測定することにより評価することができる。腫瘍サイズは、直接(例えばカリパスを用いて)、または画像化技術(例えば、X線、磁気共鳴画像法、もしくはコンピュータ断層撮影法)を用いることによる、または非結像光学データ(例えばスペクトルデータ)の評価からのいずれかで、測定することができる。癌細胞群(例えば白血病細胞)については、ウイルス処置の有効性を、処置の前後に患者の循環における白血病細胞の絶対数を測定することにより判定することができる。ウイルス処置の有効性はまた、癌特異抗原のレベルをモニタリングすることにより評価することもできる。癌特異抗原は、例えば、癌胎児性抗原(CEA)、前立腺特異抗原(PSA)、前立腺酸性ホスファターゼ(PAP)、CA 125、α-フェトプロテイン(AFP)、炭水化物抗原15−3、および炭水化物抗原19-4を含む。
本発明を、添付の特許請求の範囲に記載される本発明の範囲を限定しない以下の実施例において、さらに説明する。
実施例1−麻疹ウイルスエンベロープ糖タンパク質を用いた水疱性口内炎ウイルスの再ターゲティング
細胞およびウイルス
ヒト皮質神経細胞HCN-1A[American Type Culture Collection (ATCC), Manassas, VA; CRL-10442]を、ATCCにより推奨されるように培地中で維持した。CD46を安定的に発現しているCHO細胞株(CHO-CD46)、FRを安定的に発現しているCHO細胞株(CHO-FR)、およびEGFRを安定的に発現しているCHO細胞株(CHO-EGFR)は、他の場所に記載されたものである(Nakamura et al., Nat. Biotechnol., 22:331-336 (2004))。PSMAを安定的に発現しているPC3細胞(PC3-PSMA、当初PC3-PIPと名付けられた)は、Michel Sadelain博士(Memorial Sloan-Kettering Cancer Center)により提供された(Chang et al., Cancer Res., 59:3192-3198 (1999))。KAS 6/1多発性骨髄腫細胞は、Diane Jelinek博士(Mayo Clinic)により提供され、SKOV3ip.1卵巣腫瘍細胞は、Ellen Vitetta博士(University of Texas Southwestern Medical Center)により提供された。KAS 6/1細胞は、CD46およびEGFRについて陽性であったが、αFRまたはPSMAについては陽性でなかった。SKOV3ip.1細胞は、CD46、EGFR、およびαFRを発現していたが、PSMAは発現していなかった。緑色蛍光タンパク質(GFP)cDNAにより置換された欠失した糖タンパク質遺伝子を有するVSV(インディアナ株)(VSVDG)は、他の場所に記載されたものである(Majid et al., J. Virol., 80:6993-7008 (2006))。ベロ-αHis細胞は、6個ヒスチジンペプチドを認識する膜固定型一本鎖抗体を発現していた(Nakamura et al., Nat. Biotechnol., 23:209-214 (2005))。
VSVΔG偽型の調製
VSVΔGをMV糖タンパク質で偽型化するために、異なる3タイプのプラスミドを使用した:親エドモンストン株MV-Fタンパク質をコードするpCGF、親エドモンストン株MV-Hタンパク質をコードするpCGH、または、MV-HとMV受容体であるCD46およびSLAMとの相互作用をそれぞれ遮断する2種の点変異、Y481AおよびR533Aを有する(Vongpunsawad et al., J. Virol., 78:302-313 (2004))変異MV-Hタンパク質をコードするpTNHaa(Nakamura et al., Nat. Biotechnol., 22:331-336 (2004))。αFR、EGFR、またはPSMAのいずれかに対するscFvを有するMV-Hをコードするプラスミド(pTNHaa-αFR、pTNHaa-αEGFR、またはpTNHaa-αPSMA)を使用した(Nakamura et al., Nat. Biotechnol., 23:209-214 (2005);Hasegawa et al., Clin. Cancer Res., 12:6170-6178 (2006);およびLiu et al., Prostate, 69:1128-1141 (2009))。HEK-293T細胞(107)を、150-mmプレートに播種した。次の日、30μgのpMD-G(VSV-Gタンパク質をコードするプラスミド)、または30μgのMV-Hタンパク質をコードするプラスミド(pCGHまたはpTNHaa)、および30μgのMV-Fタンパク質をコードするプラスミド(pCGF)を、リン酸カルシウム法を用いて細胞中にトランスフェクションした。MV-FおよびMV-Hの細胞内発現による細胞融合を回避するため、1ミリリットルの培養培地あたり6.6μgの融合阻害ペプチド(FIP;Bachem, Americas Inc., Torrance, CA)を、トランスフェクションの5時間後に細胞に添加した。翌日、トランスフェクションした細胞に、FIPの存在下で、3の感染多重度(MOI)でVSVΔG-G(VSV-Gタンパク質で偽型化されたVSVΔG)を3時間感染させた。ウイルス接種物をその後除去して、細胞を5回洗浄し、FIPを含むOptiMEM(Invitrogen, Carlsbad, CA)中でインキュベーションした。感染の24時間後に、細胞および上清を、2回凍結融解した。その後、上清を澄ませ(1,600 rpmで5分)、-80℃で保存した。各ウイルスの力価を、MVについて他の場所に記載されているような標準的なTCID50滴定法を用いて、ベロ-αHIS細胞において測定した(Hadac et al., Virology, 329:217-225 (2004))。ウイルス上清をまた、100,000分子量のカットオフを有するAmicon Ultra-15装置(Millipore, Billerica, MA)における2,500 rpmで5分間の遠心分離により濃縮した。フィルターを通過しなかった上清を集めて、-80℃で保存した。
ウイルスタンパク質の免疫ブロッティング
タンパク質溶解物を、10%トリス-HCl Criterionプレキャストゲル(Bio-Rad, Hercules, CA)においてPAGEにより分画し、ポリビニリデンジフルオリド膜(Bio-Rad)へ転写した。膜を、トリス緩衝生理食塩水(TBS)-Tween中の5%脱脂乳で1時間、室温でブロッキングし、一次抗体(ポリクローナルウサギαMV-H(Hadac et al., Virology, 329:217-225 (2004))、ポリクローナルαVSV構造タンパク質(Jenks et al., Hum. Gene Ther., 21:451-462 (2010)))とインキュベーションし、TBS-Tweenで5回洗浄し、ペルオキシダーゼに結合した二次抗体とインキュベーションし、再び5回洗浄した。シグナルを、Pierce ECLウェスタンブロッティング基質キット(Thermo Scientific, Waltham, MA)を用い、製造業者により推奨される条件に従って現像した。
インビボ実験
6週齢の雌のCB17 ICR SCIDマウス(群あたりn=3;Taconic Farms, Germantown, NY)に、150グレイで放射線照射した。24時間後、ヒト骨髄腫KAS 6/1細胞を、マウスの右側腹部に注射した。腫瘍が直径0.5 cmに達した際に、マウスは、VSV偽型の1回の腫瘍内注射(106 TCID50/100μL)を受けた。注射の2日後に、マウスを安楽死させ、腫瘍を採取した。腫瘍の5μm凍結切片をDAPIで染色し、Zeiss LSM 510共焦点顕微鏡を用いてGFP発現を解析して、ウイルス感染の領域を検出した。
結果
MV-FおよびMV-H-scFvポリペプチドでのVSVの偽型化
VSVをMV-FおよびMV-Hポリペプチドで偽型化するため、293T細胞に、MV-HおよびMV-Fポリペプチドを発現するプラスミドを最初にトランスフェクションし、その後、糖タンパク質遺伝子を欠いている変異体VSVを感染させた(図1)。子孫VSVを上清から採取して、使用した。G遺伝子のそのゲノムからの欠失のために、子孫VSVの感染性は、組み込まれたMV-FおよびMV-HまたはH-scFvポリペプチドにより排他的に駆動された。
より短い細胞質尾部を有するMV-FまたはMV-Hが、VSV中へのその組み込みを増強できるかどうかを判定するために、VSVベクターを、親MV-F/Hまたは2種の変異体MV糖タンパク質:MV-HΔ24(24アミノ酸のN末端欠失を伴うMV-H)およびMV-FΔ30(3個の膜近くの残基RGR以外は細胞質尾部の完全欠失を伴う)で偽型化した。切断された糖タンパク質で偽型化されたVSVのウイルス力価において、10〜100倍の低減が観察された(図1)。従って、すべてのその後の研究について、親の細胞質尾部を有するMV-FおよびMV-Hを使用した。
VSVは一本鎖抗体を有するMV-FおよびMV-Hで偽型化することができる
VSVの可能性のある再ターゲティングを研究するために、ウイルスを、MV-Fおよび以下のMV-Hの様々なバージョンのいずれか1種:親エドモンストン株MVH、または、EGFR、αFR、およびPSMAに対する一本鎖抗体(H-scFv)を有するMV-H、で偽型化した。
偽型化されたVSV由来のウイルス力価を、図2に示す。感染が、MV-F/Hで偽型化されたVSVによるものであり、残留インプットVSVΔG-Gウイルスのためではなかったことを実証するために、MV-Hプラスミドを細胞中にトランスフェクションせずにVSVΔG-Fを生成させると、そのウイルスは最小の感染性を有していた(図2)。対照的に、他のウイルスベクターについては強い感染があり、力価は、MV-H/Fで偽型化されたVSVについての107 TCID50から、MV-H-scFvで偽型化されたVSVについての105 TCID50の範囲であった。再ターゲティングエンベロープを有する偽型化されたベクターのウイルス力価は、限外濾過またはスクロースクッションにより濃縮した際に1×107まで増大させることができた。MV-H/FポリペプチドのVSVビリオン中への組み込みを確認するために、精製されたベクターストック由来のポリペプチド溶解物を、免疫ブロットにより解析した。図3に示されるように、VSV-Gは、VSVΔG-G溶解物においてのみ検出された。他方で、MVポリペプチドは、VSVΔG-FH(および再ターゲティングバージョン)の溶解物をローディングしたレーンにおいて観察された。
VSV感染はMV糖タンパク質により特異的に再ターゲティングすることができる
scFvを有するMVHでVSVを偽型化できることを確認し、次に、その感染性が、対応する受容体を発現している細胞に対して実際に再ターゲティングされ得るかどうかを判定した。VSV偽型の特異性を試験するために、ウイルス感染を、特異的な受容体を発現するCHO細胞のアレイに対して行った。図4Aに示されるように、GFP発現の存在により示されるウイルスエントリーおよび感染は、それぞれの再ターゲティングVSVベクターの各々について、受容体陽性細胞に制限され、受容体陰性細胞においてはなかった。MV-H-scFvは、MVの天然受容体であるCD46およびSLAMと相互作用できなくする2種の点変異を、残基481および533に含有していた。従って、VSVΔGαEGFR、VSVΔG-αFR、およびVSVΔG-αPSMAは、CHO-CD46またはCHO-SLAM細胞に感染することができなかった。GFP陽性細胞の数を計数して、これらの偽型化されたベクターの特異性を実証した(図4B)。ニューロンにおけるVSVベクターの親和性を評定するため、ヒト皮質神経細胞HCN-1Aに、VSVΔG-GまたはVSVΔG-FH再ターゲティングベクターを形質導入した。これらのCD46、EGFR陽性ヒトHCN-1A細胞は、VSVΔG-G、VSVΔG-FH、およびVSVΔGαEGFRにより形質導入されたが、αFRまたはPSMA特異的ベクターによっては形質導入されなかった(図5)。
再ターゲティングVSV偽型の特異性はインビボで保存される
再ターゲティングVSVベクターが受容体陽性細胞に特異的に感染したことを確認した後、同一の特異性がこれらのウイルスをマウスに注射した際に保存されるかどうかを判定するために以下を行った。ヒト腫瘍細胞株であるKAS 6/1(EGFR、αFR、およびPSMA陰性細胞)、SKOV3ip.1(EGFRおよびαFR陽性細胞)、PC3(PSMA陰性細胞)、ならびにPC3-PSMA細胞を、SCIDマウスまたは無胸腺マウスのいずれかの側腹部に皮下注射した。ひとたび腫瘍が直径0.5 cmに達すると、106の感染性ウイルスを腫瘍内注射した。腫瘍を、解析のために2日後に採取した。図6に示されるように、受容体陽性腫瘍においては強いGFR発現があったが、受容体陰性腫瘍においてはなかった。従って、これにより、対応する再ターゲティングVSVベクターは安定であり、インビボでその親和性を維持し、かつ受容体陽性腫瘍に効率的に感染できたことが、確認された(図6)。
実施例2−麻疹ウイルスエンベロープ糖タンパク質を用いて再ターゲティングした複製可能な水疱性口内炎ウイルスの産生
複製可能なVSV-FHウイルスを産生するために、VSV(インディアナ株)完全長ゲノムを含有するプラスミドを制限酵素で消化して、VSV-G核酸を除去した。その後、MV-F核酸およびMV-H核酸(各々は、VSV遺伝子の残部などのVSV遺伝子間領域により先行される)を、VSV-M遺伝子とVSV-L遺伝子との間にクローニングし(図7)、ウイルスを、他の場所に記載されているものと同様の技術を用いてレスキューした(Schnell et al., PNAS, 93:11359-11365 (1996)、Obuchi et al., J. Virol., 77(16):8843-56 (2003);Goel et al., Blood, 110(7):2342-50 (2007);およびKelly et al., J. Virol., 84(3):1550-62 (2010))。
ウイルスを使用して、麻疹ウイルス受容体CD46を発現しているベロ細胞に感染させた。VSV-FHを複製させ、それ自体で新たな感染性ビリオンを産生するように使用した。
VSV-FHのインビトロ解析により、この新たな腫瘍崩壊性ウイルスの親和性は、MVの天然受容体:CD46またはSLAMを発現している細胞に制限されたことが明らかになった(図8)。親のVSVおよびVSV-FHは同一の複製機構を有するため、この新たなVSV-FHハイブリッドウイルスは、感染性粒子の強い産生および細胞外培地中への放出を呈した。さらに、MV糖タンパク質の発現により、VSV-FHは、隣接細胞の融合を誘発してシンシチウムを形成し、それにより細胞内ウイルス拡散を有意に増大させることができる。
インビボでは、1×106 TCID50の複製可能なVSV-FHの単一静脈内用量により、10倍高い用量(1×107 TCID50)のMV-NISと比較して、皮下ヒト骨髄腫腫瘍の容積の有意な低減が結果としてもたらされた(図9)。MV-NISは、ヒトヨウ化ナトリウム共輸送体ポリペプチドを発現するように設計された麻疹ウイルスである。生存期間中央値もまた、複製可能なVSV-FHで処置されたマウスは、MV-NISで処置されたマウス(60日、p<0.05)または生理食塩溶液で処置されたマウス(28日、p=0.005)よりも高かった(80日)。
複製可能なVSV-FHで処置された腫瘍の組織学的解析により、VSV陽性腫瘍細胞の高いパーセンテージが明らかになった。感染性VSV-FH粒子の存在により、ウイルスが腫瘍内で複製および拡散できたことが示される。これらの結果により、VSV-FHウイルスは、MV-NISと比較して有効な複製および拡散速度、ならびにインビボ抗腫瘍活性を有することが、実証される。加えて、複製可能なVSV-FHは、さらに、一本鎖抗体を提示して、受容体により媒介されるウイルスエントリーおよび拡散を達成するように再ターゲティングさせることができ、それにより、その腫瘍選択性を増大させ、かつ、げっ歯類におけるVSVの実験接種と関連する潜在的神経毒性などの、潜在的神経毒性についての懸念を排除することができる。複製可能なVSV-FHウイルスはまた、その融合特性のために、野生型VSVよりも良好な、宿主免疫の抗ウイルス効果に打ち勝つ能力も有する。
実施例3−親和性工学を通した腫瘍崩壊性水疱性口内炎ウイルスの弱毒化
細胞培養
すべての細胞を、37℃で5% CO2大気において培養した。ベロ、ベビーハムスター腎臓(BHK)、SW579(甲状腺由来扁平上皮癌)、およびLoVo(結腸直腸腺癌)細胞を、American Type Culture Collection(ATCC)から購入した。ヒト多発性骨髄腫細胞株KAS 6/1は、Diane Jelinek博士(Mayo Clinic, Rochester, MN)から取得し、KAS 6/1 F/G-Luc細胞は、他の場所に記載されているようにガウシア(Gaussia)およびホタルのルシフェラーゼタンパク質を発現するレンチウイルスベクターを用いた形質導入により生成し(Liu et al., Mol. Ther., 18:1155-1164 (2010));RPMI 8226は、John Lust博士(Mayo Clinic, Rochester, MN)から取得し;ならびに、MM1およびJJN3細胞は、Rafael Fonseca博士(Mayo Clinic, Rochester, MN)から取得した。ヒト卵巣癌細胞SKOV3.ip1は、Ellen Vitetta博士(University of Texas Southwestern Medical Center)から取得した。チャイニーズハムスター卵巣(CHO)細胞およびCD46を発現するCHO細胞(CHO-CD46)またはSLAMを発現するCHO細胞(CHO-SLAM)は、他の場所に記載されている(Nakamura et al., Nat. Biotechnol., 22:331-336 (2004))。
VSV-FHのクローニングおよびレスキュー
プラスミドpCGFをPCRの鋳型として、および図10Bに示されるプライマーを用いて、MV-FをZero Blunt Topoベクター(Invitrogen, Carlsbad, CA, USA)中にサブクローニングした。その後、MV-FをNotIで消化して、VSV-mIFN完全ゲノム配列を含有するプラスミド(University of Miami, School of Medicine, Miami, FLのGlen Barber博士から取得)中にクローニングした。この構築物からVSV-GおよびmIFNを除去するために、プラスミドをNotIおよびXhoIで消化して、Quick Blunting Kit(New England Biolabs, Ipswich, MA, USA)を用いることにより末端を平滑化した。結果として生じたプラスミドが、VSVDG-Fである。その後、図10Bに示されるプライマーを用いたPCR増幅により、MV-HをZero Blunt Topoベクター中にサブクローニングした。MV-H遺伝子をその後、SphIを用いて切り出し、pVSVDG-F中にクローニングした。他の場所に記載されているVSVレスキューシステムを用いて、完全に複製可能なVSV-FHを、プラスミドpVSVDG-FHを用いて取得した(Lawson et al., Proc. Natl. Acad. Sci. USA, 92:4477-4481 (1995))。
大量のVSV-FHを産生するために、150 mm2ディッシュ中の2×107個のベロ細胞に、MOI=0.00001のVSVFHを13 mLのopti-MEM(Invitrogen)中で感染させた。感染後3日目に上清を採取し、細胞破片を3000 rpmで遠心沈殿させた。ウイルスを濃縮するため、上清を、Amicon Ultra-15遠心フィルター(Millipore, Billerica, MA, USA)を用いて濃縮した。
ウエスタンブロット
1.5×105 TCID50の粒子をレーンあたりにローディングし、10%トリス-HCl Criterionプレキャストゲル(Bio-Rad, Hercules, CA)においてPAGEにより分画し、ポリビニリデンジフルオリド膜(Bio-Rad)へ転写した。膜をブロッキング(トリス緩衝生理食塩水(TBS)-Tween中5%脱脂乳)し、一次抗体(モノクローナルマウスαMV-N(Abcam, Cambridge, MA)、ポリクローナルウサギαMV-HおよびαMV-F、ならびにポリクローナルαVSV構造タンパク質(Hadac et al., Virology, 329:217-225(2004);Jenks et al., Hum. Gene Ther., 21:451:462 (2010)))とインキュベーションした。
TBS-Tweenでの5回の洗浄の後、膜を、ペルオキシダーゼ結合二次抗体とインキュベーションし、TBS-tweenで5回洗浄した。その後、シグナルを、Pierce ECLウェスタンブロッティング基質キット(Thermo Scientific, Waltham, MA)を用いて現像した。
感染性ウイルス粒子の産生
6ウェルプレートのウェルあたり1×106個のベロ細胞に、MVG(MOI=0.1)、VSVFH(MOI=0.00001)、またはVSV-mIFN(MOI=0.00001)を3時間、1mLのopti-MEM中で感染させた。その後、接種物を除去して、2 mLのDMEM 5% FBS(v/v)で置換した。感染後の示された時点に、上清を回収し、細胞破片を遠心分離(3000 rpm、5分間)により除去し、試料を-80℃で保存した。細胞を1回opti-MEMで洗浄し、2 mLの培地に再懸濁し、プレートからかき取り、-80℃で保存した。凍結細胞および上清を、1回凍結融解し、mLあたりの感染性粒子の量を、他の場所に記載されているようにベロ-αHIS細胞において滴定した(Hadac et al., Virology, 329:217-225 (2004))。
細胞生存率アッセイ
SW579、SKOV3.ip1、およびLoVo細胞(ウェルあたり14,000細胞)を、96ウェルプレートに播種し、次の日に、50μLのopti-MEMにおいて希釈した、MOI=1、0.1、および0.01の示されたウイルスを感染させた。U266、MM1、RPMI 8226、JJN3、およびKAS 6/1(ウェルあたり5×105細胞)に、MOI=1、0.1、および0.01の示されたウイルスを3時間感染させ、その後培地を除去し、100μLの増殖培地で置換した。感染後3日目に、細胞生存率を、CellTiter 96 Aqueous Assay(Promega, Fitchburg, WI, USA)を用い、製造業者の推奨に従って測定した。
インビボ実験
VSV-FHの安全性
IFN/CD46陽性の4〜5週齢のC57bl/6マウスに、1×107 TCID50単位のVSV-FH(n=7)、VSV-M51-NIS(n=6)、またはVSV-GFP(n=6)、または100μLのopti MEM(n=4)を静脈内注射した。注射後の最初の12日間、体重を毎日測定した。神経毒性症候(例えば、四肢麻痺、振戦、嗜眠性挙動、低体重など)が観察された時点で、マウスを屠殺した。注射後30日目に、生存マウスから血液を抽出し、酵素結合免疫アッセイ(ELISA)によりαMVおよびαVSV抗体の存在について、ならびに、他の場所に記載されているようなプラーク低減中和によりMVまたはVSVに対する中和抗体の存在についてアッセイした(Ayala-Breton et al., Hum. Gene Ther., 23:484-491 (2012))。
皮下形質細胞腫に対するVSV-FHの有効性
4〜6週齢のICR SCIDマウスを、Taconic(Germantown, NY)から購入した。異種移植片の移植の1日前に、マウスに全身放射線照射(2グレイ)をした。次の日、2×106個のKAS 6/1細胞を、マウスの右側腹部に皮下移植した。腫瘍が50 mm3の容積に達した際に、1×107 TCID50単位のMV-NIS(n=6)またはVSV-M51-NIS(n=8)、1×106 TCID50単位のVSV-FH(n=7)、または100μLの生理食塩溶液(n=8)を、尾静脈注射を通して注射した。腫瘍容積を週に3回測定し、腫瘍が2000 mm3と同等またはそれより大きい容積に達した際、または、麻痺、首垂れ(head drop)、嗜眠、もしくは20%より高い体重損失を呈した時点で、マウスを屠殺した。
KAS 6/1播種性モデルに対するVSV-FHの有効性
4〜6週齢のICR SCIDマウス(Taconic)に、ホタルおよびガルシアルシフェラーゼを発現する、レンチウイルスで形質導入されたKAS 6/1細胞1×107個を注射した(Liu et al., Mol. Ther., 18:1155-1164 (2010))。腫瘍の負荷量を、黒色96ウェルプレートにおける470 nmの波長でのTop Count NXT Scintillation and Luminescence Counter(Perkin Elmer, Waltham, MA, U.S)およびBioluxガウシアルシフェラーゼアッセイキット(New England Biolabs)を用い、製造業者の指示に従って血中のガウシアルシフェラーゼの存在を定量化することにより、モニタリングした。動物の大部分が約30,000/5μL血液の相対光単位(RLU)を呈した際に、マウスを処置した。群に、示されたウイルスの100μLのopti-MEM中の1×106 TCID50単位の3用量または媒体のみ(群あたりn=10)を、移植後31、38、および41日目に静脈内注射した。マウスを毎日モニタリングし、麻痺、首垂れ、嗜眠、または20%より高い体重損失を呈した時点で安楽死させた。
固形腫瘍におけるウイルス拡散
KAS 6/1皮下腫瘍を、本明細書において記載されるように移植した。腫瘍が50 mm3の容積に達した際に、マウスに、1×107 TCID50単位のVSV-FH、VSV-M51-NIS、またはMV-NIS、または100μLのopti-MEMを静脈内注射した。注射後3および6日目に、マウスを屠殺し、腫瘍を取り出した。腫瘍の半分を、Optimal Cutting培地(OCT)中で凍結し、0.2μmの薄片に切った。これらの切片をアセトンで固定し、αVSVポリクローナル抗体またはαMV-Nモノクローナル抗体で染色した。Alexa結合抗ウサギまたは抗マウスを、二次抗体として使用した(Life Technologies, NY, USA)。核を、Hoechst 33342(Life Technologies)を用いて染色した。腫瘍の小さな一部(およそ1/10)を、500μLのopti-MEM中でディスポーザブル均質化乳棒の助けを借りて均質化し、3回凍結融解して、細胞内感染性粒子を放出させた。ウイルス力価を、他の場所に記載されているようにベロ-αHIS細胞において測定した(Hadac et al., Virology, 329:217-225 (2004))。ウイルス力価を、腫瘍切片の重量に従って標準化し、腫瘍のグラムあたりのTCID50単位として報告した。
インターフェロンαおよびβの定量化
5×105細胞に、MOI=1でVSV-FHまたはVSV-M51-NISのいずれかを感染させた。感染の48時間後、上清を採取した。分泌されたIFNαまたはIFNβを、ヒトIFN ELISAキット(R&D Systems, Minneapolis, MN, USA)を用い、製造業者の指示に従って定量化した。
結果
VSV-FHはMVと同一の親和性を有するが、VSVのように見え、かつ挙動する
VSVの高速複製機構をMVの腫瘍選択的親和性と合体させるために、麻疹FおよびH糖タンパク質を発現する複製可能なVSV(VSV-FH)を生成させた。VSVの完全長感染性cDNAクローンの位置4のG糖タンパク質(1.6 Kb)を除去し、それぞれ位置4および位置5のMV-F(1.8 Kb)およびMV-H(2 Kb)により置換した(図10)。感染性VSV-FHウイルスをレスキューし、生化学的におよび感染アッセイにおいて特徴決定した。
VSV-FHのキメラの性質を、MVヌクレオキャプシド(N)、Fタンパク質、Hタンパク質に対する抗体、または抗VSV抗血清を用いたウエスタンブロット解析により確認した。同等量(105;最大半量組織培養感染量、TCID50)のVSV-FH、GFPを発現するMV(MVG)、およびマウスIFNβを発現するVSV(VSV-mIFNβ)のビリオンを、ゲル上にローディングした(図11a)。VSV-FHウイルスは、VSVおよびMVのキメラであった。VSV-FHは、VSV-mIFNβとは異なり、VSV-Gを含有しなかったが、その代わりにMV-FおよびMV-Hを含有していた。VSVFHは、VSV N、M、リンタンパク質(P)を組み込んでいたが、MV-Nは組み込んでいなかった。
透過型電子顕微鏡研究を、陰性染色ビリオンの形態を評定するために行った。麻疹は、複数のゲノムコピーのリボヌクレオタンパク質RNP複合体を含んだ多態性ウイルスであり、FおよびH糖タンパク質のコートにより覆われていた(図11b)。対照的に、VSVは、弾丸型のウイルスであった(図11b)。ハイブリッドVSV-FHは、長さが204 nm、幅が76 nm(20構造の平均)の弾丸型ナノ粒子であった。電子顕微鏡写真から、FおよびH糖タンパク質を、VSV-FHコート上に見ることができる。これらの特徴的な構造は、VSVmIFNβビリオンには存在しなかった(図11b)。
細胞感染アッセイにより、VSV-FHが、単層において迅速な細胞間融合を誘導したことが明らかになった(図11c)。シンシチウム形成のこの細胞変性効果(CPE)は、MV感染の特徴であったが、VSVの特徴ではなく、VSVはその代わりに、細胞を寄せ集めて溶解させた。VSV-FHが感染した細胞の細胞間融合は、感染(MOI 0.001)後12時間で検出することができ、感染性病巣の数およびシンシチウム数は、急速に増え続けた。VSV-FHの親和性を評価するために、MV受容体、CD46、SLAM、またはネクチン-4を発現するチャイニーズハムスター卵巣細胞(CHO)細胞に、ウイルスを感染させた(図11d)。VSV G糖タンパク質の融合誘発は、低いpHにより活性化されたが、麻疹の融合は、pH非依存性であり、3種のMV受容体(CD46、SLAM、またはネクチン-4)の1つに対するHの結合時に開始された(Roche et al., Cell. Mol. Life Sci., 65:1716-1728 (2008);およびNavaratnarajah et al., Curr. Top. Microbiol. Immunol., 329:59-76 (2009))。MVGおよびVSV-FHは、同様の親和性を共有した(図11d)。それらは、MV受容体を欠いているCHO細胞上で非許容性であったが、CD46、SLAM、またはネクチン-4陽性CHO細胞株上では感染性であった。対照的に、VSV-mIFNβは、まだ同定されていないVSV受容体を介して、親CHOを含む4つの細胞株のすべてに感染することができた。これらのデータにより、VSV-FHの親和性は、ウイルスコート上に組み込まれた麻疹HおよびFタンパク質により排他的に指図されることが、確認された。
VSV-MVウイルスはインビトロでMVよりも効力を有する
VSV-FHの複製を、3日にわたって親ウイルスの複製と比較した。ベロ産生細胞に、MV、VSV-FH、およびVSV-mIFNβを感染させ、細胞の中のまたは上清中に放出された感染性粒子の量を、TCID50滴定により定量化した(図12)。MVは、細胞結合ウイルスであり、MVの子孫の大部分は、感染した細胞の中であり、上清中にはほとんど放出されなかった(図12a)。対照的に、VSV-mIFNβは、そのビリオンの大部分を上清中に放出した。VSV-FHは、中間の表現型を有する。感染後24時間では、ビリオンの大部分は細胞の中に見出されたが、後の時点では、大部分のビリオンが上清中に放出された。ベロ細胞はMOI=0.1でMVに感染したが、VSV-FHおよびVSV-mIFNβについてはMOI=0.00001が使用されたことに、ここで注目すべきである。より低いMOIがVSV-FHおよびVSV-mIFNβに使用され、さもなければ、それらの迅速な複製によって、72時間より前に細胞単層の完全な破壊が結果としてもたらされたであろう。
ウイルスのCPEを比較するために、ベロ細胞に、VSV-FH、MV、およびVSV-mIFNβをMOI=1.0〜0.00001で感染させた。細胞を、72時間後に、2%クリスタルバイオレットで染色した(図12b)。単層の全破壊は、MVGについてはMOI=0.1で起こった。対照的に、VSV-FHおよびVSV-mIFNβウイルスは、5対数低いMOI=0.00001で細胞の全破壊を引き起こした。これらのウイルスが72時間で細胞単層の100%破壊を達成するために必要とされるMOIもまた、検討した。匹敵するCPEは、MVGによりMOI 0.1で、VSV-mIFNβまたはVSV-FHによりMOI 0.00001で達成された(図12c)。VSV-FHの細胞傷害潜在能力を次に、ヒト細胞株の群において評定し、様々な程度の効力を有することが見出された。図13は、SW579(扁平上皮癌)、LoVo(結腸腺癌)、SKOV3.ip1(卵巣癌)、およびKAS 6/1(多発性骨髄腫)由来のデータを提供する。両方とも多発性骨髄腫に対して有効であることが以前に示されている、ヒトヨウ化ナトリウム共輸送体(NIS)を発現する麻疹であるMV-NIS、およびVSV-M51-NISを、この比較研究において治療用ウイルスとして使用した(Dingli et al., Blood, 103:1641-1646 (2004);Goel et al., Blood, 110:2342-2350 (2007);およびMyers et al., Clin. Pharmacol. Ther., 82:700-710 (2007))。MOI=1.0で、すべての3種のウイルスは、試験したすべての細胞株において効力を有した。0.01と低いMOIで、VSV-M51-NISは、すべての細胞タイプを効率的に殺傷した。0.01と低いMOIで、MV-NISは概して、VSV-FHまたはVSV-M51-NISのいずれかほど効力を有さなかった。
VSV-FHの抗腫瘍潜在能力を、ヒト骨髄腫細胞株の群であるU266、MM1、RPMI 8226、JJN-3、およびKAS 6/1(図13b)、ならびに骨髄腫患者の骨髄吸引液から採取した細胞(図13c)において、さらに評定した。概して、VSV-FHは、インビトロでVSVM51-GFPと比較して効力が低かった。CD138+悪性形質細胞(骨髄腫)において、MV、VSV-FH、およびVSV-M51-NISは、CD138+細胞に対して良好な腫瘍選択性を示したが、CD138-正常骨髄間質細胞には感染しなかった。
VSV-FHはマウスにおいて神経毒性ではない
VSV-FHが、MVと比較して優れた腫瘍崩壊活性を示すことを確認した後、その安全性プロファイルを評定した。VSVは、マウスにおいて神経毒性である(Sabin and Olitsky, J. Exp. Med., 67:229-249 (1938);およびClarke et al., J. Virol., 81:2056-2064 (2007))。このハイブリッドウイルスの創出の主な目標の1つは、VSV-Gの神経細胞との相互作用に関連する神経毒性を取り除くことであった。VSV-FHが親VSVよりも神経毒性が低いかどうかを試験するため、ヒトにおけるのと同一の組織特異性を有するヒトCD46受容体を発現する麻疹感受性CD46トランスジェニックマウスに、107 TCID50の高用量のVSV-GFP、VSV-M51-NIS、またはVSV-FHを静脈内に与えた。VSV-GFPを与えられたマウス(n=6)は、6日目までに神経毒性で死んだ(図14)。マウスは、体重が減って、神経毒性およびストレスの臨床徴候(振戦、頭部傾斜、嗜眠、毛づくろいしない薄汚い毛皮)を示し、安楽死させた。脳における親VSVの存在もまた、VSVエンベロープタンパク質に対するポリクローナル抗体を用いた免疫蛍光により確認した。対照的に、VSV-FHを与えられたマウス(n=7)または弱毒化されたVSV-M51-NIS(n=6)を与えられたマウスは、体重損失を示さず、生理食塩水対照マウス(n=4)のように体重が増え続け、いかなる神経毒性の徴候も示さなかった(図14)。それらの生存曲線は、VSV-GFPと、VSV-M51-NIS(p=0.0007)、VSV-FH(p=0.0003)、または生理食塩水群(p=0.0044)について有意に異なっていた。
研究の終わり(30日目)に、マウスを安楽死させ、抗VSVまたは抗MV抗体を、ELISAにより、およびベロ細胞上でのプラーク低減中和アッセイにより測定した(図14c)。VSV-FHを与えられたマウスは、ELISAアッセイによりMVおよびVSVタンパク質について血清陽性であった(表1、ELISA力価)が、興味深いことに、これらの抗体は、MVのみを中和することができたが、VSVは中和できなかった。
(表1)VSVで処置されたマウスから取得された抗体のELISA力価(OD 450 nm)および中和力価
Figure 2015514420
VSV-FHはマウスにおける骨髄腫に対して高い活性を有する
MV-NISは、再発性または反復性骨髄腫を有する患者における第I相臨床試験において、静脈内送達後に評定されている(Dingli et al., Blood, 103:1641-1646 (2004);およびMyers et al., Clin. Pharmacol. Ther., 82:700-710 (2007))。VSVFHの抗腫瘍潜在能力を評定するため、確立された皮下KAS 6/1骨髄腫腫瘍(腫瘍直径0.4〜0.5 cm)を有するSCIDマウスに、107 TCID50 MV-NIS、107 TCID50 VSV-M51-NIS、または10倍少ない(106 TCID50)VSV-FHの一静脈内用量を与えた。VSV-FHは、腫瘍増殖を制御することができただけではなく、処置後の非常に早期に腫瘍負荷量を有意に減少させた。カプラン・マイヤー生存曲線は、VSVFHと、対照マウス(p=0.0010)またはMV-NIS(p=0.0354)またはVSV-M51-NIS(p=0.0011)との間で有意に異なっていた(図15b)。
臨床的に関連するモデルにおいてVSV-FHの有効性を試験するために、他の場所で特徴決定されている播種性ヒト骨髄腫モデルである播種性多発性骨髄腫を有するSCIDマウス(Liu et al., Mol. Ther., 18:1155-1164 (2010))を、VSV-FH、VSV-M51-NIS、またはMV-NISのいずれかの1×106 TCID50単位の3用量で処置した。重要なことに、VSV-FHおよびMV-NISの両方は、無処置群と比較して、疾患を制御することができ、マウスの生存を増大させた(MV-NISについてはp=0.0138、VSV-FHについてはp=0.0002)。皮下KAS 6/1腫瘍について得られた結果と同様に、VSV-M51-NISで処置されたマウスの生存は、無処置群と異ならなかった(p=0.5424)(図15c)。
VSV-M51-NISが、インビトロで高い活性を有するにもかかわらず、何故骨髄腫細胞株に対して効力を有さなかったのかについては興味深い(図13)。従って、ウイルス回収アッセイ(TCID50/g腫瘍)により、または免疫組織化学染色によりウイルス複製の解析を可能にして腫瘍中のウイルス拡散の証拠を示すために、マウスのコホートを、3および6日目に安楽死させて、腫瘍を採取した。図16において観察されるように、3日目に、VSV-FHまたはVSV-M51-NISで処置されたマウスにおいて良好なウイルス拡散があった。対照的に、MV-NISは、より遅発性のウイルスであったため、3日目には非常に弱い染色しかなかった。ウイルス複製の定量的測定を、腫瘍からの感染性ウイルスの回収により行い、ウイルスのIV送達後の腫瘍におけるウイルス子孫の産生を確認した(図16)。しかしながら、KAS 6/1細胞が、VSV-M51-NISによる感染後に豊富なIFNαおよびIFNβを産生したが、VSV-FHによる感染後には産生しなかったこともまた、インビトロアッセイから明白であった。I型IFNの産生は、インビボの環境においてさらなるウイルス拡散を限定する可能性がある。
これらの結果により、ハイブリッドVSV/MV腫瘍崩壊性ウイルスは、多発性骨髄腫を有する患者のための全身療法として生成され得ることが実証される。MVエンベロープ糖タンパク質のVSVコア上への組み込みにより、VSVと関連する神経毒性特性を有さない安定な完全に複製性のウイルスが生じた。VSV-FHは、親VSV-GFPとは異なり、MV受容体(CD46)陽性マウスの静脈内に与えられた際に、有害な臨床徴候または体重損失を引き起こさなかった。ハイブリッドウイルスは、融合性であり、かつMVの親和性を獲得し、それは、多様な癌において過剰発現しているが正常細胞においては相対的に低レベルで発現している補体制御タンパク質であるCD46を高レベルで発現する腫瘍に対する優先を含んだ。CD138+悪性形質細胞は、正常骨髄間質細胞と比較して7〜10倍高いCD46を、その細胞表面上に発現する(Ong et al., Exp. Hematol., 34:713-720 (2006))。実際に、VSV-FHは、初代CD138+骨髄腫細胞に効率的に感染することができたが、CD138-正常骨髄間質細胞には感染できなかった。VSV-FHは、MVと比較して、より高速で大きなシンシチウムを伴い、複製しかつ拡散した。VSV-FHのより高速の複製は、ベロ細胞上およびヒト癌細胞株における感染アッセイにおいて明白であった。VSV-FHの単一用量は、処置後の非常に早期に、皮下KAS 6/1腫瘍の迅速な退縮を誘導することができ、その効果は、マウスが10倍高い用量のMV-NISを与えられたにもかかわらず、MV-NISで処置された腫瘍においては観察されなかった。
他の態様
本発明がその詳細な説明と共に記載されてきたが、前述の説明は、本発明を例証し、かつその範囲を限定しないように意図され、本発明は添付の特許請求の範囲により定義されることが、理解されるべきである。他の局面、利点、および修飾が、添付の特許請求の範囲の範囲内である。

Claims (22)

  1. RNA分子を含む複製可能な水疱性口内炎ウイルスであって、該RNA分子が、VSV Nポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、VSV Pポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、VSV Mポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、パラミクソウイルスFポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、パラミクソウイルスHポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、およびVSV Lポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列を含み、かつ、機能的なVSV Gポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列を欠いている、ウイルス。
  2. 前記パラミクソウイルスHポリペプチドが、野生型麻疹ウイルスHポリペプチドに対してY481AおよびR533Aのアミノ酸置換を含む麻疹ウイルスHポリペプチドである、請求項1記載のウイルス。
  3. 前記パラミクソウイルスHポリペプチドが、一本鎖抗体のアミノ酸配列を含む、請求項1記載のウイルス。
  4. 前記一本鎖抗体が、EGFR、αFR、またはPSMAに対する一本鎖抗体である、請求項3記載のウイルス。
  5. 前記RNA分子ウイルスが、NISポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列を含む、請求項1記載のウイルス。
  6. RNA分子を含む複製可能な水疱性口内炎ウイルスを含む組成物であって、該RNA分子が、VSV Nポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、VSV Pポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、VSV Mポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、パラミクソウイルスFポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、パラミクソウイルスHポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、およびVSV Lポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列を含み、かつ、機能的なVSV Gポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列を欠いている、組成物。
  7. 前記パラミクソウイルスHポリペプチドが、野生型麻疹ウイルスHポリペプチドに対してY481AおよびR533Aのアミノ酸置換を含む麻疹ウイルスHポリペプチドである、請求項6記載の組成物。
  8. 前記パラミクソウイルスHポリペプチドが、一本鎖抗体のアミノ酸配列を含む、請求項6記載の組成物。
  9. 前記一本鎖抗体が、EGFR、αFR、またはPMSAに対する一本鎖抗体である、請求項8記載の組成物。
  10. 前記RNA分子ウイルスが、NISポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列を含む、請求項6記載の組成物。
  11. VSV Nポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、VSV Pポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、VSV Mポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、パラミクソウイルスFポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、パラミクソウイルスHポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、およびVSV Lポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列を含む核酸鎖を含み、該核酸鎖が、機能的なVSV Gポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列を欠いている、核酸分子。
  12. 前記核酸鎖が、NISポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列を含む、請求項11記載の核酸分子。
  13. 前記NISポリペプチドがヒトNISポリペプチドである、請求項12記載の核酸分子。
  14. 複製可能な水疱性口内炎ウイルスを含む組成物を、癌細胞を含む哺乳動物に投与する工程を含む、癌を処置する方法であって、該水疱性口内炎ウイルスが、VSV Nポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、VSV Pポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、VSV Mポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、パラミクソウイルスFポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、パラミクソウイルスHポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、およびVSV Lポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列を含むRNA分子を含み、該RNA分子が、機能的なVSV Gポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列を欠いており、該組成物の該哺乳動物への投与が、該水疱性口内炎ウイルスが該癌細胞に感染して感染癌細胞を形成する条件下であり、かつ該哺乳動物内の癌細胞の数が、該投与後に低減する、方法。
  15. 前記哺乳動物がヒトである、請求項14記載の方法。
  16. 前記RNA分子が、NISポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列を含む、請求項14記載の方法。
  17. 前記NISポリペプチドがヒトNISポリペプチドである、請求項16記載の方法。
  18. 複製可能な水疱性口内炎ウイルスを含む組成物を、腫瘍を含む哺乳動物に投与する工程を含む、哺乳動物において腫瘍退縮を誘導する方法であって、該水疱性口内炎ウイルスが、VSV Nポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、VSV Pポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、VSV Mポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、パラミクソウイルスFポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、パラミクソウイルスHポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、およびVSV Lポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列を含むRNA分子を含み、該RNA分子が、機能的なVSV Gポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列を欠いており、該組成物の該哺乳動物への投与が、該水疱性口内炎ウイルスが該腫瘍の腫瘍細胞に感染して感染腫瘍細胞を形成する条件下である、方法。
  19. 前記哺乳動物がヒトである、請求項18記載の方法。
  20. 前記RNA分子が、NISポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列を含む、請求項18記載の方法。
  21. 前記NISポリペプチドがヒトNISポリペプチドである、請求項20記載の方法。
  22. 複製可能な水疱性口内炎ウイルスを細胞からレスキューする(rescuing)方法であって、該水疱性口内炎ウイルスが、VSV Nポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、VSV Pポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、VSV Mポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、パラミクソウイルスFポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、パラミクソウイルスHポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列、およびVSV Lポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列を含むRNA分子を含み、該RNA分子が、機能的なVSV Gポリペプチドをコードするプラスセンス転写物のための鋳型である核酸配列を欠いており、該方法が、
    (a)該RNA分子をコードする核酸を、複製可能な水疱性口内炎ウイルスが産生される条件下で該細胞中に挿入する工程、および
    (b)該複製可能な水疱性口内炎ウイルスを採取する工程
    を含む、前記方法。
JP2015506998A 2012-04-18 2013-03-13 複製可能な水疱性口内炎ウイルス Pending JP2015514420A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261635164P 2012-04-18 2012-04-18
US61/635,164 2012-04-18
PCT/US2013/030971 WO2013158263A1 (en) 2012-04-18 2013-03-13 Replication-competent vesicular stomatitis viruses

Publications (1)

Publication Number Publication Date
JP2015514420A true JP2015514420A (ja) 2015-05-21

Family

ID=49383922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015506998A Pending JP2015514420A (ja) 2012-04-18 2013-03-13 複製可能な水疱性口内炎ウイルス

Country Status (4)

Country Link
US (5) US9555067B2 (ja)
EP (1) EP2838910A4 (ja)
JP (1) JP2015514420A (ja)
WO (1) WO2013158263A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015514420A (ja) 2012-04-18 2015-05-21 メイヨ・ファウンデーション・フォー・メディカル・エデュケーション・アンド・リサーチ 複製可能な水疱性口内炎ウイルス
CN112941038B (zh) * 2020-03-16 2021-11-09 中国科学院动物研究所 基于水疱性口炎病毒载体的重组新型冠状病毒及其制备方法与应用
US20230149536A1 (en) 2020-04-17 2023-05-18 Vyriad, Inc. Compositions for treating and/or preventing coronavirus infections
CN116075725A (zh) 2020-04-17 2023-05-05 瑞泽恩制药公司 用于冠状病毒中和抗体的检测测定法
EP4216974A1 (en) * 2020-09-23 2023-08-02 Mayo Foundation for Medical Education and Research Methods and materials for treating cancer
WO2023049794A1 (en) * 2021-09-24 2023-03-30 Board Of Regents, The University Of Texas System Rapid acting vaccine against nipah virus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008037458A2 (en) * 2006-09-27 2008-04-03 Bundesrepublik Deutschland, Letztvertreten Durch Den Präsidenten Des Paul-Ehrlich-Instituts Pseudotyping of retroviral vectors, methods for production and use thereof for targeted gene transfer and high throughput screening
WO2012031137A2 (en) * 2010-09-02 2012-03-08 Mayo Foundation For Medical Education And Research Vesicular stomatitis viruses

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9814370A (pt) * 1997-12-22 2000-10-10 Univ Tennessee Research Corp A Rhabdovirus recombinante contendo uma proteìna de fusão heteróloga.
CN105769931B (zh) 2006-09-15 2021-04-27 渥太华医院研究机构 溶瘤弹状病毒
CN101688186A (zh) * 2007-05-04 2010-03-31 巴克斯特国际公司 用于病毒增殖的两阶段温度分布
JP2015514420A (ja) * 2012-04-18 2015-05-21 メイヨ・ファウンデーション・フォー・メディカル・エデュケーション・アンド・リサーチ 複製可能な水疱性口内炎ウイルス

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008037458A2 (en) * 2006-09-27 2008-04-03 Bundesrepublik Deutschland, Letztvertreten Durch Den Präsidenten Des Paul-Ehrlich-Instituts Pseudotyping of retroviral vectors, methods for production and use thereof for targeted gene transfer and high throughput screening
WO2012031137A2 (en) * 2010-09-02 2012-03-08 Mayo Foundation For Medical Education And Research Vesicular stomatitis viruses

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HASEGAWA K. ET AL., CLIN CANCER RES, vol. 12(20)(2006), JPN6017000579, pages 6170 - 6178, ISSN: 0003478167 *
LIU C. ET AL, PROSTATE, vol. 69(10)(2009), JPN6017000578, pages 1128 - 1141, ISSN: 0003478168 *
OKUMA K. ET AL, JOURNAL OF GENERAL VIROLOGY, vol. 82(2001), JPN6017000577, pages 821 - 830, ISSN: 0003478166 *
TATSUO H. ET AL, J. VIROL., vol. 74(9)(2000), JPN6017000580, pages 4139 - 4145, ISSN: 0003478165 *

Also Published As

Publication number Publication date
EP2838910A4 (en) 2015-12-09
US20170157187A1 (en) 2017-06-08
US20180214497A1 (en) 2018-08-02
US20150079037A1 (en) 2015-03-19
US11723937B2 (en) 2023-08-15
US20240000873A1 (en) 2024-01-04
EP2838910A1 (en) 2015-02-25
US9555067B2 (en) 2017-01-31
US20200206286A1 (en) 2020-07-02
WO2013158263A1 (en) 2013-10-24
US10610553B2 (en) 2020-04-07
US9861668B2 (en) 2018-01-09

Similar Documents

Publication Publication Date Title
US11723937B2 (en) Replication-competent vesicular stomatitis viruses
JP2022002531A (ja) 改変された腫瘍溶解性ウイルス
JP6205012B2 (ja) 水疱性口内炎ウイルス
JP2020503871A (ja) 改変ウイルス
CA3103371A1 (en) Treatment using oncolytic virus
Sinkovics et al. Natural and genetically engineered viral agents for oncolysis and gene therapy of human cancers
US20220118080A1 (en) Modified viruses
CN107787364A (zh) 用于治疗癌症的治疗组合物及使用方法
US20240083966A1 (en) Vesicular stomatitis viruses
US20140271564A1 (en) Vesicular stomatitis viruses containing a maraba virus glycoprotein polypeptide

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150423

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170118

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170925