JP2015513608A - High strength bake hardenable low density steel and method for producing the same - Google Patents

High strength bake hardenable low density steel and method for producing the same Download PDF

Info

Publication number
JP2015513608A
JP2015513608A JP2014557076A JP2014557076A JP2015513608A JP 2015513608 A JP2015513608 A JP 2015513608A JP 2014557076 A JP2014557076 A JP 2014557076A JP 2014557076 A JP2014557076 A JP 2014557076A JP 2015513608 A JP2015513608 A JP 2015513608A
Authority
JP
Japan
Prior art keywords
steel
strip
less
ppm
upper limit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014557076A
Other languages
Japanese (ja)
Other versions
JP6342336B2 (en
Inventor
チェン、リウ
ラダカンタ、ラナ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tata Steel Nederland Technology BV
Original Assignee
Tata Steel Nederland Technology BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47720526&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2015513608(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Tata Steel Nederland Technology BV filed Critical Tata Steel Nederland Technology BV
Publication of JP2015513608A publication Critical patent/JP2015513608A/en
Application granted granted Critical
Publication of JP6342336B2 publication Critical patent/JP6342336B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • C21D8/0284Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material
    • Y10T29/49988Metal casting
    • Y10T29/49991Combined with rolling

Abstract

本発明は、高強度焼き付け硬化性低密度鋼および前記鋼鉄を製造する方法に関する。The present invention relates to a high-strength bake-hardening low density steel and a method for producing said steel.

Description

本発明は、高強度焼付硬化性低密度鋼およびその製造方法に関する。   The present invention relates to a high strength bake hardenable low density steel and a method for producing the same.

鉄鋼業界は、車輌の炭素放出低減のための継続的な取り組みにおいて、自動車メーカーと共同して、鋼鉄の加工性や完成品の安全性に影響を与えずに炭素放出の減量を可能にする鋼鉄を得ようと、継続的に努力している。将来のCO排出規制を満たすためには、自動車の燃費を削減しなければならない。この削減に向けた1つの方法は、車体の重量を軽くすることである。低密度且つ高強度の鋼鉄はこれに貢献し得る。同じ厚さで、低密度鋼を使用すると自動車部品の重量は軽量化される。公知の高強度鋼鉄に関する問題は、シートを車の部品に形成する際に、材料が高強度であるが故に成形性を損なうことである。 In an ongoing effort to reduce vehicle carbon emissions, the steel industry is working with automakers to enable carbon emissions to be reduced without affecting steel processability and finished product safety. We are continuously striving to gain. In order to meet future CO 2 emission regulations, the fuel consumption of automobiles must be reduced. One way to reduce this is to reduce the weight of the car body. Low density and high strength steel can contribute to this. When low density steel is used with the same thickness, the weight of automobile parts is reduced. A problem with known high strength steels is that when forming sheets into car parts, the formability is impaired due to the high strength of the material.

二相鋼のような通常の高強度鋼鉄ではより薄いシートを使用できるため、軽量化が可能となる。しかしながら、より薄い部品は、剛性、クラッシュ耐性およびデント耐性などの他の特性にマイナスの影響を及ぼすであろう。これらのマイナスの影響を解消するには、軽量化の効果が失われることにはなるが鋼鉄の厚みを厚くするか、あるいはこれもまた望ましくないが、部品の形状を変えるしかない。   With normal high-strength steel such as duplex stainless steel, a thinner sheet can be used, which makes it possible to reduce the weight. However, thinner parts will negatively affect other properties such as stiffness, crash resistance and dent resistance. To eliminate these negative effects, the effect of weight reduction is lost, but the thickness of the steel is increased, or this is also undesirable, but the shape of the part must be changed.

本発明の目的は、完成部品における高強度と、自動車部品を形成する前の優れた成形性とを兼ね備える低密度鋼を提供することである。   An object of the present invention is to provide a low density steel having both high strength in a finished part and excellent formability before forming an automobile part.

優れた剛性およびデント耐性を有する高強度鋼鉄を提供することも本発明の目的である。   It is also an object of the present invention to provide a high strength steel having excellent stiffness and dent resistance.

本発明の目的は、重量パーセントで以下の成分を含んでなるフェライト鋼ストリップまたはシートを提供することによって達成することができる:
C(総炭素含有量)を0.01%以下、
Siを0.5%以下、
Mnを1.0%以下、
Alを5%〜上限10%、
Nを0.010%以下、
Tiを0.019%以下、
Nbを0.08%以下、
Zrを0.1%以下、
Vを0.1%以下、
Sを0.01%以下、
Pを0.1%以下、
所望により、Bを5〜50ppm、並びに
残部として鉄および不可避不純物。
ここで、
C(溶質炭素含有量)=C(総炭素含有量)
・Minimum[X,Y]
・Maximum[Z,0]
・(12/93)×Nb
・(12/91)×Zr
・(12/51)×V
ここで、X,Y,Zは、
・X=2×12/(2×32)×S、
・Y=2×12/(4×48)×(Ti−48/14×N)、
・Z=12/48×(Ti−48/14×N−4×48/(2×32)×S)、
であり、ここで、
Minimum[X,Y]=XおよびYの小さい方の値であり、
Minimum[X,Y]=Yが負の場合は0であり、
Maximum[Z,0]=0およびZの大きい方の値であり、
C(溶質炭素含有量)が少なくとも0.0005(5ppm)である。
The objects of the present invention can be achieved by providing a ferritic steel strip or sheet comprising the following components in weight percent:
C (total carbon content) is 0.01% or less,
Si is 0.5% or less,
Mn is 1.0% or less,
Al 5% to 10% upper limit,
N is 0.010% or less,
Ti is 0.019% or less,
Nb is 0.08% or less,
Zr is 0.1% or less,
V is 0.1% or less,
S is 0.01% or less,
P is 0.1% or less,
Optionally, 5-50 ppm of B, with iron and inevitable impurities as the balance.
here,
C (solute carbon content) = C (total carbon content)
・ Minimum [X, Y]
・ Maximum [Z, 0]
・ (12/93) × Nb
・ (12/91) × Zr
・ (12/51) × V
Here, X, Y, and Z are
X = 2 × 12 / (2 × 32) × S,
Y = 2 × 12 / (4 × 48) × (Ti−48 / 14 × N),
Z = 12/48 x (Ti-48 / 14 x N-4 x 48 / (2 x 32) x S),
And where
Minimum [X, Y] = the smaller value of X and Y,
Minimum [X, Y] = 0 if Y is negative,
Maximum [Z, 0] = 0 and the larger value of Z,
C (solute carbon content) is at least 0.0005 (5 ppm).

特に記載のない限り、全ての%は重量パーセントである。誤解を避けるために、前述の式は、市販のスプレッドシートプログラム、例えばMicrosoft Excelで入力される場合、式の正しい解釈が得られる。たとえば、当業者はこの式中で炭素(12)およびNb(93)の原子質量を理解するので、12/93×Nbは(12/93)×Nbと正しく解釈される。これは、(変更すべきところは変更して)式中の他の数値についても同じである。したがって、蛇足ながら、   Unless otherwise noted, all percentages are percent by weight. In order to avoid misunderstandings, the above formulas are correctly interpreted when entered in a commercial spreadsheet program, such as Microsoft Excel. For example, one skilled in the art understands the atomic mass of carbon (12) and Nb (93) in this formula, so 12/93 × Nb is interpreted correctly as (12/93) × Nb. This is the same for the other numerical values in the formula (with changes to be made). Therefore,

Figure 2015513608
である。
Figure 2015513608
It is.

本発明による鋼鉄は、アニーリングおよび任意の亜鉛メッキステップ後に、鋼鉄が固溶体中に炭素(溶質炭素含有量)を含有することを可能にするように適合された化学組成を有する。この固溶体中の炭素によって、鋼鉄が例えば塗料焼付サイクルで焼付硬化性であることが可能になる。自動車部品は、ミルから得られる鋼鉄から形成され、成分は、その最終形状に形成された後に塗装され、焼き付けられる。   The steel according to the invention has a chemical composition adapted to allow the steel to contain carbon (solute carbon content) in the solid solution after annealing and optional galvanizing steps. The carbon in this solid solution allows the steel to be bake hardenable, for example in a paint baking cycle. Automotive parts are formed from steel obtained from a mill, and the components are painted and baked after they are formed into their final shape.

加えて、本発明による鋼鉄は、自動車部品を形成する前、すなわち塗装焼き付け操作前の良好な成形性と、塗装焼付操作後の高い強度とを兼ね備える。   In addition, the steel according to the present invention combines good formability before forming automotive parts, that is, before paint baking operation, and high strength after paint baking operation.

本発明者らは、塗料焼付サイクルにおいて焼付硬化性である鋼鉄について、少なくとも5ppmの溶質炭素(溶質炭素含有量)が鋼鉄中に存在しなければならないことを見出した。溶質炭素の量が少ないと、効果はごくわずかであるか、または再現できない。   The inventors have found that for steels that are bake hardenable in paint baking cycles, at least 5 ppm of solute carbon (solute carbon content) must be present in the steel. If the amount of solute carbon is small, the effect is negligible or cannot be reproduced.

溶質炭素のレベルはまた、臨界上限値(critical upper value)を越えない可能性もある。なぜなら、鋼鉄は好ましくは自然老化しないからである。自然老化は室温での過飽和固溶体の自発老化であり、鋼鉄の物理的特性の自発変化を含み、これは、熱間もしくは冷間圧延後または最終熱処理後、例えばストリップを加工する前に顧客へ輸送する間または顧客で保管する間、大気温度で保持されると起こる。この自然老化は、自動車部品の形成中の加工性における予測不能な変動に至るので望ましくないと見なされる機械的特性の変化を含む。また、表面品質は、いわゆるリューダー線(Luder-line)の形成により悪影響を受ける可能性がある。また、固溶体中の炭素レベルが高すぎると、焼付硬化前の成形性の低下が起こり得る。   The level of solute carbon may also not exceed the critical upper value. This is because steel is preferably not naturally aged. Natural aging is the spontaneous aging of supersaturated solid solutions at room temperature, including spontaneous changes in the physical properties of the steel, which are transported to the customer after hot or cold rolling or after the final heat treatment, e.g. before processing the strip Occurs when held at ambient temperature during storage or at customer storage. This natural aging includes changes in mechanical properties that are considered undesirable because they lead to unpredictable variations in processability during the formation of automotive parts. Also, the surface quality can be adversely affected by the formation of so-called Luder-lines. Moreover, when the carbon level in a solid solution is too high, the moldability before baking hardening may fall.

そのような理由で、最大で50ppmの溶質炭素が好ましい。さらに好適な最大値は40ppmの溶質炭素(すなわち0.004%)である。   For that reason, a maximum of 50 ppm solute carbon is preferred. A more preferred maximum is 40 ppm solute carbon (ie 0.004%).

本発明の1つの実施形態において、溶質炭素含有量は少なくとも0.0010(10ppm)および/または最高でも0.0030(30ppm)である。これによって、安定なプロセスおよび再現可能な特性が達成される。   In one embodiment of the invention, the solute carbon content is at least 0.0010 (10 ppm) and / or at most 0.0030 (30 ppm). This achieves a stable process and reproducible properties.

窒素、特に遊離窒素(すなわち、固溶体中窒素)は、製鋼において望ましくないが、避けられない。チタンを場合によって添加して、窒素を結合させてTiNにすることができる。鋼鉄中の大量のアルミニウムも、全ての窒素が結合することを保証し得る。このことは、マトリックスが固溶体中の窒素を実質的に含まないことを意味する。   Nitrogen, especially free nitrogen (ie, nitrogen in solid solution) is undesirable in steelmaking but is unavoidable. Titanium can optionally be added to bind nitrogen to TiN. Large amounts of aluminum in the steel can also ensure that all nitrogen is bound. This means that the matrix is substantially free of nitrogen in the solid solution.

所望によりホウ素を鋼鉄に添加する。その存在は必須ではないが、二次的製品が脆化する傾向を抑制するのに役立つ可能性がある。添加される場合、最低5ppmのホウ素が必要である。   Optionally, boron is added to the steel. Its presence is not essential, but may help to reduce the tendency of secondary products to become brittle. If added, a minimum of 5 ppm boron is required.

本発明の1つの実施形態において、マンガン含有量は少なくとも0.1%である。別の実施形態において、アルミニウム含有量は少なくとも6%および/または最高でも9%であり、好ましくは最高でも8%である。   In one embodiment of the invention, the manganese content is at least 0.1%. In another embodiment, the aluminum content is at least 6% and / or at most 9%, preferably at most 8%.

鋼鉄は、好ましくはカルシウム処理される。化学組成は、したがってカルシウム処理にふさわしい量のカルシウムも含有し得る。   The steel is preferably calcium treated. The chemical composition may therefore also contain an amount of calcium suitable for calcium treatment.

本発明による鋼鉄では、鋼鉄中の総炭素含有量の優れた制御と組み合わせて、固溶体中の炭素の量をマイクロ合金化元素(Ti、Nb、V、Zr)の添加によって制御する。   In the steel according to the invention, the amount of carbon in the solid solution is controlled by the addition of microalloying elements (Ti, Nb, V, Zr) in combination with an excellent control of the total carbon content in the steel.

TiまたはNbの量は、厳密に制御されなくてはならない。チタンまたはニオブは多すぎると、炭素と結合して炭化物を形成するか、またはイオウの存在下で炭硫化物を形成する。結果として、溶質炭素が得られなくなり、焼付硬化性も得られない。   The amount of Ti or Nb must be strictly controlled. If there is too much titanium or niobium, it will combine with carbon to form carbides or carbon sulfides in the presence of sulfur. As a result, solute carbon cannot be obtained, and bake hardenability cannot be obtained.

本発明による固溶体中の炭素の量は、次にように、総炭素含有量(C_total)から炭素を含んでなる沈殿を差し引くことによって算出される。
C(溶質炭素含有量)=C(総炭素含有量)
・Minimum[X,Y]
・Maximum[Z,0]
・(12/93)×Nb
・(12/91)×Zr
・(12/51)×V、
ここで、X,Y,Zは、
・X=2×12/(2×32)×S、
・Y=2×12/(4×48)×(Ti−48/14×N)、
・Z=12/48×(Ti−48/14×N−4×48/(2×32)×S)、
であり、ここで、
Minimum[X,Y]=XおよびYの小さい方の値であり、
Minimum[X,Y]=Yが負の場合は0であり、
Maximum[Z,0]=0およびZの大きい方の値である。
The amount of carbon in the solid solution according to the present invention is calculated by subtracting the precipitate comprising carbon from the total carbon content (C_total) as follows.
C (solute carbon content) = C (total carbon content)
・ Minimum [X, Y]
・ Maximum [Z, 0]
・ (12/93) × Nb
・ (12/91) × Zr
・ (12/51) × V,
Here, X, Y, and Z are
X = 2 × 12 / (2 × 32) × S,
Y = 2 × 12 / (4 × 48) × (Ti−48 / 14 × N),
Z = 12/48 x (Ti-48 / 14 x N-4 x 48 / (2 x 32) x S),
And where
Minimum [X, Y] = the smaller value of X and Y,
Minimum [X, Y] = 0 if Y is negative,
Maximum [Z, 0] = 0 and the larger value of Z.

これらの式の解釈については本明細書中の上記を参照のこと。Tiの添加は、窒素と結合するために有益であるが、厳密には必要ではない。上限で0.019%までのTiを鋼鉄に添加して、主に窒素と結合してTiNにすることができ、副次的に溶質炭素の量を制御することができる。チタン含有量は0.019%以下、例えば上限でも0.018%もしくは0.015%、またはさらには最高でも0.012%でなければならない。   See above in the specification for the interpretation of these formulas. The addition of Ti is beneficial for bonding with nitrogen, but is not strictly necessary. Up to 0.019% Ti can be added to the steel, and it can be combined mainly with nitrogen to form TiN, and the amount of solute carbon can be controlled secondary. The titanium content should be 0.019% or less, for example 0.018% or 0.015% at the upper limit, or even 0.012% at the maximum.

チタンが合金化元素として添加される場合、チタン含有量の好適な最小値は0.005%である。Nbが添加される場合の好適な最小値は0.008%である。VおよびZr添加される場合の好適な最小値はそれぞれ0.002および0.004である。   When titanium is added as an alloying element, the preferred minimum value of titanium content is 0.005%. A preferred minimum value when Nb is added is 0.008%. Preferred minimum values when V and Zr are added are 0.002 and 0.004, respectively.

好ましい実施形態によると、本発明によるフェライト鋼の組成は、以下の基本組成(重量パーセント)を有する。
C(総炭素含有量)を0.01%以下、
Siを0.5%以下、
Mnを1.0%以下、
Alを5%〜上限10%、
Nを0.010%以下、
Tiを0.019%以下、
Nbを0.08%以下、
Zrを0.1%以下、
Vを0.1%以下、
Sを0.01%以下、
Pを0.1%以下、
所望により、Bを5〜50ppm、並びに
残部として鉄および不可避不純物
この組成では、鋼鉄に添加されたチタンはなく、存在するチタンは不可避不純物である。
According to a preferred embodiment, the composition of the ferritic steel according to the invention has the following basic composition (weight percent):
C (total carbon content) is 0.01% or less,
Si is 0.5% or less,
Mn is 1.0% or less,
Al 5% to 10% upper limit,
N is 0.010% or less,
Ti is 0.019% or less,
Nb is 0.08% or less,
Zr is 0.1% or less,
V is 0.1% or less,
S is 0.01% or less,
P is 0.1% or less,
Optionally, 5 to 50 ppm of B, and iron and unavoidable impurities as the balance. In this composition, no titanium has been added to the steel, and the titanium present is an unavoidable impurity.

合金化元素として、または不可避不純物としてのチタンは、まずTiNを形成する。過剰の窒素が存在する場合、残りの窒素はアルミニウムと結合する。過剰のチタンがある場合、残りのチタンは、全てのチタンが消費されるまでTiを形成する。因子Minimum[X,Y]は、全ての遊離窒素がTiNと結合した後にTiの形成によってどのくらい炭素が消費されるかを算出する。計算の結果、Yについて負の値になる場合、その因子はゼロに設定される。 Titanium first forms TiN as an alloying element or as an inevitable impurity. If excess nitrogen is present, the remaining nitrogen combines with aluminum. If there is an excess of titanium, the remaining titanium will form Ti 4 C 2 S 2 until all of the titanium is consumed. The factor Minimum [X, Y] calculates how much carbon is consumed by the formation of Ti 4 C 2 S 2 after all the free nitrogen has combined with TiN. If the calculation results in a negative value for Y, the factor is set to zero.

チタンが全く無い場合、TiNまたはTiは形成されず、Minimum[X,Y]はゼロになる。因子Maximum[Z,0]は、TiNおよびTiを形成に関与した後、どの程度の炭素がチタンと結合するかを決定する。 In the absence of titanium, TiN or Ti 4 C 2 S 2 is not formed and Minimum [X, Y] is zero. The factor Maximum [Z, 0] determines how much carbon binds to titanium after participating in the formation of TiN and Ti 4 C 2 S 2 .

他の3つの因子はNbC、ZrCおよびVCの形成に関与し、それによって因子Minimum[X,Y]およびMaximum[Z,0]と合わせて鋼鉄中の溶質炭素の量を決定する。   The other three factors are involved in the formation of NbC, ZrC and VC, and together with the factors Minimum [X, Y] and Maximum [Z, 0] determine the amount of solute carbon in the steel.

チタンを添加しないかもしくはごく少量だけ添加することによって、および/または特定量のNbを添加することによって、焼付硬化のために利用可能な充分な溶質炭素が存在するようになる。溶質炭素のレベルを50ppmよりも低く、好ましくは40ppmよりも低く制御することによって、本発明による鋼鉄は焼付硬化可能であり、自然老化耐性がある。   By adding no or only a small amount of titanium and / or by adding a certain amount of Nb, there will be sufficient solute carbon available for bake hardening. By controlling the level of solute carbon below 50 ppm, preferably below 40 ppm, the steel according to the invention can be bake hardened and is resistant to natural aging.

第2の態様によるフェライト鋼ストリップの製造方法は、
鋼スラブまたは肉厚ストリップを
・連続キャスティング、または
・薄スラブキャスティング、または
・ベルトキャスティング、または
・ストリップキャスティング
により準備する工程、
所望により、続いて前記鋼スラブまたはストリップを最高でも1250℃の再加熱温度で再加熱する工程、
前記スラブまたは肉厚ストリップを熱間圧延し、少なくとも850℃の熱間圧延仕上げ温度で熱間圧延工程を終了する工程、
熱間圧延ストリップを550〜750℃のコイリング温度でコイリングする工程、
を含んでなる方法が提供される。
The method for producing a ferritic steel strip according to the second aspect comprises:
Preparing a steel slab or thick strip by continuous casting, or by thin slab casting, or by belt casting, or by strip casting,
Optionally reheating the steel slab or strip at a reheating temperature of at most 1250 ° C., if desired;
Hot rolling the slab or thick strip and ending the hot rolling process at a hot rolling finish temperature of at least 850 ° C .;
Coiling the hot rolled strip at a coiling temperature of 550-750 ° C .;
A method comprising is provided.

好ましい実施形態において、コイリング温度は少なくとも600℃である、および/または熱間圧延仕上げ温度は少なくとも900℃である。   In a preferred embodiment, the coiling temperature is at least 600 ° C. and / or the hot rolling finish temperature is at least 900 ° C.

前記熱間圧延ストリップは、その後、
40〜90%の冷間圧下率で熱間圧延ストリップを冷間圧延して、冷間圧延ストリップを製造する工程、
連続アニーリングプロセスにおいて700〜900℃のピーク金属温度で前記冷間圧延ストリップをアニーリングする工程、
溶融亜鉛めっき若しくは電気亜鉛めっき、またはヒート・トゥ・コート(heat-to-coat)プロセスでアニーリングされたストリップを所望により亜鉛めっきする工程、
を含んでなる工程によりさらに加工することができる。
The hot rolled strip is then
Cold rolling the hot rolled strip at a cold reduction of 40-90% to produce a cold rolled strip;
Annealing the cold-rolled strip at a peak metal temperature of 700-900 ° C. in a continuous annealing process;
Optionally galvanizing strips annealed in hot dip galvanization or electrogalvanization or heat-to-coat processes;
It can be further processed by a process comprising:

熱間圧延ストリップを、通常、冷間圧延工程前に酸洗いし清浄化する。1つの実施形態において、連続アニーリングプロセスにおけるピーク金属温度は少なくとも750℃、好ましくは少なくとも800℃である。   Hot rolled strips are usually pickled and cleaned prior to the cold rolling process. In one embodiment, the peak metal temperature in the continuous annealing process is at least 750 ° C, preferably at least 800 ° C.

1つの実施形態において、冷間圧下率は少なくとも50%である。   In one embodiment, the cold reduction is at least 50%.

1つの実施形態において、熱間圧延ストリップの厚さは1〜5mmであり、および/または冷間圧延ストリップの厚さは0.4〜2mmである。   In one embodiment, the thickness of the hot rolled strip is 1-5 mm and / or the thickness of the cold rolled strip is 0.4-2 mm.

本発明の1つの実施形態において、熱間圧延ストリップを連続アニーリング工程においてアニーリングし、所望により溶融亜鉛めっき工程において亜鉛めっきを行う。アニーリングは、また、いわゆるヒート・トゥ・コートサイクルに関与し得る。ヒート・トゥ・コートサイクルで、溶融亜鉛めっきを実施するために充分な温度であるが、通常の連続アニーリングステップほど高くない温度まで、熱間圧延鋼鉄を再加熱する。再加熱の間、熱間圧延後に熱間圧延されたコイルの徐冷中に沈殿し得る炭素を再度固溶体にする。アニーリングおよび/または亜鉛メッキの後、固溶体中の炭素の沈殿を回避するためには、鋼鉄を急速冷却しなければならない。自動車部品または他の製品を成形によって製造するために、この亜鉛めっきされた鋼鉄シートを使用し、続いて塗装し、焼き付ける場合、塗装焼付によって、塗料焼付サイクルと関連して強度が確実に増加する。   In one embodiment of the present invention, the hot-rolled strip is annealed in a continuous annealing process and optionally galvanized in a hot dip galvanizing process. Annealing can also involve a so-called heat-to-coat cycle. In a heat-to-coat cycle, the hot-rolled steel is reheated to a temperature sufficient to perform hot dip galvanizing, but not as high as a normal continuous annealing step. During reheating, the carbon that can precipitate during the slow cooling of the hot-rolled coil after hot rolling is again made into a solid solution. After annealing and / or galvanization, the steel must be rapidly cooled to avoid precipitation of carbon in the solid solution. If this galvanized steel sheet is used to produce automotive parts or other products by molding, followed by painting and baking, paint baking will surely increase the strength associated with the paint baking cycle. .

本発明をここで以下の非限定的な実施例によってさらに説明する。   The invention will now be further illustrated by the following non-limiting examples.

鋼鉄を製造し、1mmの厚さを有する冷間圧延鋼シートに加工した。熱間圧延されたストリップは3.0mmの厚さを有していた。鋼鉄の化学組成を表1に記載する。   Steel was produced and processed into cold rolled steel sheets having a thickness of 1 mm. The hot rolled strip had a thickness of 3.0 mm. The chemical composition of the steel is shown in Table 1.

Figure 2015513608
Figure 2015513608

スラブをキャスティングし、スラブを最高1250℃の温度で再加熱することによって、鋼鉄を製造した。この温度が最高温度である。なぜなら、さらに高い再加熱温度では、過度の粒成長が起こり得るからである。熱間圧延の間の仕上げ温度は900℃であり、コイリング温度は650℃であり、続いて酸洗いし、冷間圧延(67%)し、800℃のピーク金属温度で連続アニーリングし、溶融亜鉛メッキする。鋼鉄3aは16ppmのBも含有していた。   Steel was produced by casting the slab and reheating the slab at temperatures up to 1250 ° C. This temperature is the maximum temperature. This is because excessive grain growth can occur at higher reheating temperatures. Finishing temperature during hot rolling is 900 ° C., coiling temperature is 650 ° C., followed by pickling, cold rolling (67%), continuous annealing at 800 ° C. peak metal temperature, Plating. Steel 3a also contained 16 ppm B.

Figure 2015513608
Figure 2015513608

表2で示された結果は、14〜24ppmまたは31ppmまでの量の溶質炭素の存在が、加工硬化上で約40MPaの増加と鋼鉄の基本強度をもたらすことを明らかに示している。本発明者等は、5〜50ppmの溶質炭素レベルでこの効果があることを見出した。   The results shown in Table 2 clearly show that the presence of solute carbon in amounts up to 14-24 ppm or 31 ppm results in an increase of about 40 MPa on work hardening and the basic strength of steel. The inventors have found this effect at solute carbon levels of 5-50 ppm.

Figure 2015513608
Figure 2015513608

Claims (15)

重量パーセントで、
C(総炭素含有量)を0.01%以下、
Siを0.5%以下、
Mnを1.0%以下、
Alを5%〜上限10%、
Nを0.010%以下、
Tiを0.019%以下、
Nbを0.08%以下、
Zrを0.1%以下、
Vを0.1%以下、
Sを0.01%以下、
Pを0.1%以下、
所望により、Bを5〜50ppm、並びに
残部として鉄および不可避不純物、
を含んでなり、
C(溶質炭素含有量)=C(総炭素含有量)
・Minimum[X,Y]
・Maximum[Z,0]
・(12/93)×Nb
・(12/91)×Zr
・(12/51)×V、
ここで、X,Y,Zは、
Figure 2015513608
であり、
Minimum[X,Y]=XおよびYの小さい方の値であり、
Minimum[X,Y]=Yが負の場合は0であり、
Maximum[Z,0]=0およびZの大きい方の値であり、
C(溶質炭素含有量)が少なくとも0.0005(5ppm)である、フェライト鋼ストリップまたはシート。
In weight percent
C (total carbon content) is 0.01% or less,
Si is 0.5% or less,
Mn is 1.0% or less,
Al 5% to 10% upper limit,
N is 0.010% or less,
Ti is 0.019% or less,
Nb is 0.08% or less,
Zr is 0.1% or less,
V is 0.1% or less,
S is 0.01% or less,
P is 0.1% or less,
If desired, 5-50 ppm of B, and the balance iron and inevitable impurities,
Comprising
C (solute carbon content) = C (total carbon content)
・ Minimum [X, Y]
・ Maximum [Z, 0]
・ (12/93) × Nb
・ (12/91) × Zr
・ (12/51) × V,
Here, X, Y, and Z are
Figure 2015513608
And
Minimum [X, Y] = the smaller value of X and Y,
Minimum [X, Y] = 0 if Y is negative,
Maximum [Z, 0] = 0 and the larger value of Z,
A ferritic steel strip or sheet having a C (solute carbon content) of at least 0.0005 (5 ppm).
C(溶質炭素含有量)が上限で0.0050(50ppm)である、請求項1記載の鋼鉄。   The steel according to claim 1, wherein the upper limit of C (solute carbon content) is 0.0050 (50 ppm). Mnが少なくとも0.1%である、請求項1または2記載の鋼鉄。   The steel according to claim 1 or 2, wherein Mn is at least 0.1%. Alが少なくとも6%、および/または上限で9%であり、好ましくは上限で8%である、請求項1〜3のいずれか一項に記載の鋼鉄。   Steel according to any one of claims 1 to 3, wherein Al is at least 6% and / or 9% at the upper limit, preferably 8% at the upper limit. C(総炭素含有量)が少なくとも0.0010%(10ppm)である、請求項1〜4のいずれか一項に記載の鋼鉄。   The steel according to claim 1, wherein C (total carbon content) is at least 0.0010% (10 ppm). C(溶質炭素含有量)が少なくとも0.0010%(10ppm)、および/または上限で0.0040%(40ppm)であり、好ましくは上限で0.0030%(30ppm)である、請求項1〜5のいずれか一項に記載の鋼鉄。   C (solute carbon content) is at least 0.0010% (10 ppm) and / or 0.0040% (40 ppm) at the upper limit, preferably 0.0030% (30 ppm) at the upper limit. The steel according to any one of 5. Nが上限で0.005%(50ppm)である、請求項1〜6のいずれか一項に記載の鋼鉄。   The steel according to any one of claims 1 to 6, wherein N has an upper limit of 0.005% (50 ppm). Siが上限で0.2%である、請求項1〜7のいずれか一項に記載の鋼鉄。   The steel according to any one of claims 1 to 7, wherein Si has an upper limit of 0.2%. 鋼鉄の比重が6800〜7300kg/mである、請求項1〜8のいずれか一項に記載の鋼鉄。 The steel according to any one of claims 1 to 8, wherein the specific gravity of the steel is 6800 to 7300 kg / m 3 . フェライト鋼ストリップの製造方法であって、
鋼スラブまたは肉厚ストリップを
・連続キャスティング、または
・薄スラブキャスティング、または
・ベルトキャスティング、または
・ストリップキャスティング
により準備する工程、
所望により、続いて前記鋼スラブまたはストリップを最高でも1250℃の再加熱温度で再加熱する工程、
前記スラブまたは肉厚ストリップを熱間圧延し、少なくとも850℃の熱間圧延仕上げ温度で熱間圧延工程を終了する工程、
熱間圧延ストリップを550〜750℃のコイリング温度でコイリングする工程、
を含んでなる、方法。
A method of manufacturing a ferritic steel strip,
Preparing a steel slab or thick strip by continuous casting, or by thin slab casting, or by belt casting, or by strip casting,
Optionally reheating the steel slab or strip at a reheating temperature of at most 1250 ° C., if desired;
Hot rolling the slab or thick strip and ending the hot rolling process at a hot rolling finish temperature of at least 850 ° C .;
Coiling the hot rolled strip at a coiling temperature of 550-750 ° C .;
Comprising a method.
前記熱間圧延ストリップ炭素を、
・連続アニーリングステップで再加熱し、所望によりそれに続いて溶融亜鉛めっきし、続いて急速冷却する、または
・ヒート・トゥ・コートステップで再加熱し、続いて溶融亜鉛めっきし、急速冷却する、請求項10記載の方法。
The hot rolled strip carbon,
Reheat in a continuous annealing step, optionally followed by hot dip galvanizing, followed by rapid cooling, or reheated in a heat to coat step, followed by hot dip galvanizing, rapid cooling Item 11. The method according to Item 10.
フェライト鋼ストリップを製造する方法であって、
請求項10記載のフェライト鋼ストリップを40〜90%の冷間圧下率で冷間圧延して、冷間圧延ストリップを製造する工程、
前記冷間圧延ストリップを連続アニーリングプロセスにおいて700〜900℃のピーク金属温度でアニーリングする工程、
所望により、アニーリングされた前記ストリップを溶融亜鉛めっき若しくは電気亜鉛めっき、またはヒート・トゥ・コートプロセスにおいて亜鉛めっきする工程、
を含んでなる、方法。
A method of manufacturing a ferritic steel strip, comprising:
Cold rolling the ferritic steel strip according to claim 10 at a cold reduction of 40 to 90% to produce a cold rolled strip;
Annealing the cold rolled strip at a peak metal temperature of 700-900 ° C. in a continuous annealing process;
Optionally galvanizing the annealed strip in a hot dip galvanizing or electrogalvanizing, or heat to coat process;
Comprising a method.
前記連続アニーリングプロセスにおけるピーク金属温度が、少なくとも750℃、好ましくは少なくとも800℃である、請求項12記載の方法。   13. A method according to claim 12, wherein the peak metal temperature in the continuous annealing process is at least 750 ° C, preferably at least 800 ° C. 前記冷間圧下率が少なくとも50%である、請求項11〜13のいずれか一項に記載の方法。   14. A method according to any one of claims 11 to 13, wherein the cold rolling reduction is at least 50%. 前記熱間圧延ストリップの厚さが1〜5mmであり、および/または前記冷間圧延ストリップの厚さが0.4〜2mmである、請求項10〜14のいずれか一項に記載の方法。   15. The method according to any one of claims 10 to 14, wherein the hot rolled strip has a thickness of 1 to 5 mm and / or the cold rolled strip has a thickness of 0.4 to 2 mm.
JP2014557076A 2012-02-20 2013-02-19 High strength bake hardenable low density steel and method for producing the same Expired - Fee Related JP6342336B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP12156180.7 2012-02-20
EP12156180 2012-02-20
EP12160499 2012-03-21
EP12160499.5 2012-03-21
PCT/EP2013/053257 WO2013124264A1 (en) 2012-02-20 2013-02-19 High strength bake-hardenable low density steel and method for producing said steel

Publications (2)

Publication Number Publication Date
JP2015513608A true JP2015513608A (en) 2015-05-14
JP6342336B2 JP6342336B2 (en) 2018-06-13

Family

ID=47720526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014557076A Expired - Fee Related JP6342336B2 (en) 2012-02-20 2013-02-19 High strength bake hardenable low density steel and method for producing the same

Country Status (6)

Country Link
US (1) US20150027597A1 (en)
EP (1) EP2817428B2 (en)
JP (1) JP6342336B2 (en)
KR (1) KR20140129150A (en)
CN (1) CN104126023B (en)
WO (1) WO2013124264A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104220609B (en) 2012-04-11 2016-08-17 塔塔钢铁荷兰科技有限责任公司 High intensity is without brilliant gap low density steel and the preparation method of described steel
KR101985123B1 (en) 2015-02-17 2019-05-31 제이에프이 스틸 가부시키가이샤 Thin high-strength cold-rolled steel sheet and method for producing the same
WO2023148087A1 (en) * 2022-02-03 2023-08-10 Tata Steel Ijmuiden B.V. Method of manufacturing a low-carbon steel strip having improved formability

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000517001A (en) * 1996-08-27 2000-12-19 フロムメイヤー,ゲオルク Light steel and its use for vehicle parts and facade linings
JP2001271148A (en) * 2000-03-27 2001-10-02 Nisshin Steel Co Ltd HIGH Al STEEL SHEET EXCELLENT IN HIGH TEMPERATURE OXIDATION RESISTANCE
JP2006176844A (en) * 2004-12-22 2006-07-06 Nippon Steel Corp High-strength and low-density steel sheet superior in ductility and fatigue characteristic, and manufacturing method therefor
JP2007321168A (en) * 2006-05-30 2007-12-13 Jfe Steel Kk High-rigidity low-density steel sheet and its manufacturing method
JP2010526939A (en) * 2007-05-16 2010-08-05 アルセロールミタル・フランス Low density steel with good stamping performance

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2536255B2 (en) 1990-08-04 1996-09-18 日本鋼管株式会社 Damping alloy
JPH04232229A (en) * 1990-12-28 1992-08-20 Nkk Corp Vibration damping steel pipe for piping such as service water pipe or drainpipe
JPH04252229A (en) 1991-01-29 1992-09-08 Asahi Chem Ind Co Ltd Silicone compound and production thereof
EP0620288B1 (en) 1992-08-31 2000-11-22 Nippon Steel Corporation Cold-rolled sheet and hot-galvanized cold-rolled sheet, both excellent in bake hardening, cold nonaging and forming properties, and process for producing the same
US5595706A (en) 1994-12-29 1997-01-21 Philip Morris Incorporated Aluminum containing iron-base alloys useful as electrical resistance heating elements
JP4471688B2 (en) 2003-06-18 2010-06-02 新日本製鐵株式会社 High strength low specific gravity steel plate excellent in ductility and method for producing the same
CN1238548C (en) * 2003-09-23 2006-01-25 东北大学 Production method of yield strongth 460 MPa grade low alloy high strength structure steel plate
JP2005120599A (en) 2003-10-14 2005-05-12 Shirokuma Co Ltd Universal joint for handrail
JP4084733B2 (en) * 2003-10-14 2008-04-30 新日本製鐵株式会社 High strength low specific gravity steel plate excellent in ductility and method for producing the same
JP5062985B2 (en) 2004-10-21 2012-10-31 新日鉄マテリアルズ株式会社 High Al content steel plate with excellent workability and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000517001A (en) * 1996-08-27 2000-12-19 フロムメイヤー,ゲオルク Light steel and its use for vehicle parts and facade linings
JP2001271148A (en) * 2000-03-27 2001-10-02 Nisshin Steel Co Ltd HIGH Al STEEL SHEET EXCELLENT IN HIGH TEMPERATURE OXIDATION RESISTANCE
JP2006176844A (en) * 2004-12-22 2006-07-06 Nippon Steel Corp High-strength and low-density steel sheet superior in ductility and fatigue characteristic, and manufacturing method therefor
JP2007321168A (en) * 2006-05-30 2007-12-13 Jfe Steel Kk High-rigidity low-density steel sheet and its manufacturing method
JP2010526939A (en) * 2007-05-16 2010-08-05 アルセロールミタル・フランス Low density steel with good stamping performance

Also Published As

Publication number Publication date
CN104126023A (en) 2014-10-29
US20150027597A1 (en) 2015-01-29
WO2013124264A1 (en) 2013-08-29
EP2817428B1 (en) 2016-04-20
JP6342336B2 (en) 2018-06-13
EP2817428A1 (en) 2014-12-31
CN104126023B (en) 2017-02-22
EP2817428B2 (en) 2019-06-19
KR20140129150A (en) 2014-11-06

Similar Documents

Publication Publication Date Title
JP6686035B2 (en) High-strength steel product manufacturing method and steel product obtained thereby
JP5042232B2 (en) High-strength cold-rolled steel sheet excellent in formability and plating characteristics, galvanized steel sheet using the same, and method for producing the same
CA2762935C (en) High-strength galvannealed steel sheet having excellent formability and fatigue resistance and method for manufacturing the same
US9255313B2 (en) Steel sheet for hot press forming having low-temperature heat treatment property, method of manufacturing the same, method of manufacturing parts using the same, and parts manufactured by the same
CN110959049B (en) Flat steel product with good aging resistance and method for the production thereof
JP6370787B2 (en) High strength low density particle reinforced steel with improved elastic modulus and method for producing the same
JP2018536764A (en) Ultra-high-strength steel sheet excellent in formability and hole expansibility and manufacturing method thereof
CN104593674A (en) Hot-dip galvanized ultra-low carbon bake-hardening steel and production method thereof
JP5126848B2 (en) Cold-rolled steel sheet, surface-treated steel sheet, and production method thereof
CN112689684B (en) Cold rolled and coated steel sheet and method for manufacturing the same
US9777350B2 (en) High strength interstitial free low density steel and method for producing said steel
WO2016152148A1 (en) High-strength steel sheet and method for manufacturing same
JP6342336B2 (en) High strength bake hardenable low density steel and method for producing the same
US11414721B2 (en) Method for the manufacture of TWIP steel sheet having an austenitic matrix
KR101489243B1 (en) High strength galvannealed steel sheet having excellent formability and coating adhesion and method for manufacturing the same
JP2010196096A (en) Cold rolled steel sheet having excellent balance in strength and ductility after press working and coating baking, and method for producing the same
JP2023548828A (en) High-strength galvanized steel sheet with excellent image clarity and method for manufacturing the same
JP4176403B2 (en) Thin steel sheet for processing with excellent low-temperature bake hardenability and aging resistance
JP2003268490A (en) Thin steel sheet for working excellent in bake hardenability and aging resistance and its production method
JP2023549373A (en) High-strength galvanized steel sheet with excellent formability and its manufacturing method
JPH108201A (en) Steel sheet for deep drawing, and its production
JP2019059963A (en) Manufacturing method of steel sheet having low yield ratio
JP2002356720A (en) Method for producing galvanized steel sheet having excellent workability and baking hardenability
JPH05287447A (en) Cold rolled steel sheet for working excellent in corrosion resistance and its production
JPH0762446A (en) Manufacture of thin steel sheet with high corrosion resistance of baking hardening type

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170224

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180516

R150 Certificate of patent or registration of utility model

Ref document number: 6342336

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees