JP2015513543A - 癌および他の状態を処置するためのナノ構造体 - Google Patents

癌および他の状態を処置するためのナノ構造体 Download PDF

Info

Publication number
JP2015513543A
JP2015513543A JP2014558893A JP2014558893A JP2015513543A JP 2015513543 A JP2015513543 A JP 2015513543A JP 2014558893 A JP2014558893 A JP 2014558893A JP 2014558893 A JP2014558893 A JP 2014558893A JP 2015513543 A JP2015513543 A JP 2015513543A
Authority
JP
Japan
Prior art keywords
cells
cholesterol
hdl
nanostructure
synthetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014558893A
Other languages
English (en)
Other versions
JP2015513543A5 (ja
Inventor
シー. シャッド サクストン,
シー. シャッド サクストン,
マリナ ジー. ダミアーノ,
マリナ ジー. ダミアーノ,
ヘン チャン,
ヘン チャン,
ケイリン エム. マクマホン,
ケイリン エム. マクマホン,
シュオ ヤン,
シュオ ヤン,
レオ アイ. ゴードン,
レオ アイ. ゴードン,
アマレッシュウォー ティー.ケー. シン,
アマレッシュウォー ティー.ケー. シン,
Original Assignee
ノースウェスタン ユニバーシティ
ノースウェスタン ユニバーシティ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ノースウェスタン ユニバーシティ, ノースウェスタン ユニバーシティ filed Critical ノースウェスタン ユニバーシティ
Publication of JP2015513543A publication Critical patent/JP2015513543A/ja
Publication of JP2015513543A5 publication Critical patent/JP2015513543A5/ja
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1703Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • A61K38/1709Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6923Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being an inorganic particle, e.g. ceramic particles, silica particles, ferrite or synsorb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5123Organic compounds, e.g. fats, sugars
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Abstract

癌および他の状態を処置するためのナノ構造体、組成物、および方法を提供する。いくつかの場合には、ナノ構造体および/または組成物は、細胞中のコレステロール代謝を制御することにより、少なくとも一部、癌または他の疾患もしくは状態を処置するために使用され得る。ナノ構造体および組成物は、例えば、細胞におけるコレステロール流入および/または流出を制御するために使用され得る。いくつかの場合には、ナノ構造体または組成物は細胞を死滅させるために使用され得る。本明細書中に記載されるナノ構造体および組成物により影響を受け得る癌細胞の例として、スカベンジャー受容体タイプB−I(SR−B1)を有している癌細胞、B細胞リンパ腫細胞、非ホジキンリンパ腫細胞、黒色腫細胞などが挙げられる。いくつかの実施形態においては、ナノ構造体は天然の高密度リポタンパク質(HDL)の模倣物であり得る。

Description

関連出願への相互参照
この出願は、2012年2月22日に出願された米国仮出願第61/601,706号(この開示内容は、その全体が参考として本明細書に援用される)の優先権の利益を主張する。
本発明は一般に、癌および他の状態を処置するためのナノ構造体および組成物に関する。
ナノ構造体(リポソームナノ構造体を含む)は、薬物送達、遺伝子送達、および診断のような用途において現在使用されている。様々な方法が、そのようなナノ構造体を製造するために使用されており、例えば、リポソームナノ構造体は、リポタンパク質/結合体の合成、および両親媒性リポソーム成分の混合物の超音波処理を含む技術により形成されている。しかし、いくつかのそのような方法は、多くの場合に、比較的大きいサイズ、大きいサイズ分布、および/または短期間の安定性を有している構造体をもたらす。したがって、ナノ構造体の機能性および調整可能性を制御することができるとともに、より小さいサイズ、制御されたサイズ分布、および/または長期間の安定性を有しているナノ構造体、ならびにそのようなナノ構造体を作製するための方法が必要とされている。癌のような状態を処置するためのそのようなナノ構造体の使用もまた、有益であろう。
本発明は一般に、癌および他の状態を処置するためのナノ構造体および組成物に関する。いくつかの場合には、ナノ構造体は、細胞中のコレステロール代謝を制御することにより癌または他の疾患もしくは状態を処置するために使用され得る。ナノ構造体および組成物は、例えば、癌細胞中のコレステロールの流入および流出を制御するために使用され得る。ナノ構造体は、以下にさらに詳細に記載されるように、天然のHDLの模倣物であり得る。この用途の主題には、いくつかの場合には、相互関係する製品、特定の問題についての代替の解決法、および/または構造体および組成物の複数の異なる使用が含まれる。
複数の実施形態の1つの組においては、一連の方法を提供する。
複数の実施形態の1つの組においては、スカベンジャー受容体タイプB−I(SR−B1)を有している癌細胞を死滅させるための方法を提供する。上記方法には、SR−B1を有している癌細胞を、癌細胞を死滅させるのに有効な量の合成ナノ構造体と接触させる工程が含まれる。
複数の実施形態の1つの組においては、B細胞リンパ腫細胞を死滅させるための方法を提供する。上記方法には、B細胞リンパ腫細胞を、B細胞リンパ腫細胞を死滅させるのに有効な量の合成ナノ構造体と接触させる工程が含まれる。
複数の実施形態の1つの組においては、被験体の非ホジキンリンパ腫を処置するための方法を提供する。上記方法には、非ホジキンリンパ腫を処置するのに有効な量の合成ナノ構造体を被験体に投与する工程が含まれる。
複数の実施形態の1つの組においては、被験体の癌を処置するための方法を提供する。上記方法には、癌を処置するために、被験体に、被験体の癌細胞におけるコレステロールの流入および流出を制御する組成物を投与する工程が含まれる。
複数の実施形態の1つの組においては、疾患または身体状態を診断する、予防する、処置する、または管理する方法を提供する。上記方法には、ナノ構造体コアと、上記ナノ構造体コアを囲繞し、それに結合したシェルを含有している合成構造体を含有する、治療有効量の組成物を被験体に投与する工程、合成ナノ構造体が、天然のリポタンパク質に結合する細胞表面受容体と結合することを可能にする工程、および細胞表面受容体と天然のリポタンパク質との間での結合をブロックするかまたは結合の量を減少させる工程が含まれる。
いくつかの実施形態においては、天然のリポタンパク質は、HDL、IDL、LDL、またはVLDLである。上記方法には、例えば、細胞表面受容体を含有している細胞中でのコレステロールの流入または流出を増大または減少させる工程が含まれ得る。
複数の実施形態の1つの組においては、異常脂質レベルと関係がある疾患または身体状態を診断する、予防する、処置する、または管理するための方法を提供する。上記方法には、ナノ構造体コアと、上記ナノ構造体コアを囲繞し、それに結合したシェルを含有している合成構造体を含有している、治療有効量の組成物を被験体に投与する工程、および上記合成構造体を使用して被験体における細胞コレステロールの流れを変化させる工程が含まれ得る。
複数の実施形態の1つの組においては、該方法は、生体マトリックスに対して、ナノ構造体コアと、上記ナノ構造体コアを囲繞し、それに結合したシェルを含有している合成構造体を含有している、治療有効量の組成物を投与する工程、および上記合成ナノ構造体が、脂質もしくはタンパク質を隔離する、または、脂質もしくはタンパク質を生体マトリックス中の他の天然のリポタンパク質と交換することができるようにする工程を含む。上記合成ナノ構造体は、天然のリポタンパク質の模倣物であり得る。いくつかの実施形態においては、上記方法に、天然のリポタンパク質と結合することができる細胞表面受容体に対して、合成ナノ構造体を結合させる工程が含まれる。
上記方法の任意の1つにおいては、上記方法に、コレステロール輸送を調節する1つ以上の細胞表面受容体に対して、構造体または上記構造体の成分を結合させる工程が含まれ得る。上記細胞表面受容体は、例えば、SR−B1、ABCA1、および/またはABCG1であり得る。
上記方法の任意の1つにおいては、異常脂質レベルと関係がある疾患または身体状態に、炎症または免疫系の調節が含まれ得る。
上記方法の任意の1つにおいては、上記組成物は複数の合成ナノ構造体を含有し得る。いくつかの実施形態においては、癌は非ホジキンリンパ腫である。いくつかの場合には、癌はB細胞リンパ腫細胞を特徴とする、すなわちここでは、癌細胞はB細胞リンパ腫細胞である。いくつかの実施形態においては、癌は白血病である。他の実施形態においては、癌は黒色腫である。特定の実施形態においては、癌はSR−B1を有している細胞を特徴とする。いくつかの実施形態においては、癌は、ABCA1および/またはABCG1を有している細胞を特徴とし、すなわちここでは、癌細胞はABCA1および/またはABCG1を有する。
上記方法の任意の1つにおいては、方法には、癌細胞の増殖を制御する工程が含まれ得る。いくつかの実施形態においては、方法には、癌細胞を死滅させる工程が含まれる。いくつかの場合には、死滅はアポトーシスにより起こる。いくつかの実施形態においては、方法には、癌細胞におけるコレステロール代謝を制御する工程が含まれる。コレステロール代謝の制御には、例えば、癌細胞からのコレステロール流出を増大させること、および/または癌細胞へのコレステロール流入を減少させることが含まれ得る。いくつかの場合には、方法には、SR−B1の結合を調整する工程が含まれる。場合によっては、方法に、SR−B1を実質的に阻害する工程が含まれる。
上記方法の任意の1つにおいては、方法に、癌細胞中のコレステロールを隔離するために合成ナノ構造体を使用する工程が含まれ得る。上記合成ナノ構造体は、癌細胞中の少なくとも5個、少なくとも10個、少なくとも20個、または少なくとも50個のコレステロール分子を隔離するために使用され得る。コレステロールは、例えば、エステル化コレステロールまたは遊離のコレステロールであり得る。
上記方法の任意の1つにおいては、上記合成ナノ構造体は、例えば、サイズ、形状、および/または界面化学に関して、成熟した、球状の高密度リポタンパク質の生体模倣物(biomimic)であり得る。上記合成ナノ構造体は、コレステロールを隔離するように適合され得る。いくつかの実施形態においては、上記合成ナノ構造体はナノ構造体コアとシェルとを含有する。いくつかの場合には、ナノ構造体コアは、金属(例えば、金)のような無機物質を含む。
上記方法の任意の1つにおいては、上記合成ナノ構造体コアは、約50nm以下、または約35nm以下、または約30nm以下の最大断面寸法を有し得る。
上記方法の任意の1つにおいては、上記合成ナノ構造体は、ナノ構造体コアを囲繞し、それに結合した脂質層を含有しているシェルを含有し得る。いくつかの場合には、上記脂質層は脂質二重層である。いくつかの実施形態においては、脂質二重層の少なくとも一部がコアに共有結合している。他の実施形態においては、脂質二重層の少なくとも一部がコアに物理吸着している。いくつかの場合には、脂質二重層はリン脂質を含有する。例えば、脂質二重層は、50〜200個のリン脂質を含むことができる。いくつかの場合には、シェルがリポタンパク質構造体を含有する。いくつかの実施形態においては、シェルはアポリポタンパク質を含有する。アポリポタンパク質は例えば、アポリポタンパク質A−I、アポリポタンパク質A−II、またはアポリポタンパク質Eであり得る。いくつかの実施形態においては、合成ナノ構造体は1〜6個のアポリポタンパク質を含む。特定の実施形態においては、合成ナノ構造体は内側表面と外側表面を有しているシェルを含有し、タンパク質は、少なくともシェルの外側表面と会合する。
本発明の他の利点および新規特徴は、添付の図面とともに考察すると、本発明の種々の非制限的実施形態に関する以下の詳細な説明より明らかとなる。本明細書および参照により組み込まれる文献に不一致および/または矛盾する開示がある場合、本明細書が管理する。参照により組み込まれる2つ以上の文献に互いに不一致および/または矛盾する開示がある場合、実効日が後の文献が管理する。
以下、本発明の非制限的実施形態を、図面を参照しながら例を挙げて説明する。各図面は模式的であって縮尺通りに示すことを意図していない。図において、例示する同一または略同一の要素は、それぞれ、単一の数字によって典型的に示す。明瞭性を目的として、すべての要素がすべての図中でラベル付けされるとは限らない。また、本発明の各実施形態の要素は、当業者が発明を理解するのに例示が必要でない程度に示されている。
図1Aは、複数の実施形態の1つの組にしたがって本明細書中に記載する疾患または状態を処置するために使用することができるナノ構造体の一例を示す。図1Bは、複数の実施形態の1つの組にしたがうナノ構造体を製造する方法を示す。 図2Aは、複数の実施形態の1つの組にしたがう、健常なドナーから得たナイーブB細胞および記憶B細胞と比較した、リンパ腫患者の試料における遺伝子発現プロファイリングによる相対的なSR−B1発現を示す。図2Bは、複数の実施形態の1つの組にしたがう、リンパ腫細胞株中での高密度リポタンパク質(HDL)特異的受容体、ABCA1、ABCG1、およびSR−B1の発現を示しているウェスタンブロットの画像である。図2Cは、リンパ腫および正常なリンパ球(正常HL)中でのSR−B1の発現を示しているウェスタンブロットを示す。数値は、GAPDHに対するSR−B1受容体の発現の比を表す。全ての比は、複数の実施形態の1つの組にしたがって、HepG2細胞中でのSR−B1の発現について測定した同じ比に対して正規化した。 図2Dは、複数の実施形態の1つの組にしたがって、Jurkat以外の全ての培養した癌細胞株中でのHDL受容体SR−B1の発現を示す。図2Eは、ヒトCD14+細胞から分化した肝細胞およびマクロファージ中でのSR−B1の発現を示す。HepG2細胞およびJurkat細胞は、複数の実施形態の1つの組にしたがって、それぞれ、SR−B1陽性対照およびSR−B1陰性対照として含めた。 図3Aおよび3Bは、複数の実施形態の1つの組にしたがう(A)hHDLおよび(B)HDL−NPの効果について、リンパ腫細胞MTSアッセイ(72時間)に対するhHDLおよびHDL−NPの効果を示す。対照(未処理の細胞)中の吸光度値の測定値を、全てのMTSアッセイについて100%に設定した。 図3Cおよび3Dは、複数の実施形態の1つの組にしたがって、初代細胞に対するhHDLおよびHDL−NPの効果を示す。MTSアッセイは、hHDLおよびHDL−NPが、処理後24時間および48時間では、(A)初代肝細胞または(B)初代マクロファージの生存性を有意には低下させないことを示している。処理後72時間では、hHDLは、対照と比較して、肝細胞およびマクロファージの両方の生存性を有意に増大させる。 図4は、複数の実施形態の1つの組にしたがって、リンパ腫細胞に対する本明細書中に記載する合成ナノ構造体(例えば、HDL−NP)の遊離成分の効果を示す。 図5Aは、複数の実施形態の1つの組にしたがって、リンパ腫細胞株におけるAc−LDLおよびHDL−NPの存在下での細胞増殖を測定するためのHチミジン取り込みアッセイの結果を示す。図5Bは、複数の実施形態の1つの組にしたがって、HDL−NPで処理したリンパ腫細胞のアポトーシス(72時間)が用量依存性であることを示す。図5Cは、複数の実施形態の1つの組にしたがって、活性型カスパーゼ3の活性についての比色アッセイを示す。 図5D〜5Fは、複数の実施形態の1つの組にしたがって、PARPおよびカスパーゼ−3についてのウェスタンブロットを示す:HDL−NPで誘導したPARPの切断についての28時間でのウェスタンブロット(図5D)、Ramos細胞中でのカスパーゼ3のレベル(図5E)、ならびにSUDHL−4細胞中でのHDL−NPで誘導したPARPの切断についての24時間でのウェスタンブロット(図5F)。 図6Aは、複数の実施形態の1つの組にしたがう、10nMのhHDLおよびHDL−NPでの処理後の初代肝細胞およびマクロファージにおけるアポトーシスを示す。図6Bは、複数の実施形態の1つの組にしたがって、対照と比較した倍数増大として表す(48時間)、HDL−NPで処理した正常なヒトリンパ球(正常リンパ)およびSUDHL−4細胞中でのアポトーシスを示す。(挿入図)HDL−NPでの処理後2日または5日の正常なヒトリンパ球中でのアポトーシス。 図7Aは、複数の実施形態の1つの組にしたがってAU含有量を測定しているICP−MSデータによる、リンパ腫細胞中でのHDL−NPの取り込みを示す。図7Bは、複数の実施形態の1つの組にしたがうHDL−NPとhHDLとの間でのICP−MSをベースとする競合実験による、リンパ腫細胞中でのHDL−NPの取り込みを示す。図7Cは、複数の実施形態の1つの組にしたがって、HDL−NP処理後(24時間)のSUDHL−4細胞中のHDL−NPの透過型電子顕微鏡写真を示す。 図8Aは、複数の実施形態の1つの組にしたがって、SR−B1リンパ腫細胞株およびSR−B1リンパ腫細胞株中でのAc−LDL(マイクログラム/ミリリットル)レスキューのMTSアッセイ結果を示す。図8Bは、Ac−LDLでのレスキュー後のリンパ腫細胞株中でのアポトーシスを示す。 図8Cおよび8Dは、複数の実施形態の1つの組にしたがって、それぞれ、処理したRamos細胞およびSUDHL−4細胞におけるアポトーシスを示す。 図8Eおよび8Fは、複数の実施形態の1つの組にしたがって、それぞれRamosおよびSUDHL−4におけるアポトーシスの代表的なアネキシンV/PIフローサイトメトリーのヒストグラムを示す。 図9Aは、複数の実施形態の1つの組にしたがって、hHDLと比較した、リンパ腫細胞からHDL−NPへのコレステロール流出の百分率を示す。図9Bは、複数の実施形態の1つの組にしたがって、ヒト肝細胞およびマクロファージからhHDLおよびHDL−NPへのコレステロール流出を示す。図9Cは、複数の実施形態の1つの組にしたがって、HDL−NPおよびhHDLによるリンパ腫細胞へのコレステロール流入を示す。 図9Dは、複数の実施形態の1つの組にしたがって、hHDLおよびHDL−NPからの、ヒト肝細胞およびマクロファージへのコレステロール流入を示す。図9Eは、複数の実施形態の1つの組にしたがって、SUDHL−4細胞からhHDLおよびHDL−NPのみへのコレステロール流出、および10μMのBLT−1での処理後のコレステロール流出を示す。図9Fは、複数の実施形態の1つの組にしたがって、hHDLおよびHDL−NPからSUDHL−4細胞のみへのコレステロール流入、および10μMのBLT−1での処理後のコレステロール流入を示す。 図10Aおよび10Bは、複数の実施形態の1つの組にしたがって、それぞれ、Ramos腫瘍およびJurkat腫瘍についての異種移植モデルにおける、腫瘍体積およびSR−B1発現レベルに対するHDL−NPの効果を示す。 図11Aは、複数の実施形態の1つの組にしたがって、11日目に収集した4匹の代表的なマウスのRamos腫瘍およびJurkat腫瘍中におけるSR−B1発現レベルを示す。図11B〜11Eは、複数の実施形態の1つの組にしたがって、腫瘍試料のH&E染色を示す。(図11B)脂肪組織により囲繞されたJurkat腫瘍標本。(図11C)より高い倍率の画像(5倍)によってもまた、Jurkat腫瘍内への脂肪細胞の混入が明らかである。(図11Dおよび11E)10倍の倍率、脂肪細胞の混入は、Ramos腫瘍(図11E)よりもJurkat腫瘍(図11D)中でより広く認められる。 図12Aは、複数の実施形態の1つの組にしたがって、ヒト臍帯静脈内皮細胞(HUVEC)に対する本明細書中に記載する合成ナノ構造体(例えば、HDL−NP)の効果を示す。図12Bは、複数の実施形態の1つの組にしたがって、HepG2細胞(ヒト肝癌細胞)に対する本明細書中に記載する合成ナノ構造体(例えば、HDL−NP)の効果を示す。 図12Cは、複数の実施形態の1つの組にしたがって、PC3細胞(ヒト前立腺癌細胞)に対する本明細書中に記載する合成ナノ構造体(例えば、HDL−NP)の効果を示す。図12Dは、複数の実施形態の1つの組にしたがって、LnCaP細胞(ヒト前立腺癌細胞)に対する本明細書中に記載する合成ナノ構造体(例えば、HDL−NP)の効果を示す。 図12Eは、複数の実施形態の1つの組にしたがって、HMLE−GFP細胞(ヒト乳房上皮細胞)に対する本明細書中に記載する合成ナノ構造体(例えば、HDL−NP)の効果を示す。図12Fは、複数の実施形態の1つの組にしたがって、HMLE−Twist細胞(ヒト乳房上皮細胞)に対する本明細書中に記載する合成ナノ構造体(例えば、HDL−NP)の効果を示す。 図12Gは、複数の実施形態の1つの組にしたがって、MDA−MB−231細胞(ヒト乳癌細胞)に対する本明細書中に記載する合成ナノ構造体(例えば、HDL−NP)の効果を示す。図12Hは、複数の実施形態の1つの組にしたがって、C8161細胞(ヒト黒色腫細胞)に対する本明細書中に記載する合成ナノ構造体(例えば、HDL−NP)の効果を示す。 図12Iは、複数の実施形態の1つの組にしたがって、A375細胞(ヒト黒色腫細胞)に対する本明細書中に記載する合成ナノ構造体(例えば、HDL−NP)の効果を示す。図12Jは、複数の実施形態の1つの組にしたがって、Ramos細胞(ヒトB細胞リンパ腫細胞)に対する本明細書中に記載する合成ナノ構造体(例えば、HDL−NP)の効果を示す。 図13は、複数の実施形態の1つの組にしたがう、合成ナノ構造体(HDL−NP)のUV−visスペクトルである。
癌および他の状態を処置するためのナノ構造体、組成物、および方法を提供する。いくつかの場合には、ナノ構造体および/または組成物を、細胞中のコレステロール代謝を制御することにより、少なくとも一部、癌、または他の疾患もしくは状態を処置するために使用することができる。ナノ構造体および組成物は、例えば、細胞におけるコレステロール流入および/または流出を制御するために使用することができる。いくつかの場合には、ナノ構造体または組成物を、細胞を死滅させるために使用することができる。本明細書中に記載するナノ構造体および組成物により影響を受け得る癌細胞の例として、スカベンジャー受容体タイプB−I(SR−B1)を有している癌細胞、B細胞リンパ腫細胞、非ホジキンリンパ腫細胞、黒色腫細胞などが挙げられる。いくつかの実施形態においては、ナノ構造体は天然の高密度リポタンパク質(HDL)の模倣物であり得る。
合成ナノ構造体および/またはその組成物を使用して、癌細胞(例えば、受容体SR−BIを有している細胞、リンパ腫細胞、非ホジキンリンパ腫細胞、黒色腫細胞など)を標的化するための新規の治療アプローチを本明細書中に記載する。いくつかの実施形態においては、合成ナノ構造体は、例えば、構造体のサイズ、形状、界面化学、および/または機能に関して、成熟した、球状HDLの生体模倣物であり得る。そのような特徴の制御は、ナノ構造体の形成のための合成鋳型を使用することにより、少なくとも一部達成することができる。例えば、高密度リポタンパク質合成ナノ粒子(HDL−NP)は、金ナノ粒子(Au−NP)(または他の適切な実体または材料)を、それに対して他の成分(例えば、脂質、タンパク質など)を付加することができる合成鋳型として使用することにより形成させることができる。
いくつかの実施形態においては、合成ナノ構造体は、天然のHDLのものと実質的に同様のサイズ、形状、および/または界面化学を有することができるが、天然のHDLのものとは少なくとも1つの特徴が異なり得る。上記少なくとも1つの特徴は、例えば、ナノ構造体における1つ以上の成分の有無、ナノ構造体中もしくはナノ構造体上の1つ以上の成分の位置、ナノ構造体を形成させるために使用される材料、ナノ構造体のシェルの構成、ナノ構造体のコアの構成、およびそれらの組み合わせであり得る。例えば、いくつかの実施形態においては、Au−NPまたは他の適切な実体がコアのリアルエステート(real−estate)を占領するので、(例えば、コア中に、および/または被験体もしくは試料へのナノ構造体の投与前には)コレステロールを実質的に含まないナノ構造体をつくることができる。この構成は、コレステリルエステルおよびトリグリセリドから形成されたコアを有する天然のHDLのものとは異なる。さらに、本明細書中に記載するナノ構造体は、天然のHDLのものと類似する特定の特徴および/または機能(例えば、コレステロール結合定数)を有し得るが、天然のHDLのものとは異なる他の特徴および/または機能(例えば、細胞にコレステロールを送達する能力)を有し得る。本明細書中に記載するナノ構造体と天然のHDLとの間での相違は、以下にさらに詳細に記載するように、本明細書中に記載する細胞、疾患、および状態の処置におけるナノ構造体の有効性に寄与し得る。
細胞膜中のコレステロールは、悪性細胞の生存および増殖に重要であるとみられる。治療法として、そして天然のHDLとの直接対比においては、本明細書中に記載するナノ構造体は、スカベンジャー受容体タイプB−I(SR−B1)を有している癌細胞、B細胞リンパ腫細胞、非ホジキンリンパ腫細胞、黒色腫細胞などのような癌細胞において時間および用量依存性アポトーシスを誘導することができる。例えば、データは、ナノ構造体の治療効果が、HDLの高親和性受容体SR−B1を標的化することにより、および/または細胞コレステロールの流れを操作するナノ構造体の能力により、導かれ得ることを示している。まとめると、標的化されたナノ構造体受容体結合(ナノ構造体の界面化学を介して達成され得る)、および/または細胞コレステロールの流れの操作(コアの占領のようなナノ構造体の特徴を介して達成され得る)は、B細胞リンパ腫、非ホジキンリンパ腫、黒色腫などのような癌の化学療法の代替としてかなり可能性がある治療効果を送達するように、固有に協同することができる。より一般的には、本明細書中に記載する構造体および方法は、生存の手段であるコレステロールの流れに感受性である細胞の連続体を横切って、そして、コレステロールの蓄積が病的である細胞においてもまた、適用可能であり得る。
したがって、複数の実施形態の1つの組においては、被験体の癌を処置するための方法を提供する。1つの実施形態においては、方法には、癌を処置するために、被験体の癌細胞におけるコレステロールの流入および流出を制御する組成物を被験体に投与する工程が含まれ得る。いくつかの場合には、癌は、生存するためにコレステロールの維持が必要である細胞により特定される。1つの実施形態においては、癌がSR−B1を発現する癌細胞により定義される、癌を処置するための方法を提供する。1つの実施形態においては、SR−B1を有している癌細胞を死滅させる方法を提供する。上記方法には、SR−B1を有している癌細胞を、癌細胞を死滅させるのに有効な量の合成ナノ構造体と接触させる工程が含まれ得る。他の実施形態においては、癌細胞の増殖または生存性を低下させる方法を提供する。いくつかの実施形態においては、癌は、SR−B1を発現している特定の癌細胞により定義され得る。そのような細胞の非限定的例としては、Ramos細胞、SUDHL4細胞、LY3細胞、黒色腫細胞(例えば、A375および/またはC8161細胞株)、ならびにB細胞リンパ腫細胞が挙げられる。
特定の実施形態においては、処置しようとする癌細胞は、受容体ABCA1および/またはABCG1を発現する。1つの実施形態においては、B細胞リンパ腫細胞を死滅させるための方法を提供する。上記方法には、B細胞リンパ腫細胞を、B細胞リンパ腫細胞を死滅させるのに有効な量の合成ナノ構造体と接触させる工程が含まれ得る。1つの実施形態においては、被験体の非ホジキンリンパ腫を処置するための方法を提供する。上記方法には、非ホジキンリンパ腫を処置するのに有効な量の合成ナノ構造体を被験体に投与する工程が含まれ得る。他の実施形態においては、本明細書中に記載するナノ構造体は、白血病、リンパ腫、および/または黒色腫を処置するために使用され得る。特定の実施形態においては、本明細書中に記載するナノ構造体は、病理学的なコレステロールの蓄積のプロセスが関与している疾患もしくは状態、特に、受容体の細胞発現がHDLおよび/または本明細書中に記載するナノ構造体が自然に会合する(engage)受容体を有している細胞により特定される疾患もしくは状態を処置するために使用することができる。他の癌または状態もまた、本発明の複数の態様により恩恵を受け得る。
驚くべきことに、本明細書中に記載するナノ構造体(天然の、成熟した球状HDLのサイズ、形状、表面の化学的組成、および/またはコレステロール結合特性を模倣するように設計することができる)は、B細胞リンパ腫細胞および/または非ホジキンリンパ腫を有している患者由来の細胞を含む、SR−B1を発現する癌細胞を死滅させることが示された。ナノ構造体は細胞中のコレステロールを隔離するため(天然のHDLの機能と同様)に使用することができると考えられていたが、上記ナノ構造体が、特に、ナノ構造体が、癌細胞を特異的に処置するためのいかなる薬物も化学療法薬も取り込まなかった場合に、例えば、アポトーシスにより、細胞を死滅させることは予想外であった。天然のHDL(それを模倣するようにナノ構造体を設計することができる)はSR−B1を発現する細胞株において死滅効果を有さないので、天然のHDLが、この受容体を発現する細胞の増殖の増大を実際に導く場合は特にそのとおりである。本明細書中に記載するナノ構造体が、SR−B1を発現している細胞(B細胞リンパ腫細胞および/または非ホジキンリンパ腫を有している患者由来の細胞を含む)の増殖を低下させることにより、癌細胞の増殖を制御するのみならず、細胞を死滅をもさせてしまう、そのような劇的かつ反対の作用を有することは予想外であった。自食作用および壊死/細胞溶解を含む、細胞死についての可能性があるいくつかの機構が存在するので、細胞死がアポトーシスによりもたらされたことも、予想外であった。
毎年、およそ70,000の非ホジキンリンパ腫(NHL)の新規の症例があり、90%はB細胞リンパ腫である。これらは、推定で毎年19,320の死亡につながる。現在の処置には、これまでよりも現在はさらにより有効ではあるが、化学療法、照射、シグナル伝達経路の小分子阻害剤、および免疫療法が含まれる。しかし、耐性が生じ、疾患の進行および死亡につながる。したがって、新規のより有効な処置ストラテジーが必要である。急性リンパ性白血病(ALL)および急性骨髄性白血病(AML)の患者由来のリンパ芽球および骨髄芽球について集められた最近の証拠は、高密度リポタンパク質キャリアを介したコレステロールの取り込みの増強を示している。これは、細胞増殖の増大を生じることができる。加えて、白血病およびリンパ腫細胞株内のコレステロールのエステル化の強化は細胞増殖の増大と相関関係があり、コレステロールエステルの形成の小分子阻害剤が細胞増殖を阻害することが示された。まとめると、これらのデータは、コレステロールおよびその代謝物がB細胞NHLの生存および増殖に重要であることを示唆している。
高密度リポタンパク質は、循環HDLレベルと心臓血管疾患の発症との間に存在する逆相関関係の理由から重要である、動的な天然のナノ粒子である。HDLの最も重要なアテローム形成抑制(atheroprotective)機構の1つが逆コレステロール輸送(RCT)であるとの仮説が立てられている。RCTは、発生しつつあるアテローマにおいて見られる脂質を搭載したマクロファージからHDL粒子へのコレステロールの流出、末梢循環におけるコレステロールの輸送、および糞便への排泄のための肝臓へのコレステロールの送達の複雑なプロセスである。RCTのプロセスの間に、コレステロールは、最初の発生期の円盤状の形態からより成熟した球状の形態に、化学的および構造的に成熟したHDLを取り込む。酵素レシチンコレステロールアシルトランスフェラーゼ(LCAT)の作用によるHDL表面に結合したコレステロールのエステル化は、形成されたコレステリルエステルをHDLコアへと動かし、成熟しつつあるHDLの粒子表面の遊離のコレステロールの取り込みのための勾配を維持する。細胞レベルでは、HDL粒子はマクロファージの表面上の受容体を結合して、遊離のコレステロールを除去する。ATP結合カセットトランスポーターA1およびG1(ABCA1およびABCG1)は、細胞から発生期の球状HDLへのコレステロール流出を媒介する。ABCA1は主に、コレステロールを発生期のHDLへと流出させ、より成熟した球状HDLはコレステロール流出のためにABCG1を標的化する。SR−B1は、成熟した球状HDLによる細胞コレステロールの輸送を媒介する高親和性HDL受容体である。SR−B1は、成熟したHDL種を細胞膜に結合させて、コレステロール流出を媒介することができる点で特有であるが、HDL粒子の取り込み、および細胞コレステロールの流入のプロセスの媒介もまた担っている。細胞コレステロールの流入は、これらが、RCTの最終工程として、SR−B1を介して成熟した球状HDLを取り込むので、肝細胞の状況において最もよく理解されている。
最近、天然の成熟した球状HDLのサイズ、形状、表面の化学的組成、およびコレステロール結合特性を持つ生体模倣ナノ粒子構築物を含むナノ構造体が、2009年4月24日に出願された「Nanostructures Suitable for Sequestering Cholesterol and Other Molecules」の表題の、国際特許公開番号WO/2009/131704(これは、全ての目的のためのその全体が参照により本明細書中に組み込まれる)に記載されているように開発された。生体模倣HDLは、天然のHDLの表面の化学的成分をアセンブルさせるためのサイズおよび形状が限定されている鋳型として、リン脂質およびHDLを画定するアポリポタンパク質A−I(APOA−I)を含む、例えば、5nmの直径の金ナノ粒子(AuNP)を使用して合成することができる。国際特許公開番号WO/2009/131704には、癌の処置のためのナノ構造体の使用が一般的に記載されているが、上記ナノ構造体を、癌細胞を死滅させることにおいて有効であることが知られている癌の薬物または他の成分を含めることにより、癌を処置するために使用できると考えられた。言い換えると、ナノ構造体を、癌を処置するための薬物のキャリアとして使用できるであろうこともまた考えられた。本明細書中に記載するようなナノ構造体を、癌を処置するため、および癌細胞を死滅させるために、いずれの薬物をも取り込むことなく単独で使用できることも予想外であった。
本明細書中に記載するナノ構造体を、コレステロール流出および/または流入を制限することにより、細胞中のコレステロール代謝を制御するために使用できることもまた予想外であった。本明細書中に記載するように、いくつかの実施形態においては、ナノ構造体は、癌細胞からのコレステロール流出を増大させるために使用することができる。例えば、親油性シェルと随意にApo−A1を含むことができるナノ構造体は、細胞からのコレステロールの流出が存在するように、細胞からコレステロールを隔離するために使用することができる。いくつかの場合には、ナノ構造体の結果としての細胞からのコレステロールの流出は、天然のHDLを用いた場合に可能であるよりも大きい(または少なくともそれに等しい)。さらに、いくつかの実施形態においては、ナノ構造体を、癌細胞へのコレステロール流入を減少させるために使用することができる。理論に束縛されることを望まないが、本明細書中に記載するナノ構造体は、天然のHDLの癌細胞への結合を防ぐために使用できると考えられる。例えば、本明細書中に記載するナノ構造体は、類似する細胞表面リガンド/受容体との結合について、天然のHDLと直接競合することができる。しかし、本明細書中に示すように、本明細書中に記載するナノ構造体は、癌細胞の増殖を低下させる、および/または癌細胞を死滅させることができるが、一方、天然のHDLはそのような効果は持たない。
天然のHDLは、例えば、SR−B1を介して、コレステロールを癌細胞へ送達するために使用される。これは、粒子のコア中におけるエステル化コレステロールの存在が原因で、天然のHDLにおいて可能である。いくつかの実施形態においては、本明細書中に記載するナノ構造体はエステル化コレステロールを含まないコア(例えば、例えば合成の材料から形成される固体コア)を含み得るので、癌細胞に送達されるコレステロールの供給源を除去することができる。多くのタイプの癌は、おそらくは細胞膜の完全性を維持するためにコレステロールの送達については、および細胞増殖については、HDLの取り込みに依存する。細胞は生存するための十分な量のコレステロールを必要とし得るので、本明細書中に記載するナノ構造体での細胞の処理によっては、細胞へのコレステロール流入量を減少させることにより、少なくとも一部、細胞が死滅する場合がある。したがって、本明細書中に記載するナノ構造体は、癌細胞においてコレステロール代謝を崩壊させるために使用することができ、例えば、その結果、細胞増殖のための細胞膜の完全性はもはや維持できなくなる。
HDLの分子受容体の存在を含む、リンパ腫細胞のような癌細胞におけるコレステロール代謝の分子経路に関する知見はほとんどない。本発明の1つの態様には、ABCA1およびABCG1が比較的一定の低いレベルで発現されるが、一方、SR−B1は多数のB細胞リンパ腫細胞株において高度に発現されることの発見と、本明細書中に記載する合成ナノ構造体を、1以上のこれらの受容体への結合に使用することが含まれる。
1つの態様においては、合成ナノ構造体を使用してリンパ腫細胞を処置するための方法を提供する。リンパ腫細胞は、例えば、非ホジキンリンパ腫細胞および/またはB細胞リンパ腫細胞であり得る。いくつかの実施形態においては、リンパ腫細胞はバーキットリンパ腫細胞であり得る。例えば、本明細書中に記載するナノ構造体は、バーキットリンパ腫のエプスタインバーウイルス(EBV)感染を阻害することができる。いくつかの実施形態においては、リンパ腫はSR−B1を発現している細胞を特徴とする。特定の実施形態においては、リンパ腫は、ABCA1および/またはABCG1を発現している細胞を特徴とする。特定の実施形態においては、リンパ腫は、SR−B1、ABCA1および/またはABCG1の増大した発現を有している細胞を特徴とする。受容体SR−B1、ABCA1および/またはABCG1は、本明細書中に記載する合成ナノ構造体に結合させるために使用することができる。
特定の実施形態においては、本明細書中に記載するナノ構造体は、(例えば、細胞膜の脂質ラフトの)膜流動性を変化させることができる。ナノ構造体は、脂質ラフトでつながる下流の分子経路に影響を及ぼすことができる。
特定の実施形態においては、記載するナノ構造体は、本明細書中に記載するナノ構造体を使用する処置の非存在と比較して、腫瘍の体積、サイズ、または増殖を(例えば、少なくとも10%、少なくとも20%、少なくとも30%、少なくとも40%、少なくとも50%、少なくとも60%、少なくとも70%、少なくとも80%、または少なくとも90%)減少させることができる。
一般に、本明細書中に記載するナノ構造体は、癌を処置する、および/または癌細胞を死滅させるための、同時に起こる可能性がある2以上の異なる機構を含む様々な機構を有し得、これらの機構についての様々な理論が提供されているが、本発明はこの局面に限定されないことが理解されているものとする。いくつかの実施形態においては、ナノ構造体は、癌細胞の増殖を制御する、および/または癌細胞を死滅させることができる。いくつかの場合には、癌細胞をアポトーシスにより、または他の機構により死滅させることができる。特定の実施形態においては、ナノ構造体は、細胞においてコレステロール代謝(例えば、コレステロール流出および/またはコレステロール流入)を制御することができる。いくつかの場合には、ナノ構造体は、細胞においてSR−B1結合を調整することができる。例えば、いくつかの実施形態においては、ナノ構造体は、SR−B1を実質的に阻害することができる(例えば、その結果、これは天然のHDLとの結合に利用されない)。1つ以上のそのような機構の組み合わせが可能である。他の機構もまた可能であることが理解されるものとする。
特定の実施形態においては、本明細書中に記載するナノ構造体は、天然のリポタンパク質と同じもしくは類似する細胞表面リガンド/受容体と結合する、および/またはそれらとの結合について競合することができる。HDL(例えば、hHDL)のような天然のリポタンパク質を本明細書中で主に記載するが、低密度リポタンパク質(LDL)、アセチル化低密度リポタンパク質(Ac−LDL)、中間密度リポタンパク質(IDL)、および超低密度リポタンパク質(VLDL)のような、本明細書中に記載するナノ構造体がそれと結合する、および/またはそれと競合することができる他の天然のリポタンパク質もまた可能である。いくつかの実施形態においては、本明細書中に記載するナノ構造体は、LDLまたはVLDLのような天然のリポタンパク質を模倣する。すなわち、ナノ構造体のサイズ、界面化学、および他の特徴は、天然のリポタンパク質のサイズ、界面化学、および他の特徴と類似するように設計することができる。
疾患または身体状態を診断する、予防する、処置する、または管理する方法には、例えば、ナノ構造体コアと、上記ナノ構造体コアを囲繞し、それに結合したシェルを含有している本明細書中に記載する合成構造体を含有している治療有効量の組成物を被験体に投与する工程、および上記合成ナノ構造体が、天然のリポタンパク質(例えば、HDL、IDL、LDL、またはVLDL)を結合する細胞表面リガンド/受容体と結合することを可能にする工程、および細胞表面リガンド/受容体と天然のリポタンパク質との間での結合をブロックするか、またはその結合の量を(例えば、合成ナノ構造体の結合工程が行われない場合と比較して)減少させる工程が含まれ得る。上記細胞表面リガンド/受容体としては、例えば、SR−B1、ABCA1および/またはABCG1を挙げることができる。いくつかの実施形態においては、そのような方法は、細胞コレステロールの流れの変更(例えば、細胞表面受容体を含有している細胞におけるコレステロールの流入または流出の増大または減少)をもたらすことができる。特定の実施形態においては、合成ナノ構造体は、生体マトリックス(例えば、血清、血液、血漿)中の脂質またはタンパク質(例えば、アポリポタンパク質)を隔離するか、またはそれらを他の天然のリポタンパク質と交換することができる。
特定の実施形態においては、方法には、生体マトリックス(例えば、血液、血清、血漿)に対して、ナノ構造体コアと、上記ナノ構造体コアを囲繞し、それに結合したシェルを含有している合成構造体を含有している、治療有効量の組成物を投与する工程、および上記合成ナノ構造体が脂質またはタンパク質を隔離する、あるいはそれを生体マトリックス中の天然のリポタンパク質と交換することができるようにする工程が含まれる。上記合成ナノ構造体は、天然のリポタンパク質の模倣物であり得る。いくつかの実施形態においては、上記方法には、合成ナノ構造体を、天然のリポタンパク質と結合することができる細胞表面受容体に対して結合させる工程が含まれる。細胞表面リガンド/受容体としては、例えば、SR−B1、ABCA1および/またはABCG1を挙げることができる。
本発明の1つの態様においては、癌、または他の疾患もしくは状態を処置するために使用することができるナノ構造体を含む、ナノ構造体に関する物品、組成物、キット、および方法を提供する。本明細書中に記載する特定の実施形態には、コア−シェル型の配置を有している構造体が含まれる。例えば、ナノ粒子コアは、脂質二重層のような物質を含有しているシェルにより囲繞され得、脂質二重層などの物質はコレステロールおよび/または他の脂質と相互作用することができる。いくつかの実施形態においては、上記構造体は、被験体に導入される場合には、癌細胞を死滅させるために使用することができる。いくつかの場合には、上記ナノ構造体は、癌細胞のような細胞におけるコレステロール代謝を制御するために使用することができる。
本明細書中に記載するいくつかの実施形態においては、コア(例えば、金ナノ粒子)を、多種多様のさらなる界面化学および調整可能性に対応できる、十分に定義されたサイズ、形状、および界面化学の構造体をかたどり、そしてその合成を誘導するための足場として使用することができる。例えば、ボトムアップ、サイズ特異的なリポタンパク質合成は、脂質二重層および/または他の適切な成分を含有しているシェルを支持するためにナノ構造体コアを使用することにより行うことができる。いくつかの実施形態においては、ナノ構造体コアは、形成された構造体のサイズを制限し、そしてかたどるように作用し得、そして/または細胞へのコレステロール流入を制御するために使用することができる。シェルは、細胞のコレステロールを隔離するため、および/または細胞からのコレステロール流出を制御するために使用することができる。
本明細書中に記載する特定の物品および方法には、高い程度の再現性があり、大規模なスケールアップの可能性がある、構造体の制御可能な合成のためのナノ構造体足場の使用が含まれる。得られる構造体は様々な溶媒中で安定であり得、長いインビボでの循環時間を有し得、そして製造が比較的安価であり得る。さらに、脂質は市販されているリンカー化学(linker chemistry)で容易に修飾することができるので、本明細書中に記載する構造体は、抗体、小分子、およびタンパク質のような、可能性がある薬物、および/または標的化剤/認識剤でのさらなる機能化に対応できる。さらなる利点を以下にさらに詳細に記載する。
本明細書中に記載する方法において使用することができるナノ構造体の例をここに記載する。
図1Aの具体的な実施形態には、コア16と上記コアを囲繞するシェル20を有している構造体10(例えば、合成構造体または合成ナノ構造体)が含まれる。コアがナノ構造体である実施形態においては、コアには表面24が含まれ、表面24に対して1つ以上の成分を必要に応じて結合させることができる。例えば、いくつかの場合には、コア16はシェル20により囲繞されたナノ構造体であり、シェル20には内側表面28と外側表面32が含まれる。シェルは、複数の脂質のような1つ以上の成分34から(少なくとも部分的に)形成され得、成分34は互いに、そして/またはコアの表面24と必要に応じて会合することができる。例えば、成分34は、コアに対して共有結合的に付着することにより、物理吸着(physisorbe)することにより、化学吸着(chemisorbe)することにより、または、イオン相互作用、疎水性および/または親水性相互作用、静電的相互作用、ファンデルワールス相互作用またはその組み合わせを介してコアに付着することにより、コアと会合してもよい。1つの特定の実施形態において、コアは金のナノ構造体を含み、シェルは金−チオール結合によってコアに付着する。
任意により、成分34は互いに架橋することができる。シェルの成分の架橋は、たとえば、シェルへの、またはシェルの外部の領域とシェルの内部の領域との間での種の輸送の制御を可能にする。たとえば、比較的高い量の架橋は、ある種の小さいが大きくない分子がシェルを通過することを可能にするが、比較的低い架橋または架橋がない場合は、より大きな分子がシェルを通過することを可能にする。さらに、シェルを形成する成分は、単層または多層の形態であってもよい。それはさらに分子の輸送または隔離を容易にするか、妨げることができる。1つの例示的な実施形態において、本明細書に記載されるように、シェル20がコレステロールを隔離し、そして/または細胞外へのコレステロールの流出を制御するよう構成される脂質二重層を含む。
かかる実施形態は可能かもしれないが、コアを囲繞するシェルが完全にはコアを囲繞しなくてもよいことが理解されるはずである。たとえば、シェルは、コアの表面積の少なくとも50%、少なくとも60%、少なくとも70%、少なくとも80%、少なくとも90%、または少なくとも99%を囲繞してもよい。いくつかの場合において、シェルが実質的にコアを囲繞する。他の場合において、シェルは完全にコアを囲繞する。シェルの成分は、いくつかの場合、コアの表面全域に均一に分配されてもよく、そして他の場合において、一様ではなく分配されていてもよい。たとえば、シェルは、いくつかの場合において、いかなる材料も含まない部分(たとえば、穴)を含んでもよい。所望であれば、シェルは、シェルの中への、またはシェルからのある種の分子および成分の浸透および/または輸送を可能にするよう設計されてもよいが、シェルの中への、またはシェルからの他の分子および成分の浸透および/または輸送を防いでもよい。ある種の分子がシェル内部におよび/またはシェルを横切って浸透するおよび/または輸送される能力は、たとえばシェルを形成する成分の充填密度、およびシェルを形成する成分の化学および物理的性質に依存してもよい。本明細書に記載の通り、シェルはいくつかの実施形態において、材料の一つの層または材料の多層を含んでもよい。
構造体10(例えば、合成構造体または合成ナノ構造体)は、構造体に任意により特異性を付与してもよいタンパク質、核酸および生物活性剤等の1以上の成分36をさらに含んでもよい。1以上の成分36はコア、シェルまたはそれらの両方と会合してもよく、たとえば、それらは、コアの表面24、シェルの内側表面28、シェルの外側表面32と会合してもよく、かつ/あるいはシェルに埋め込まれていてもよい。たとえば、1以上の成分36は、共有結合、物理吸着、化学吸着を介してコア、シェルまたはその両方と会合してもよく、または、イオン相互作用、疎水性および/または親水性相互作用、静電的相互作用、ファンデルワールス相互作用またはそれらの組み合わせを介して付着されてもよい。1つの特定の実施形態において、シェル20は、互いに共有結合または非共有結合したタンパク質および脂質の両方を含むリポタンパク質アセンブリまたは構造体の形態である。たとえば、シェルは、脂質の取込みを制御する酵素補因子、受容体リガンドおよび/または脂質輸送キャリアとして作用するアポリポタンパク質アセンブリの形態であり得る。本明細書に記載の通り、構造体の表面がHDL、LDLまたは他の構造体の一般的な表面組成を模倣するように、構造体10の成分が選択される。
本明細書に記載のもの以外の成分および構成がある種の構造体および組成物に適していてもよく、図1に示される成分のすべてがいくつかの実施形態の中に必ず存在するとは限らないことが理解されるべきである。
構造体10は任意の適切な方法により製造することができる。例えば、いくつかの実施形態においては、図1Bに例示的に示すように、構造体(例えば、HDL−NP)の合成は、アポリポタンパク質A−Iをコロイド状AuNP(5nmの直径)の溶液に添加することにより開始させることができる。次に、1、2、またはそれより多くのタイプのリン脂質を上記混合物に添加することができる。リン脂質のうちの1つには、例えば、ナノ粒子(例えば、金)のコアの表面に対して高い親和性で結合する、ジスルフィド頭部基が含まれ得る。他の界面化学もまた使用することができる。第2のリン脂質は、HDLと自然に会合し、外側のリン脂質リーフレット層を形成することができるものであり得る。製造方法および他の詳細は、2009年4月24日に出願され、2012年12月4日に発行された、米国特許第8,323,686号(これは、全ての目的のためのその全体が参照により本明細書中に組み込まれる)に記載されている。
いくつかの場合には、コア16は中空であり、したがって、コア16にはナノ構造体コアは含まれない。よって、いくつかのそのような実施形態および他の実施形態においては、構造体10には、必要に応じて、成分(例えば、生物活性剤、コレステロール)がコア16およびシェルの外側の環境40に対して通過し、ならびにコア16およびシェルの外側の環境40から通過することを可能にすることができるシェルが含まれる。シェルを形成する成分の立体障害が原因で典型的には約100nmより大きい最大断面寸法を有する、特定の既存の中空構造体(例えば、リポソーム)とは対照的に、中空のコア(例えば、部分的にまたは全体的に中空のコア)を有している構造体10は非常に小さい場合があり、例えば、約100nm未満またはさらには約50nm未満の最大断面寸法を有する。例えば、リン脂質が立体的に制限されるため、リン脂質を含有する脂質二重層を含むリポソームは100nm未満のサイズで製造することが難しく、したがって、小さな曲率半径を持つ二重層の中空構造体を形成することは困難であるかまたは不可能となる。しかし、本明細書中に記載する方法を使用して、本明細書中に提供するような、小さい曲率半径を持つそのような構造体および他の構造体を形成させることができる。
複数の実施形態の1つの組においては、構造体10(ナノ構造体コアを含むかまたは中空コアを含むかにかかわらず)は、被験体もしくは生物学的試料に対して、および/または被験体もしくは生物学的試料から、特定の分子を隔離する、輸送する、あるいは交換するように構築され、そして配置される。例えば、構造体10は、被験体に導入されると、細胞、組織、臓器、粒子、流体(例えば、血液)のような、被験体中の1以上の成分、およびそれらの一部と相互作用することができる。上記相互作用は、少なくとも一部、構造体10のシェルを通じて起こり得、そして上記相互作用には、例えば、被験体の1以上の成分由来の物質(例えば、タンパク質、ペプチド、ポリペプチド、核酸、栄養素)の構造体10への交換、および/または構造体10から被験体の1以上の成分への交換が含まれ得る。いくつかのそのような実施形態においては、構造体10のシェルは、被験体由来の1以上の物質との好ましい相互作用(例えば、結合、吸着、輸送)を可能にする特性を持つ成分を含むように設計することができる。例えば、上記シェルには、以下にさらに詳細に記載するように、特定の疎水性、親水性、表面電荷、官能基、結合特異性、および/または特定の相互作用を促進するための密度を有している成分が含まれ得る。特定の実施形態においては、被験体由来の1以上の物質が構造体10により隔離され、構造体10は、上記物質の排出、崩壊、および/または輸送を容易にする。上記物質の排出、崩壊、および/または輸送は、特定の有益な効果および/または治療効果をもたらすことができる。このように、本明細書中に記載する構造体は、特定の疾患もしくは身体状態の診断、予防、処置、または管理に使用することができる。
コア16が中空ではない特定の実施形態においては、上記コアは、細胞に対して毒性がある物質を含有することができ、またそのような材料から形成させることもできる。いくつかの実施形態においては、上記毒性物質がコアから放出され得る。他の実施形態においては、上記毒性物質はコアから放出されない。例えば、細胞の成分と毒性物質との間での接触は、細胞の増殖に影響を及ぼす場合がある。
いくつかの実施形態においては、構造体10(ナノ構造体コアを含むかまたは中空コアを含むかにかかわらず)がコレステロール代謝および細胞を制御するように適合させられる。例えば、上記ナノ構造体コアまたは中空コアは、細胞へのコレステロール流入の量を制限するために使用することができる。これは、例えば、いずれのコレステロールも含まないナノ構造体を形成させること、または細胞への送達のためのコアにある十分な量のコレステロールにより行われ得る。生存のために(例えば、膜完全性および/または他の機能を維持するために)コレステロールが必要である細胞については、細胞へのコレステロール流入の量の制限が細胞を死滅させる場合がある。したがって、そのようなナノ構造体は、細胞増殖の減少もしくは細胞の死滅を含むか、またはそれらが必要な疾患あるいは状態の処置に使用することができる。いくつかの実施形態においては、細胞増殖の減少および/または細胞の死滅の誘導を含む、疾患あるいは状態の処置に使用され得る構造体には、上記構造体のシェルの表面上の、またはシェル中に埋め込まれたタンパク質(例えば、アポリポタンパク質)が含まれ得る。しかし、他の実施形態においては、構造体が、細胞増殖の減少および/または細胞の死滅の誘導を含む、疾患あるいは状態の処置に使用されるためには、そのようなタンパク質が必ずしもシェル上またはシェル内に存在する必要はない。
実施形態の1つの特定の組においては、構造体10(ナノ構造体コアを含むかまたは中空コアを含むかにかかわらず)を、コレステロール(および/または他の脂質)を隔離するように構築し、配置する。理論に束縛されることは望まないが、構造体10が、上記構造体の疎水性層(例えば、脂質二重層)との疎水性相互作用を介してコレステロールを隔離するという仮説が立てられている。例えば、いくつかの場合には、コレステロールは疎水性相互作用により構造体の表面に対して(例えば、シェルの外側表面に対して)結合することができる。他の場合には、コレステロールを、シェルの外側表面から、シェルの内側表面に、および/または構造体のコアに輸送することができる。コレステロールはまた、シェルに、例えば、シェルの2つの層の間に埋め込むことができる。必要に応じて、構造体10には、コレステロールの隔離を促進することができる、1つ以上のアポリポタンパク質(例えば、アポリポタンパク質−A1)、タンパク質、またはペプチドを含めることができる。構造体10はまた、細胞から、または他の循環リポタンパク質種から、コレステロールおよびリン脂質を除去することにより、コレステロールを隔離することができる。構造体10により隔離されたコレステロールは、酵素により(例えば、レシチン:アシルCoAトランスフェラーゼ(LCAT)によって)エステル化されて、構造体の中心に向かって移動することができるコレステリルエステルを形成することができる。中空コアの実施形態の場合には、上記コレステリルエステルは中空コアの中に蓄積し得る。いくつかの実施形態においては、そのような構造体および他の構造体を、細胞からのコレステロール流出を制御するために使用することができる。
本明細書中に記載するように、上記ナノ構造体は、細胞中のコレステロール代謝を制御するために使用することができる。例えば、いくつかの場合には、上記ナノ構造体は、細胞(例えば、SR−B1を有している癌細胞、B細胞リンパ腫細胞、非ホジキンリンパ腫細胞、黒色腫細胞などのような癌細胞)におけるコレステロール流入およびコレステロール流入の1つ以上を制御するために使用することができる。いくつかの実施形態においては、上記ナノ構造体は、例えば、類似するサイズ、形状、および/または界面化学の天然のHDL粒子と比較して、細胞からのコレステロール流出を増大させるために使用することができる。いくつかの実施形態においては、コレステロール流出を、例えば、少なくとも1%、少なくとも3%、少なくとも5%、少なくとも7%、少なくとも10%、少なくとも15%、少なくとも20%、少なくとも30%、少なくとも40%、少なくとも60%、少なくとも80%、または少なくとも100%増大させることができる。他の範囲もまた可能である。他の場合には、上記ナノ構造体を、細胞からのコレステロール流出を減少させるために使用することができる。他の実施形態においては、上記ナノ構造体は、例えば、類似するサイズ、形状、および/または界面化学の天然のHDL粒子と比較して、細胞へのコレステロール流入を減少させるために使用することができる。いくつかの実施形態においては、コレステロール流入を、例えば、少なくとも1%、少なくとも3%、少なくとも5%、少なくとも7%、少なくとも10%、少なくとも15%、少なくとも20%、少なくとも30%、少なくとも40%、少なくとも60%、少なくとも80%、または少なくとも100%減少させることができる。他の範囲もまた可能である。他の場合には、上記ナノ構造体を、細胞へのコレステロール流入を増大させるために使用することができる。いくつかの実施形態においては、上記ナノ構造体を、細胞が細胞増殖の有意な停止および/または細胞の死滅を生じるように、十分な量のコレステロールの流出および/または流入を制御するために使用することができる。
しかし、他の実施形態においては、本明細書中に記載するナノ構造体は、コレステロールを隔離するようには構築および配置されない。
特定の実施形態においては、上記構造体は、細胞(例えば、癌細胞)によりエンドサイトーシスされ得、それにより、細胞内に局在化され得る。他の実施形態においては、構造体は細胞の外側にとどまる。構造体が細胞内と細胞の外側の両方に存在することもまた可能である。
いくつかの実施形態においては、本明細書中に記載するナノ構造体は、高濃度のコレステロールからコレステロールを隔離し、かつ、それを肝臓に直接的または間接的に移動させることができる。例えば、本明細書中に記載する構造体中またはその上への直接のコレステロールの流出により、高濃度のコレステロールの領域から、コレステロールを隔離することができる。いくつかのそのような実施形態においては、構造体により隔離されたコレステロールは、構造体によって肝臓に直接輸送される。他の実施形態においては、他の循環リポタンパク質種(例えば、LDL)が、コレステロール交換に関係し得る。例えば、いくつかの場合には、遊離のコレステロールまたはエステル化コレステロールが、他のリポタンパク質から本明細書中に記載する構造体へと移動させられる。他の場合においては、遊離のコレステロールまたはエステル化コレステロールが本明細書中に記載する構造体により隔離されると、コレステロールを構造体から他のリポタンパク質種へと移動させることができ、これは最終的には肝臓に行き着くことになり得る。したがって、そのような実施形態においては、本明細書中に記載する構造体は逆方向のコレステロール輸送を間接的に変化させるか、または増大させることができる。さらに、本明細書中に記載する構造体から他のリポタンパク質種に遊離のコレステロールまたはエステル化コレステロールを隔離する場合は、上記構造体は、例えば、高コレステロール含有量の領域、循環リポタンパク質、または高コレステロール濃度の他の生理学的部位からコレステロールをさらに隔離することができる。しかし、本明細書中に記載する構造体が、他のルートにより、例えば、尿を介して、コレステロールおよび/または他の分子を除去することができ、そして本発明がこの態様に限定されないことが理解されるものとする。
本明細書中に記載する構造体および/または組成物により隔離された分子(例えば、コレステロールまたは他の脂質)の量は、例えば、構造体のサイズ、粒子の生物学および界面化学、ならびに投与方法に依存し得る。例えば、構造体が末梢部から肝臓へと無期限に循環し再び出て行く場合は、構造体が再利用されるので、組成物が有効であるためには、比較的少数のコレステロール分子がそれぞれの構造体により隔離される必要がある。他方では、組成物が、例えば、コレステロールまたは胆汁酸塩結合性樹脂として経口的に使用される場合は、それぞれの構造体が、より多くの数のコレステロールを隔離してコレステロールの取込みを増大させることができる。また、構造体が、コレステロールを隔離した後で(例えば、肝臓または尿を介して)急速に排出されるようなサイズである場合は、構造体1つあたりの大量のコレステロールの取込みおよび/または継続的な注入を実施することができる。このように、薬学的組成物または他の処方物に取り込ませることができる本明細書中に記載する単一の構造体は、構造体のサイズ(例えば、表面積および/または体積)、特定の用途、ならびに投与方法に応じて変わり得る、例えば、少なくとも2、少なくとも5、少なくとも10、少なくとも20、少なくとも30、少なくとも50、少なくとも100、少なくとも200、少なくとも500、少なくとも1,000、少なくとも2,000、少なくとも5,000または少なくとも10,000個の、任意の適切な数の特定のタイプの分子(例えば、コレステロールのような脂質;エストロゲン、プロゲステロン、およびテストステロンのようなステロイド;胆汁酸塩など)を、使用中に、隔離することができる可能性がある。いくつかの場合には、1つの特定の例において、そのような数の分子を構造体に結合させることができる。
いくつかの場合には、単一構造体は、例えば、100μM以下、約10μM以下、約1μM以下、約0.1μM以下、約10nM以下、約7nM以下、約5nM以下、約2nM以下、約1nM以下、約0.1nM以下、約10pM以下、約1pM以下、約0.1pM以下、約10fM以下、または約1fM以下の、コレステロールに対する結合定数Kを有する。隔離されたコレステロールの量および結合定数を決定するための方法を、以下にさらに詳細に提供する。
特定の実施形態においては、本明細書中に記載する構造体により隔離された分子は、例えば、隔離された分子の数に応じて、構造体のサイズ(例えば、断面積、表面積、および/または体積)を増大させる。本明細書中に記載するように、上記分子は、構造体の表面と会合することができ、構造体のシェルの中に埋め込むことができ、構造体のコアに輸送することができ、また、それらを組み合わせることもできる。このため、いくつかの実施形態においては、構造体のサイズ(例えば、断面積、表面積、および/または体積)は、隔離後/隔離中のときと比較して、隔離前のときから少なくとも5%、少なくとも10%、少なくとも20%、少なくとも30%、少なくとも50%、少なくとも70%、または少なくとも100%増大し得る。
しかしながら、本明細書中の実施形態の多くはコレステロールまたは他の脂質を隔離する状況について記載されるが、本発明がそのようなものとして限定されるものではなく、本明細書中に記載する構造体、組成物、キット、および方法を、他の分子を隔離するため、および/あるいは他の疾患または身体状態を予防する、処置する、または管理するために使用できることが理解されるものとする。
ナノ構造体コアであろうと中空コアであろうと、コア16は、任意の好適な形状および/またはサイズを有し得る。たとえば、コアは、実質的に球形、非球形、楕円形、棒状、ピラミッド形、立方体形、円盤状、ワイヤー状、または不規則な形状であってもよい。コア(例えば、ナノ構造体コアまたは中空コア)は、最大断面寸法(または、場合によっては、最小断面寸法)が、たとえば、約500nm以下、約250nm以下、約100nm以下、約75nm以下、約50nm以下、約40nm以下、約35nm以下、約30nm以下、約25nm以下、約20nm以下、約15nm以下、または約5nm以下である。いくつかの場合において、コアのアスペクト比は約1:1を上回り、3:1を上回り、または5:1を上回る。本明細書で使用される「アスペクト比」は幅に対する長さの比率を指す。ここで長さおよび幅は、互いに垂直に測定される。また、長さは最長の直線的に測定された寸法を指す。
コア16がナノ構造体コアを含む実施形態において、ナノ構造体コアは任意の好適な材料から形成されてもよい。いくつかの実施形態において、コアは、合成材料(例えば、天然には存在しないか、身体内に天然に存在する材料)から形成される。一実施形態において、ナノ構造体コアは無機材料を含むか、またはそれから形成される。無機材料としてはたとえば、金属(たとえば、Ag、Au、Pt、Fe、Cr、Co、Ni、Cu、Zn、および他の遷移金属)、半導体(たとえば、ケイ素、ケイ素化合物および合金、セレン化カドミウム、硫化カドミウム、砒化インジウム、およびリン化インジウム)、または絶縁体(たとえば、酸化ケイ素等のセラミックス)が挙げられる。無機材料は、任意の好適な量、たとえば、少なくとも1重量%、5重量%、10重量%、25重量%、50重量%、75重量%、90重量%、または99重量%でコア中に存在し得る。一実施形態において、コアは100重量%の無機材料より形成される。ナノ構造体コアは、いくつかの場合において、量子ドット、カーボンナノチューブ、カーボンナノワイヤーまたはカーボンナノロッドの形状であり得る。いくつかの場合において、ナノ構造体コアは、生体起源でない材料を含む、または、生体起源でない材料より形成される。いくつかの実施形態において、ナノ構造体は、たとえば、合成重合体および/または天然重合体等の1以上の有機材料を含むか、またはそれから形成され得る。合成重合体の例としては、ポリメタクリレート等の非分解性重合体、ポリ乳酸、ポリグリコール酸等の分解性重合体、およびそれらの共重合体等が挙げられる。天然重合体としては、たとえば、ヒアルロン酸、キトサンおよびコラーゲンが挙げられる。
コア16を囲繞するシェル20を含み得る構造体10は、任意の好適な形状および/またはサイズを有してもよい。たとえば、構造体の形状は、実質的に球形、楕円形、棒状、ピラミッド形、立方体形、円盤状、または凸凹状であってもよい。構造体の最大断面寸法(または、場合によっては、最小断面寸法)は、たとえば約500nm以下、約250nm以下、約100nm以下、約75nm以下、約50nm以下、約40nm以下、約35nm以下、約30nm以下、約25nm以下、約20nm以下、約15nm以下、または約5nm以下であり得る。また、構造体のアスペクト比は、コアのアスペクト比に実質的に類似していてもよい。
さらに、構造体のシェルは、任意の好適な厚さを有し得る。たとえば、シェルの厚さは、(たとえば、シェルの内側表面から外側表面までが)少なくとも10オングストローム、少なくとも0.1nm、少なくとも1nm、少なくとも2nm、少なくとも5nm、少なくとも7nm、少なくとも10nm、少なくとも15nm、少なくとも20nm、少なくとも30nm、少なくとも50nm、少なくとも100nm、または少なくとも200nmであってもよい。いくつかの場合において、シェルの厚さは、(たとえば、シェルの内側表面から外側表面までが)200nm未満、100nm未満、50nm未満、30nm未満、20nm未満、15nm未満、10nm未満、7nm未満、5nm未満、3nm未満、2nm未満、または1nm未満である。このシェルは、上記の範囲の組み合わせを有していてもよい。このような厚さは、本明細書に記載されるように、分子の隔離の前またはその後に決定され得る。
当業者は、構造体および粒子のサイズを判定する技術に精通している。好適な技術としては、たとえば、動的光散乱(DLS)(たとえば、Malvern Zetasizer機器を使用する)、透過型電子顕微鏡、走査電子顕微鏡法、電気抵抗によるカウント、およびレーザー回折が挙げられる。他の好適な技術は、当業者にとって公知である。ナノ構造体のサイズを判定する多くの方法は公知であるが、本明細書に記載のサイズ(たとえば、最大または最小断面寸法、厚さ)は、動的光散乱によって測定されたものを指す。
本明細書に記載の構造体のシェルは、疎水性材料、親水性材料、および/または両親媒性材料等の任意の好適な材料を含み得る。シェルは、ナノ構造体コアのための上記列挙されたような1以上の無機材料を含み得るが、多くの実施形態において、シェルは脂質またはある種の重合体等の有機材料を含む。いくつかの実施形態においては、シェルの成分を、コレステロールまたは他の分子の隔離を容易にするように選択することができる。例えば、コレステロール(または他の隔離された分子)は、シェルの表面に結合または別の方法で会合することができるか、あるいは、シェルに、コレステロールが構造体により取り込まれることを可能にする成分が含まれ得る。コレステロール(または他の隔離された分子)はまた、シェルの中に、層内に、またはシェルを形成している2つの層の間に埋め込まれ得る。
シェルの成分は、例えば、構造体の表面上に電荷を付与するために荷電することができ、また、荷電されない場合もある。いくつかの実施形態においては、シェルの表面は、約−75mV以上、約−60mV以上、約−50mV以上、約−40mV以上、約−30mV以上、約−20mV以上、約−10mV以上、約0mV以上、約10mV以上、約20mV以上、約30mV以上、約40mV以上、約50mV以上、約60mV以上、または約75mV以上のζ電位を有し得る。シェルの表面は、約75mV以下、約60mV以下、約50mV以下、約40mV以下、約30mV以下、約20mV以下、約10mV以下、約0mV以下、約−10mV以下、約−20mV以下、約−30mV以下、約−40mV以下、約−50mV以下、約−60mV以下、または約−75mV以下のζ電位を有し得る。他の範囲もまた可能である。上記範囲の組み合わせもまた可能である(例えば、約−60mV以上かつ約−20mV以下)。本明細書中に記載するように、シェルの表面電荷は、シェルの界面化学および成分を変化させることにより調整することができる。
1つの組の実施形態において、本明細書に記載の構造体またはその一部分、たとえば構造体のシェルは、1以上の天然または合成脂質または脂質アナログ(すなわち、親油性分子)を含む。1以上の脂質および/または脂質アナログは、構造体の単層または多層(たとえば、二重層)を形成してもよい。多層が形成されるいくつかの例において、天然または合成脂質または脂質アナログは、(たとえば、異なる層間で)互いに組み合う。天然または合成脂質または脂質アナログの非限定的例としては、脂肪酸アシル、グリセロ脂質、グリセロリン脂質、スフィンゴ脂質、サッカロ脂質、およびポリケチド(ケトアシルサブユニットの縮合に由来する)、ステロール脂質およびプレノール脂質(イソプレンサブユニットの縮合に由来する)が挙げられる。
一組の特定の実施形態において、本明細書に記載の構造体は1以上のリン脂質を含む。1以上のリン脂質としては、たとえば、ホスファチジルコリン、ホスファチジルグリセロール、レシチン、β,γ−ジパルミトイル−α−レシチン、スフィンゴミエリン、ホスファチジルセリン、ホスファチジン酸、N−(2,3−ジ(9−(Z)−オクタデケニルオキシ))−プロパ−1−イル−N,N,N−トリメチルアンモニウムクロリド、ホスファチジルエタノールアミン、リゾレシチン、リゾホスファチジルエタノールアミン、ホスファチジルイノシトール、ケファリン、カルディオリピン、セレブロシド、ジセチルフォスフェート、ジオレイルホスファチジルコリン、ジパルミトイルホスファチジルコリン、ジパルミトイルホスファチジルグリセロール、ジオレオイルホスファチジルグリセロール、パルミトイル−オレオイル−ホスファチジルコリン、ジ−ステアロイル−ホスファチジルコリン、ステアロイル−パルミトイル−ホスファチジルコリン、ジ−パルミトイル−ホスファチジルエタノールアミン、ジ−ステアロイル−ホスファチジルエタノールアミン、ジ−ミリストイル−ホスファチジルセリン、ジ−オレイル−ホスファチジルコリン、1,2−ジパミトイル−sn−グリセロ−3−ホスホチオエタノール、およびそれらの組み合わせが挙げられる。いくつかの場合において、構造体のシェル(たとえば、二重層)は、50〜200の天然または合成脂質または脂質アナログ(たとえば、リン脂質)を含む。たとえば、シェルは、たとえば、構造体のサイズに応じて、約500未満、約400未満、約300未満、約200未満、または約100未満の天然または合成脂質または脂質アナログ(たとえば、リン脂質)を含み得る。
ステアリルアミン、ドセシルアミン、パルミチン酸アセチル、および脂肪酸アミドのような非リン含有脂質も使用され得る。他の実施形態において、脂肪、油、ろう、コレステロール、ステロール、脂溶性ビタミン(たとえば、ビタミンA、D、EおよびK)、グリセリド(例えば、モノグリセリド、ジグリセリド、トリグリセリド)等の他の脂質は、本明細書に記載の構造体の一部分を形成するために使用することができる。
ナノ構造体のシェルまたは表面等の、本明細書に記載の構造体の一部分は、任意により構造体に疎水性を付与する1以上のアルキル基、たとえば、アルカン−、アルケン−、またはアルキン含有種を任意により含み得る。「アルキル」基は、直鎖アルキル基、分岐鎖アルキル基、シクロアルキル(脂環式)基、アルキル置換シクロアルキル基、およびシクロアルキル置換アルキル基を含む飽和脂肪族基を指す。アルキル基は、たとえば、CからC40の間の様々な炭素数を有してもよい。いくつかの実施形態において、炭素数は、C、C10、C15、C20、C25、C30またはC35よりも大きくてよい。いくつかの実施形態において、直鎖または分岐鎖アルキルは、その骨格に、30個以下、いくつかの場合においては20個以下の炭素原子を有してもよい。いくつかの実施形態において、直鎖または分岐鎖アルキルは、その骨格(たとえば、直鎖ではC〜C12、分岐鎖ではC〜C12)に12個以下、6個以下、4個以下の炭素原子を有してもよい。同様に、シクロアルキルは、それらの環状構造中に3〜10個の炭素原子、または環状構造中に5個、6個または7個の炭素を有してもよい。アルキル基の例としては、たとえば、メチル、エチル、プロピル、イソプロピル、シクロプロピル、ブチル、イソブチル、tert−ブチル、シクロブチル、ヘキシル、シクロヘキシル等が挙げられるが、これらに限定されない。
アルキル基としては、任意の好適な末端基、たとえば、チオール基、アミノ基(たとえば、置換されていないまたは置換されたアミン)、アミド基、イミン基、カルボキシル基、またはスルフェート基が挙げられ、たとえば、ナノ構造体コアへのリガンドの付着を直接的またはリンカーを介して可能にする。たとえば、不活性金属がナノ構造体コアを形成するために使用される場合、アルキル種は、金属−チオール結合を形成するチオール基を含んでもよい。いくつかの例において、アルキル種は少なくとも第2の末端基を含む。たとえば、種はポリエチレングリコール等の親水性の部分に結合されてもよい。他の実施形態において、第2の末端基は他の官能基に共有結合的に付着することができる反応性基であってもよい。いくつかの例において、第2の末端基はリガンド/受容体相互作用(たとえば、ビオチン/ストレプトアビジン)に関係し得る。
いくつかの実施形態において、シェルは重合体を含む。たとえば、両親媒性重合体が使用され得る。重合体はジブロック共重合体、トリブロック共重合体等であってもよく、たとえば、一方のブロックが疎水性重合体で、他方のブロックが親水性重合体である。たとえば、重合体は、α−ヒドロキシ酸(たとえば、乳酸)およびポリエチレングリコールの共重合体であってもよい。いくつかの場合において、シェルは、ある種のアクリル樹脂、アミドおよびイミド、炭酸塩、ジエン、エステル、エーテル、フルオロカーボン、オレフィン、スチレン、ビニルアセタール、ビニル、および塩化ビニリデン、ビニルエステル、ビニルエーテルおよびケトン等を含み得る重合体、およびビニルピリジンおよびビニルピロリドン重合体等の疎水性重合体を含む。他の場合において、シェルは、ある種のアクリル樹脂、アミン、エーテル、スチレン、ビニル酸およびビニルアルコールを含む重合体等の親水性重合体を含む。重合体は、荷電されていてもよくまたは荷電されていなくてもよい。本明細書に記載されるように、シェルの特定の成分は構造体にある種の官能性を付与するよう選択可能である。
シェルが両親媒性材料を含む場合、材料はナノ構造体コアに関して、および/または互いに任意の好適な方法で配列することができる。たとえば、両親媒性材料は、コアに向けられた親水基、およびコアから離れて伸びる疎水基を含んでもよく、または、両親媒性材料は、コアに向けられた疎水基、およびコアから離れて伸びる親水基を含んでもよい。各構成の二重層も形成することができる。
本明細書に記載の構造体は、必要に応じて、1以上のタンパク質、ポリペプチドおよび/またはペプチド(たとえば、合成ペプチド、両親媒性ペプチド)を含んでもよい。1つの組の実施形態において、構造体は、構造体のコレステロール移送速度またはコレステロール担持能力を増大させることができる、タンパク質、ポリペプチドおよび/またはペプチドを含む。1以上のタンパク質またはペプチドは、コア(たとえば、コアの表面、またはコアに埋め込まれた)、シェル(たとえば、シェルの内側および/または外側表面、またはシェルに埋め込まれた)またはその両方と会合してもよい。会合としては、共有的または非共有的相互作用(たとえば、疎水性および/または親水性相互作用、静電的相互作用、ファンデルワールス相互作用)が挙げられる。
本明細書に記載の構造体と会合し得る好適なタンパク質の例は、たとえば、アポリポタンパク質A(たとえば、apo A−I、apo A−II、apo A−IVおよびapo A−V)、アポリポタンパク質B(たとえば、apo B48およびapo B100)、アポリポタンパク質C(たとえば、apo C−I、apo C−II、apo C−IIIおよびapo C−IV)およびアポリポタンパク質D、E、H等のアポリポタンパク質である。具体的には、apo A、apo Aおよびapo Eは、代謝用として、肝臓へのコレステロールとコレステロールエステルの移送を促進させ、本明細書に記載の構造体に含めることは有用であり得る。さらに、またはあるいは、本明細書に記載の構造体は、上述のようなアポリポタンパク質の1以上のペプチドアナログを含んでもよい。構造体は、任意の好適な数、たとえば、少なくとも1、2、3、4、5、6または10個のアポリポタンパク質またはそのアナログを含んでもよい。ある実施形態において、構造体は、天然のHDL粒子に類似の1〜6個のアポリポタンパク質を含む。もちろん、他のタンパク質(たとえば、非アポリポタンパク質)も本明細書に記載の構造体に含めることができる。
任意により、1以上の酵素も、本明細書に記載の構造体と会合してもよい。たとえば、レシチン−コレステロールアシルトランスフェラーゼは、遊離コレステロールをコレステロールエステル(コレステロールのより疎水性の形態)に変換する酵素である。天然のリポタンパク質(たとえば、HDLおよびLDL)において、コレステロールエステルはリポタンパク質のコアへと隔離され、円盤形から球形にリポタンパク質を変形させる。したがって、本明細書に記載の構造体は、HDLおよびLDL構造体を模倣するためにレシチン−コレステロールアシルトランスフェラーゼを含んでもよい。HDLからLDL種までエステル化コレステロールを輸送するコレステロールエステル輸送タンパク質(CETP)等の他の酵素も含むことができる。
いくつかの実施形態においては、本明細書中に記載するナノ構造体は、いずれの生物活性剤も存在しない中で治療効果を有し得る。例えば、いくつかの実施形態においては、癌を処置するために使用されるナノ構造体またはその組成物は、いずれの癌の薬物(例えば、化学療法剤)も含まず、かつ、なおも癌細胞の処置(例えば、癌細胞の死滅)に有効であり得る。しかし、本明細書中に記載するナノ構造体および組成物がそのようなものとして限定されず、また他の場合には、1以上の生物活性剤が本明細書中に記載するナノ構造体または組成物と会合し得ることが理解されるものとする。存在する場合、1以上の生物活性剤は、任意により、構造体または組成物から放出されてもよい(たとえば、長期的または短期的放出)。生物活性剤は、生物学的な系に影響を及ぼす分子を含み、該分子としては、たとえば、タンパク質、核酸、治療薬、ビタミンおよびその誘導体、ウイルス画分、リポ多糖類、細菌画分、およびホルモンが挙げられる。目的の他の薬剤は化学療法剤を含んでもよく、癌患者の処置および管理に使用される。かかる分子は、抗増殖性剤、細胞毒性薬および免疫抑制剤として一般に特徴づけられ、タキソール、ドキソルビシン、ダウノルビシン、ビンカアルカロイド、アクチノマイシンおよびエトポシド等の分子を含む。
生物活性剤の他の例としては、心血管系作用薬、呼吸器用薬、交感神経作用様薬、コリン様作用薬、アドレナリン作用またはアドレナリン作動性ニューロン遮断薬、鎮痛剤/解熱剤、麻酔薬、喘息治療薬、抗生物質、抗うつ薬、糖尿病用薬、抗真菌剤、抗高血圧剤、抗炎症剤(たとえば、プレドニゾン等のグルココルチコイド)、核酸種(たとえば、炎症伝達物質に対するアンチセンスおよびsiRNA種)、抗腫瘍薬、抗不安薬、免疫抑制剤、免疫修飾剤、片頭痛治療剤(antimigraine agent)、鎮静剤/催眠薬、抗狭心症薬、抗精神病薬、躁病治療剤(antimanic agent)、抗不整脈薬、抗関節炎薬、痛風治療薬、抗凝固剤、血栓溶解剤、抗線維素溶解剤、ヘモレオロジック剤(hemorheologic agent)、抗血小板剤、抗痙攣薬、抗パーキンソン剤(antiparkinson agent)、抗ヒスタミン薬/かゆみ止め、カルシウム調整に有用な薬剤、抗菌性物質(antibacterials)、抗ウイルス薬(antivirals)、抗菌剤(antimicrobials)、消毒剤(anti−infective)、気管支拡張薬、血糖降下薬(hypoglycemic agent)、脂質低下薬(hypolipidemic agent)、赤血球形成刺激に有用な薬剤、抗潰瘍薬(antiulcer agent)/抗逆流薬(antireflux agent)、制吐薬(antinauseant)/鎮吐薬(antiemetic)および脂溶性ビタミン、コレステロール剤(たとえば、コレステロールレベルを下げることで知られる、Lipitor、Zocor等のスタチン)、またはそれらの組み合わせが挙げられる。
いくつかの実施形態において、1以上の核酸は、本明細書に記載の構造体と会合している。核酸は、可変長の、二本鎖または一本鎖デオキシリボ核酸(DNA)またはリボ核酸(RNA)のいずれかを含む。核酸はセンスストランドおよびアンチセンスストランドを含む。ホスホロチエート、ホスホロアミダート、ホスホネートアナログ等の核酸アナログも考えられる核酸であり、使用されてもよい。核酸はさらに染色体および染色体断片を含む。
1以上の糖残基が、随意に、本明細書中に記載する構造体と会合することができる。
いくつかの実施形態においては、本明細書中に記載するナノ構造体は、特定の標的部位(単数または複数)に特異的な1つ以上のリガンドまたは受容体の非存在下で、特異的部位(例えば、癌性細胞および/または組織のような特異的な細胞および/または組織)を標的化することができる。例えば、いくつかの実施形態においては、癌を処置するために使用されるナノ構造体またはその組成物は、ナノ構造体自体の上にはいずれの特異的な受容体も含まず、かつ、癌細胞の標的化および/または処置(例えば、癌細胞の増殖の減少および/または癌細胞の死滅)においてなおも有効であり得る。上記ナノ構造体自体の構造(例えば、上記ナノ構造体がサイズ、形状、および/または界面化学に関して天然のHDLを模倣するという事実)が原因で、上記ナノ構造体は、特定の部位(例えば、癌細胞)を特異的に標的化することができる。しかし、本明細書中に記載するナノ構造体および組成物がそのようなものとして限定されず、また他の場合には、上記ナノ構造体に、特定の標的部位(単数または複数)に特異的な1つ以上のリガンドまたは受容体が含まれ得ることが理解されるものとする。例えば、本明細書中に記載する構造体は、標的化される部位の表面上で発現される受容体のリガンド(またはリガンドの受容体)を含み得る。特異的な表面成分の例としては、抗体(抗体フラグメントおよび誘導体を含む)、特異的な細胞表面マーカー、小分子(例えば、葉酸塩)、およびアプタマー、すなわち、生物学的部分のような特定の標的分子を特異的に結合することができる核酸(例えば、RNAアプタマーおよびDNAアプタマー)が挙げられる。さらに、本明細書中に記載する構造体のタンパク質成分を改変し、標的化分子、例えば、Apo EまたはApo Aとして使用することができる。上記構造体には、特定の小分子を標的化するための特定の基(例えば、アシアロ基)を含めることができる。
他の実施形態においては、本明細書中に記載するナノ構造体は、特定の標的部位(単数または複数)に特異的な1つ以上のリガンドまたは受容体(例えば、Apo−A1のようなアポリポタンパク質)の存在の理由から、およびナノ構造体自体の構造(例えば、上記ナノ構造体が、サイズ、形状、および/または界面化学に関して天然のHDLを模倣するという事実)が原因で、特異的部位(例えば、癌性の細胞および/または組織のような特異的な細胞および/または組織)を標的化することができる。いくつかのそのような実施形態においては、特定の標的部位(単数または複数)に特異的な1つ以上のリガンドまたは受容体を含まない等価なナノ構造体が、癌細胞の処置においていくらか有効であり得る(例えば、最初の程度にまで癌細胞の増殖を減少させる、および/または癌細胞を死滅させることができる)。標的化リガンドが上記ナノ構造体に添加される場合には、上記ナノ構造体は癌細胞の処置においてより効果的であり得、例えば、最初の程度より大きい第2の程度にまで、癌細胞の増殖を減少させる、および/または癌細胞を死滅させることができる。いくつかの実施形態においては、第2の程度は、最初の程度よりも少なくとも5%、少なくとも10%、少なくとも15%、少なくとも20%、少なくとも25%、少なくとも30%、少なくとも40%、少なくとも60%、または少なくとも80%大きくあり得る。
他の実施形態においては、本明細書中に記載するナノ構造体は、特定の標的部位(単数または複数)に特異的な単一のタイプのリガンドまたは受容体(例えば、Apo−A1のようなアポリポタンパク質)のみを含み得、そしてナノ構造体がそれに対して投与され、標的化される特定の標的部位(単数または複数)に特異的な、いかなる他のタイプのリガンドも受容体も含まない。
いくつかの実施形態においては、本明細書中に記載するナノ構造体は、癌細胞を特異的に標的化しないが、非癌細胞に対してもいくらか向けられる。いくつかの実施形態においては、ナノ構造体は、癌細胞を死滅させる、または癌細胞の増殖を別の方法で減少させるために使用され得るものの、非癌細胞(例えば、HDLを自然に標的化し、コレステロールの流れを媒介する、内皮または肝臓由来の正常/末梢ヒトリンパ球および/または細胞)に対しては実質的な有害効果を有さない。いくつかの実施形態においては、本明細書中に記載するナノ構造体は、SR−B1を発現しない細胞に対しては実質的な有害効果を有さない。他の実施形態においては、本明細書中に記載するナノ構造体は、SR−B1を発現するが癌性ではない細胞(例えば、HDLを自然に標的化し、コレステロールの流れを媒介する、内皮または肝臓由来の細胞)に対して実質的な有害効果を有さない。
複数の実施形態の1つの組においては、本明細書中に記載する構造体、組成物、および方法を、異常脂質レベルと関係がある疾患または身体状態を診断する、予防する、処置する、または管理するために使用する。例えば、高密度リポタンパク質は、アテローム性動脈硬化症の発症、およびそれにより生じる、心疾患および発作のような疾病を防御する動的血清ナノ構造体である。天然に存在しているHDLを模倣する構造体を含むものなどの、本明細書中に記載する特定の組成物および方法を施行することにより、循環血清HDLレベル(例えば、低いHDLレベル)を増大させることができる。これは、例えば、逆方向のコレステロール輸送を変更または増大させることにより、アテローム性動脈硬化症を予防する、および可能であれば逆転させるための有望な治療的アプローチを提供することができる。他の実施形態において、本明細書に記載される構造体は、HDLとして類似した細胞表面リガンドについてHDLと直接競合するために使用され得る。
なお他の実施形態においては、本明細書中に記載する組成物および方法を使用して、LDLレベルを低下させる(例えば、高いLDLレベルを低下させる)、またはLDLレベルを一時的に増大させる(例えば、天然に存在しているLDLを模倣する構造体を使用することにより)ことができる。さらに、特定の実施形態においては、異常脂質レベルと関係がある疾患または身体状態の診断、予防、処置、または管理には、体の中を通るかまたは体の外へのコレステロールの流れ(flux)を変更させる方法により、逆方向のコレステロールの輸送を(例えば、直接的または間接的に)変更または増大させるために、本明細書中に記載する構造体、組成物、および方法を使用する工程が含まれ得る。
本明細書中に記載する構造体および/または組成物の利益を受け得る、異常脂質レベルに関連する他の疾患または身体状態としては、例えば、コレステロールまたは他の物質を含有するプラークの沈積物が静脈の内膜および中膜内部に形成されるアテローム性動脈硬化症、静脈硬化症または任意の静脈の状態、急性冠症候群、安定狭心症、不安定狭心症を含む狭心症、炎症、敗血症、血管炎症、皮膚炎症、うっ血性心不全、冠性心疾患(CHD)、心室不整脈、末梢血管疾患、心筋梗塞、致命的な心筋梗塞、致命的ではない心筋梗塞の発症、虚血、心臓血管の虚血、一過性脳虚血発作、心疾患と無関係な虚血、虚血再潅流障害、脈管再生に対する必要性の低下、凝固障害、血小板減少、深部静脈血栓症、膵炎、非アルコール性脂肪肝炎、糖尿病性ニューロパチー、網膜症、有痛性糖尿病性神経障害、跛行、乾癬、重症虚血肢(critical limb ischemia)、不能症、異脂肪血症、高脂血症、高リポ蛋白血症、低αリポ蛋白血症、高トリグリセリド血、虚血症状に至る任意の狭窄状態、肥満、タイプIおよびタイプIIの両方を含む糖尿病、魚鱗癬(ichtyosis)、発作、脆弱なプラーク、下脚潰瘍形成、重篤な冠状動脈の虚血、リンパ腫、白内障、内皮機能不全、黄色腫、末端器官機能障害、血管疾患、喫煙および糖尿病が原因である血管疾患、頚動脈および冠動脈疾患、退行性および収縮性の確立されたプラーク、不安定プラーク、脆い血管内膜、不安定な血管内膜、内皮傷害、外科処置の結果である内皮の損傷、血管疾患に関連する病的状態、動脈の管腔での潰瘍形成、バルーン血管形成術の結果である再狭窄、タンパク質蓄積症(例えば、アルツハイマー病、プリオン病)、止血の疾患(例えば、血栓症、栓友病、播種性血管内凝固症候群、血小板減少、ヘパリン誘発血小板減少、血栓性血小板減少性紫斑病)、リウマチ病(例えば、多発性硬化症、全身性エリテマトーデス、シェーグレン症候群、多発性筋炎/皮膚筋炎、強皮症)、神経学的疾患(例えば、パーキンソン病、アルツハイマー病)、またそれらの二次的な適応症(subindication)が挙げられる。
本明細書中に記載する構造体、組成物、および方法は、例えば、トリグリセリドレベルを低下させる、他の脂質のレベルを増大または低下させる、プラーク安定性を高めるまたはプラーク崩壊の可能性を低下させる、血管拡張を増大または減少させる、炎症を処置または予防する、炎症性疾患または炎症反応を処置または予防する、平滑筋および血管内膜を強化または安定化させる、肝臓への輸送のための細胞外コレステロールの流出を刺激する、免疫反応を調整する、アテローム性動脈硬化プラークからコレステロールを移動させ、かつ任意の膜、細胞、組織、臓器、および、組成的および/または機能的改変が有利であろう細胞外領域および/または構造を改変することによって、異常脂質レベルに関連する疾患または身体状態を診断する、予防する、処置する、または管理することができる。特定の実施形態においては、異常脂質レベルと関係がある疾患または身体状態を診断する、予防する、処置する、または管理するための本明細書中に記載する構造体は、類似する細胞表面リガンド(例えば、SR−B1、HBP/ビギリン)について、天然のリポタンパク質と直接競合させるために使用することができる。
いくつかの実施形態においては、本明細書中に記載する構造体を、細胞コレステロールの流れ(例えば、流出および流入)を変化させる(例えば、増大または減少させる)ことにより、疾患または身体状態を診断する、予防する、処置する、または管理するために使用することができる。異常脂質レベルと関係がある疾患または身体状態を診断する、予防する、処置する、または管理するための方法には、例えば、被験体に対して、ナノ構造体コアと、上記ナノ構造体コアを囲繞し、それに結合したシェルを含有している本明細書中に記載する合成構造体を含有している治療有効量の組成物を投与する工程、および上記合成構造体を使用して、被験体における細胞コレステロールの流れを変化させる工程が含まれ得る。本明細書中に記載するように、細胞コレステロールの流れを変化させる工程には、前記構造体または前記構造体の成分の、コレステロールの輸送を調節する1つ以上の細胞表面受容体(例えば、SR−B1、ABCA1および/またはABCG1)に対する結合が含まれ得る。異常脂質レベルと関係がある疾患または身体状態としては、炎症、免疫系の調節などのような、上記に列挙したものを挙げることができる。
本明細書中に記載する成分、例えば、脂質、リン脂質、アルキル基、重合体、タンパク質、ポリペプチド、ペプチド、酵素、生物活性剤、核酸、および上記の標的化のための種(これは随意であり得る)が、任意の適切な様式で構造体と会合することができ、かつ、構造体の任意の適切な部分、例えば、コア、シェル、またはそれらの両方と会合できることが理解されるものとする。例えば、1つ以上のそのような成分を、コアの表面、コアの内部、シェルの内側表面、シェルの外側表面と会合させること、および/またはシェルの中に埋め込むことができる。さらに、いくつかの実施形態においては、そのような成分は、被験体の1つ以上の成分(例えば、細胞、組織、臓器、粒子、流体(例えば、血液)、およびそれらの一部)から本明細書中に記載する構造体へ、および/または構造体から被験体の1つ以上の成分への、物質(例えば、タンパク質、ペプチド、ポリペプチド、核酸、栄養素)の隔離、交換、および/または輸送を容易にするために使用することができる。いくつかの場合には、上記成分は、被験体由来の1つ以上の物質との好ましい相互作用(例えば、結合、吸着、輸送)を可能にする化学的および/または物理的特性を有する。
さらに、本明細書中に記載する成分、例えば、脂質、リン脂質、アルキル基、重合体、タンパク質、ポリペプチド、ペプチド、酵素、生物活性剤、核酸、および上記に記載した標的化のための種は、被験体または生物学的試料への投与の前に、および/または被験体または生物学的試料への投与後に、本明細書中に記載する構造体と会合することができる。例えば、いくつかの場合には、本明細書中に記載する構造体には、in vivoまたはin vitroで投与されるコアおよびシェルが含まれ、また、構造体は、被験体または生物学的試料から1つ以上の成分(例えば、アポリポタンパク質)を隔離した後に、より大きな治療効果を有する。すなわち、構造体は、投与された後に、構造体の効力を高めるために被験体または生物学的試料に由来する天然成分を使用することができる。
様々な方法を、本明細書中に記載するナノ構造体を製造するために使用することができる。方法の例は、2009年4月24日に出願された「Nanostructures Suitable for Sequestering Cholesterol and Other Molecules」の表題の、国際特許公開番号WO/2009/131704(これは、全ての目的のためのその全体が参照により本明細書中に組み込まれる)の中に提供されている。
いくつかの実施形態においては、本明細書中に記載する構造体を、鋳型として役立つナノ構造体(例えば、コア)の使用により形成させることができるとの理由、およびサイズ、形状、および質量に関して比較的均一性が高い特定のナノ構造体を提供する(例えば、作製する、または購入する)ことができるとの理由から、本明細書中に記載する構造体はまた、サイズ、形状、および質量に関して比較的高い均一性を有し得る。すなわち、比較的均一である構造体の混合物を形成させることができ、ここでは、複数の構造体が、構造体のうちの約20%、15%、10%、または5%以下が、平均断面寸法の約20%、15%、10%、または5%を上回る断面寸法を有するような断面寸法の分布を有する。比較的高い均一性を有している構造体は、本明細書中に記載する特定の組成物において有用である。
さらに、本明細書中に記載する構造体の分散物が、本明細書中に記載する特定の組成物および方法において有用である。
いくつかの場合には、構造体は、造影剤を含み得るか、造影剤として使用され得る。例えば、構造体のナノ構造体コアには、造影剤としての使用に適している材料(例えば、金、酸化鉄、量子ドット、放射性核種など)が含まれ得る。他の実施形態においては、シェルには造影剤が含まれ得る。例えば、ナノ粒子または他の適切な造影剤を、シェルの脂質二重層の中に埋め込むことができ、また、シェルの内側表面または外側表面と会合させることもできる。造影剤は、MRI、X線、PET、CTなどのような当業者に公知の様々な画像化方法を増強するために使用することができる。
他の実施形態において、組成物は、被験体または生物学的試料に導入される。また、組成物および/または被験体もしくは生物学的試料の構造体は、被験体または生物学的試料の疾患または状態を決定することができるアッセイ条件にさらされる。構造体の少なくとも一部分は、被験体または生物学的試料から回収されてもよく、回収した構造体を用いてアッセイを行なってもよい。構造体に結合した、さもなければ構造体により隔離された分子の量および/または種類について、構造体をアッセイしてもよい。たとえば、1つの組の実施形態において、競合実験が行なわれ、たとえば、標識されたコレステロールが添加され、コレステロールの置換が監視される。標識コレステロールの取り込みがより多く測定されればされるほど、より少ない、結合した未標識の遊離コレステロールが存在する。これは、たとえば、本明細書に記載の構造体を含む組成物を被験体または生物学的試料に投与した後、および次いで、被験体または生物学的試料から構造体を回収した後に行なうことができる。たとえば、構造体が被験体または生物学的試料の中でどれ程のコレステロール(未標識)を隔離したか確かめるための診断薬として使用される場合にこの方法を使用することができる。
他の方法も本明細書に記載の構造体によって隔離されたコレステロールの量を決定するために使用することができる。いくつかの場合において、標識コレステロール(たとえば、NBDコレステロール等の蛍光標識コレステロール、または放射性コレステロール)を使用することができる。標識コレステロールは、in vitroまたはin vitroのいずれかで構造体に添加することができる。標識コレステロールのない構造体を加えて結合の際の蛍光増大を測定することによって、構造体への標識コレステロールの結合定数を算出することができる。さらに、構造体からコレステロールを除去するために、粒子(たとえば、KCN)を溶解し、次に、溶液内で得られた蛍光を測定することができる。標準曲線と比較すると、1粒子当たりのコレステロール分子の数の決定を可能にするかもしれない。有機抽出および定量的質量分析等の他の方法も、本明細書に記載の1以上の構造体によって隔離されたコレステロールの量を算出するために使用することができる。
本明細書中に記載するように、本発明の構造体は、「薬学的組成物」または「薬学的に許容可能な」組成物中で使用することができ、これらは、1種類以上の薬学的に許容可能なキャリア、添加物、および/または希釈剤とともに処方される、本明細書中に記載の1以上の構造体の治療的に有効な量を含む。本明細書中に記載する薬学的組成物は、癌または他の状態を処置するために有用であり得る。いくつかの場合には、本明細書中に記載する薬学的組成物は、癌細胞を死滅させるために使用することができる。癌および癌細胞の例としては、スカベンジャー受容体タイプB−I(SR−B1)を有している癌細胞、B細胞リンパ腫細胞、非ホジキンリンパ腫細胞、黒色腫細胞などが挙げられる。図と結び付けて記載したものを含めて、本明細書中に記載する任意の適切な構造体をそのような薬学的組成物において使用することができることが理解されるものとする。いくつかの場合には、薬学的組成物中の構造体は、無機物質を含有しているナノ構造体コアと、ナノ構造体コアを実質的に囲繞し、ナノ構造体コアに付着したシェルを有する。いくつかの実施形態においては、構造体を、目的の細胞におけるコレステロール代謝(例えば、細胞へのコレステロール流入および細胞からの流出)を制御するように適合させることができる。
薬学的組成物は、以下に適合されたものを含む、固体または液体形状で投与のために特別に処方されてもよい:経口投与、たとえば、水薬(drench)(水性または非水性の溶液または懸濁物)、錠剤、たとえば、口腔内、舌下、および全身吸収に標的化されたもの、ボーラス、粉末、顆粒、舌部への適用のためにペースト;非経口投与、たとえば、無菌溶液または懸濁物または徐放性処方物としての皮下、筋肉内、静脈内または硬膜外注射;局所適用、たとえば、クリーム、軟膏、または制御放出パッチ、皮膚、肺または口腔に適用される噴霧剤;膣内にまたは直腸内に、たとえば、ペッサリー、クリームまたは泡沫;舌下への;眼への;経皮的;鼻への;肺への;他の粘膜表面への。
本明細書で使用される「薬学的に許容可能な」なる語句は、過度の毒性も刺激もアレルギー反応も他の問題も合併症もなく、確固とした医学的判断の範囲内で、ヒトおよび動物の組織と接触における使用に適し、かつ合理的なベネフィット/リスク比と等しい、構造体、材料、組成物および/または剤形を指す。
本明細書で使用される「薬学的に許容可能なキャリア」なる語は、ある器官、または身体の一部分から、他の器官、または身体の他の部分へ対象の化合物を担持または輸送することに関わる、薬学的に許容可能な材料、組成物またはビヒクル、たとえば、液体または固体充填剤、希釈剤、賦形剤、または材料を封入する溶媒を意味する。各キャリアは、処方物の他の成分と適合するという意味で「許容可能」であり、患者にとって有害ではない。薬学的に許容可能なキャリアとして作用することができる材料のいくつかの例としては、ラクトース、グルコースおよびスクロース等の糖類;コーンスターチおよびバレイショデンプン等のデンプン類;セルロース、およびカルボキシルメチルセルロースナトリウム、エチルセルロースおよび酢酸セルロース等のその誘導体;トラガント末;麦芽;ゼラチン;タルク;ココアバターおよび坐薬ろう等の賦形剤;落花生油、綿実油、サフラワー油、ゴマ油、オリーブ油、トウモロコシ油および大豆油等の油類;プロピレングリコール等のグリコール類;グリセリン、ソルビトール、マンニトールおよびポリエチレングリコール等の多価アルコール類;オレイン酸エチルおよびエチルラウレート等のエステル類;寒天;水酸化マグネシウムおよび水酸化アルミニウム等の緩衝剤類;アルギン酸;発熱物質を含まない水;等張食塩水;リンゲル液;エチルアルコール;pH緩衝化溶液;ポリエステル類、ポリカーボネート類および/またはポリ無水物類;および薬学的処方物で使用される他の無毒性かつ適合性の物質が挙げられる。
ラウリル硫酸ナトリウムおよびステアリン酸マグネシウム等の、湿潤剤、乳化剤および滑沢剤、ならびに、着色剤、剥離剤、コーティング剤、甘味料、矯味矯臭剤、香料、防腐剤および酸化防止剤も、組成物には存在し得る。
薬学的に許容可能な酸化防止剤の例としては、アスコルビン酸、塩酸システイン、硫酸水素ナトリウム、メタ重亜硫酸ナトリウム、亜硫酸ナトリウム等の水溶性抗酸化剤;パルミチン酸アスコルビル、ブチルヒドロキシアニソール(BHA)、ブチルヒドロキシトルエン(BHT)、レシチン、没食子酸プロピル、アルファ−トコフェロール等の油溶性抗酸化剤;クエン酸、エチレンジアミン四酢酸(EDTA)、ソルビトール、酒石酸、リン酸等の金属キレート剤が挙げられる。
本明細書に記載の構造体は、経口的に投与されてもよく、非経口的に投与されてもよく、皮下に投与されてもよく、かつ/もしくは、静脈内に投与されてもよい。ある実施形態において、構造体または薬学的調製物は経口投与される。他の実施形態において、構造体または薬学的調製物は静脈内に投与される。投与の別の経路としては舌下、筋肉内および経皮的投与が挙げられる。
本明細書に記載の薬学的組成物としては、経口投与、経鼻投与、局所(口腔内および舌下を含む)投与、直腸投与、膣口投与および/または非経口投与に適しているものが挙げられる。処方物は、単位剤形で好都合に存在していてもよく、薬学の技術において周知の任意の方法で調製されてもよい。単一の剤形を製造するためにキャリア材料と組み合わすことができる有効成分の量は、処置される宿主、および投与の特定の様式に応じて変化する。単一の剤形を製造するためにキャリア材料と組み合わすことができる有効成分の量は、一般に治療効果を生む化合物の量となる。一般に、この量は、有効成分の約1%から約99%まで、約5%から約70%まで、または約10%から約30%までの範囲である。
経口投与に適した本発明の組成物は、カプセル剤、カシェ剤、丸剤、錠剤、ロゼンジ(矯味矯臭された基剤(basis)を使用し、通常は、スクロースおよびアラビアゴムまたはトラガント)、散剤、顆粒剤の形態であり得、または水性または非水性の液体中の溶液または懸濁物として、または水中油または油中水型の液体乳剤として、またはエリキシルまたはシロップとして、または香錠(pastille)(ゼラチンおよびグリセリン、またはスクロースおよびアラビアゴムのような不活性の基剤を使用する)および/または口内洗剤(mouth wash)として存在し得、各々、有効成分として本明細書に記載の構造体を所定量含有する。本発明の構造体もボーラス、舐剤またはペーストとして投与されてもよい。
経口投与のための発明の固体剤形(カプセル剤、錠剤、丸剤、糖剤、散剤、顆粒剤等)では、有効成分は、クエン酸ナトリウムまたはリン酸カルシウム等の1以上の薬学的に許容可能なキャリアおよび/または以下のいずれかと混合される。デンプン、ラクトース、スクロース、グルコース、マンニトール、および/またはケイ酸等の充填剤または増量剤;たとえば、カルボキシメチルセルロース、アルギナート、ゼラチン、ポリビニルピロリドン、スクロースおよび/またはアラビアゴム等の結合剤;グリセロール等の湿潤剤(humectant);寒天、炭酸カルシウム、バレイショまたはタピオカデンプン、アルギン酸、ある種のシリケート、および炭酸ナトリウム等の崩壊剤;パラフィン等の溶解遅延剤(solution retarding agent);第四アンモニウム化合物等の吸収促進剤(absorption accelerator);たとえばセチルアルコール、グリセロールモノステアレート、および非イオンの界面活性剤等の湿潤剤;カオリンおよびベントナイト粘土等の吸着剤;タルク、ステアリン酸カルシウム、ステアリン酸マグネシウム、固体のポリエチレングリコール、ラウリル硫酸ナトリウム、およびそれらの混合物等の滑沢剤;および着色剤。カプセル剤、錠剤および丸剤の場合には、薬学的組成物がさらに緩衝剤を含んでもよい。同様のタイプの固形組成物も、ラクトースまたは乳糖のような賦形剤、ならびに高分子量ポリエチレングリコールを使用する、ソフトシェル状またはハードシェル状のゼラチンカプセル剤中の充填剤として使用されてもよい。
錠剤は、圧縮または成形によって任意に1以上の副成分を用いて作られてもよい。圧縮錠剤は、結合剤(たとえば、ゼラチンまたはヒドロキシプロピルメチルセルロース)、潤滑剤、不活性の希釈剤、防腐剤、崩壊剤(たとえば、ナトリウムデンプングリコラートまたは架橋されたカルボキシルメチルセルロースナトリウム)、表面活性剤または分散剤を使用して調製されていてもよい。成形錠剤は、粉末化された構造体の混合物が不活性な液体希釈剤で湿らせる好適な機械で作られてもよい。
錠剤、および糖剤、カプセル剤、丸剤および顆粒剤等の本発明の薬学的組成物の他の固体剤形は、任意により、腸溶コーティング、および製剤技術において周知の他のコーティング等の、コーティングおよびシェルで刻み目を付ける、または調製されてもよい。また、それらは、たとえば、所望の放出プロフィールを提供するために可変比率のヒドロキシプロピルメチルセルロース、他の重合体マトリクス、リポソームおよび/またはミクロスフェアを使用して有効成分の遅いまたは制御された放出を提供するよう処方され得る。それらは急速放出のために処方されてもよい(たとえば、凍結乾燥)。それらは、たとえば細菌を保持するフィルターによるろ過によってか、または、使用直前に、滅菌剤を、滅菌水に溶かすことができる無菌の固形組成物の形態またはいくつかの他の無菌注射媒体に組み込むことによって殺菌されてもよい。これらの組成物はさらに任意により不透明化剤(opacifying agent)を含んでもよく、または有効成分のみを放出するか、任意に遅延した様式で胃腸管のある部分で有効成分を放出する組成物であってもよい。使用可能な包埋組成物の例としては、重合体材料およびろうが挙げられる。上述の賦形剤の1つ以上を用いて、適当な場合、有効成分はさらにマイクロカプセル形状である得る。
本明細書に記載の構造体の経口投与用の液体剤形は、薬学的に許容可能な乳剤、マイクロエマルジョン、溶液、分散物、懸濁物、シロップ剤およびエリキシル剤を含む。本発明の構造体に加えて、液体剤形は、たとえば水または他の溶媒等の、当該技術で一般に使用される不活性の希釈剤、エチルアルコール、イソプロピルアルコール、炭酸エチル、酢酸エチル、ベンジルアルコール、安息香酸ベンジル、プロピレングリコール、1,3−ブチレングリコール、油(特に、綿実油、落花生油、トウモロコシ油、胚芽油、オリーブ油、ヒマシ油およびゴマ油)、グリセロール、テトラヒドロフリルアルコール、ポリエチレングリコールおよびソルビタンの脂肪酸エステル等の可溶化剤および乳化剤、およびそれらの混合物を含有してもよい。
不活性の希釈剤に加えて、経口組成物は、さらに湿潤剤、乳化および懸濁剤、甘味料、矯味矯臭剤、着色剤、香料および保存剤等の補助剤を含んでもよい。
活性化合物に加えて、懸濁物は、たとえば、エトキシ化イソステアリルアルコール、ポリオキシエチレンソルビトールおよびソルビタンエステル等の懸濁剤、微結晶性セルロース、アルミニウムメタヒドロキシド、ベントナイト、寒天およびトラガント、およびそれらの混合物を含有してもよい。
(たとえば、直腸または膣投与用の)本明細書に記載の薬学的組成物の処方物は坐薬としてあってもよく、これは、本発明の1以上の化合物を、たとえば、ココアバター、ポリエチレングリコール、坐薬ろうまたはサリチル酸塩を含む、1以上の好適な非刺激性賦形剤またはキャリアと混合することにより調製してもよく、また、これは、室温では固体であってもよいが、体温で液体となり、それ故、体内で溶けて構造体を放出する。
本明細書に記載の構造体の局所的または経皮的投与の剤形は、散剤、噴霧剤、軟膏剤、ペースト剤、泡沫、クリーム剤、ローション剤、ゲル剤、溶液、パッチ、および吸入剤を含む。活性化合物は、無菌条件下で、薬学的に許容可能なキャリア、および、必要に応じて任意の防腐剤、緩衝剤または噴霧体と混合されてもよい。
軟膏剤、ペースト剤、クリーム剤およびゲル剤は、本発明の構造体に加えて、動物性および植物性の脂肪、油、ろう、パラフィン、デンプン、トラガント、セルロース誘導体、ポリエチレングリコール、シリコーン、ベントナイト、ケイ酸、タルクおよび酸化亜鉛等の賦形剤、またはそれらの混合物を含んでもよい。
散剤および噴霧剤は、本明細書に記載の構造体に加えて、ラクトース、タルク、ケイ酸、水酸化アルミニウム、ケイ酸カルシウムおよびポリアミド粉末等の賦形剤、またはこれらの物質の混合物を含有することができる。噴霧剤は、ブタンおよびプロパン等のクロロフルオロ炭化水素および揮発性の未置換炭化水素等の通例の噴霧体をさらに含有することができる。
経皮的パッチは、体内への本明細書に記載の構造体の制御された送達を提供する追加の利点を有する。適切な媒体に構造体を溶解させるまたは分散させることは、かかる剤形を形成し得る。吸収促進剤も、皮膚を横切って構造体の流出(flux)を増大させるために使用することができる。律速膜を提供するか重合体マトリクスまたはゲル中の構造体を分散させることにより、かかる流出の速度を制御することができる。
眼科用処方物、眼軟膏剤、粉末、溶液等も、本発明の範囲内であるとして企画される。
非経口投与に適した、本明細書に記載の薬学的組成物は、1以上の本発明の構造体を、薬学的に許容可能な、無菌、等張性の水性または非水性の溶液、分散物、懸濁物または乳剤、あるいは使用前に無菌注射溶液または分散物へ再構成されてもよい無菌の粉末であって、これは、、糖、アルコール、酸化防止剤、緩衝剤、静菌剤、処方物を意図した受容体の血液と等張性にする溶質または懸濁剤または増粘剤を含む、粉末と組み合わせて含む。
本明細書に記載の薬学的組成物に使用されてもよい、好適な水性および非水性キャリアの例としては、水、エタノール、多価アルコール(グリセロール、プロピレングリコール、ポリエチレングリコール等)、およびそれらの好適な混合物、オリーブ油等の植物油、およびオレイン酸エチル等の注射可能な有機エステルが挙げられる。適切な流動度は、たとえば、レシチン等のコーティング材料の使用により、分散物の場合に必要とされる粒度の維持、および界面活性剤の使用により維持することができる。
これらの組成物は、さらに防腐剤、湿潤剤、乳化剤および分散剤等の補助剤を含んでもよい。本発明の構造体上での微生物の活動の防止は、様々な抗菌剤および抗真菌剤、たとえば、パラベン、クロロブタノール、フェノールソルビン酸等の含有によって促進され得る。組成物へ、糖、塩化ナトリウムなどのような等張剤を含むことも望ましい。さらに、注射可能な薬学的形態の持続的吸収は、モノステアリン酸アルミニウムおよびゼラチン等の吸収を遅らせる剤の含有によってもたらされてもよい。
本明細書に記載するように、本発明に記載の構造体および組成物との使用に適した送達システムは、時限放出(time−release)、遅延放出、持続放出、または制御放出送達システムを含む。かかるシステムは、多くの場合に構造体の反復投与を回避し、被験体および医師に対する利便性を増大させ得る。多くのタイプの放出送達システムが利用可能であり、当業者に周知のものである。それらは、たとえば、ポリ乳酸および/またはポリグリコール酸、ポリ無水物、およびポリカプロラクトン等の重合体に基づくシステム;コレステロール等のステロール、コレステロールエステル、およびモノグリセリド、ジグリセリドおよびトリグリセリド等の脂肪酸または中性脂肪を含む脂質に基づく非重合体システム;ヒドロゲル放出システム;シラスティック・システム;ペプチドに基づくシステム;ワックス・コーティング;従来の結合剤および賦形剤を使用する圧縮錠剤;または部分的に融合された移植物(implant)。具体例としては、組成物がマトリクス内の形態で含まれている侵食性のシステム、または活性成分が放出速度を制御する拡散性のシステムが挙げられるが、それらに制限されない。組成物は、たとえば、ミクロスフェア、ヒドロゲル、重合体レザバ、コレステロールマトリクス、または重合体系としてあってもよい。いくつかの実施形態において、システムは、たとえば、処方物の拡散または浸食/分解速度を制御することにより、活性化合物の持続放出または制御放出を生じさせ得る。さらに、ポンプに基づくハードウェア送達システムが、いくつかの実施形態で使用されてもよい。本明細書に記載の構造体および組成物を、注射器、パッド、パッチ、チューブ、フィルム、MEMSに基づくデバイス、移植可能なデバイス等の送達デバイスと組み合わせる(たとえば、含ませる)ことができる。
長期的な放出移植物の使用は、いくつかの場合において特に好適であり得る。本明細書において使用される「長期的な放出」は、移植物が構築および配置されて治療レベルの組成物を、少なくとも約30日間または約45日間、少なくとも約60または約90日間、または、いくつかの場合においてさらに長い期間送達することを意味する。長期的な放出移植物は、当業者にとって周知であり、上述の放出システムのうちのいくつかを含む。
注射可能なデポ形態は、ポリラクチド−ポリグリコリド等の生分解性重合体に、本明細書に記載の構造体のマイクロカプセル化マトリクスを形成することにより作製することができる。構造体対重合体の比率、および使用される特定の重合体の性質に応じて、構造体の放出速度を制御することができる。他の生分解性重合体の例としては、ポリ(オルトエステル)およびポリ(無水物)が挙げられる。
本発明に記載の構造体が医薬品としてヒトおよび動物に投与されるとき、それらは、そのまま与えられるか、または薬学的に許容可能なキャリアと組み合わせて、たとえば、約0.1%〜約99.5%、約0.5%〜約90%等の構造体を含有する薬学的組成物として与えられる。
投与は、処置する条件に応じて、(たとえば、特定の部位、生理学的システム、組織、器官、または細胞型に)局所化されるか、または全身的であってもよい。たとえば、非経口(parental)注入により、移植により、経口で、経膣で、直腸で、口腔内に、肺を介して、局所的に、経鼻で、経皮的に、外科的投与により、または、組成物による標的へのアクセスが得られる任意の他の投与方法により、組成物を投与してもよい。本発明で使用され得る非経口(parental)様式としては、静脈内、皮内、皮下、窩内(intracavity)、筋肉内、腹腔内、硬膜外、または髄腔内が挙げられる。移植様式の例としては、任意の移植可能または注射可能な薬物送達システムが挙げられる。経口投与は、患者への利便性ならびに投薬スケジュールのためにいくつかの処置に有用であり得る。
選択された投与経路にかかわらず、好適な水和形態で使用され得る本明細書に記載の構造体、および/または本発明の薬学的組成物は、当業者に公知の従来方法によって薬学的に許容可能な剤形へ処方される。
本明細書に記載の組成物は、任意の潜在的に有害な副作用を回避するか最小化しながら、投与量(たとえば、最大量)で与えられてもよい。組成物は、有効量で、単独で、または他の化合物と組み合わせて投与することができる。たとえば、癌を処置する場合、組成物は、本明細書に記載の構造体と、癌を処置するために使用することができる他の化合物のカクテルとを含んでもよい。異常脂質レベルと関係がある状態を処置する場合は、組成物には、本明細書中に記載する構造体と、脂質レベルを低下させるために使用することができる他の化合物(例えば、コレステロール低下剤)を含めることができる。
本明細書で使用される「治療上有効な量」なる語句は、任意の医療処置に適用可能な合理的なベネフィット・リスク比で、被験体にある程度の所望の治療効果をもたらすことに有効である本発明の構造体を含む材料または組成物の量を意味する。したがって、治療上有効な量は、たとえば、疾患または身体状態に関連する疾患進行を予防してもよく、最小化してもよく、逆転させてもよい。疾患進行は当業者に明白な臨床観察、研究所および画像検査によって監視することができる。治療上有効な量は、単回用量に有効な量、または複数用量治療、たとえば2回以上の用量で投与される量、または長期間にわたって投与される量の一部として有効な量になり得る。
本明細書に記載の任意の1以上の構造体の有効量は、体重の約10ナノグラム/kg〜体重の約1000mg/kgで、投与頻度は一日に一度から一月に一度の範囲である。しかし、他の投薬量および頻度であってもよい、なぜなら、本発明は、この点に関して特に限定されないからである。被験体には、本明細書に記載の1以上の疾患または身体状態を処置するのに有効な量で、本発明に記載の1以上の構造体を投与してもよい。
有効量は、処置される特定の状態に応じてもよい。当業者であれば、たとえば、肝機能検査(たとえば、トランスアミナーゼ)、腎臓機能検査(たとえば、クレアチニン)、心機能検査(たとえば、トロポニン、CRP)、免疫機能試験(たとえば、IL−1およびTNF−アルファなどのサイトカイン)等の方法により、組成物の有効量がどれほどなのか決定することができる。当然ではあるが、有効量は、処置すべき状態の重篤度;年齢、身体の状態、サイズおよび体重を含む個々の患者のパラメーター;併用している処置;処置の頻度;または投与の様式等の要因に依存する。これらの要因は、当業者に周知であり、単なる慣例的な実験で対処することができる。いくつかの場合に、最大用量、すなわち確固とした医学的判断による最も高い安全な用量が使用される。
本明細書に記載の薬学的組成物中の有効成分の実際の投与量レベルは、特定の患者、組成物、投与のモードのための、所望の治療応答を達成するのに有効な有効成分の量を得るように、患者に対して有毒ではないように変化してもよい。
選択された投与量レベルは様々な要因に依存する。その要因としては、使用される特定の本発明の構造体の活性、投与経路、投与の時間、使用される特定の構造体の排泄または代謝の速度、処置の期間、使用される特定の構造体と組み合わせて使用される他の薬物、化合物および/または材料、処置される患者の年齢、性別、体重、状態、総合的健康状態(general health)、および以前の病歴、および医療技術において周知の要因が挙げられる。
当該技術における通常の技量を有する医師または獣医であれば、必要とされる有効量の薬学的組成物を容易に決定および処方することができる。たとえば、医師または獣医は、薬学的組成物に使用される本明細書に記載の構造体の用量を、所望の治療効果を達成するのに必要とされる量よりも低いレベルから開始し得、その後所望の効果が達成されるまで徐々に投与量を増加させ得る。
いくつかの実施形態において、本明細書に記載の構造体または薬学的組成物は、被験体に長期間にわたって提供される。長期間処置は、任意の形態の長期間にわたる反復投与をも含み、たとえば、1ヵ月以上、1ヵ月と1年との間、1年以上、またはそれより長い間にわたる反復投与などである。多くの実施形態において、長期間処置は被験体の生涯にわたって構造体または薬学的組成物を繰り返し投与することを含む。たとえば、長期間処置は定期的な投与、たとえば1日当たり1回以上、1週間に1回以上、または1ヵ月に1回以上を含み得る。一般に、本明細書に記載の構造体の好適な用量、たとえば1日用量は、治療効果を生じるのに有効な最低用量である構造体の量である。そのような有効用量は、一般に上記の要因に左右される。一般に、示された効果のために使用される場合、患者のための本明細書に記載の構造体の用量は、1日当たり体重1kg当たり約0.0001mgから約100mgの範囲である。1日投与量は、体重1kg当たり0.001〜50mgの化合物、または体重1kg当たり0.01〜約10mgの化合物の範囲であってもよい。しかしながら、これより低いかより高い用量も使用することができる。いくつかの実施形態において、被験体に投与される用量は、年齢、疾患の進行、体重またはその他の要因により被験体の生理機能が変化するのとともに修正することができる。
所望であれば、活性化合物の有効な1日量は、1日を通じて適切な間隔で別々に投与される2、3、4、5または6以上の下位用量として、場合によっては単位剤形において投与されてもよい。たとえば、指示および方法は、有害な影響または望ましくない影響を減少させるか回避しながらコレステロール(または他の脂質)の減少および/または疾患の処置を達成するために、特定の時間間隔および特定の用量で、特定の用量の組成物(特に、特定のサイズ範囲を有する本明細書に記載の構造体を含むもの)が投与される投薬レジメンを含み得る。したがって、本明細書中に記載する構造体を投与する方法、上記構造体の投与により総コレステロールおよびLDLコレステロールを減少させる方法、本明細書中に記載する構造体の投与によりHDLコレステロールのレベルを高めるまたはその効力を増大させる方法、およびそれを必要とする患者において構造体を投与する方法を記載する。
本明細書中に記載する構造体を単独で投与することが可能であるが、これは、上記のような薬学的組成物として投与してもよい。本発明はまた、組成物の使用についての指示を随意に含む、キットにパッケージされた、疾患または身体状態を診断する、予防する、処置する、または管理するために有用な上記組成物のうちの任意のものを提供する。すなわち、キットは、任意の疾患または身体状態(異常脂質レベルと関係があるものを含む)への関与のための組成物の使用についての記述を含み得る。キットはさらに、本明細書中で議論するような組成物の使用についての記述を含み得る。キットはまた、本明細書中に記載の2種類以上の組成物の組み合わせの使用のための指示をも含み得る。任意の適切な技術(例えば、経口、静脈内)によって、または薬物送達の別の既知の経路によって組成物を投与するための指示もまた、提供され得る。
本明細書中に記載するキットはまた、1つ以上の容器が含まれ得、これらは、記載するような構造体、シグナル伝達実体、および/または生体分子のような成分を含み得る。キットはまた、化合物の混合、希釈、および/または投与のための指示を含み得る。キットにはまた、1種類以上の溶媒、界面活性剤、防腐剤、および/または希釈剤(例えば、ノーマルセーライン(0.9%のNaCl)、または5%のデキストロース)を含む他の容器、さらには、成分の混合、希釈、またはそのような処置を必要とする試料もしくは患者への成分の投与のための容器も含まれ得る。
キットの組成物は、任意の適切な形態、例えば、溶液または乾燥粉末として提供することができる。提供される組成物が乾燥粉末である場合は、粉末を適切な溶媒の添加により再構成することができ、その適切な溶媒も提供することができる。液体形態の組成物が使用される実施形態においては、液体形態を濃縮することができ、また、すぐに使用することもできる。溶媒は、本発明の特定の構造体、および使用または投与の様式に応じて様々である。組成物に適切な溶媒は周知であり、文献において入手可能である。
実施形態の1つの組においては、キットは、バイアル、チューブなど(各容器は、本方法において使用される個別の要素のうちの1つを含む)のような1つ以上の容器を含み得る。例えば、容器のうちの1つは、アッセイにおける陽性対照を含み得る。さらに、キットは、他の成分、例えば、アッセイに有用な緩衝液のための容器を含み得る。
本明細書中で使用される場合は、「被験体」または「患者」は、任意の哺乳動物(例えば、ヒト)、例えば、異常脂質レベルと関係がある疾患または身体状態のような疾患または身体状態に感受性であり得る哺乳動物を指す。被験体または患者の例としては、ヒト、非ヒト霊長類、ウシ、ウマ、ブタ、ヒツジ、ヤギ、イヌ、ネコ、またはマウス、ラット、ハムスター、もしくはモルモットのようなげっ歯類が挙げられる。一般に、本発明は、ヒトでの使用に向けられる。被験体は、特定の疾患または身体状態と診断された被験体であり得るか、あるいは、疾患または身体状態を有することが別の方法でわかっている被験体であり得る。いくつかの実施形態においては、被験体は、疾患または身体状態を発症する危険があると診断され得るか、あるいはそのような危険を有することがわかっているものであり得る。いくつかの実施形態においては、被験体は、本明細書中に記載するように、異常脂質レベルと関係がある疾患または身体状態であると診断され得るか、あるいはそれらを有することが別の方法でわかっているものであり得る。特定の実施形態においては、被験体は、被験体の既知の疾患または身体状態に基づいて処置のために選択され得る。いくつかの実施形態においては、被験体は、被験体の疑わしい疾患または身体状態に基づいて処置のために選択され得る。いくつかの実施形態においては、組成物が、疾患または身体状態の発症を防ぐために投与され得る。しかしながら、いくつかの実施形態においては、既存の疾患または身体状態の存在が疑われ得るが、まだ同定されておらず、本発明の組成物が、疾患または身体状態のさらなる発症を診断する、または予防するために投与され得る。
本明細書中で使用される場合は、「生物学的試料」は、被験体から得られた任意の細胞、身体組織、または体液試料である。体液の非限定的な例としては、例えば、リンパ、唾液、血液、尿などが挙げられる。本明細書中に記載する様々な方法で使用するための組織および/または細胞の試料は、組織生検(パンチ生検および細胞擦取を含む)、針生検を含むがこれらに限定されない標準的な方法;あるいは、吸引もしくは他の適切な方法により血液または他の体液の収集によって得ることができる。
以下の実施例は、本発明の特定の実施形態を説明することを意図するが、限定的であるとは解釈されず、本発明の全容を例証するものではない。
本実施例は、癌、例えば、SR−B1を発現している癌を処置するための、合成ナノ構造体(例えば、HDL−NP)の使用を実証する。
機能的な、生体模倣高密度リポタンパク質ナノ粒子(HDL−NP)を、B細胞リンパ腫についての可能性のある治療として記載する。HDL−NPは、スカベンジャー受容体タイプB−1(SR−B1)を標的化するそれらの能力、およびコレステロールを隔離するそれらの機能的能力を介して機能するとみられる。このように、HDL−NPは、球状HDLの界面化学模倣物である。しかしながら、HDL−NPのサイズおよび形状を制御するために使用される金ナノ粒子鋳型は、エステル化コレステロールについて典型的に保存される粒子のリアルエステートのうちのいくらかを占有する。したがって、天然のHDLと同様に、HDL−NPはSR−B1と会合するが、細胞に対して最小限のコレステロールしか提供しない。同時に、HDL−NPは、その表面上に遊離の細胞コレステロールを隔離する。本明細書中のデータは、天然のHDLと比較して、HDL−NPがB細胞リンパ腫細胞株によって発現されるSR−B1を標的化し、コレステロールを最大限に流出させ、そしてアポトーシスを誘導することを実証する。血清由来HDLおよびAc−LDLは、アポトーシスを誘導しない。したがって、バイオミメティックス(biomimicry)を介して治療上の利益をもたらす機能的な、合成の単一の実体である治療用ナノ構造体およびナノ粒子の固有の生物学的機能の制御が実証されている。
リンパ腫における、および細胞株におけるSR−B1の発現。コレステロールに富むHDLの取り込みについての受容体の優勢を含む、リンパ腫におけるコレステロール代謝の分子経路についてはほとんど知られていない。結果として、本発明者らは、Affymetrix U133plus 2.0アレイを使用して作製したデータベースにおいて、ヒト試料由来のDLBCL(ABC様およびGC様)、バーキットリンパ腫(BL)、および正常なB細胞の遺伝子発現プロフィールを試験した(図2A)。本発明者らは、SR−B1が、正常なB細胞と比較して、リンパ腫においては9〜16倍のレベルで発現されることを見出した。次に、本発明者らは、免疫ブロッティングにより、リンパ腫細胞株および正常なヒト末梢リンパ球においてSR−B1タンパク質の発現を決定した(図2Eおよび2C)。本発明者らは、多数のB細胞リンパ腫細胞株においては、ABCA1およびABCG1が比較的一定の、低いレベルで発現され、一方、SR−B1は高度に発現されることを見出した(図2B)。興味深いことに、SR−B1は、Jurkat(T細胞系統のリンパ腫細胞株)においては発現されない(図2B)。SR−B1は、複数のB細胞リンパ腫細胞株において発現されているが、正常なヒトリンパ球においてもJurkat(T細胞系統のリンパ腫細胞株)においても発現されていない(図2C)。SR−Bを発現することが公知であるHepG2肝臓ヘパトーマ細胞を、比較のために含めた。最後に、ウェスタンブロットプロファイリングにより、SR−B1が、複数の癌細胞株(図2E)ならびに肝細胞およびマクロファージにおいて発現されていることを明らかにした(図2F)。
HDL−NPへの暴露後のリンパ腫細胞株における細胞生存性。Ramos細胞株およびSUDHL−4細胞株はそれぞれ、BLおよびDLBCLに由来するGC由来B細胞株である。加えて、本発明者らは、ABC様DLBCL株であるLY3を研究することを選択した。Jurkat細胞および正常なヒトリンパ球は、SR−B1受容体陰性対照を提供した。加えて、本発明者らはまた、HDL、肝細胞、およびマクロファージにより天然において会合される重要な細胞タイプである、SR−B1を発現することが公知である2種類の初代細胞を選択した。それぞれの細胞タイプについて、本発明者らは、ヒト血清由来HDL(hHDL)またはHDL−NPでの処理後のMTSアッセイにより、細胞生存性を測定した。MTSは比色アッセイであり、ここでは、吸光度の大きさが細胞生存性に比例する。本発明者らの研究全体を通じて行ったそれぞれの処理について、およびそれぞれの比較については、本発明者らは、アポリポタンパク質A−1(Apo A1)の量に基づいて、等用量のhHDLおよびHDL−NPを添加した。hHDLの添加は、LY3細胞またはJurkat細胞については、MTSアッセイを使用して測定した相対的な吸光度値を変化させなかったが、Ramos細胞およびSUDHL−4細胞については増大した(図3A)。逆に、HDL−NPでの処理によっては、Ramos細胞およびSUDHL−4細胞において得られた吸光度に用量依存性の低下が生じ、LY3細胞においてはこれは小さく、そしてJurkat株には低下は存在しなかった(図3B)。hHDLまたはHDL−NPでの処理は、初代肝細胞またはマクロファージ細胞においては効果がなかった(図3Cおよび3D)。したがって、それらの天然のhHDL対応物との直接の対比においては、HDL−NPは、GC由来リンパ腫細胞およびABC由来リンパ腫細胞の生存性を選択的に低下させ、そしてJurkat、初代ヒト肝細胞、および初代ヒトマクロファージは容認する。
HDL−NPのバイオミメティックス。合成のHDL−NP構築物由来のHDL−NPの遊離の化学的成分の影響を決定するために、それぞれ(すなわち、Apo A1およびリン脂質)を、Ramos細胞、SUDHL−4細胞、LY3細胞、およびJurkat細胞に対して添加し、MTSアッセイを行った。遊離の成分は、Ramos細胞に対してジスルフィド含有脂質(PDP PE)を添加した後に測定した吸光度値における、比較的小さいが、統計学的に有意な低下を除き、有意な効果を有していなかった(図4)。これらのデータは、感受性であるB細胞株に対するHDL−NPの毒性が、HDL−NPの個々の成分の何らかの毒性作用ではなく、バイオミメティックスにより導かれることを明らかにしている。
リンパ腫細胞株におけるアポトーシス。MTSアッセイで測定した吸光度の変化が多因子的であり得るとの理由から、本発明者らはまた、hHDLおよびHDL−NPでの処理後の細胞アポトーシスおよび細胞増殖も測定した(図5A)。アネキシンVおよびヨウ化プロピジウム細胞標識およびフローサイトメトリーを使用して(材料および方法を参照のこと)、本発明者らは、HDL−NPが、B細胞リンパ腫細胞株においては用量依存性かつ時間依存性でアポトーシスを誘導したが(図5B)、Jurkatは許容したことを見出した(図5B)。分子レベルでは、本発明者らのデータは、HDL−NPが、Ramos細胞において、切断されたpoly−ADPリボースポリメラーゼ(PARP)の用量依存性の増大、および全長カスパーゼ3レベルの低下を引き起こしたことを示している(図5Dおよび5E)。SUDHL−4細胞においては、切断されたPARPのレベルは、HDL−NPでの処理の24時間後に増大し始めた(図5F)。加えて、活性型カスパーゼ3活性の比色アッセイ(材料および方法を参照のこと)を使用して、本発明者らは、HDL−NP処理が、Ramos細胞およびSUDHL−4細胞においては、活性型カスパーゼ3活性の時間依存性かつ用量依存性の増大を誘導したが、Jurkat細胞においては誘導しなかったことを見出した(図5C)。
正常な肝細胞、マクロファージ、およびリンパ球の研究。次に、本発明者らは、正常な肝細胞およびマクロファージに対するHDL−NPの毒性(図6A)、ならびに、ナイーブヒトリンパ球に対するHDL−NPの毒性(図6B)を測定した。最初に、アポトーシスを、正常なヒト肝細胞およびマクロファージの、hHDLおよびHDL−NPへの24時間、48時間、および72時間の暴露後に測定した。対照細胞に対比して、処理した細胞についてのアポトーシスの増大は観察されなかった(図6A)。次に、ヒトボランティアから血液を収集し、リンパ球をFicoll勾配を使用して単離した。正常なヒトリンパ球は、漸増用量のHDL−NPで72時間処理した場合(図6B)、または10nMのHDL−NP(SUDHL−4細胞およびRamos細胞にとって毒性である用量)への暴露後、48時間および5日でも、アポトーシスを受けなかった(図6B、挿入図)。まとめると、これらのデータは、HDL−NPが、in vivoではHDLにより通常標的化される細胞にも、血液中に通常見られる有核細胞にも、毒性ではないことを示している。
HDL−NPによるSR−B1の会合、ならびにナイーブHDLおよびAc−LDLによるレスキュー。本発明者らは、アポトーシスの誘導が、成熟した、コレステロールに富むHDLの取り込みを模倣しているHDL−NPによるSR−B1の会合に関係があると判断した。本発明者らは、誘導結合プラズマ質量分析法(ICP−MS)により金含有量を測定し、細胞の金含有量を細胞性SR−B1発現と関連づけた(図7A)。細胞の金含有量の測定値を細胞性タンパク質に対して正規化し、後の時点では、これらは生存している細胞とアポトーシス性細胞の組み合わせである(72時間)。質量分析法のデータは、HDL−NPが、2時間で最初に細胞と会合し、続いて、24時間で飽和プラトーに達するまで、Ramos細胞、SUDHL−4細胞、およびLY3細胞においては細胞の金含有量を増大させた(Jurkatにおいてはそうではない)ことを示している。まとめると、これらのデータは、これらの細胞タイプによる、測定されたSR−B1発現と一致する。さらに、天然のhHDLが、それぞれの細胞タイプにおいて同じ会合および取り込み機構についてHDL−NPと競合するかどうかを理解するために、本発明者らは、漸増濃度のhHDLを用いて競合実験を行った。初期の細胞結合を単離し、そして潜在的に阻害するために、データを早い時点(t=2時間および4時間)で集めた。データは、Ramos細胞およびSUDHL−4細胞においては、hHDL濃度が増大すると、細胞の金含有量が着実に減少することを示している(図7B)。いずれの時点でも、SR−B1陰性Jurkat細胞による比較的不十分な取り込みが存在する(図7B)。次に、本発明者らは、SUDHL−4細胞においてHDL−NPの会合および取り込みを視覚化するために、透過電子顕微鏡法(TEM)を使用した(図7C)。顕微鏡写真は、HDL−NP処理後のSUDHL−4細胞によるAuNPの取り込みを示している。図7Cに示すように、細胞内レベルでは、AuNPは細胞膜、細胞質、および小胞構造に限定されていた。細胞核内ではAuNPは観察されなかった。まとめると、これらのデータは、HDL−NPがSR−B1についてhHDLと競合し、標的細胞によって内在化され得ることを示唆している。
SR−B1の会合の役割を調べるため、およびコレステロールの流れが、HDL−NPでの細胞の処理後のアポトーシスの誘導に寄与するかどうかをさらに理解するために、本発明者らは、コレステロールの供給源でもある公知のSR−B1微粒子状アゴニストを添加することによるレスキュー実験を行った。アセチル化された低密度リポタンパク質(Ac−LDL)およびhHDLはいずれも、コレステロールを細胞に送達するためにSR−B1を利用する。本発明者らは、HDL−NP濃度を一定に保ちつつ漸増濃度のAc−LDLの存在下で、およびRamos細胞およびSUDHL−4細胞に対しては毒性である用量(10nM)で、生存性およびアポトーシスを測定した。MTSアッセイを使用して得た吸光度データは、SUDHL−4細胞が、漸増濃度のAc−LDLを添加することによりレスキューされたことを示している(図8A)。Jurkat細胞については変化は観察されなかった(図8A)。さらに、Ac−LDL(図8B)およびhHDL(図8C〜8F)はいずれも、用量依存性様式でHDL−NP媒介性アポトーシスからRamos細胞およびSUDHL−4細胞をレスキューしたが、Jurkatはレスキューしなかった(図8B)。細胞増殖の変化がMTS細胞生存性アッセイにより提供されたデータを混乱させ得るので、本発明者らは、4種類の細胞株の全てにおいて、細胞増殖の測定値としてH−チミジンの取り込みを評価した(図5A)。本発明者らのデータは、HDL−NPが、LY3細胞株、Ramos細胞株、およびSUDHL−4細胞株において細胞増殖を穏やかに減少させたが、SR−B1陰性Jurkat細胞においてはそうではなかったことを示している。Ac−LDLの添加は、細胞増殖をベースラインレベルにまでレスキューしたが、単独で添加した場合には、試験した細胞株のいずれにおいても有意な細胞増殖を誘導しなかった(図5A)。したがって、HDL−NPはSR−B1を標的化し、アポトーシスを誘導し、そしてこの受容体を介してコレステロールの流れを変化させることにより細胞増殖を穏やかに低減させる。
コレステロールの流れの測定。コレステロールの流入および流出の両方を媒介するSR−B1の能力のために、本発明者らは、hHDLおよびHDL−NPの存在下において、細胞株および初代細胞中でのコレステロールの流れを測定した(図9A〜9F)。リンパ腫細胞株においては、コレステロール流出は、HDL−NPへの暴露後に最も高かった(図9A)。Jurkat細胞は、最小量のコレステロール流出を示した。正常な細胞においては、測定したコレステロール流出は、肝細胞中よりもマクロファージ中において多く、流出の大きさはhHDLとHDL−NPについては類似していた(図9B)。
次に、本発明者らは、培養したリンパ腫細胞(図9C)、ならびに正常なヒト肝細胞およびマクロファージへとコレステロールを流入させるhHDLおよびHDL−NPの能力を決定した(図9D)。hHDLと比較して、HDL−NPは、試験したリンパ腫細胞株のそれぞれに対して最小量のコレステロールを送達した(図9C)。正常な細胞においては、コレステロール流入は、マクロファージと対比して肝細胞において最大であり、大きさは、hHDLおよびHDL−NPと比較的同等であった(図9D)。まとめると、HDL−NPは、流れがより均一に制御される正常細胞とは反対に、リンパ腫細胞株においてはコレステロールの流れを異なって調整するようである。細胞死とコレステロールの流れのデータを組み合わせることにより、HDL−NPの作用機構が、細胞のコレステロール代謝およびSR−B1の下流にある分子経路の異なる操作により導かれることの証拠が提供される。
BLT−1によるSR−B1の阻害が、HDL−NPへのコレステロールの流れをブロックする。脂質トランスポート−1のブロッカー(BLT−1)は、SR−B1の細胞外ループドメイン中のシステイン−384に結合し、受容体に対するHDL粒子の結合を変化させることなくSR−B1を介してコレステロールの流れを阻害する小分子である。したがって、SUDHL−4細胞のBLT−1での処理により、SR−B1を介する会合およびコレステロールの流れの測定が可能となった。本発明者らのデータは、BLT−1が、hHDLおよびHDL−NPに対するコレステロールの流れを阻害したことを示しており、これにより、HDL−NPによるSR−B1の会合がコレステロールの流れの変化の原因であることの証拠を提供し、これは以前の報告と一致する(図9Eおよび9F)。
リンパ腫の異種移植実験。in vivoモデルにおいて本発明者らのin vitroデータを要約するために、本発明者らは、わき腹に腫瘍異種移植片を持つSCIDベージュマウス(C.B−Igh−1b/GbmsTac−Prkdcscid−Lystbg N7)に対して、HDL−NPを静脈内投与した。本発明者らはまた、SR−B1Ramos細胞(右)の反対側(左)のわき腹にJurkat細胞(SR−B1)を接種することにより、SR−B1細胞に対するHDL−NP毒性の特異性を試験した。マウス(N=5/グループ)を、PBS、hHDL(1μM、100μL)、またはHDL−NP(1μM、100μL)で11日間、静脈内で処置した。HDL−NPで処置したマウスは、hHDLおよびPBSで処置したマウスと比較して、有意に小さいRamos腫瘍体積を有した(図10A)。予想したとおり、HDL−NP処置は、Jurkat腫瘍の体積に対して有意な効果は有さなかった(図10B)。11日目の剖検により得た4つの代表的な腫瘍標本によるウェスタンブロッティングは、SR−B1発現がRamos腫瘍においては維持され、Jurkat腫瘍においてはほとんど存在しないことを明らかにした(図11A)。Ramos腫瘍およびJurkat腫瘍から得た組織切片のヘマトキシリン−エオシン(H&E)染色は、Jurkat腫瘍のウェスタンブロットにおいて観察されたSR−B1の存在が、最小限ではあるが、おそらく、回収したJurkat細胞塊中に存在する脂肪細胞または他の結合組織の構成要素の結果であることを示している(図11B〜11E)。Jurkat異種移植片の全体としての増殖が減少したにも関わらず、これらのデータは、本発明者らのin vitroデータ、および腫瘍標本において測定したSR−B1の発現と一致する。これらのデータはまた、HDL−NP(100μL)が、本発明者らが20μMに等しい概算濃度であると推定する、1μMの濃度で複数回注射した場合には、マウスの血清において天然のHDLに打ち勝つことができることも明らかにしている。
非リンパ腫のデータ。ナノ構造体(例えば、HDL NP)がSR−B1を発現するB細胞リンパ腫細胞株において時間依存性かつ用量依存性アポトーシスを誘導したことを実証している上記データに基づき、SR−B1を発現する細胞に対して毒性剤としてのナノ構造体の一般的な適用性を評価するために、SR−B1を発現する他の培養した細胞のスクリーニングを行った。2種類の異なるHDL NP用量(10nMおよび50nM)を試験し、処理後、24時間、48時間、72時間、および96時間での細胞生存性を、比色MTT細胞生存性アッセイを使用して測定した。96時間で未処理の細胞に対して行ったMTTアッセイに対して比較を行った。SR−B1を発現し、かつ天然のHDLと相互作用することが公知である細胞(例えば、ヒト臍帯静脈内皮細胞(HUVEC)(図12A)および肝臓ヘパトーマ細胞(HepG2)(図12B))を試験した。加えて、多数の乳房細胞株(図12E〜12G)、前立腺細胞株(図12C、12D)、および黒色腫細胞株(図12H、12I)を試験した。データは、ナノ構造体が、黒色腫細胞株A375において細胞生存性を低下させたことを明らかにしている(図12I)。細胞生存性の低下を、96時間で、C8161黒色腫細胞株について測定した(50nMの用量)(図12H)。Ramos細胞株(図12J)は、ナノ構造体で処理すると時間依存性かつ用量依存性のアポトーシスを示し、これまでのデータと一致する。これらの結果を図12A〜12Jに示す。全ての実験について、NTは、96時間の時点での未処理の対照であった。
考察。HDL−NPは、リンパ腫の処置のための新規の方法論を提供する生物学的に機能性であるナノ構造体である。HDL−NPは、in vitroでB細胞リンパ腫細胞株においてアポトーシスを誘導し、異種移植モデルにおいてはB細胞リンパ腫の増殖を減少させる。HDL−NPは、結合体のサイズ、形状、界面化学を制御し、最終的には、バイオナノ界面(bio−nano interface)でのコレステロールの流れを制御するために使用される金ナノ粒子鋳型の存在に直接依存し得る作用機構を明らかにする。HDL−NPは、SR−B1を標的化することにより球状HDLを模倣し、その結果、B細胞リンパ腫細胞においてアポトーシスにつながる細胞コレステロールの流れを異なって操作することができる。対照的に、ヒト血清由来のhHDLおよびAc−LDLは、B細胞リンパ腫細胞に対して毒性ではない。
HDL−NPへの暴露後の、B細胞リンパ腫細胞に特異的であるとみられる下流でのシグナル伝達事象は、依然、定義されていない。胚中心由来のB細胞リンパ腫細胞株は、SR−B1を介する細胞コレステロールの流れの操作に最も感受性であり得る。ABC由来LY3細胞はSR−B1を発現し、GC由来細胞と同様にHDL−NPを取り込むが、アポトーシスに対してはより耐性がある。これは、GC由来細胞と対比した、ABC由来細胞における下流のシグナル伝達経路における相違を示唆しており、GC由来細胞とABCとの間でこれまでに観察された相違と一致する。同様に、ヒト肝細胞およびマクロファージ細胞(これらもまたSR−B1を発現する)は、HDL−NPに誘導される細胞死に感受性ではない。データは、癌細胞と対比した、正常細胞におけるコレステロールホメオスタシス、および正常細胞が有している、コレステロール代謝に対する厳密な制御の重要性を示しており、これは本発明者らのデータにより支持される。
胚中心由来のB細胞リンパ腫細胞株は、SR−B1を介する細胞コレステロールの流れの操作に最も感受性であり得、これは、この効果の下流の媒介因子をさらに理解するための刺激的な移行(provocative segue)を提供する。細胞コレステロールの枯渇は、バーキットリンパ腫のエプスタインバーウイルス(EBV)感染を阻害することが示されており、これは、EBV感染および腫瘍発生におけるコレステロールの重要性を暗に意味している。このように、B細胞リンパ腫細胞によるSR−B1の増大した発現は、コレステロール、コレステリルエステル、または細胞の成長および増殖のウイルスプロモーターについて他の組織に打ち勝つ機構を提供する。さらに、SR−B1は、細胞膜脂質ラフトに局在化することが示されており、SR−B1の会合、ならびにコレステロール含有量および膜流動性の操作(脂質ラフトに係留された下流の分子経路を含む)は、HDL−NPの治療効果に寄与し得る。
図6および図7に示すデータは、HDL−NPが、標的細胞への結合について天然のhHDLおよびAc−LDLと競合することを示している。重要なことは、in vivoデータが、HDL受容体についてうまく競合するHDL−NPの能力、および天然の循環HDLの存在下での腫瘍の増殖の機能的に有意な減少を達成するHDL−NPの能力を示していることである。これは、このアプローチが患者において利用される場合には、hHDLとの競合が成功を大きく左右するので、重要である。
本明細書中に記載する実施形態は、ヒトの疾患についての次世代の新規の処置の開発が期待できる。ナノ粒子治療薬の合成のために広く行われているアプローチは、薬物送達のための足場としてナノ粒子を利用することに焦点を当てており、機能性の生物学的実体としてではない。前者のタイプのナノ粒子の治療的機能は、合成ナノ構造体自体に由来しないが、小分子化学療法剤または核酸のようなナノ粒子処方物に含まれる活性治療薬の放出に由来する。対照的に、本明細書中に記載するいくつかの実施形態においては、記載するナノ構造体は、SR−B1および/または他の受容体に結合する特有の能力の理由から、(他の要因の中でも)それらの球状形態およびコレステロールの流れを操作する能力の理由から、強力な治療薬としての可能性がある機能的な生体模倣ナノ構造体である。それらの生体模倣性質の理由から、ナノ構造体は正常なヒトリンパ球に対しては毒性ではなく、治療薬としてのつなぎ目のない生物学的統合の好機を拡大する。最後に、本明細書中に記載するナノ構造体は、SR−B1の結合および/またはコレステロールの流出/結合特性のような生物学的機能を最適化し、同様に強力な治療薬を開発し、そして本明細書中に報告する生体模倣ナノ構造体の治療特性を潜在的に改善するように調整することができる合成のナノ粒子プラットフォームであり得る。
材料 − 合成、精製、および特徴付け
HDL−NPの合成および特徴付け。ヒトアポリポタンパク質A1(Meridian Life Sciences)を、5nmの直径のクエン酸塩で安定化させたコロイド状Auナノ粒子の溶液(80〜100nM、Ted Pella,Inc.)に、5倍のモル濃度過剰で添加した。1時間後、Apo−AuNPを、エタノール(Sigma Aldrich)を添加することにより20%希釈した。2種類のリン脂質(1,2−ジパルミトイル−sn−グリセロ−3−ホスホエタノールアミン−N−[3−(2−ピリジルジチオ)プロピオネート][PDP PE,Avanti Polar Lipids,(Dis)]および1,2−ジパルミトイル−sn−グリセロ−3−ホスホコリン(DPPC,Avanti Polar Lipids))の新鮮な溶液を、1mMでエタノール中に調製した。各脂質を、AuNPに対して250倍のモル濃度過剰でApo−AuNPの溶液に添加し、平底振盪機上で、室温で4時間インキュベートした。次に、HDL−NPを、#14チューブと50kDaのMWCO改変ポリエーテルサルホン(mPES)モジュールを取り付けたKros Flo II接線フロー濾過システム(Spectrum Labs,Inc)を使用した接線フロー濾過により精製した。全ての精製について、緩衝液(水)を、エタノール、遊離のApo A1、およびリン脂質を取り除くために7回交換した。HDL−NP濃度を、Agilent 8453 UV可視分光光度計(5nmのコロイド状金ナノ粒子,ε=9.696×10−1cm−1)を使用して決定した。UV可視分光法を520nm(5nmのAuコロイドの表面プラズモン共鳴に相当する波長)で、またはその付近での最大吸光度を測定するために使用する。次に、HDL−NP濃度を、ベールの法則:A=εbc,(式中、Aは吸光度であり、εはM−1cm−1での透過係数であり、bは、cmでのキュベットの経路の長さであり、そしてcは、MでのAuNPの濃度である)により定義される関係性を使用して決定する。HDL−NP(15nM)の流体力学的直径およびζ電位を、Malvern Zetasizer ZSを使用して決定した(図13)。HDL−NPあたりのApo A1分子の数を、公開されている文献に記載されているとおりに決定した。簡単に説明すると、Apo A1を、上記に記載するようにHDL−NPの合成の前に分子フルオロフォアで標識する。次に、標識したApo A1を、既知のモル量のHDL−NPから遊離させ(上記を参照のこと)、標識されたApo A1の検量線から作製した蛍光シグナルに基づいて濃度を計算する。
ヒトHDL(hHDL)での処理およびHDL−Nでの処理を正規化するためのApo A1濃度の計算。HDL−NPのモル濃度を上記で議論したように決定し、各HDL−NPは、およそ3コピーのApo A1を有している(表1)。したがって、Apo A1は、HDL−NPと比較して3倍のモル濃度過剰で存在する。購入した天然のHDL(Calbiochem)はヒト血清由来であり、全タンパク質濃度は、購入したヒトHDLのそれぞれのバッチとともに提供される。この値から、Apo A1濃度を、Apo A1が天然のHDLのタンパク質濃度のうちの70%を構成するという仮定に基づいて計算する。
方法
細胞培養。Ramos細胞、Jurkat細胞、LY3細胞、およびHepG2細胞は、American Type Culture Collection(ATCC)より購入した。SUDHL−4細胞は、Ron Gartenhaus博士(University of Maryland,Baltimore,MD)からのものであった。細胞を標準的な方法を使用して培養した。Jurkat細胞、SUDHL−4細胞、およびRamos細胞を、L−グルタミン、10%のウシ胎仔血清(FBS)を含むRPMI−1640培地中で、1%のペニシリン/ストレプトマイシン(Invitrogen)の存在下で培養した。LY3細胞を増殖させ、L−グルタミン、15%のFBS、1%のペニシリン/ストレプトマイシン、4.5g/LのD−グルコース、および1mMのNGピルビン酸塩を含むRPMI1640中で維持した。HepG2細胞を、10%のFBSを補充したEagle’s Minimal Essential Media(EMEM)中で培養した。懸濁した細胞をT75フラスコの中で培養し、37℃および5%COでインキュベートした。
正常なヒトリンパ球の単離。Northwestern University Institutional Review Boardにより承認された書面による同意の後、末梢血液を健常なボランティアからLi−へパリンをコーティングしたチューブの中に採血した。新鮮な(提供後4時間未満)ヒト全血をRPMI培地で1:1に希釈した。50mLのチューブに、10mLのFicoll Hystopaqueおよび20mLの希釈した血液を添加した。試料を遠心分離し(約480g、20分、室温)、希釈した培地/血小板の上部の層を取り除いた。乳白色の層として現れたリンパ球を新しいチューブに移し、新鮮なRPMIで50mLになるように希釈して、遠心分離した(約500g、6分)。洗浄工程を2回繰り返し、最終的なペレットを、5mLの増殖培地(L−グルタミン、10%のFBS、および1%のペニシリン/ストレプトマイシン(Invitrogen)を含むRPMI1640)中に再懸濁した。必要であれば、赤血球(RBC)を、10mLの冷却したRBC溶解緩衝液をリンパ球ペレットに添加することにより取り除いた。氷上で10分間置いた後、試料をRPMIで2回洗浄した。その後、最終的なペレットを、1×10細胞/mLで増殖培地中に再懸濁した。
ヒト肝細胞の培養。初代ヒト肝細胞を、Lonza(Walkerville,Maryland)から入手した。肝細胞を、Lonza’s HCM SingleQuot を補充した、アスコルビン酸、ウシ血清アルブミン(脂肪酸非含有)、ヒドロコルチゾン、ヒト上皮成長因子、インスリン、トランスフェリン、およびゲンタマイシン/アンホテリシン−Bを含有しているHepatocyte Basal MediaからなるHepatocyte Culture Media(HCM)中で培養した。肝細胞を、2%のFBSを補充したHCM中に播種した。24時間後、培養培地を除去し、FBSを含まない新鮮なHCMで置き換えた。
CD14+単球の培養および分化。ヒトCD14+単球をLonzaから入手した。単球を、10%のFBSおよび1%のペニシリン/ストレプトマイシンを補充したRPMI1640中で培養した。単球をマクロファージに分化させるために、サイトカインであるインターロイキン(IL)−4(25ng/mL,eBioscience,San Diego,CA)、IL−6(100ng/mL、eBioscience)、および顆粒球マクロファージ−コロニー刺激因子(GM−CSF、100ng/mL、eBioscience)を培養培地に対して24時間にわたり添加した(3)。分化後、培養培地をサイトカインを含まない新鮮な培地で置き換えた。
MTSアッセイ。初代ヒト肝細胞およびCD14+単球について、9×10細胞/90μLを96ウェルプレートに播種し、付着させ、CD14+単球の場合には処理の開始前に24時間にわたり分化させた。全ての他の細胞株については、2.5×10細胞/90μL(24時間/48時間の実験)または1.0×10細胞/90μL(72時間の実験)を96ウェルプレートに播種した。各ウェルに、15μLのHDL−NP、Ac−LDL(Biomedical Technologies)、hHDL(Calbiochem)、またはPBSを添加した。37℃で24時間、48時間、または72時間のインキュベーション後、20μLのMTS溶液(MTS−Promega,G1112)を各ウェルに添加し、37℃でさらに1〜4時間インキュベートした。吸光度をマイクロプレートリーダー(MRX Revelation;DYNEX Technologies)を使用して490nmで読み取り、対照グループの百分率として表した。対照値を100%に設定した。MTSの減少が代謝的に活性な細胞において起こり、よって、活性のレベルが細胞生存性の尺度である。
アポトーシス(アネキシンV/ヨウ化プロピジウム)アッセイ。簡単に説明すると、細胞の処理および洗浄の後、1×10〜1×10細胞を、アネキシンV−FITCおよびヨウ化プロピジウム(PI)試薬で、アネキシンV−FITCアポトーシス検出キットの指示(Invitrogen)にしたがって標識した。細胞の蛍光を、Beckman Coulter FACS機器上で、518nm(FITC)および620nm(PI)で読み取った。それぞれの分析について、30,000の事象を記録した。結果を分析し、FCS Express V3ソフトウェアおよびExcelにより計算した。アポトーシスの百分率は、(アネキシンV−FITC/PI)細胞と(アネキシンV−FITC/PI)細胞の和であった。
活性型カスパーゼ−3アッセイ。簡潔に説明すると、450μLのJurkat細胞、Ramos細胞、およびSUDHL−4細胞を24ウェルプレートに、1.1×10細胞/mLの密度でプレートした。その後の72時間にわたり、50μLの様々な処理(対照を含む)を各ウェルに添加した。72時間で、細胞を回収し、スピンさせ(450g、10分)、そして氷冷したPBSで洗浄した。細胞を、40μLの製造業者により提供された細胞溶解緩衝液中に再懸濁し、−80℃と室温との間で交互にさせる凍結−解凍サイクルにより溶解させた。次に試料を、20μLの全体積[体積の不足分は溶解緩衝液で満たした]の中に4.7μgのタンパク質等量の全細胞溶解物を調製することにより、タンパク質含有量に関して正規化した。溶解物の全体積を使用して、アッセイを、96ウェルプレートで設定し、製造業者のプロトコールにしたがって行った。比色の変化を測定し、4時間の時点で分析した。吸光度を、マイクロプレートリーダー(BioTek Instruments,Synergy 2)を使用して405nmで読み取り、対照グループの百分率として表した。
ウェスタンブロット。細胞の処理後、細胞をPBSで洗浄し、遠心分離した。細胞ペレットを、1mMのフェニルメタンスルホニルフルオライド(PMSF)およびProtease Inhibitor Cocktail(Sigma)を補充したCell Extraction Buffer(Invitrogen)で溶解させ、タンパク質濃度を比色によるBCA Protein Assay Kit(Pierce)を用いて測定した。全タンパク質試料(25〜50μg)を4〜20%の前もって成形したポリアクリルアミドゲル(BioRad)上で分離させ、ポリビニリデンフルオライド(PVDF)メンブレンに移動させた。メンブレンをTBS−T中の5%の脱脂乳でブロックし、一次抗体、続いて西洋ワサビペルオキシダーゼ(HRP)結合体化二次抗体とともにインキュベートした。免疫反応性タンパク質を、増強された化学発光を使用して視覚化した。一次抗体:ウサギ抗SR−B1(Abcam ab52629)、ウサギ抗PARP(Cell signaling 9542)、ウサギ抗カスパーゼ3(Cell signaling 9662)。
細胞コレステロールの流出のアッセイ。細胞を、1μCi/mLの[1,2−H]コレステロール(Perkin Elmer Inc.)を含む適切な培養培地の中で一晩インキュベートして、細胞コレステロールのプールを標識した。その後、細胞をPBSで洗浄し、適切な血清非含有培養培地中に再懸濁した。ヒトHDLまたはHDL−NPを細胞に対して添加し、6時間インキュベートした。流出期間の最後に、細胞と培養培地を別々に回収し、液体シンチレーションカウンティングを行った。コレステロール流出の百分率を以下の式を使用して決定した:培地のカウント/(細胞のカウント+培地のカウント)×100。いずれのアクセプターも存在しない中で得たバックグラウンドのコレステロール流出を、試験試料を用いて得た流出値から減算した。
コレステロール流入のアッセイ。細胞をPBSで洗浄し、1μCi/mLの[1,2−H]コレステロールを含む適切な血清非含有培地中に再懸濁した。ヒトHDLまたはHDL−NPを細胞に添加し、6時間インキュベートした。流入期間の最後に、細胞をPBSで洗浄した。細胞性の脂質をイソプロパノールを用いて抽出し、その後、液体シンチレーションカウンティングを行った。流入を、Hコレステロールのカウントの数として表し、いずれのアクセプターもの非存在下(PBS)で得たバックグラウンドのコレステロール流入を、HDL−NPまたはhHDLを用いて得た流入値から減算した。
BLT−1コレステロールの流れのアッセイ。脂質トランスポートのブロッカー1(BLT−1)の添加後のコレステロールの流れの変化を上記のように測定した。しかしながら、細胞を、細胞の処理の前に2時間にわたり10μMのBLT−1(2−ヘキシル−1−シクロペンタノンチオセミカルバゾン、ChemBridge Corporation)で予め処理した。コレステロールの流入または流出に続いて、細胞を、先に記載したようにコレステロールの流れの測定のために新鮮な培地中に回収した。流出は、BLT−1で処理しなかった対照細胞に対する百分率として表す。流入は、BLT−1で処理しなかった対照細胞の百分率として表す。
HDL−NPのin vivo研究。in vivo研究を、Northwestern UniversityのAnimal Care and Use Committee(ACUC)による承認のもとで行った。Ramos細胞株およびJurkat細胞株を、10%のFBSを補充したRPMI 1640培地中で、5%のCOおよび37℃で維持した。5〜6週齢のSCIDベージュマウス、C.B−Igh−1b/GbmsTac−Prkdcscid−Lystbg N7を、Taconic,Albany,New Yorkから購入した。Ramos細胞株を、5×10細胞の密度で右側のわき腹に皮下接種し、Jurkat細胞株を、1×10細胞の密度で左の脇腹に接種した。両方の細胞の生存性は90%を上回っていた。動物を、腫瘍の接種前に2日間まで順応させた。薬物での処置を、接種した異種移植片が約100mmに達した後に開始した。動物を3つの異なるグループに無作為に分けた:対照(PBS)グループについて5匹のマウス、および処置(hHDLおよびHDL−NP)グループについてそれぞれ5匹のマウス。対照グループおよび処置グループに、100μLのPBS、1μMのhHDL、または1μMのHDL−NPを毎日静脈内注射した(1週間に5回の投与)。ケージの横からの観察を毎日行い、一方、腫瘍の体積と体重の決定を、1週間に2回測定した。この研究の最後に、Ramos異種移植片が2,000mmに達した場合は、腫瘍(RamosおよびJurkat)を組織学のために回収した。腫瘍試料のヘマトキシリン−エオシン(H&E)染色を、Northwestern UniversityのMouse Histology and Phenotyping Laboratoryにより行った。
動物腫瘍の免疫ブロット。簡単に説明すると、20μgの腫瘍溶解物を、10%のSDS−ポリアクリルアミド(PAGE)ゲルの各ウェルにロードした。腫瘍溶解物をSDS−PAGEにより分離させ、ポリビニリジンフルオライドメンブレンに移動させ、そして示したようにプローブした。免疫ブロット分析のための抗体は以下の供給業者:SR−B1はAbcam(Cambridge,MA)から、およびα−チューブリンはSanta Cruz Biotechnology(Santa Cruz,CA)から入手した。
誘導結合プラズマ − 質量分析(ICP−MS)。10億分の1(ppb)での細胞ペレットの金含有量を検量線を使用して決定し、細胞あたりの金ナノ粒子の濃度を計算した。インジウムを、全ての試料、および内部標準としての標準溶液に対して5ppbで添加した。その後、これらの値をタンパク質濃度に対して正規化した。
透過電子顕微鏡法(TEM)。HDL−NPで処理した細胞および未処理の細胞をペレットとし、緩衝液[0.1Mのカコジル酸ナトリウム(SC)]中に再懸濁し、洗浄し、定着剤(2%のパラホルムアルデヒド、2%のグルタルアルデヒド)中に再懸濁した。細胞を室温で30分間インキュベートし、0.1MのSCでリンスし、0.1MのSC中の2%の四酸化オスミウムからなる第2の定着剤中に入れた。その後、細胞をリンスし、蒸留したHOおよび3%の酢酸ウラニルでそれぞれ染色した。固定したら、細胞を、蒸留したHOでリンスし、エタノールの等級を上げることにより脱水した。プロピレンオキサイドを遷移緩衝液(transitional buffer)として使用し、組織をEpon 812およびAraldite樹脂中に包埋し、60℃で硬化させた。ブロックを超ミクロトームを使用して切片とし、透過電子顕微鏡法のためにグリッド上にマウントした。TEM顕微鏡写真をFEI Tecnai Spirit G2を使用して120kVで得た。
統計学。データは平均±SDとして表す。2つの値の比較は対応のないStudent’s t検定により行った。データの異なるグループ間での複数の比較については、有意差をボンフェローニ法により決定した。有意性はP≦0.05と定義した。
本発明のいくつかの実施形態が本明細書に記述され例証されたが、当業者であれば、機能を実行し、および/または結果を得、および/または本明細書に記載の1つ以上の利点を得るために、容易に様々な他の手段および/または構造体の構想を描くだろう。また、各々のそのような変更および/または修正は、本発明の範囲内であると考えられる。より一般的には、当業者は、本明細書に記載のすべてのパラメーター、寸法、材料、および構成は例示を意図し、実際のパラメーター、寸法、材料および/または構成は、本発明の教示(複数可)が使用される特定の適用(複数可)に応じて決まることを容易に認識するだろう。当業者は、型通りの実験作業を行なうだけで、本明細書に記載の特定の実施形態の多くの等価物を認識するか、または確認することができるだろう。したがって、先の実施形態は例示としてのみ提示され、添付の請求項およびその等価物の範囲内で、具体的に記載され特許請求されたものとは別のやり方で本発明を実施することができることが理解されるであろう。本発明は、本明細書に記載の個々の特徴、システム、物品、材料、キットおよび/または方法に関する。さらに、2つ以上のそのような特徴、システム、物品、材料、キットおよび/または方法のいかなる組み合わせも、そのような特徴、システム、物品、材料、キットおよび/または方法が、相互に一貫しない場合を除き、本発明の範囲内に含まれる。
本明細書に定義され使用される定義はすべて、辞書の定義、参照によって組み込まれた文献中の定義および/または定義された用語の通常の意味に優先すると理解されるべきである。
本明細書および請求項の中で使用される場合、不定冠詞「a」および「an」は、明白に別途示されない限り、「少なくとも1つ」を意味すると理解されるべきである。
さらに、別途示されない限り、2つ以上の工程または行為を含む本明細書中で請求されたいかなる方法においても、当該方法の工程または行為の順序は、当該方法の工程または行為の記載された順序に必ずしも限定されないことを理解するべきである。
上記の明細書と同様に請求項でも、すべての移行句、たとえば「comprising」、「including」、「carrying」、「having」、「containing」、「involving」、「holding」、「composed of」等はオープンエンドであると理解され、すなわち、限定されずに含むことを意図する。移行句「consisting of」および「consisting essentially of」だけが、それぞれ、米国特許庁の審査手続便覧第2111.03章に規定されたクローズドまたはセミクローズドの移行句であるものとする。

Claims (49)

  1. スカベンジャー受容体タイプB−I(SR−B1)を有している癌細胞を死滅させるための方法であって、前記方法は:
    SR−B1を有している前記癌細胞を、前記癌細胞を死滅させるのに有効な量の合成ナノ構造体と接触させる工程
    を含む、方法。
  2. B細胞リンパ腫細胞を死滅させるための方法であって、前記方法は:
    前記B細胞リンパ腫細胞を、前記B細胞リンパ腫細胞を死滅させるのに有効な量の合成ナノ構造体と接触させる工程
    を含む、方法。
  3. 被験体の非ホジキンリンパ腫を処置するための方法であって、前記方法は:
    前記非ホジキンリンパ腫を処置するのに有効な量の合成ナノ構造体を、前記被験体に投与する工程
    を含む、方法。
  4. 被験体の癌を処置するための方法であって、前記方法は:
    前記被験体に対して、前記被験体の癌細胞におけるコレステロールの流入および流出を制御する組成物を投与し、前記癌を処置する工程
    を含む、方法。
  5. 疾患または身体状態を診断する、予防する、処置する、または管理する方法であって、前記方法は:
    ナノ構造体コアと、前記ナノ構造体コアを囲繞し、それに結合したシェルとを含有している合成構造体を含有している治療有効量の組成物を被験体に対して投与する工程;
    前記合成ナノ構造体を、天然のリポタンパク質に結合する細胞表面受容体に結合させる工程;および
    前記細胞表面受容体と前記天然のリポタンパク質との間での結合をブロックするかまたはその量を減少させる工程
    を含む、方法。
  6. 前記天然のリポタンパク質がHDL、IDL、LDL、またはVLDLである、上記請求項のいずれか1項に記載の方法。
  7. 前記細胞表面受容体を含有している細胞におけるコレステロールの流入または流出を増大あるいは減少させる工程を含む、上記請求項のいずれか1項に記載の方法。
  8. 異常脂質レベルと関係がある疾患または身体状態を診断する、予防する、処置する、または管理するための方法であって、前記方法は:
    ナノ構造体コアと、前記ナノ構造体コアを囲繞し、それに結合したシェルとを含有している合成構造体を含有している治療有効量の組成物を被験体に対して投与する工程;および
    前記合成構造体を使用して前記被験体における細胞コレステロールの流れを変化させる工程
    を含む、方法。
  9. 前記構造体または前記構造体の成分を、コレステロールの輸送を調節する1つ以上の細胞表面受容体に対して結合させる工程を含む、上記請求項のいずれか1項に記載の方法。
  10. 前記細胞表面受容体がSR−B1、ABCA1、および/またはABCG1である、上記請求項のいずれか1項に記載の方法。
  11. 異常脂質レベルと関係がある前記疾患または前記身体状態に炎症が含まれる、上記請求項のいずれか1項に記載の方法。
  12. 異常脂質レベルと関係がある前記疾患または前記身体状態に免疫系の調節が含まれる、上記請求項のいずれか1項に記載の方法。
  13. 生体マトリックスに対して、ナノ構造体コアと、前記ナノ構造体コアを囲繞し、それに結合したシェルとを含有している合成構造体を含有している治療有効量の組成物を投与する工程;および
    前記合成ナノ構造体が、脂質もしくはタンパク質を隔離する、または脂質もしくはタンパク質を前記生体マトリックス中の他の天然のリポタンパク質と交換することを可能にする工程
    を含む、方法。
  14. 前記組成物が複数の合成ナノ構造体を含有する、上記請求項のいずれか1項に記載の方法。
  15. 前記癌が非ホジキンリンパ腫である、上記請求項のいずれか1項に記載の方法。
  16. 前記癌がB細胞リンパ腫細胞を特徴とする、または前記癌細胞がB細胞リンパ腫細胞である、上記請求項のいずれか1項に記載の方法。
  17. 前記癌が白血病、黒色腫、またはリンパ腫である、上記請求項のいずれか1項に記載の方法。
  18. 前記癌がSR−B1を有している細胞を特徴とする、上記請求項のいずれか1項に記載の方法。
  19. 前記癌がABCA1および/またはABCG1を有している細胞を特徴とする、あるいは前記癌細胞がABCA1および/またはABCG1を有する、上記請求項のいずれか1項に記載の方法。
  20. 前記癌細胞の増殖を制御する工程を含む、上記請求項のいずれか1項に記載の方法。
  21. 前記癌細胞を死滅させる工程を含む、上記請求項のいずれか1項に記載の方法。
  22. アポトーシスにより前記癌細胞を死滅させる工程を含む、上記請求項のいずれか1項に記載の方法。
  23. 前記癌細胞におけるコレステロール代謝を制御する工程を含む、上記請求項のいずれか1項に記載の方法。
  24. 前記癌細胞からのコレステロール流出を増大させる工程を含む、上記請求項のいずれか1項に記載の方法
  25. 前記癌細胞へのコレステロール流入を減少させる工程を含む、上記請求項のいずれか1項に記載の方法。
  26. SR−B1の結合を調整する工程を含む、上記請求項のいずれか1項に記載の方法。
  27. SR−B1を実質的に阻害する工程を含む、上記請求項のいずれか1項に記載の方法。
  28. 前記合成ナノ構造体を使用して、前記癌細胞中のコレステロールを隔離する工程を含む、上記請求項のいずれか1項に記載の方法。
  29. 前記合成ナノ構造体を使用して、前記癌細胞中の少なくとも5個、少なくとも10個、少なくとも20個、または少なくとも50個のコレステロール分子を隔離する工程を含む、上記請求項のいずれか1項に記載の方法。
  30. 前記コレステロールがエステル化コレステロールである、上記請求項のいずれか1項に記載の方法。
  31. 前記コレステロールが遊離のコレステロールである、上記請求項のいずれか1項に記載の方法。
  32. 前記合成ナノ構造体が、成熟した、球状高密度リポタンパク質の生体模倣物である、上記請求項のいずれか1項に記載の方法。
  33. 前記合成ナノ構造体がコレステロールを隔離するように適合させられる、上記請求項のいずれか1項に記載の方法。
  34. 前記合成ナノ構造体がナノ構造体コアとシェルを含有する、上記請求項のいずれか1項に記載の方法。
  35. 前記合成ナノ構造体が、無機物質を含むナノ構造体コアを含有する、上記請求項のいずれか1項に記載の方法。
  36. 前記無機物質が金属である、上記請求項のいずれか1項に記載の方法。
  37. 前記無機物質が金である、上記請求項のいずれか1項に記載の方法。
  38. 前記合成ナノ構造体コアが約50nm以下、または約35nm以下、または約30nm以下の最大断面寸法を有する、上記請求項のいずれか1項に記載の方法。
  39. 前記合成ナノ構造体が、ナノ構造体コアを囲繞し、それに結合した脂質層を含有しているシェルを含有する、上記請求項のいずれか1項に記載の方法。
  40. 前記脂質層が脂質二重層である、上記請求項のいずれか1項に記載の方法。
  41. 前記脂質二重層の少なくとも一部が前記コアに共有結合している、上記請求項のいずれか1項に記載の方法。
  42. 前記脂質二重層の少なくとも一部が前記コアに物理吸着している、上記請求項のいずれか1項に記載の方法。
  43. 前記脂質二重層がリン脂質を含有する、上記請求項のいずれか1項に記載の方法。
  44. 前記脂質二重層が50〜200個のリン脂質を含有する、上記請求項のいずれか1項に記載の方法。
  45. 前記シェルがリポタンパク質構造体を含有する、上記請求項のいずれか1項に記載の方法。
  46. 前記シェルがアポリポタンパク質を含有する、上記請求項のいずれか1項に記載の方法。
  47. 前記アポリポタンパク質がアポリポタンパク質A−I、アポリポタンパク質A−II、またはアポリポタンパク質Eである、上記請求項のいずれか1項に記載の方法。
  48. 前記合成ナノ構造体が1〜6個のアポリポタンパク質を含む、上記請求項のいずれか1項に記載の方法。
  49. 前記合成ナノ構造体が内側表面および外側表面を有しているシェルを含有し、タンパク質が前記シェルの少なくとも前記外側表面と会合する、上記請求項のいずれか1項に記載の方法。
JP2014558893A 2012-02-22 2013-02-22 癌および他の状態を処置するためのナノ構造体 Pending JP2015513543A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261601706P 2012-02-22 2012-02-22
US61/601,706 2012-02-22
PCT/US2013/027431 WO2013126776A1 (en) 2012-02-22 2013-02-22 Nanostructures for treating cancers and other conditions

Publications (2)

Publication Number Publication Date
JP2015513543A true JP2015513543A (ja) 2015-05-14
JP2015513543A5 JP2015513543A5 (ja) 2016-04-07

Family

ID=47833440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014558893A Pending JP2015513543A (ja) 2012-02-22 2013-02-22 癌および他の状態を処置するためのナノ構造体

Country Status (11)

Country Link
US (1) US20150064255A1 (ja)
EP (2) EP2817024B1 (ja)
JP (1) JP2015513543A (ja)
KR (1) KR20140123597A (ja)
CN (1) CN104244965A (ja)
AU (1) AU2013222238A1 (ja)
CA (1) CA2865279C (ja)
ES (1) ES2745208T3 (ja)
IN (1) IN2014DN07888A (ja)
MX (1) MX2014010161A (ja)
WO (1) WO2013126776A1 (ja)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5204646B2 (ja) 2005-04-25 2013-06-05 マサチューセッツ インスティテュート オブ テクノロジー 止血および他の生理学的活性を促進するための組成物および方法
US9084837B2 (en) 2006-04-25 2015-07-21 Massachusetts Institute Of Technology Compositions and methods for affecting movement of contaminants, bodily fluids or other entities, and/or affecting other physiological conditions
JP5539962B2 (ja) 2008-04-25 2014-07-02 ノースウェスタン、ユニバーシティ コレステロールを隔離するのに適したナノ構造体
US9439941B2 (en) 2009-12-14 2016-09-13 The University Of Hong Kong Nano cancer barrier device (NCBD) to immobilize and inhibit the division of metastic cancer stem cells
US20130034599A1 (en) 2010-01-19 2013-02-07 Northwestern University Synthetic nanostructures including nucleic acids and/or other entities
EP2691101A2 (en) 2011-03-31 2014-02-05 Moderna Therapeutics, Inc. Delivery and formulation of engineered nucleic acids
KR20140102759A (ko) 2011-12-16 2014-08-22 모더나 세라퓨틱스, 인코포레이티드 변형된 뉴클레오사이드, 뉴클레오타이드 및 핵산 조성물
JP6144355B2 (ja) 2012-11-26 2017-06-07 モデルナティエックス インコーポレイテッドModernaTX,Inc. 化学修飾mRNA
CA2897941A1 (en) 2013-01-17 2014-07-24 Moderna Therapeutics, Inc. Signal-sensor polynucleotides for the alteration of cellular phenotypes
US10258698B2 (en) 2013-03-14 2019-04-16 Modernatx, Inc. Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions
US10894963B2 (en) 2013-07-25 2021-01-19 Exicure, Inc. Spherical nucleic acid-based constructs as immunostimulatory agents for prophylactic and therapeutic use
US10568898B2 (en) 2013-08-13 2020-02-25 Northwestern University Lipophilic nanoparticles for drug delivery
US10413565B2 (en) 2014-04-30 2019-09-17 Northwestern University Nanostructures for modulating intercellular communication and uses thereof
US10220046B2 (en) 2014-07-14 2019-03-05 The Regents Of The University Of Michigan Compositions and methods for disease treatment using nanoparticle delivered compounds
CA2963931A1 (en) 2014-10-06 2016-04-14 Exicure, Inc. Anti-tnf compounds
WO2016085986A1 (en) * 2014-11-24 2016-06-02 Northwestern University High density lipoprptein nanoparticles for inflammation
US10307491B2 (en) 2015-01-30 2019-06-04 The Regents Of The University Of Michigan Liposomal particles comprising biological molecules and uses thereof
US10078092B2 (en) 2015-03-18 2018-09-18 Northwestern University Assays for measuring binding kinetics and binding capacity of acceptors for lipophilic or amphiphilic molecules
WO2016154544A1 (en) 2015-03-25 2016-09-29 The Regents Of The University Of Michigan Compositions and methods for delivery of biomacromolecule agents
US10967072B2 (en) 2016-04-27 2021-04-06 Northwestern University Short interfering RNA templated lipoprotein particles (siRNA-TLP)
CN113939278A (zh) * 2019-04-26 2022-01-14 西北大学 用于眼部疗法的高密度脂蛋白纳米颗粒和rna模板化脂蛋白颗粒
EP3965746A4 (en) * 2019-05-10 2023-07-19 Northwestern University ORALLY ADMINISTERED LIPID NANOPARTICLES THAT TARGETING AND REVEALING INTESTINAL CD36 AS A MASTER REGULATOR OF SYSTEMIC LIPID HOMEOSTASIS WITH SEX-DIFFERENTIAL RESPONSES
CN115003312A (zh) * 2019-09-18 2022-09-02 西北大学 作为癌症中铁死亡诱导物的高密度脂蛋白样纳米颗粒
CN112569207A (zh) * 2019-09-30 2021-03-30 复旦大学 一种载脂蛋白修饰的仿生纳米肿瘤疫苗及其制备方法和用途
KR102614058B1 (ko) * 2022-06-13 2023-12-15 (주) 멥스젠 약물전달용 재구축 고밀도 지단백 나노입자

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011507807A (ja) * 2007-12-12 2011-03-10 ユニバーシティ・ヘルス・ネットワーク 高密度リポタンパク質様ペプチド−リン脂質足場(「hpps」)ナノ粒子
JP2011518826A (ja) * 2008-04-25 2011-06-30 ノースウェスタン、ユニバーシティ コレステロールを隔離するのに適したナノ構造体
WO2011091065A2 (en) * 2010-01-19 2011-07-28 Northwestern University Synthetic nanostructures including nucleic acids and/or other entities

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007089607A2 (en) * 2006-01-26 2007-08-09 University Of Massachusetts Rna silencing agents for use in therapy and nanotransporters for efficient delivery of same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011507807A (ja) * 2007-12-12 2011-03-10 ユニバーシティ・ヘルス・ネットワーク 高密度リポタンパク質様ペプチド−リン脂質足場(「hpps」)ナノ粒子
JP2011518826A (ja) * 2008-04-25 2011-06-30 ノースウェスタン、ユニバーシティ コレステロールを隔離するのに適したナノ構造体
WO2011091065A2 (en) * 2010-01-19 2011-07-28 Northwestern University Synthetic nanostructures including nucleic acids and/or other entities

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CARLOS G LEON: "ALTERATIONS IN CHOLESTEROL REGULATION CONTRIBUTE 以下省略", THE PROSTATE, vol. V70, JPN5015004272, 1 January 2009 (2009-01-01), pages 390 - 400, ISSN: 0003449877 *
GONCALVES ROMELIA PINHEIRO: "UPTAKE OF HIGH DENSITY LIPOPROTEIN (HDL) CHOLESTERYL ESTERS BY HUMAN ACUTE LEUKEMIA CELLS", LEUKEMIA RESEARCH, vol. V29 N8, JPN5015004266, 1 August 2005 (2005-08-01), US, pages 955 - 959, ISSN: 0003449878 *

Also Published As

Publication number Publication date
AU2013222238A1 (en) 2014-09-18
KR20140123597A (ko) 2014-10-22
CA2865279A1 (en) 2013-08-29
EP3597209A1 (en) 2020-01-22
CA2865279C (en) 2023-04-25
CN104244965A (zh) 2014-12-24
US20150064255A1 (en) 2015-03-05
ES2745208T3 (es) 2020-02-28
MX2014010161A (es) 2015-03-09
EP2817024B1 (en) 2019-07-10
EP2817024A1 (en) 2014-12-31
WO2013126776A1 (en) 2013-08-29
IN2014DN07888A (ja) 2015-04-24

Similar Documents

Publication Publication Date Title
EP2817024B1 (en) Nanostructures for treating cancers
JP6825764B2 (ja) リポソームカプセル化親和性薬物
KR102585143B1 (ko) 폴리글루타메이트화 항엽산 및 이의 용도
JP5863670B2 (ja) 核酸および/または他の構成要素を含有している合成ナノ構造体
US20190307755A1 (en) Polyglutamated antifolates and uses thereof
WO2018031979A1 (en) Alpha and gamma-d polyglutamated antifolates and uses thereof
US10413565B2 (en) Nanostructures for modulating intercellular communication and uses thereof
EP3416623B1 (en) Ipa-3-loaded liposomes and methods of use thereof
US20220331445A1 (en) High density lipoprotein-like nanoparticles as inducers of ferroptosis in cancer
WO2015168393A1 (en) Nanostructures for modulating intercellular communication and uses thereof
CN108883068B (zh) 乳癌治疗
US11969396B2 (en) IPA-3-loaded liposomes and methods of use thereof
Vieira Functionalization of Nano-liposomes for Delivery of Marine Toxins as Anticancer Agents
OA19187A (en) Polyglutamated antifolates and uses thereof.

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161130

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180208