JP2015513350A - 光音響法を用いた心臓組織のアブレーション治療の効果を評価するためのシステム - Google Patents

光音響法を用いた心臓組織のアブレーション治療の効果を評価するためのシステム Download PDF

Info

Publication number
JP2015513350A
JP2015513350A JP2014556814A JP2014556814A JP2015513350A JP 2015513350 A JP2015513350 A JP 2015513350A JP 2014556814 A JP2014556814 A JP 2014556814A JP 2014556814 A JP2014556814 A JP 2014556814A JP 2015513350 A JP2015513350 A JP 2015513350A
Authority
JP
Japan
Prior art keywords
shaft
tissue
ablation
emitter
electromagnetic radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014556814A
Other languages
English (en)
Other versions
JP6038957B2 (ja
Inventor
フェルミン アルマンド ルポッティ
フェルミン アルマンド ルポッティ
Original Assignee
セント・ジュード・メディカル・エイトリアル・フィブリレーション・ディヴィジョン・インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セント・ジュード・メディカル・エイトリアル・フィブリレーション・ディヴィジョン・インコーポレーテッド filed Critical セント・ジュード・メディカル・エイトリアル・フィブリレーション・ディヴィジョン・インコーポレーテッド
Publication of JP2015513350A publication Critical patent/JP2015513350A/ja
Application granted granted Critical
Publication of JP6038957B2 publication Critical patent/JP6038957B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0093Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy
    • A61B5/0095Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy by applying light and detecting acoustic waves, i.e. photoacoustic measurements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/0036Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room including treatment, e.g., using an implantable medical device, ablating, ventilating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4836Diagnosis combined with treatment in closed-loop systems or methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4848Monitoring or testing the effects of treatment, e.g. of medication
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00057Light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00106Sensing or detecting at the treatment site ultrasonic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • A61B2018/00357Endocardium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00875Resistance or impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/0088Vibration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00988Means for storing information, e.g. calibration constants, or for preventing excessive use, e.g. usage, service life counter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B2018/1807Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using light other than laser radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B2018/2035Beam shaping or redirecting; Optical components therefor
    • A61B2018/20361Beam shaping or redirecting; Optical components therefor with redirecting based on sensed condition, e.g. tissue analysis or tissue movement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B2018/2238Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor with means for selectively laterally deflecting the tip of the fibre
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2218/00Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2218/001Details of surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body having means for irrigation and/or aspiration of substances to and/or from the surgical site
    • A61B2218/002Irrigation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Otolaryngology (AREA)
  • Cardiology (AREA)
  • Plasma & Fusion (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Surgical Instruments (AREA)

Abstract

【解決手段】組織へのアブレーション治療の効果を評価するためのカテーテル、システム、および方法を提供する。様々な実施形態が、組織の方へシャフトの開口を介して電磁放射線を放射して組織から光音響波を発生させる、シース、超音波検査用プローブ、またはカテーテルシャフトの中に配置された光ファイバ等のエミッタを備える。超音波検査用プローブまたはカテーテルシャフトに配置された超音波トランスデューサは、光音響波に応じて組織の特性を示すシグナルを生成する。いくつかの実施形態では、エミッタとトランスデューサが別個のシースと超音波検査用プローブにそれぞれ担持される。別の複数の実施形態では、エミッタは超音波検査用プローブのシャフトの中に配置される。さらに別の複数の実施形態では、エミッタ、トランスデューサ、およびアブレーション送達素子は、1つの構造体に統合されて、組織のアブレーションと、組織へのアブレーションの効果の評価の両方を可能とする。【選択図】図6

Description

本発明は、アブレーション治療に関する。特に、本発明は、光ファイバなどの電磁放射線エミッタを用いて、電磁放射線を組織に送達しその組織から光音響応答を生じさせて、それによって組織の特性の評価を可能とする、アブレーション治療の効果を評価するためのカテーテル、システム、および方法に関する。
心不整脈(限定されるものではないが、心房細動、心房粗動、心房頻脈、および心室頻脈を含む)は、不規則な心拍、房室収縮同期の喪失、および血流の鬱血を含む様々な危険な状態を引き起こす可能性があり、これは、様々な病気や死をも引き起こしうる。心房細動はもっとも一般的な不整脈であり、ヨーロッパだけで6百万以上の人々が罹患する。人口の高齢化によるためと、心房細動と加齢との間にある強い相関関係によるためとで、罹患人数は、急速に増え続けている。心房細動は、調和のない心房興奮が特徴であり、そのため、正常な洞調律を妨げる。細動波の大きさ、形状、およびタイミングが変動し、そのため心室応答が不規則になり頻繁に速まる。心房細動は、脳卒中(stroke)のリスクを5倍に高めることに関連があり、その他の多数の心血管疾患および脳血管疾患と関連しており、生活の質に大きな影響を与える。
多くの不整脈の主な原因は、1つ以上の心腔内の、ストレイ電気シグナル(stray electrical signal)であると考えられている。心房細動の場合は、肺静脈の周辺の領域からシグナルが生じる。心房細動の治療では、正常な洞調律を回復させるか心室レート(ventricular rate)をコントロールするよう試みられ、薬理学的な治療と電気除細動とを含む。このタイプの治療がうまくいかない場合は、心臓組織のアブレーションを用いて、組織の壊死と組織の損傷部(lesion)が形成されうる。アブレーションカテーテルは、アブレーションエネルギー(例えば、高周波エネルギー、光エネルギー、超音波、または熱(低温(cryo)もしくは熱に基づく)エネルギー)を心臓組織に送達して、組織に損傷部を形成する。この損傷部により、組織の領域を絶縁して望ましくない電気経路を妨害し、それによって不整脈をもたらすストレイ電気シグナルを制限または防止する。
アブレーション治療が有効であるためには、好ましくは、望ましくない電気経路のいずれにおいても伝導性を排除し、その伝導性の回復を阻止する。しかし、過度のアブレーションは、組織の穿孔と、血栓を生じさせる可能性のある血液の凝固と、水をボイルさせかつ組織の壁からバーストさせる可能性のある、組織内の水に熱を与えることによる組織ポップまたはスチームポップ(tissue or steam pops)とを含む、アブレーション治療に関連する種々のリスクを増加させる。過度のアブレーションは心臓組織の物理的な故障を招き、そのため心臓の機能を低下させる可能性がある。心臓壁の穿孔は、命に関わる合併症を引き起こす可能性がある。アブレーション治療の適正レベルを特定することの難しさのために、長期成功率が約70%程度しかなく(処置を繰り返すことで85%まで上げられるが)、それでも、コストが比較的高く、合併症の率が比較的高い(約4.9%)。
過少または過度のアブレーションエネルギーの組織への送達は、負の結果となるため、組織へのアブレーションエネルギーの効果を継続的に監視して、アブレーション治療の有効性を評価することが望ましい。しかし、組織の弾力性、エコー輝度、および音の速さを測定するなどの現在の監視技術の利点は限られている。これらの技術で、損傷部の境界を特定することは難しく、多くの場合、アブレーションの部位から離れた検出機構に依存しているからである。
本発明者は、上記で特定された問題の1つ以上を最低限にするおよび/または排除する、アブレーション治療の効果を評価するためのカテーテル、システム、および方法の必要性を認識した。
望ましくは、身体の組織へのアブレーション治療の効果を評価するカテーテル、システム、および方法を提供する。
本教示の一実施形態による、アブレーションカテーテルによって組織へアブレーションエネルギーを与えることによる、身体の組織へのアブレーション治療の効果を評価するためのシステムは、近位端部と遠位端部を有する細長く、変形可能なシャフトと、このシャフト内に配置された電磁放射線エミッタとを備えるシースアセンブリを含む。エミッタは、ある実施形態では、光ファイバ、特に、マルチモードの光ファイバを備えていてもよい。エミッタは、組織の方へシャフトの開口を介して電磁放射線を放射して、それによって組織から光音響波を発生させるよう構成されている。システムは、さらに、超音波検査用プローブを含み、この超音波検査用プローブは、近位端部と遠位端部を有する細長く、変形可能なシャフトと、超音波検査用プローブのシャフトの遠位端部に配置され光音響波に応じて組織の特性を示すシグナルを生成するよう構成された超音波トランスデューサとを備えている。
本教示の別の実施形態による、身体の組織へのアブレーション治療の効果を評価するためのシステムは、近位端部と遠位端部を有する細長く、変形可能なシャフトと、シャフト内に配置された電磁放射線エミッタとを備えた超音波検査用プローブを含む。エミッタは、組織の方へシャフトの開口を介して電磁放射線を放射して、それによって組織から光音響波を発生させるよう構成されている。超音波検査用プローブはさらに、シャフトの遠位端部に配置され光音響波に応じて組織の特性を示すシグナルを生成するよう構成された、超音波トランスデューサを含む。
本教示の別の実施形態による、身体の組織へのアブレーション治療の効果を評価するためのシステムは、近位端部と遠位端部を有する細長く、変形可能なシャフトと、シャフトの遠位端部の近傍のアブレーション送達素子とを備えたカテーテルを含む。このカテーテルはさらに、シャフト内に配置された電磁放射線エミッタであって、組織の方へシャフトの開口を介して電磁放射線を放射して、それによって組織から光音響波を発生させるよう構成された電磁放射線エミッタを含む。カテーテルはさらに、シャフトの遠位端部に配置され光音響波に応じて組織の特性を示すシグナルを生成するよう構成された、超音波トランスデューサを含む。
本教示によるカテーテル、システム、および方法は、アブレーション治療の効果の評価を増進できるため、有利である。特に、この進歩的なカテーテル、システム、および方法は、アブレーション部位の非常に近くでの評価を可能とする、組織のアブレーション中およびその後の両方で損傷部の形成を評価する技術を提供する。アブレーションカテーテル内または別個のシースアセンブリ内に光ファイバまたは他の光放出器を配置することで、放射線を、アブレーション部位近傍に送達でき、短い距離を進ませればよいだけである。さらに、光ファイバまたは他の光放出器をアブレーションカテーテル内に配置する場合、カテーテルと組織との間の血液は、流体潅注で移動されるので、送達の効率を高めることができる。結果としての、組織で発生される光音響波は、典型的には数センチだけ離れた超音波検査用プローブ、または統合型アブレーション・アブレーション部位にさらにより近いであろう超音波検査用プローブのどちらかのトランスデューサによって検出されうる。
本発明に関する上記や他の局面、特徴、詳細、有用性、および利点は、以下の記載や特許請求の範囲の閲読、および添付の図面の概観により明らかになる。
本教示の一実施形態による、身体の組織にアブレーション治療を送達し、そのアブレーション治療の効果を評価するためのシステムの線図である。
図1のシステムの一実施形態を示す図1のシステムの種々の構成要素の線図である。
図1のシステムの別の実施形態を示す図1のシステムの種々の構成要素の線図である。
本教示の別の実施形態による、身体の組織にアブレーション治療を送達し、そのアブレーション治療の効果を評価するためのシステムの線図である。
図4のシステムの一実施形態を示す図4のシステムの種々の構成要素の線図である。
図4のシステムの別の実施形態を示す図4のシステムの種々の構成要素の線図である。
図4のシステムで用いられる超音波検査用プローブの一実施形態の断面図である。
図7の超音波検査用プローブの正面平面図である。
本教示の別の実施形態による、身体の組織にアブレーション治療を送達し、そのアブレーション治療の効果を評価するためのシステムの線図である。
図9のシステムで用いられる統合型超音波検査・アブレーションカテーテルの一実施形態の断面図である。
本教示の種々の実施形態による図10のカテーテルの断面図である。 本教示の種々の実施形態による図10のカテーテルの断面図である。 本教示の種々の実施形態による図10のカテーテルの断面図である。
図9のシステムで用いられる統合型超音波検査・アブレーションカテーテルの別の実施形態の断面図である。
図14の統合型超音波検査・アブレーションカテーテルの正面平面図である。
本教示の一実施形態による、身体の組織にアブレーション治療を送達し、そのアブレーション治療の効果を評価するための方法を示すフローチャートである。
本明細書においては、図面を参照するにあたり、異なる図において同一の部材を表すのに同じ参照番号を用いる。図1は、本教示の一実施形態による、身体14の組織12にアブレーション治療を送達し、そのアブレーション治療の効果を評価するためのシステム10を示す。図示されたシステムは、心臓の組織の診断と治療に関するが、本発明によれば種々の組織の診断と治療への適用が見出されうることを理解されたい。システム10は、電子制御装置(ECU)16と、ディスプレイ18と、超音波発生器20と、超音波検査用プローブ22と、アブレーション発生器24と、パッチ電極26と、アブレーションカテーテル28と、組織12に電磁放射線を送達するためのシースアセンブリ30と、例えば、可視光、近赤外線(NIR)、または短波長赤外線(SWIR)などを含むであろう電磁放射線を発生させる電磁放射線給装源32とを含んでいてもよい。
ECU16は、超音波発生器20、アブレーション発生器24、および放射線供給源30の動作を制御し、超音波検査用プローブ22とアブレーションカテーテル28によって生成されるシグナルを処理して、組織12へのアブレーション治療の送達を評価するように備えられる。ECU16は、システム10に専用のものでもよい。あるいは、ECU16は、電気生理学(EP)研究室の従来の他のシステム、例えば、医療機器の位置、ナビゲーションおよび/または視覚化システム、撮像システム、EP監視システム、および他のシステムなど、の制御で用いられてもよい。ECU16は、プログラム可能なマイクロプロセッサもしくはマイクロコントローラを備えていてもよく、または特定用途向け集積回路(ASIC)を備えていてもよい。ECU16は、中央処理装置(CPU)と、入力/出力(I/O)インターフェースとを含んでいてもよく、ECU16は、入力/出力(I/O)インターフェースによって、プローブ22およびカテーテル28からのシグナルを含む複数の入力シグナルを受信することができ、ディスプレイ18、発生器20、24、および放射線供給源32を制御するのに用いるシグナルを含む複数の出力シグナルを生成することができる。
ディスプレイ18は、医師が組織12の診断と治療を行うのを助けるための情報を伝達するように備えられる。ディスプレイ18は、従来のコンピュータモニタまたは他の表示装置を備えていてもよい。ディスプレイ18は、St. Jude Medical, Inc.の商標「VIEWMATE Z」による心臓内超音波コンソールの一部を含んでいてもよい。ディスプレイ18は、組織12の画像またはプローブ22とカテーテル28とによるシグナルから生成される心臓の形状の画像、組織12に関するEPデータ、およびアブレーションカテーテル28の種々の電極の電圧レベルを経時的に示したグラフを含む種々の情報を医師に提供できる。ディスプレイ18はまたグラフィカルユーザインターフェース(GUI)を医師に示してもよい。
超音波発生器20は、超音波検査用プローブ22による超音波シグナルの生成を制御するために備えられる。発生器20は、この技術において従来のものであり、ECU16の制御によって動作してもよい。
超音波検査用プローブ22は、組織12のリアルタイムの画像化と視覚化を提供し、組織12の評価を行うために用いられる。超音波検査用プローブ22は、心臓内超音波検査(ICE)用のカテーテル、経食道心(TEE)エコープローブ、または経胸壁心(TTE)エコープローブを備えていてもよい。プローブ22は、この技術において従来のものであり、St. Jude Medical, Inc.の商標「VIEWFLEX PLUS」で販売されているICEカテーテルを備えていてもよい。プローブ22は、細長く、変形可能なシャフト34と、ハンドル36と、超音波トランスデューサ38とを備えていてもよい。
シャフト34は、プローブ22の他の部材を構造的に支持し、トランスデューサ38まで延びるワイヤと他の導体のための筐体を提供する。シャフト34は、細長く、チューブ状で、可撓性を有する/変形可能な部材であり、身体14(図1)内で動くように構成されている。そして、シャフト34は、近位端部40と遠位端部42(本明細書において、「近位」は医師に近いカテーテルの端部に向かう方向を指し、「遠位」は医師から離れた(一般的に)患者の体内にある方向を指す)とを有する。シャフト34は、従来の誘導子によって身体14の中の血管または他の構造に誘導されうる。シャフト34は、St. Jude Medical, Inc.から入手可能なAgilisTM NxTスティーラブルイントロデューサなどの案内誘導子、またはこの技術において既知である案内ワイヤもしくは他の手段で、身体14の中を組織12などの所望の位置まで進ませまたは案内されうる。シャフト34は、ポリウレタン、E.I. DuPont de Nemours & Co. Corp.の「TEFLON(登録商標)」で販売されているPTFE等のポリフルオロエチレン(PTFE)、ポリエーテルブロックアミド、およびナイロンまたはArkema Inc.の登録商標「PEBAX」で販売されているエラストマ等の熱可塑性エラストマなどの従来のポリマー材料から作製されうる。シャフト34は、トランスデューサ38、関連の導体、そしておそらくはシグナル処理やシグナル調整のために使用される追加的なエレクトロニクスを支持する。シャフト34は、さらに導体とステアリングワイヤを収納するよう構成された1つ以上のルーメン(lumen)を規定する。
ハンドル36は、医師がプローブ22を把持する位置を提供する。ハンドル36は、身体14内でシャフト34を進ませるまたは案内する手段をさらに提供してもよい。例えば、ハンドル36は、シャフト34を通ってシャフト34の遠位端部42まで延びる種々のステアリングワイヤ(図示せず)を動かしてシャフト34の並進および/またはたわみを制御する手段を備えていてもよい。ハンドル36も、この技術において従来のものでよく、ハンドル36の構成は可変としうることを理解されたい。プローブ22はハンドル36を用いて医師によって手動で、または、例えばロボットによる制御で自動的に操作されうることを理解されたい。
トランスデューサ38は、電気シグナルを、組織12に送信される超音波シグナルに変換し、組織12から反射される超音波シグナルをECU16による処理および組織12の画像化のための電気シグナルに変換するように提供される。トランスデューサ38はこの技術において従来のものあり、シャフト34の遠位端部42に配置される。図2を参照すると、トランスデューサ38は、シャフト34の長手方向軸に略垂直な撮像面44または視野を形成する横方向に(またはシャフト34の長手方向軸に略垂直な方向に)超音波シグナルを送受信できる。図3を参照すると、別の実施形態では、トランスデューサ38は、シャフト34の長手方向軸に略平行な撮像面46または視野を形成するシャフト34の長手方向軸に略平行な方向に超音波シグナルを送受信できる。本教示の一局面によれば、トランスデューサ38は、詳細に後述するように、1つ以上の光音響波に応じて、組織12の特性を示すシグナルを生成するように構成される。トランスデューサ38は、規則的なパルス−エコー画像化のためにおよび所定の期間で組織の評価をするための光音響シグナルを取得するために超音波シグナルの送信と受信を交互に行ってもよい。トランスデューサ38(およびシャフト34の遠位端部42)を、アブレーション47の部位からいくぶん離して配置してもよいことを理解されたい。例えば、ICEカテーテルの場合、トランスデューサ38は、心臓の右心房48に配置して、心臓の左心房50で行われるアブレーションを評価してもよい。しかし、トランスデューサ38を(右心房48、左心房50、または心室を含む)任意の心腔内および心臓の外の位置に配置して、(右心房48、左心房50、または心室を含む)任意の心腔内または心臓の外の位置で行われるアブレーションを評価してもよいことを理解されたい。
アブレーション発生器24は、カテーテル28によって用いられるRFエネルギーの生成、送達、および制御をする。発生器24は、この技術において従来のものであり、St. Jude Medical CompanyのIrvine Biomedical, Inc.から入手可能であるモデル番号IBI−1500TのRF Cardiac Ablation Generatorとして市販されている装置を備えていてもよい。発生器24は、RFアブレーションシグナル源52を備える。RFアブレーションシグナル源52は、一対の電源コネクタ:カテーテル28の電極に接続しうる正極性コネクタ;および導体またはリード線によって身体14のパッチ電極26に電気的に接続されうる負極性コネクタにわたって出力されるアブレーションシグナルを生成するように構成される。本明細書中で用いられる用語、コネクタは、特定タイプの物理的なインターフェース機構を暗示するものではないが、1つ以上の電気的ノードを表すように広義に考えられることを理解されたい。シグナル源52は、1つ以上のユーザ指定のパラメータ(例えば、電力、時間等)に従って、かつこの技術において既知である種々のフィードバック検出および制御回路の制御下で、予め定められた周波数でシグナルを生成するよう構成される。シグナル源52は、例えば、約450kHz以上の周波数でシグナルを生成してもよい。発生器24はまた、インピーダンス、カテーテル28の先端温度、アブレーションエネルギーおよびカテーテル28の位置を含め、アブレーションの処置に関連する様々なパラメータを監視し、これらのパラメータに関して医師にフィードバックを提供してもよい。アブレーション発生器24のデューティサイクルを制御して、パルス−エコー撮像期間および/またはトランスデューサ38が光音響シグナルを受信する期間はアブレーションシグナルを供給しない様にしてもよい。パルス−エコーの画像化には、10マイクロ秒の時間が必要であろう。そして、光音響シグナルの受信にはその約半分の時間(後者の場合は、組織への光の伝送はほぼ瞬間的である;そのため、必要な時間を大きく占めるのは光音響波の進行時間くらいである)がかかるであろう。
パッチ電極26は、RFまたはナビゲーションシグナル注入経路を提供する、および/または電位を検出するために使用される。電極26はまた、電気機械的なマップの生成、または身体14のカテーテル28もしくは他の装置のための位置検出およびナビゲーションシステムの一部などの追加的な目的を有していてもよい。電極26は可撓性を有する、導電性の材料で作製され、電極26が患者の皮膚と電気的に接触するように身体14に付着されるように構成される。
アブレーションカテーテル28は、組織12などの体内組織を検査、診断、および治療するために用いられてもよい。本発明の一実施形態によれば、カテーテル28は、潅注式高周波(RF)アブレーションカテーテルを備える。しかし、本発明は他のタイプのアブレーションエネルギー(例えば、低温アブレーション(cryoablation)、超音波等)で実施および実行されてもよいことを理解されたい。カテーテル28は、潅注用のポンプ56(例えば、図示のような流体源54からの重力式供給による定量(fixed rate)ローラもしくは蠕動ポンプまたは可変容量形シリンジポンプを含みうる)を通る、生理食塩水等の生体適合性流体を有する流体源54に接続されてもよい。カテーテル28はまた、アブレーション発生器24に電気的に接続されて、RFエネルギーを送達する。カテーテル28は、ケーブルコネクタすなわちインターフェース58と、ハンドル60と、近位端部64および遠位端部66を有するシャフト62と、これに支持された1つ以上の診断素子または治療素子とを備えていてもよい。カテーテル28はさらに、アブレーション送達素子68を備えていてもよい。カテーテル28はまた、ここに図示しない、温度センサ、追加的な電極、1つ以上の位置センサ、および対応する導体またはリード線などの、他の従来の部材を備えていてもよい。
図1を再度参照すると、コネクタ58は、ポンプ56から延びる流体導管70とアブレーション発生器26から延びるケーブル72のために、機械的な、流体および電気の接続(複数可)を提供してもよい。コネクタ58はこの技術において従来のものであり、カテーテル28の近位端部に配置される。
ハンドル60は、医師がカテーテル28を把持する位置を提供する。ハンドル60は、身体14内でシャフト62を進ませるまたは案内する手段をさらに提供してもよい。例えば、ハンドル60は、カテーテル28を通ってシャフト62の遠位端部66まで延びる種々のステアリングワイヤ(図示せず)を動かしてシャフト62の並進および/またはたわみを制御する手段を備えていてもよい。ハンドル60も、この技術において従来のものでよく、ハンドル60の構成は可変としうることを理解されたい。カテーテル28はハンドル60を用いて医師によって手動で、または、例えばロボットによる制御で自動的に操作されうることを理解されたい。
シャフト62は、カテーテル28の他の部材を構造的に支持する。シャフト62はまた、流体(潅注流体および体液を含む)、薬剤、および/または手術道具もしくは器具を、組織12へおよび組織12から運ぶ、送り出すおよび/または取り除くことを可能にしうる。シャフト62は、細長く、チューブ状で、可撓性を有する/変形可能な部材であり、身体14内で動くように構成される。シャフト62は、従来の誘導子によって身体14の中の血管または他の構造に誘導されうる。シャフト62は、St. Jude Medical, Inc.から入手可能なAgilisTM NxTスティーラブルイントロデューサなどの案内誘導子、またはこの技術において既知である案内ワイヤもしくは他の手段で、身体14の中を組織12などの所望の位置まで進ませまたは案内されうる。シャフト62は、ポリウレタン、E.I. DuPont de Nemours & Co. Corp.の「TEFLON(登録商標)」で販売されているPTFE等のポリフルオロエチレン(PTFE)、ポリエーテルブロックアミド、およびナイロンまたはArkema Inc.の登録商標「PEBAX」で販売されているエラストマ等の熱可塑性エラストマなどの従来のポリマー材料から作製されうる。シャフト62は、ステアリングワイヤ(図示せず)、アブレーション送達素子68、および関連の導体、そしておそらくはシグナル処理やシグナル調整のために使用される追加的なエレクトロニクスを支持する。シャフト62は、さらに導体を収納し、アブレーション送達素子68の外側表面に流体源54から潅注流体を供給するよう構成される1つ以上のルーメンを規定する。
アブレーション送達素子68は、アブレーションエネルギーを組織12に送達して、組織12にアブレーション損傷部を形成し、それにより組織12のストレイ電気経路を妨害するように備えられる。素子68は、シャフト62の遠位端部66の近傍に配置され(シャフト62の遠位先端に配置されてもよい)、特に素子68によって送達されるアブレーションエネルギーのタイプに依存した種々の方法で構成されてもよい。図示した実施形態では、素子68は、先端電極を備えている。素子68は、素子68を冷却し素子68と組織12との間の血液を移動させるために、素子68の外側表面に流体を送達する目的で、シャフト62の潅注ルーメンと流体連通し放出口で終わる複数の流体経路(図示せず)を規定してもよい。
シースアセンブリ30は、組織12からの光音響波の生成をトリガするために、組織12に電磁放射線を送達するように備えられる。アブレーションは、組織12に熱損傷を形成して、組織12に明確に認識できる光学的および構造的変化を与える。特に、組織12の光吸収が変化する。電磁放射線が組織12に当たると、エネルギーが組織12に吸収され、断熱的に消散される。エネルギーは熱に変わり、組織12が一時的に熱弾性膨張して、プローブ22のトランスデューサ38などの超音波トランスデューサによって検出可能な光音響波が生成される。健康な組織とアブレーションが行われた組織との光吸収のコントラストは、トランスデューサ38によって検出可能な波における差異を生じる。さらに、健康な組織とアブレーションが行われた組織による、光吸収におけるコントラスト、およびその結果として発生した波の差異を用いて、損傷部の画像化を増進させることができる。損傷部に関するさらなる情報も、コンダクタンスの測定を含む他の損傷部評価測定とのシグナルの相関を取ることで得ることができる。アブレーションはまた、組織12の色合いの変化も生じさせる。これは、組織12の凝固壊死の結果であり、血液を供給する微小潅流がシャットダウンされる。健康な組織は赤褐色であろうが、凝固した組織は黄灰色である。アブレーションで起こるこの変色は、光音響画像化によって検出可能であり、損傷部深さのインジケータとして用いることができる。図2から3を参照すると、シースアセンブリ30は、シャフト74と、光ファイバ76などの電磁放射線エミッタとを備える。
シャフト74は、アセンブリ30の他の部材を構造的に支持する。シャフト74は、エミッタ76、およびある実施形態では関連の導体のための筐体を提供してもよい。シャフト74は、アブレーションカテーテル28などのカテーテルを進ませるまたは案内するのに用いられてもよく、St. Jude Medical, Inc.の商標AgilisTM NxTで入手可能なスティーラブルイントロデューサの一部を備えていてもよい。シャフト74は、細長く、チューブ状で、可撓性を有する/変形可能な部材であり、身体14(図1)内で動くように構成され、近位端部78と遠位端部80とを有する。シャフト74は、ポリウレタン、E.I. DuPont de Nemours & Co. Corp.の「TEFLON(登録商標)」で販売されているPTFE等のポリフルオロエチレン(PTFE)、ポリエーテルブロックアミド、およびナイロンまたはArkema Inc.の登録商標「PEBAX」で販売されているエラストマ等の熱可塑性エラストマなどの従来のポリマー材料から作製されうる。シャフト74は、光ファイバ76、関連の導体、そしておそらくはシグナル処理やシグナル調整のために使用される追加的なエレクトロニクスを支持する。シャフト74は、さらに導体とステアリングワイヤを収納するよう構成された1つ以上のルーメンを規定する。光ファイバ76は、シャフト74の中央部のルーメン内に配置されてもよい。あるいは、光ファイバ76は、シャフト74の径方向外側の壁と径方向内側の壁との間のルーメンに配置されてもよい。光ファイバ76は、シャフト74の長手方向軸に平行な方向にシャフト74に対して移動可能でありうる。
光ファイバ76は、プローブ22のトランスデューサ38が検出可能な光音響波を、組織12に発生させるために、組織12に電磁放射線を送達するように備えられる。ファイバ76は、種々のガラス組成物(例えば、シリカ)またはプラスティック(例えば、フッ素化ポリマーに包まれたポリメチルメタクリレート(PMMA))から作製されてもよい。ファイバ76は、コアとクラッディングとを備え、コアはクラッディングよりも高い屈折率を有する。ファイバ76はさらに、この技術では既知であるバッファ層とジャケットとを備えていてもよい。ファイバ76は、例えば、Polymicro Technologies, Inc.、Edmund Optics, Inc.、またはKeyence Corporationによって販売されている種々の一般的な任意のファイバを備えていてもよい。ファイバ76は、マルチモードの光ファイバを備えていてもよい。ファイバ76は、シャフト74内に配置され、シャフト74の近位端部78から遠位端部80まで延びていてもよい。ファイバ76はそれ自体が近位端部と遠位端部とを有し、遠位端部は、シャフト74の壁の開口(図示せず)の近傍で終わっている。ファイバ76は、ファイバ76の遠位端部から開口を介して組織12に電磁放射線を送達する。シャフト74の遠位端部80はアブレーション部位の近傍に配置されるので、放射線は、短い距離を進むだけで組織12に当たる。それによって散乱することなく効果的に放射線が送達される。光ファイバ76から放射される放射線は、集束されていなくてもよい(全方向に放射されてもよい)。あるいは、集束レンズ82がシャフト74によって支持され、光ファイバ76の遠位端部と組織12との間に配置されて、放射線を所定の領域に集束し、および/またはより深い浸透と、より目標に近い分解能を提供してもよい。
電磁放射線給装源32は、一組の電磁放射線を発生させてファイバ76を介して組織12に送達するように提供される。供給源32は、例えば、発光ダイオード(LED)またはレーザ(例えば、レーザダイオード)を備えていてもよい。供給源32は、単色放射線またはスペクトル放射線を生成でき、放射線は、分極されても分極されなくてもよい。供給源32は、例えば、可視光、近赤外線(NIR)、または短波長赤外線(SWIR)などの電磁スペクトルに沿った種々のポイントで放射線を発生できる。特に、供給源32は、異なった波長(例えば、可視スペクトルの緑および赤)で放射線を発生させて、損傷部の境界を特定するのに十分なコントラストを提供できる。放射される放射線のパルスは、通常は短いものである(例えば、約10ナノ秒)。放射線供給源32は、ECU16から受信するシグナルに応じて制御されるように放射線を放射してもよい。別の実施形態では、局所的電磁放射線供給源がシャフト74によって、シャフト74の遠位端部80の近傍で支持されて、放射線供給源32と同様の態様で機能してもよい。また、さらには、局所的電磁放射線供給源自体が、電磁放射線のエミッタとして機能して、光ファイバ76を介して送信せず、シャフト74から直接組織12に向けて電磁放射線を放射してもよい。
ここで、図4を参照すると、本教示の別の実施形態による、身体14の組織12にアブレーション治療を送達して、そのアブレーション治療の効果を評価するためのシステム84が示されている。システム84は、実質的にシステム10と同じであり、同様の部材を参照して、先の記載を用いて説明する。ここで図5から6を参照すると、システム84が超音波検査用プローブ22とシースアセンブリ30の機能を1つの超音波検査用プローブ86に統合した点において、システム84はシステム10と異なる。超音波検査用プローブ86は実質的に超音波検査用プローブ22と同じである。しかし、プローブ86は、光ファイバ88などの電磁放射線エミッタを含む。光ファイバ88は実質的に光ファイバ76と同じであり、プローブ86のシャフト34の近位端部と遠位端部40、42の間に延びていてもよく、シャフト34の長手方向軸に平行な方向にシャフト34に対して移動可能であってもよい。ファイバ88は、ファイバ88の遠位端部からシャフト34の壁の開口を介して組織12に電磁放射線を送達する。ここでも、集束レンズ82がシャフト34に支持され、光ファイバ88の遠位端部と組織12との間に配置されてもよい。ファイバ88は、放射線供給源32から電磁放射線を送信できる。別の実施形態では、ここでも、局所的電磁放射線供給源が、シャフト34によって、シャフト34の遠位端部の近傍で支持されて、放射線供給源32と同様の態様で機能してもよい。また、さらには、ここでも、局所的電磁放射線供給源自体が、電磁放射線のエミッタとして機能して、光ファイバ88を介して送信せず、シャフト34から直接組織12に向けて電磁放射線を放射してもよい。
図5を参照すると、プローブ22と同様にプローブ86のトランスデューサ38は、シャフト34の長手方向軸に略垂直な撮像面44または視野を形成する横方向に(またはカテーテルシャフト34の長手方向軸に略垂直な方向に)超音波シグナルを送受信できる。図6を参照すると、別の実施形態では、トランスデューサ38は、シャフト34の長手方向軸に略平行な撮像面46または視野を形成するシャフト34の長手方向軸に略平行な方向に超音波シグナルを送受信できる。ここで図7から8を参照すると、さらに別の実施形態では、超音波検査用プローブ90が、(ファイバ76または88と同様の)光ファイバ92を有し、プローブ90の遠位端部での2次元および/または3次元/4次元(3D/4D)画像化のための(トランスデューサ38と機能において同様の)2次元トランスデューサアレイ94を有するように提供される。ファイバ92はアレイ94のどちらかの側でシャフト34の遠位端部における開口を介して電磁放射線を放射できる。
ここで図9を参照すると、本教示の別の実施形態による、身体14の組織12にアブレーション治療を送達し、そのアブレーション治療の効果を評価するためのシステム96が示されている。システム96は、実質的にシステム10および84と同じであり、同様の部材を参照して、先の記載を用いて説明する。ここで図10から図13を参照すると、システム96が超音波検査用プローブ22、アブレーションカテーテル28、およびシースアセンブリ30の機能をひとつのカテーテル98に統合した点において、システム96はシステム10および84と異なる。図10を参照すると、カテーテル98は、細長く、変形可能なシャフト100と、別のシャフト104で支持されうるアブレーション送達素子102と、光ファイバ106などの電磁放射線エミッタと、超音波トランスデューサ108とを備えていてもよい。
シャフト100は、実質的に上述のシャフト34と同じでよく、それを介して医師がシャフト34を進めることができる上述のハンドル36、60と同様の従来のハンドル(図示せず)から延びていてもよい。シャフト100は、カテーテル98の他の部材を構造的に支持し、素子102、シャフト104、および光ファイバ106のための筐体を提供する。シャフト100は、細長く、チューブ状で、可撓性を有する/変形可能な部材であり、身体14(図1)内で動くように構成され、近位端部と遠位端部とを有する。シャフト100は、従来の誘導子によって身体14の中の血管または他の構造に誘導されうる。シャフト100は、St. Jude Medical, Inc.から入手可能なAgilisTM NxTスティーラブルイントロデューサなどの(それ自体、医師がイントロデューサを進ますのに使用するハンドルを有していてもよい)案内誘導子、またはこの技術において既知である案内ワイヤもしくは他の手段で、身体14の中を組織12などの所望の位置まで進ませまたは案内されうる。シャフト100は、ポリウレタン、E.I. DuPont de Nemours & Co. Corp.の「TEFLON(登録商標)」で販売されているPTFE等のポリフルオロエチレン(PTFE)、ポリエーテルブロックアミド、およびナイロンまたはArkema Inc.の登録商標「PEBAX」で販売されているエラストマ等の熱可塑性エラストマなどの従来のポリマー材料から作製されうる。シャフト100は、さらに、導体とステアリングワイヤを収納し、潅注流体を供給するよう構成される1つ以上のルーメンを規定してもよい。
アブレーション送達素子102は、アブレーションエネルギーを組織12に送達して、組織12にアブレーション損傷部を形成し、それにより組織12のストレイ電気経路を妨害するように備えられる。素子102は、シャフト100の遠位端部の近傍に配置され、特に素子102によって送達されるアブレーションエネルギーのタイプに依存した種々の方法で構成されてもよい。図示した実施形態では、素子102は、シャフト104に支持された先端電極を備えている。素子102は、素子102を冷却し素子102と組織12との間の血液を移動させるために、素子102の外側表面に流体を送達する目的で、シャフト104の潅注ルーメンと流体連通し放出口で終わる複数の流体経路(図示せず)を規定してもよい。本発明の一局面によれば、アブレーション送達素子102は、素子102がシャフト100の遠位端部を超えて延長および後退されうるように、シャフト100の長手方向軸110に平行な方向にシャフト100に対して移動可能である。
シャフト104は上述のシャフト62と実質的に同じでよい。シャフト104は、アブレーション送達素子102および関連の導体を構造的に支持する。シャフト104は、細長く、チューブ状で、可撓性を有する/変形可能な部材であり、身体14(図1)内で動くように構成され、近位端部と遠位端部とを有する。シャフト104は、それを介して医師がシャフト104を進ませることができる上述のハンドル36、60と同様の従来のハンドル(図示せず)から延長されてもよい。シャフト104は、ポリウレタン、E.I. DuPont de Nemours & Co. Corp.の「TEFLON(登録商標)」で販売されているPTFE等のポリフルオロエチレン(PTFE)、ポリエーテルブロックアミド、およびナイロンまたはArkema Inc.の登録商標「PEBAX」で販売されているエラストマ等の熱可塑性エラストマなどの従来のポリマー材料から作製されうる。本発明の一局面によれば、シャフト104はシャフト100よりも高い可撓性を有して、アブレーション送達素子102と組織12とが接触するときに組織12が傷つくことを回避するようにしてもよい。シャフト104はさらに、導体とステアリングワイヤを収納し、潅注流体を供給するよう構成された1つ以上のルーメンを規定する。
光ファイバ106は、トランスデューサ108が検出可能な光音響波を、組織12に発生させるために、組織12に電磁放射線を送達するように備えられる。ファイバ106は、種々のガラス組成物(例えば、シリカ)またはプラスティック(例えば、フッ素化ポリマーに包まれたポリメチルメタクリレート(PMMA))から作製されてもよい。ファイバ106は、コアとクラッディングとを備え、コアはクラッディングよりも高い屈折率を有する。ファイバ106はさらに、この技術では既知であるバッファ層とジャケットとを備えていてもよい。ファイバ106は、例えば、Polymicro Technologies, Inc.、Edmund Optics, Inc.、またはKeyence Corporationによって販売されている種々の一般的な任意のファイバを備えていてもよい。ファイバ106は、マルチモードの光ファイバを備えていてもよい。ファイバ106は、シャフト100内に配置され、シャフト100の近位端部から遠位端部まで延長していてもよい。図10から図11を参照すると、一実施形態によれば、ファイバ106は、シャフト104内に配置され、アブレーション送達素子102の開口を介して、かつシャフト100の前方に位置合わせされた開口(図示せず)を介して延長してもよい。ファイバ106は、軸110に平行な方向に、アブレーション送達素子102とともにシャフト100に対して移動するよう構成されてもよい。または、光ファイバ106は、軸110に平行な方向に、素子102とは独立して、シャフト100に対して移動するよう構成されてもよい。あるいは、図12から図13を参照すると、さらなる実施形態によれば、ファイバ106は、シャフト100と104との間に、すなわちシャフト100の径方向外側の壁と径方向内側の壁との間に配置されてもよい。ここでも、ファイバ106は、軸110に平行な方向にシャフト100に対して移動するように構成されてもよい。ファイバ106は、それ自体が近位端部と遠位端部とを有し、遠位端部は、シャフト100の壁の開口(図示せず)の近傍で終わっている。ファイバ106は、ファイバ106の遠位端部から開口を介して組織12に電磁放射線を送達する。シャフト100の遠位端部はアブレーション部位の近傍に配置されるので、放射線は、短い距離を進むだけで組織12に当たる。それによって散乱することなく効果的に放射線が送達される。上述のように、ここでも、集束レンズ82が、シャフト100に支持され、光ファイバ106の遠位端部と組織12との間に配置されてもよい。ファイバ106は、放射線供給源32から電磁放射線を送信できる。別の実施形態では、ここでも、局所的電磁放射線供給源がシャフト100によって、シャフト100の遠位端部の近傍で支持されて、放射線供給源32と同様の態様で機能してもよい。また、さらには、ここでも、局所的電磁放射線供給源自体が、電磁放射線のエミッタとして機能して、光ファイバ106を介して送信せず、シャフト100から直接組織12に向けて電磁放射線を放射してもよい。
超音波トランスデューサ108は、電気シグナルを、組織12に送信される超音波シグナルに変換し、組織12から反射される超音波シグナルをECU16による処理および組織12の画像化のための電気シグナルに変換するように提供される。トランスデューサ108はこの技術において従来のものであり、シャフト100の遠位端部に配置される。一実施形態によれば、トランスデューサ108は、シャフト100の周囲に配置される。本教示の一局面によれば、トランスデューサ108は、詳細に後述するように、1つ以上の光音響波に応じて、組織12の特性を示すシグナルを生成するように構成される。トランスデューサ108は、規則的なパルス−エコー画像化のためにおよび所定の期間で組織の評価をするための光音響シグナルを取得するために超音波シグナルの送信と受信を交互に行ってもよい。
ここで図14から図15を参照すると、システム96で用いられる他のカテーテル112が示されている。カテーテル112は、シャフト104と同様の細長く、変形可能なシャフト114と、素子102と同様のアブレーション送達素子116と、ファイバ106と同様の、光ファイバ118などの電磁放射線エミッタとを備えていてもよい。カテーテル112はさらに、トランスデューサ108と機能が同じであるがアブレーション送達素子116上にまたはその内部に形成された2次元アレイトランスデューサを備える超音波トランスデューサ120を含む。ファイバ118はアレイトランスデューサ120のどちらかの側で送達素子116の開口を介して電磁放射線を放射してもよい。カテーテル98と同様に、光ファイバ116は、シャフト114の長手方向軸と平行な方向にシャフト114内で移動可能で、かつアブレーション送達素子116に対して移動可能であってもよい。ここでも、集束レンズ(図示せず)がシャフト114に支持され、上述のように光ファイバ118の遠位端部と組織12との間に配置されてもよい。ここでも、ファイバ118はまた、放射線供給源32から電磁放射線を送信できる。別の実施形態では、ここでも、局所的電磁放射線供給源が、シャフト114によって、シャフト114の遠位端部の近傍で支持されて、放射線供給源32と同様の態様で機能してもよい。また、さらには、ここでも、局所的電磁放射線供給源自体が、電磁放射線のエミッタとして機能して、光ファイバ116を介して送信せず、シャフト114から直接組織12に向けて電磁放射線を放射してもよい。
ここで図16を参照して、身体の組織にアブレーション治療を送達し、そのアブレーション治療の効果を評価するための方法を説明する。この方法は、組織12にアブレーションエネルギーを送達するステップ122から始めてもよい。医師および/またはECU16の制御に応じて、アブレーション発生器24は、アブレーション送達素子68、102、または116に、従来の方法で、組織12に高周波アブレーションエネルギーを送達させるシグナルを生成できる。この方法はまた、アブレーション送達素子68、102、または116の外側表面に潅注流体を供給するステップ124を含んでいてもよい。ステップ124は、ステップ122と同時に行われてもよいことを理解されたい。また、ステップ124は、温度制御の目的および素子68、102、または116と組織12との間の血液を移動させる目的で、ステップ122が行われていないときも継続して行われてもよいことを理解されたい。潅注流体は、シャフト62、104、または114の潅注ルーメンおよびアブレーション送達素子68、102、または116に形成された流体用開口を介して流体源54から送達されてもよい。
この方法は、光ファイバ76、88、92、106、または118の遠位端部から組織12に向けて電磁放射線を放射して、1つ以上の光音響波を組織12から発生させるステップ126を引き続いて行ってもよい。ECU16は、組織12のアブレーションを止めるようアブレーション発生器24を誘導し、同時に放射線供給源32に電磁放射線を発生させて、その放射線を光ファイバ76、88、92、106、または118を介して組織12に送達させるよう誘導する。アブレーションは、組織12に熱損傷を形成して、組織12に明確に認識できる光学的および構造的変化を与える。特に、組織12の光吸収が変化する。電磁放射線が組織12に当たると、エネルギーが組織12に吸収され、断熱的に消散される。エネルギーは熱に変わり、組織12が一時的に熱弾性膨張して、プローブ22,86、もしくは90またはカテーテル98もしくは112のトランスデューサ38、94、108、または120によって検出可能な光音響波が生成される。健康な組織とアブレーションが行われた組織との光吸収のコントラストは、トランスデューサ38、94、108、または120によって検出可能な波における差異を生じる。波の特性(例えば、大きさ、周波数、飛行時間など)を用いて、アブレーションの損傷部深さ、大きさ、およびタイプならびに全体的な効果などの組織12の種々の特性を判定できる。さらに、健康な組織とアブレーションが行われた組織による、光吸収におけるコントラスト、およびその結果として発生した波の差異を用いて、損傷部の画像化を増進させることができる。損傷部に関するさらなる情報も、コンダクタンスの測定を含む他の損傷部評価測定とのシグナルの相関を取ることで得ることができる。アブレーションはまた、組織12の色合いの変化も生じさせる。これは、組織12の凝固壊死の結果であり、血液を供給する微小潅流がシャットダウンされる。健康な組織は赤褐色であろうが、凝固した組織は黄灰色である。アブレーションで起こるこの変色は、光音響画像化によって検出可能であり、損傷部深さのインジケータとして用いることができる。
この方法は、光音響波に応じて組織12の特性を示すシグナルを生成するステップ128を引き続いて行ってもよい。上述からわかるように、プローブ22、86もしくは90、またはカテーテル98もしくは112のトランスデューサ38、94、108、または120を用いて光音響波を検出できる。プローブ22、86、および90は、典型的にはアブレーション部位から数センチである(カテーテル98および112はその部位近傍にあるであろう)。この距離は、プローブ22、86および90とアブレーション部位との間の血液量が過度に大きく、変わりやすいため、(再生可能な)パワー送達と画像化が達成できないために、光の送信には大きすぎる。しかし、光音響波は、この距離を渡ることが可能であり、組織12についての信頼性のある情報を提供できる。光音響波に応じて、トランスデューサ38、94、108、または120は、処理のためにECU16に供給されるシグナルを生成する。検出された特性は、組織12における損傷部の深さ、組織12における損傷部の大きさ、組織12における損傷部のタイプ、組織12における凝固の程度、組織12における伝導性の程度、または組織12における損傷部の機能性を含んでいてもよい。特性はまた、アブレーション送達素子68、102、または116からの組織12の距離を含んでいてもよい。光音響波の発生とその波の受信をさせる処理が行われたら、アブレーションエネルギーの送達を再開してもよい。
この方法は、トランスデューサ38、94、108、または120からのシグナルに応じて、組織12の画像を表示するステップ130を引き続いて行ってもよい。一実施形態によれば、システム10、84、および96は、健康な組織とアブレーションを施した組織とのコントラストを得る機能に基づいて、アブレーション部位の画像化を増進できる。この方法はまた、トランスデューサ38、94、108、または120が生成するシグナルに応じてカテーテル28、98、または112の位置を調節するステップ132を含んでいてもよい。シグナルによって提供される情報に基づいて、医師は、例えば、アブレーション送達素子68、102、もしくは116と組織12との間の距離、または組織12に対するアブレーション送達素子68、102、116の姿勢を調節することを含む、カテーテル28、98、または112の位置の手動調節ができる。この処理は、トランスデューサ38、94、108、または120が生成するシグナルに応じてECU16が生成する制御シグナルに応じて、カテーテル28、98、または112のロボットによる制御によって自動で行われうることを理解されたい。さらに、上述の実施形態は、組織12からの光音響応答に焦点を当てているが、介在する血液の光音響応答から得られる情報がさらに、あるいはこれに代えてプローブ22、86、または90およびカテーテル28、98、または112の位置を調節するのに用いられてもよいことを理解されたい。最後に、本明細書で述べた方法のステップは、例えば、医師が十分なアブレーションがなされたと判断するまで、繰り返し、反復して行ってもよいことを理解されたい。
本教示によるカテーテル、システム、および方法は、アブレーション治療の効果の評価を増進できるため、有利である。特に、この進歩的なカテーテル、システム、および方法は、アブレーション部位の非常に近くでの評価を可能とする、組織のアブレーション中およびその後の両方で損傷部の形成を評価する技術を提供する。アブレーションカテーテル内または別個のシースアセンブリ内に光ファイバまたは他の光放出器を配置することで、放射線を、アブレーション部位近傍に送達でき、短い距離を進ませればよいだけである。さらに、光ファイバまたは他の光放出器をアブレーションカテーテル内に配置する場合、カテーテルと組織との間の血液は、流体潅注で移動されるので、送達の効率を高めることができる。結果としての、組織12で発生される光音響波は、典型的には数センチだけ離れた心エコープローブ、または統合型アブレーション・アブレーション部位にさらにより近いであろう心エコープローブのどちらかのトランスデューサによって検出されうる。
本開示の幾つかの実施形態をある程度の特殊性と共に上記において説明してきたが、当業者は、本開示の範囲を逸脱すること無く、開示される実施形態に多くの変更を加えることができるであろう。全ての方向に関する指示(例えば、プラス、マイナス、上部、下部、上向き、下向き、左、右、左向き、右向き、最上部、底部、より上方に、より下方に、垂直の、水平の、時計回り、反時計回り)は、読者の本発明についての理解を助けるべく、識別する目的で使用されているに過ぎず、特に本発明の位置、方向又は使用に関して制限を与えるものではない。結合に関する指示(例えば、取り付けられる、連結される、接続されるなど)は、広義に解釈されるべきであり、要素の接続部と、要素の間の相対的な動きと、の間の中間メンバーを含んでいる場合がある。その様に、結合に関する指示は、2つの要素が直接的に接続されている及び互いに固定した関係にあることを必ずしも推定しているものではない。上記の説明に含まれる又は添付図面に示される全ての内容は、制限的なものとしてではなく、単に例示的なものとして解釈されるべきである。添付の特許請求の範囲で定義されている本発明から逸脱すること無く、細部又は構造に変更を加えることができる。
本開示のデバイスのさまざまな実施形態は、特定の開示された実施形態に関連して本明細書に記載されているが、これらの実施形態に対する多くの修正および変形が実施されてもよい。例えば、既述の具体的な特徴、構造又は特性は、1又は2以上の実施形態においていかようにも適切な態様で組み合わされ得る。したがって、1つの実施形態において説明された具体的な特徴、構造又は特性は、部分的に又は全体的に、非論理的又は非機能的でない限り、限定なく、他の1又は複数の実施形態の特徴、構造又は特性に組み合わされ得る。また、ある成分として材料が開示されているとき、他の材料が使用され得る。以上の説明及びいずれかにかのクレームは、こうした全ての修正や変更を含むことを意図されている。
本明細書中に参照により援用されると称される、いかなる特許、出版物、もしくはその他の開示マテリアルは全体として又はその一部として組み込まれたマテリアルは、既存の定義、ステートメント、または本明細書おけるその他の開示マテリアルと競合しない範囲においてのみ、参照により本明細書に組み込まれる。また、必要な範囲内において、本明細書に明示的に記載した開示は、本明細書に参照により組み込まれる全てのマテリアルよりも優先される。任意のマテリアル、またはその部分は、参照により本明細書に援用されると称されるが、既存の定義、記述、または本明細書に記載の他の開示マテリアルとその組み込まれたマテリアルとの間に衝突が生じない程度に組み入れるものとする。
本明細書中に参照により援用されると称される、いかなる特許、出版物、もしくはその他の開示マテリアルは全体として又はその一部として組み込まれたマテリアルは、既存の定義、ステートメント、または本明細書おけるその他の開示マテリアルと競合しない範囲においてのみ、参照により本明細書に組み込まれる。また、必要な範囲内において、本明細書に明示的に記載した開示は、本明細書に参照により組み込まれる全てのマテリアルよりも優先される。任意のマテリアル、またはその部分は、参照により本明細書に援用されると称されるが、既存の定義、記述、または本明細書に記載の他の開示マテリアルとその組み込まれたマテリアルとの間に衝突が生じない程度に組み入れるものとする。
以下の項目は、国際出願時における特許請求の範囲の要素である。
(項目1)
アブレーションカテーテルによって組織へアブレーションエネルギーを与えることによる、身体の前記組織へのアブレーション治療の効果を評価するためのシステムであって、該システムは、
シースアセンブリと、
超音波検査用プローブとを備え、
前記シースアセンブリは、
近位端部と遠位端部を有する細長く、変形可能なシャフトと、
前記シャフト内に配置された電磁放射線エミッタであって、前記組織の方へ前記シャフトの開口を介して電磁放射線を放射して、それによって前記組織から光音響波を発生させるよう構成された電磁放射線エミッタとを備え、
前記超音波検査用プローブは、
近位端部と遠位端部を有する細長く、変形可能なシャフトと、
前記超音波検査用プローブの前記シャフトの前記遠位端部に配置された超音波トランスデューサであって、前記光音響波に応じて前記組織の特性を示すシグナルを生成するよう構成された超音波トランスデューサと、
を備える、システム。
(項目2)
前記超音波トランスデューサが、前記超音波検査用プローブの前記シャフトの長手方向軸に略垂直な方向に前記光音響波を受信するように向けられた、項目1に記載のシステム。
(項目3)
前記超音波トランスデューサが、前記超音波検査用プローブの前記シャフトの長手方向軸に略平行な方向に前記光音響波を受信するように向けられた、項目1に記載のシステム。
(項目4)
前記シースアセンブリの前記シャフトによって支持され、前記エミッタと前記組織との間に配置された集束レンズをさらに備える、項目1に記載のシステム。
(項目5)
前記特性は、前記組織の損傷部の深さを含む、項目1に記載のシステム。
(項目6)
前記特性は、前記組織の損傷部の大きさを含む、項目1に記載のシステム。
(項目7)
前記特性は、前記組織の損傷部のタイプを含む、項目1に記載のシステム。
(項目8)
前記エミッタは、電磁放射線供給源から前記電磁放射線を送信するよう構成された光ファイバを備える、項目1に記載のシステム。
(項目9)
前記光ファイバは、マルチモードの光ファイバを備える、項目8に記載のシステム。
(項目10)
身体の組織へのアブレーション治療の効果を評価するためのシステムであって、該システムは、
超音波検査用プローブを備え、
前記超音波検査用プローブは
近位端部と遠位端部を有する細長く、変形可能なシャフトと、
前記シャフト内に配置された電磁放射線エミッタであって、前記組織の方へ前記シャフトの開口を介して電磁放射線を放射して、それによって前記組織から光音響波を発生させるよう構成された電磁放射線エミッタと、
前記シャフトの前記遠位端部に配置された超音波トランスデューサであって、前記光音響波に応じて前記組織の特性を示すシグナルを生成するよう構成された超音波トランスデューサと、
を備える、システム。
(項目11)
前記超音波トランスデューサが、前記シャフトの長手方向軸に略垂直な方向に前記光音響波を受信するように向けられた、項目10に記載のシステム。
(項目12)
前記超音波トランスデューサが、前記シャフトの長手方向軸に略平行な方向に前記光音響波を受信するように向けられた、項目10に記載のシステム。
(項目13)
前記シャフトによって支持され、前記エミッタと前記組織との間に配置された集束レンズをさらに備える、項目10に記載のシステム。
(項目14)
前記特性は、前記組織の損傷部の深さを含む、項目10に記載のシステム。
(項目15)
前記特性は、前記組織の損傷部の大きさを含む、項目10に記載のシステム。
(項目16)
前記特性は、前記組織の損傷部のタイプを含む、項目10に記載のシステム。
(項目17)
前記エミッタは、電磁放射線供給源から前記電磁放射線を送信するよう構成された光ファイバを備える、項目10に記載のシステム。
(項目18)
前記光ファイバは、マルチモードの光ファイバを備える、項目17に記載のシステム。
(項目19)
前記超音波トランスデューサは2次元超音波アレイを備える、項目10に記載のシステム。
(項目20)
前記エミッタは、前記シャフトの長手方向軸に平行な方向に、前記シャフトに対して移動可能である、項目10に記載のシステム。
(項目21)
身体の組織へのアブレーション治療の効果を評価するためのシステムであって、該システムは、
カテーテルを備え、
前記カテーテルは、
近位端部と遠位端部を有する細長く、変形可能な第1のシャフトと、
前記第1のシャフトの前記遠位端部の近傍に配置されたアブレーション送達素子と、
前記第1のシャフト内に配置された電磁放射線エミッタであって、前記組織の方へ前記第1のシャフトの開口を介して電磁放射線を放射して、それによって前記組織から光音響波を発生させるよう構成された電磁放射線エミッタと、
前記第1のシャフトの前記遠位端部に配置された超音波トランスデューサであって、前記光音響波に応じて前記組織の特性を示すシグナルを生成するよう構成された超音波トランスデューサと、
を備えた、システム。
(項目22)
近位端部と遠位端部を有する細長く、変形可能な第2のシャフトであって、前記第1のシャフトの中に配置され、前記第2のシャフトの前記遠位端部で前記アブレーション送達素子を支持するよう構成された第2のシャフトをさらに備える、項目21に記載のシステム。
(項目23)
前記エミッタが前記第1のシャフトと前記第2のシャフトとの間に配置された、項目22に記載のシステム。
(項目24)
前記第2のシャフトは、前記第1のシャフトよりも可撓性が高い、項目22に記載のシステム。
(項目25)
前記アブレーション送達素子は、前記第1のシャフトの長手方向軸に平行な方向に、前記第1のシャフトに対して移動可能である、項目21に記載のシステム。
(項目26)
前記エミッタは、前記第1のシャフトの長手方向軸に平行な方向に、前記第1のシャフトに対して移動可能である、項目21に記載のシステム。
(項目27)
前記エミッタと前記アブレーション送達素子は共に、互いに対しておよび前記第1のシャフトに対して、前記第1のシャフトの長手方向軸に平行な方向に移動可能である、項目21に記載のシステム。
(項目28)
前記エミッタと前記アブレーション送達素子は、前記第1のシャフトに対して、前記第1のシャフトの長手方向軸に平行な方向に、共に移動するように構成されている、項目21に記載のシステム。
(項目29)
前記超音波トランスデューサは、前記第1のシャフトの長手方向軸に略平行な方向に前記光音響波を受信するように向けられた、項目21に記載のシステム。
(項目30)
前記第1のシャフトによって支持され、前記エミッタの遠位端部と前記組織との間に配置された集束レンズをさらに備える、項目21に記載のシステム。
(項目31)
前記特性は、前記組織の損傷部の深さを含む、項目21に記載のシステム。
(項目32)
前記特性は、前記組織の損傷部の大きさを含む、項目21に記載のシステム。
(項目33)
前記特性は、前記組織の損傷部のタイプを含む、項目21に記載のシステム。
(項目34)
前記エミッタは、電磁放射線供給源から前記電磁放射線を送信するよう構成された光ファイバを備える、項目21に記載のシステム。
(項目35)
前記光ファイバは、マルチモードの光ファイバを備える、項目34に記載のシステム。
(項目36)
前記超音波トランスデューサは2次元超音波アレイを備える、項目21に記載のシステム。
(項目37)
前記エミッタは前記第1のシャフトの壁の内部に配置される、項目21に記載のシステム。

Claims (37)

  1. アブレーションカテーテルによって組織へアブレーションエネルギーを与えることによる、身体の前記組織へのアブレーション治療の効果を評価するためのシステムであって、該システムは、
    シースアセンブリと、
    超音波検査用プローブとを備え、
    前記シースアセンブリは、
    近位端部と遠位端部を有する細長く、変形可能なシャフトと、
    前記シャフト内に配置された電磁放射線エミッタであって、前記組織の方へ前記シャフトの開口を介して電磁放射線を放射して、それによって前記組織から光音響波を発生させるよう構成された電磁放射線エミッタとを備え、
    前記超音波検査用プローブは、
    近位端部と遠位端部を有する細長く、変形可能なシャフトと、
    前記超音波検査用プローブの前記シャフトの前記遠位端部に配置された超音波トランスデューサであって、前記光音響波に応じて前記組織の特性を示すシグナルを生成するよう構成された超音波トランスデューサと、
    を備える、システム。
  2. 前記超音波トランスデューサが、前記超音波検査用プローブの前記シャフトの長手方向軸に略垂直な方向に前記光音響波を受信するように向けられた、請求項1に記載のシステム。
  3. 前記超音波トランスデューサが、前記超音波検査用プローブの前記シャフトの長手方向軸に略平行な方向に前記光音響波を受信するように向けられた、請求項1に記載のシステム。
  4. 前記シースアセンブリの前記シャフトによって支持され、前記エミッタと前記組織との間に配置された集束レンズをさらに備える、請求項1に記載のシステム。
  5. 前記特性は、前記組織の損傷部の深さを含む、請求項1に記載のシステム。
  6. 前記特性は、前記組織の損傷部の大きさを含む、請求項1に記載のシステム。
  7. 前記特性は、前記組織の損傷部のタイプを含む、請求項1に記載のシステム。
  8. 前記エミッタは、電磁放射線供給源から前記電磁放射線を送信するよう構成された光ファイバを備える、請求項1に記載のシステム。
  9. 前記光ファイバは、マルチモードの光ファイバを備える、請求項8に記載のシステム。
  10. 身体の組織へのアブレーション治療の効果を評価するためのシステムであって、該システムは、
    超音波検査用プローブを備え、
    前記超音波検査用プローブは
    近位端部と遠位端部を有する細長く、変形可能なシャフトと、
    前記シャフト内に配置された電磁放射線エミッタであって、前記組織の方へ前記シャフトの開口を介して電磁放射線を放射して、それによって前記組織から光音響波を発生させるよう構成された電磁放射線エミッタと、
    前記シャフトの前記遠位端部に配置された超音波トランスデューサであって、前記光音響波に応じて前記組織の特性を示すシグナルを生成するよう構成された超音波トランスデューサと、
    を備える、システム。
  11. 前記超音波トランスデューサが、前記シャフトの長手方向軸に略垂直な方向に前記光音響波を受信するように向けられた、請求項10に記載のシステム。
  12. 前記超音波トランスデューサが、前記シャフトの長手方向軸に略平行な方向に前記光音響波を受信するように向けられた、請求項10に記載のシステム。
  13. 前記シャフトによって支持され、前記エミッタと前記組織との間に配置された集束レンズをさらに備える、請求項10に記載のシステム。
  14. 前記特性は、前記組織の損傷部の深さを含む、請求項10に記載のシステム。
  15. 前記特性は、前記組織の損傷部の大きさを含む、請求項10に記載のシステム。
  16. 前記特性は、前記組織の損傷部のタイプを含む、請求項10に記載のシステム。
  17. 前記エミッタは、電磁放射線供給源から前記電磁放射線を送信するよう構成された光ファイバを備える、請求項10に記載のシステム。
  18. 前記光ファイバは、マルチモードの光ファイバを備える、請求項17に記載のシステム。
  19. 前記超音波トランスデューサは2次元超音波アレイを備える、請求項10に記載のシステム。
  20. 前記エミッタは、前記シャフトの長手方向軸に平行な方向に、前記シャフトに対して移動可能である、請求項10に記載のシステム。
  21. 身体の組織へのアブレーション治療の効果を評価するためのシステムであって、該システムは、
    カテーテルを備え、
    前記カテーテルは、
    近位端部と遠位端部を有する細長く、変形可能な第1のシャフトと、
    前記第1のシャフトの前記遠位端部の近傍に配置されたアブレーション送達素子と、
    前記第1のシャフト内に配置された電磁放射線エミッタであって、前記組織の方へ前記第1のシャフトの開口を介して電磁放射線を放射して、それによって前記組織から光音響波を発生させるよう構成された電磁放射線エミッタと、
    前記第1のシャフトの前記遠位端部に配置された超音波トランスデューサであって、前記光音響波に応じて前記組織の特性を示すシグナルを生成するよう構成された超音波トランスデューサと、
    を備えた、システム。
  22. 近位端部と遠位端部を有する細長く、変形可能な第2のシャフトであって、前記第1のシャフトの中に配置され、前記第2のシャフトの前記遠位端部で前記アブレーション送達素子を支持するよう構成された第2のシャフトをさらに備える、請求項21に記載のシステム。
  23. 前記エミッタが前記第1のシャフトと前記第2のシャフトとの間に配置された、請求項22に記載のシステム。
  24. 前記第2のシャフトは、前記第1のシャフトよりも可撓性が高い、請求項22に記載のシステム。
  25. 前記アブレーション送達素子は、前記第1のシャフトの長手方向軸に平行な方向に、前記第1のシャフトに対して移動可能である、請求項21に記載のシステム。
  26. 前記エミッタは、前記第1のシャフトの長手方向軸に平行な方向に、前記第1のシャフトに対して移動可能である、請求項21に記載のシステム。
  27. 前記エミッタと前記アブレーション送達素子は共に、互いに対しておよび前記第1のシャフトに対して、前記第1のシャフトの長手方向軸に平行な方向に移動可能である、請求項21に記載のシステム。
  28. 前記エミッタと前記アブレーション送達素子は、前記第1のシャフトに対して、前記第1のシャフトの長手方向軸に平行な方向に、共に移動するように構成されている、請求項21に記載のシステム。
  29. 前記超音波トランスデューサは、前記第1のシャフトの長手方向軸に略平行な方向に前記光音響波を受信するように向けられた、請求項21に記載のシステム。
  30. 前記第1のシャフトによって支持され、前記エミッタの遠位端部と前記組織との間に配置された集束レンズをさらに備える、請求項21に記載のシステム。
  31. 前記特性は、前記組織の損傷部の深さを含む、請求項21に記載のシステム。
  32. 前記特性は、前記組織の損傷部の大きさを含む、請求項21に記載のシステム。
  33. 前記特性は、前記組織の損傷部のタイプを含む、請求項21に記載のシステム。
  34. 前記エミッタは、電磁放射線供給源から前記電磁放射線を送信するよう構成された光ファイバを備える、請求項21に記載のシステム。
  35. 前記光ファイバは、マルチモードの光ファイバを備える、請求項34に記載のシステム。
  36. 前記超音波トランスデューサは2次元超音波アレイを備える、請求項21に記載のシステム。
  37. 前記エミッタは前記第1のシャフトの壁の内部に配置される、請求項21に記載のシステム。
JP2014556814A 2012-02-14 2013-02-13 光音響法を用いた心臓組織のアブレーション治療の効果を評価するためのシステム Active JP6038957B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261598844P 2012-02-14 2012-02-14
US61/598,844 2012-02-14
PCT/US2013/025890 WO2013123014A1 (en) 2012-02-14 2013-02-13 System for assessing effects of ablation therapy on cardiac tissue using photoacoustics

Publications (2)

Publication Number Publication Date
JP2015513350A true JP2015513350A (ja) 2015-05-11
JP6038957B2 JP6038957B2 (ja) 2016-12-07

Family

ID=48984649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014556814A Active JP6038957B2 (ja) 2012-02-14 2013-02-13 光音響法を用いた心臓組織のアブレーション治療の効果を評価するためのシステム

Country Status (5)

Country Link
US (1) US20150038824A1 (ja)
EP (1) EP2814397B1 (ja)
JP (1) JP6038957B2 (ja)
CN (1) CN104114098B (ja)
WO (1) WO2013123014A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019017411A (ja) * 2017-07-11 2019-02-07 株式会社日立製作所 光音響型カテーテルシステム及び光音響型カテーテル制御方法
JP2019512356A (ja) * 2016-03-30 2019-05-16 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 光音響、超音波及び光干渉断層撮影技術を用いた血管内装置、システム並びに方法
JP2021072880A (ja) * 2015-07-19 2021-05-13 460メディカル・インコーポレイテッド460Medical, Inc. 損傷形成及び評価のためのシステム

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2358278B1 (en) 2008-12-08 2021-05-12 Acist Medical Systems, Inc. System and catheter for image guidance and methods thereof
ES2727868T3 (es) 2011-09-22 2019-10-21 Univ George Washington Sistemas para visualizar el tejido ablacionado
US9084611B2 (en) 2011-09-22 2015-07-21 The George Washington University Systems and methods for visualizing ablated tissue
WO2014152344A2 (en) 2013-03-15 2014-09-25 St. Jude Medical, Atrial Fibrillation Division, Inc. Device for intravascular therapy and/or diagnosis
WO2015077474A1 (en) 2013-11-20 2015-05-28 The George Washington University Systems and methods for hyperspectral analysis of cardiac tissue
US9713456B2 (en) * 2013-12-30 2017-07-25 Acist Medical Systems, Inc. Position sensing in intravascular imaging
WO2015119861A1 (en) * 2014-02-10 2015-08-13 St. Jude Medical, Cardiology Division, Inc. Device for ablation and photoacoustics imaging
CN113208723A (zh) 2014-11-03 2021-08-06 460医学股份有限公司 用于接触质量的评估的系统和方法
EP3215002B1 (en) 2014-11-03 2024-03-20 The George Washington University Systems for lesion assessment
CN104568758A (zh) * 2014-12-12 2015-04-29 中国科学院苏州生物医学工程技术研究所 基于led的光声成像系统
AU2015268674A1 (en) * 2014-12-29 2016-07-14 Biosense Webster (Israel) Ltd. Spectral sensing of ablation
CN104965105B (zh) * 2015-07-06 2018-03-23 中国科学院半导体研究所 集成超声换能器的afm探针阵列
WO2017038037A1 (ja) * 2015-08-31 2017-03-09 富士フイルム株式会社 光音響画像生成装置及び挿入物
JP6943883B2 (ja) 2016-05-19 2021-10-06 アシスト・メディカル・システムズ,インコーポレイテッド 血管内プロセスにおける位置検知
CN109561878B (zh) 2016-05-19 2021-11-23 阿西斯特医疗系统有限公司 血管内过程中的位置感测
KR102548734B1 (ko) * 2016-12-16 2023-06-28 나노스펙트라 바이오사이언스 인크 장치 및 약물 치료 방법에서의 사용
US11890427B2 (en) 2017-01-03 2024-02-06 St. Jude Medical, Cardiology Division, Inc. Medical device with non-metallic reinforcing layer
WO2018139853A2 (ko) * 2017-01-26 2018-08-02 스페클립스 주식회사 색소 병변의 진단 장치에 사용되는 핸드피스
US20180235576A1 (en) * 2017-02-22 2018-08-23 Covidien Lp Ultrasound doppler and elastography for ablation prediction and monitoring
US11583249B2 (en) * 2017-09-08 2023-02-21 Biosense Webster (Israel) Ltd. Method and apparatus for performing non-fluoroscopic transseptal procedure
US10792087B2 (en) 2017-09-29 2020-10-06 Biosense Webster (Israel) Ltd. Highlighting region for re-ablation
KR102375183B1 (ko) 2019-03-22 2022-03-16 스페클립스 주식회사 레이저 유도 붕괴 스펙트럼 분석을 이용하는 진단 방법 및 이를 수행하는 진단 장치
CA3192117A1 (en) * 2020-09-14 2022-03-17 Thomas E. Milner Systems and methods for ultrasound and photoacoustic guidance of coronary procedures
CN112842519B (zh) * 2021-01-22 2022-07-29 上海科技大学 一种用于引导激光治疗的光声探测装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100168568A1 (en) * 2008-12-30 2010-07-01 St. Jude Medical, Atrial Fibrillation Division Inc. Combined Diagnostic and Therapeutic Device Using Aligned Energy Beams
JP2010534526A (ja) * 2007-07-27 2010-11-11 メリディアン・カーディオヴァスキュラー・システムズ,インコーポレーテッド 画像誘導血管内治療カテーテル
JP2011507651A (ja) * 2007-12-28 2011-03-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 光音響病変形成フィードバックを備えた組織切除装置
WO2011114652A1 (ja) * 2010-03-15 2011-09-22 ソニー株式会社 判別装置及び判別方法
WO2011150379A2 (en) * 2010-05-28 2011-12-01 The General Hospital Corporation Apparatus, systems, methods and computer-accessible medium for analyzing information regarding cardiovascular disease(s) and function(s)
JP2013027482A (ja) * 2011-07-27 2013-02-07 Fujifilm Corp カテーテル型の光音響プローブおよびそれを備えた光音響撮像装置
JP2013544551A (ja) * 2010-10-14 2013-12-19 コーニンクレッカ フィリップス エヌ ヴェ 物体の特性を決定する特性決定装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU5672194A (en) * 1992-11-18 1994-06-22 Spectrascience, Inc. Apparatus for diagnostic imaging
US20080154257A1 (en) * 2006-12-22 2008-06-26 Shiva Sharareh Real-time optoacoustic monitoring with electophysiologic catheters
US5833612A (en) * 1996-02-09 1998-11-10 Esc Medical Systems, Ltd. Method and apparatus for diagnosis skin lesions
US5924986A (en) * 1997-09-10 1999-07-20 Acuson Corporation Method and system for coherent ultrasound imaging of induced, distributed source, bulk acoustic emissions
US6659957B1 (en) * 1998-03-05 2003-12-09 Gil M. Vardi Optical-acoustic imaging device
AU2003238656A1 (en) 2002-06-25 2004-01-06 Glucon Inc. Method and apparatus for performing myocardial revascularization
US6949072B2 (en) * 2003-09-22 2005-09-27 Infraredx, Inc. Devices for vulnerable plaque detection
US7670337B2 (en) * 2005-03-25 2010-03-02 Boston Scientific Scimed, Inc. Ablation probe having a plurality of arrays of electrodes
US20070015992A1 (en) * 2005-06-30 2007-01-18 General Electric Company System and method for optoacoustic imaging
EP2081486B1 (en) * 2006-11-08 2014-04-09 Lightlab Imaging, Inc. Opto-acoustic imaging device
US20080221647A1 (en) * 2007-02-23 2008-09-11 The Regents Of The University Of Michigan System and method for monitoring photodynamic therapy
US8187267B2 (en) * 2007-05-23 2012-05-29 St. Jude Medical, Atrial Fibrillation Division, Inc. Ablation catheter with flexible tip and methods of making the same
US10220187B2 (en) * 2010-06-16 2019-03-05 St. Jude Medical, Llc Ablation catheter having flexible tip with multiple flexible electrode segments
US8974454B2 (en) * 2009-12-31 2015-03-10 St. Jude Medical, Atrial Fibrillation Division, Inc. Kit for non-invasive electrophysiology procedures and method of its use
US8052605B2 (en) * 2008-05-07 2011-11-08 Infraredx Multimodal catheter system and method for intravascular analysis
JP4829934B2 (ja) * 2008-07-11 2011-12-07 キヤノン株式会社 検査装置
US8764666B2 (en) * 2008-10-28 2014-07-01 The Regents Of The University Of California Ultrasound guided optical coherence tomography, photoacoustic probe for biomedical imaging
US20100168572A1 (en) * 2008-12-30 2010-07-01 Sliwa John W Apparatus and Methods for Acoustic Monitoring of Ablation Procedures
US20100179432A1 (en) 2009-01-09 2010-07-15 Boston Scientific Scimed, Inc. Systems and methods for making and using intravascular ultrasound systems with photo-acoustic imaging capabilities
US9907534B2 (en) * 2009-12-15 2018-03-06 St. Jude Medical, Atrial Fibrillation Division, Inc. Self-aiming directable acoustic transducer assembly for invasive medical device applications

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010534526A (ja) * 2007-07-27 2010-11-11 メリディアン・カーディオヴァスキュラー・システムズ,インコーポレーテッド 画像誘導血管内治療カテーテル
JP2011507651A (ja) * 2007-12-28 2011-03-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 光音響病変形成フィードバックを備えた組織切除装置
US20100168568A1 (en) * 2008-12-30 2010-07-01 St. Jude Medical, Atrial Fibrillation Division Inc. Combined Diagnostic and Therapeutic Device Using Aligned Energy Beams
WO2011114652A1 (ja) * 2010-03-15 2011-09-22 ソニー株式会社 判別装置及び判別方法
WO2011150379A2 (en) * 2010-05-28 2011-12-01 The General Hospital Corporation Apparatus, systems, methods and computer-accessible medium for analyzing information regarding cardiovascular disease(s) and function(s)
JP2013544551A (ja) * 2010-10-14 2013-12-19 コーニンクレッカ フィリップス エヌ ヴェ 物体の特性を決定する特性決定装置
JP2013027482A (ja) * 2011-07-27 2013-02-07 Fujifilm Corp カテーテル型の光音響プローブおよびそれを備えた光音響撮像装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S.SETHURAMAN: "Temperature Monitoring in Intravascular Photoacoustic Imaging", IEEE ULTRASONICS SYMPOSIUM, JPN6015038308, 2006, US, pages 714 - 717, XP031076366, ISSN: 0003421567, DOI: 10.1109/ULTSYM.2006.162 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021072880A (ja) * 2015-07-19 2021-05-13 460メディカル・インコーポレイテッド460Medical, Inc. 損傷形成及び評価のためのシステム
JP7116151B2 (ja) 2015-07-19 2022-08-09 460メディカル・インコーポレイテッド 損傷形成及び評価のためのシステム
JP2019512356A (ja) * 2016-03-30 2019-05-16 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 光音響、超音波及び光干渉断層撮影技術を用いた血管内装置、システム並びに方法
JP7010840B2 (ja) 2016-03-30 2022-01-26 コーニンクレッカ フィリップス エヌ ヴェ 光音響、超音波及び光干渉断層撮影技術を用いた血管内装置、システム並びに方法
JP2019017411A (ja) * 2017-07-11 2019-02-07 株式会社日立製作所 光音響型カテーテルシステム及び光音響型カテーテル制御方法

Also Published As

Publication number Publication date
JP6038957B2 (ja) 2016-12-07
WO2013123014A1 (en) 2013-08-22
EP2814397A4 (en) 2015-08-05
US20150038824A1 (en) 2015-02-05
EP2814397A1 (en) 2014-12-24
EP2814397B1 (en) 2020-01-15
CN104114098A (zh) 2014-10-22
CN104114098B (zh) 2016-10-12

Similar Documents

Publication Publication Date Title
JP6038957B2 (ja) 光音響法を用いた心臓組織のアブレーション治療の効果を評価するためのシステム
US11000684B2 (en) Catheter systems
JP5179162B2 (ja) 電気生理学的カテーテルを用いたリアルタイムの光音響モニタリング
JP5090176B2 (ja) 組織焼灼のリアルタイム評価装置
WO2013123020A1 (en) Ablation catheter with optic energy delivery system for photoacoustic tissue response
JP6095886B2 (ja) 温度センサーを使用して組織の焼灼を制御するためのシステム
AU2013270549B2 (en) Optical lesion assessment
JP2017109100A (ja) 超音波ビームの角度を与える力センサの使用
JP6548948B2 (ja) アブレーション中のスチームポップの防止
US20160317844A1 (en) Device for ablation and photoacoustics imaging
JP6685680B2 (ja) マルチレンジ光センシング
US20180000445A1 (en) Systems and Methods for Lesion Formation Feedback

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161102

R150 Certificate of patent or registration of utility model

Ref document number: 6038957

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250