JP2015506454A - Natural gas liquefaction in a moving environment - Google Patents

Natural gas liquefaction in a moving environment Download PDF

Info

Publication number
JP2015506454A
JP2015506454A JP2014548840A JP2014548840A JP2015506454A JP 2015506454 A JP2015506454 A JP 2015506454A JP 2014548840 A JP2014548840 A JP 2014548840A JP 2014548840 A JP2014548840 A JP 2014548840A JP 2015506454 A JP2015506454 A JP 2015506454A
Authority
JP
Japan
Prior art keywords
stream
heat exchanger
external heat
separation vessel
refrigerant stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2014548840A
Other languages
Japanese (ja)
Other versions
JP2015506454A5 (en
Inventor
デーヴィス、ポール・アール
ジェイムス、ウィル・ティー
グラヴォイス、シャウン・ピー
Original Assignee
コノコフィリップス カンパニー
コノコフィリップス カンパニー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コノコフィリップス カンパニー, コノコフィリップス カンパニー filed Critical コノコフィリップス カンパニー
Publication of JP2015506454A publication Critical patent/JP2015506454A/en
Publication of JP2015506454A5 publication Critical patent/JP2015506454A5/ja
Ceased legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0259Modularity and arrangement of parts of the liquefaction unit and in particular of the cold box, e.g. pre-fabrication, assembling and erection, dimensions, horizontal layout "plot"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0269Arrangement of liquefaction units or equipments fulfilling the same process step, e.g. multiple "trains" concept
    • F25J1/0271Inter-connecting multiple cold equipments within or downstream of the cold box
    • F25J1/0272Multiple identical heat exchangers in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0277Offshore use, e.g. during shipping
    • F25J1/0278Unit being stationary, e.g. on floating barge or fixed platform
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • F25J5/002Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
    • F25J5/005Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger in a reboiler-condenser, e.g. within a column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0017Flooded core heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/72Processing device is used off-shore, e.g. on a platform or floating on a ship or barge

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Ocean & Marine Engineering (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

一つの態様において、動き環境下でプロセスガスを冷却または液化するためのシステムは、(a)分離容器、ここで該分離容器は複数の動き抑制バッフルを含み、および該分離容器は、高圧冷媒流を分離しそれにより気体冷媒流と液体冷媒流を生成するものであり、(b)前記液体冷媒流を前記分離容器から外部の熱交換器コアに送達するための気液冷媒パイプ、(c)少なくとも1つの外部熱交換器コア、ここで該外部熱交換器コアは、ケトルの外部にあり、前記液体冷媒流およびより暖かいプロセス流は前記外部熱交換器コアにおいて間接的な熱交換を受け、それにより、冷却されたプロセス流および気化した冷媒流を生成する、を含む。In one embodiment, a system for cooling or liquefying a process gas under a moving environment includes: (a) a separation vessel, wherein the separation vessel includes a plurality of motion restraining baffles, and the separation vessel comprises a high pressure refrigerant flow. (B) a gas-liquid refrigerant pipe for delivering the liquid refrigerant stream from the separation vessel to an external heat exchanger core, and (c) At least one external heat exchanger core, wherein the external heat exchanger core is external to the kettle, and the liquid refrigerant stream and warmer process stream undergo indirect heat exchange in the external heat exchanger core; Thereby producing a cooled process stream and a vaporized refrigerant stream.

Description

関連出願の相互参照
この出願は、米国特許法第119条(e)の下で、ここに本明細書の一部を構成するものとしてその全開示を援用する2011年12月20日に出願された米国仮特許出願61/578,085の優先権の利益を主張する。
CROSS REFERENCE TO RELATED APPLICATIONS This application was filed on Dec. 20, 2011, which is hereby incorporated by reference in its entirety as if forming part of this specification under 35 USC 119 (e). Alleged priority benefit of US Provisional Patent Application 61 / 578,085.

発明の分野
この発明は、シェル内コア(core-in-shell)タイプの熱交換器を利用して、動き環境(motion environment)下で天然ガスを液化するためのシステムおよび方法に関する。
FIELD OF THE INVENTION This invention relates to a system and method for liquefying natural gas under a motion environment utilizing a core-in-shell type heat exchanger.

発明の背景
天然のままの形態にある天然ガスは、これを濃縮しなければ、経済的に輸送することができない。天然ガスの使用は、その環境にやさしい、クリーン燃焼特性故に、近年有意に増加している。天然ガスの燃焼は、他のいずれの化石燃料よりも少ない二酸化炭素を生成するが、このことは、二酸化炭素の放出が温室効果を引き起こす有意のファクタとして認識されているので、重要である。液化天然ガス(LNG)は、環境問題に対して増大する関心を持つ人口密度の高い都市部において、ますます使用される可能性がある。
BACKGROUND OF THE INVENTION Natural gas in its native form cannot be transported economically unless it is concentrated. The use of natural gas has increased significantly in recent years due to its environmentally friendly and clean combustion characteristics. Natural gas combustion produces less carbon dioxide than any other fossil fuel, which is important because the release of carbon dioxide is recognized as a significant factor causing the greenhouse effect. Liquefied natural gas (LNG) may be used increasingly in densely populated urban areas with increasing interest in environmental issues.

豊富な天然ガス埋蔵量は、世界各地にある。これらガス埋蔵量の多くは、陸路では近づきにくい沖合の場所にあり、現存する技術の適用に基づいてストランデッドガス埋蔵量とみなされている。現存の技術的ガス埋蔵量は、油の貯蔵量よりも速く補充されつつあり、将来のエネルギー消費の要求を満たすことに対しLNGの使用をより重要なものとしている。液体形態では、LNGは、ガス相にある天然ガスよりも600倍も小さいスペースを占める。世界の多くの地域は、技術的、経済的または政治的制限のためにパイプラインによって到達できないので、LNG処理プラントを沖合に配置することおよび沖合のLNGをその処理プラントから輸送船舶に直接輸送するために航海船舶を利用することは、初期の資本的支出を減少させ、さもなければ不経済な沖合ガス埋蔵量を解放させることができる。   Abundant natural gas reserves are found throughout the world. Many of these gas reserves are in offshore locations that are difficult to access on land, and are considered to be stranded gas reserves based on the application of existing technology. Existing technical gas reserves are being replenished faster than oil storage, making the use of LNG more important for meeting future energy consumption requirements. In liquid form, LNG occupies 600 times less space than natural gas in the gas phase. Many regions of the world cannot be reached by pipeline due to technical, economic or political restrictions, so placing LNG processing plants offshore and transporting offshore LNG directly from the processing plant to transport vessels Utilizing voyage ships to reduce initial capital expenditures or otherwise release uneconomic offshore gas reserves.

浮体式液化プラントは、陸上液化プラントに対する沖合での代替を、そしてストランデッド沖合埋蔵量のための費用のかかる海中パイプラインに対する代替を提供する。浮体式液化プラントは、沖に、またはガス田にもしくはその近くに係留することができる。これは、また、移動可能な資産を表し、ガス田がその生産寿命の終わりに近づいているときまたは経済的、環境的または政治的条件により要求されるときに、再配置することができる。   Floating liquefaction plants provide an offshore alternative to onshore liquefaction plants and an expensive subsea pipeline alternative for stranded offshore reserves. The floating liquefaction plant can be moored offshore or at or near a gas field. This also represents a movable asset and can be relocated when the gas field is approaching the end of its production life or when required by economic, environmental or political conditions.

浮体式液化船舶で遭遇する一つの問題は、熱交換器内部での気化させる流体のスロッシング(sloshing)である。熱交換器内でのスロッシングは、熱交換器の安定性と制御に影響し得る力を生み出す結果となり得る。気化させる流体が熱交換器のシェルの内部で自由に揺動することを許容されるならば、その動く流体は熱交換器のコアの熱的機能に悪影響を有し得る。さらに、動きの周期性は、熱移動効率における周期的挙動をもたらし、それ故、LNG液化プラントにおけるプロセス条件が影響を受け得る。これらの不安定性は、より劣ったプラントの総性能という結果を招き得、そして利用できる生産能力に対しより狭い操作範囲および制限をもたらし得る。   One problem encountered in floating liquefied ships is the sloshing of vaporizing fluid inside the heat exchanger. Sloshing in the heat exchanger can result in the creation of forces that can affect the stability and control of the heat exchanger. If the fluid to be vaporized is allowed to swing freely inside the shell of the heat exchanger, the moving fluid can have an adverse effect on the thermal function of the core of the heat exchanger. In addition, the periodicity of motion results in periodic behavior in heat transfer efficiency and therefore process conditions in the LNG liquefaction plant can be affected. These instabilities can result in poorer overall plant performance and can result in narrower operating ranges and limitations on available production capacity.

従って、動き環境下で天然ガスを液化するためのシステムおよび方法に対する要求が存在する。   Accordingly, there is a need for a system and method for liquefying natural gas in a moving environment.

発明の概要
一つの態様において、動き環境下でプロセスガスを冷却または液化するためのシステムは、(a)分離容器、ここで該分離容器は動き抑制バッフルを含み、該分離容器は、高圧冷媒流を分離しそれにより気体冷媒流と液体冷媒流を生成するものであり、(b)前記液体冷媒流を前記分離容器から外部の熱交換器コアに送達するための気液冷媒パイプ、(c)少なくとも1つの外部熱交換器コア、ここで該外部熱交換器コアは、ケトルの外部にあり、前記液体冷媒流およびより暖かいプロセス流が前記外部熱交換器コアにおいて間接的な熱交換を受け、それにより、冷却されたプロセス流および気化した冷媒流を生成し、前記冷却されたプロセス流は、前記外部熱交換器コアの外部の位置に送達されるものであり、(e)前記部分気化冷媒を前記外部熱交換器コアから前記分離容器に送達するための部分気化冷媒パイプ、ここで前記部分気化冷媒パイプは最小の圧力降下を提供し、前記部分気化冷媒パイプは、熱サイフォン効果が維持されるのを保証するものである、を含む。
SUMMARY OF THE INVENTION In one embodiment, a system for cooling or liquefying a process gas under a moving environment includes: (a) a separation vessel, wherein the separation vessel includes a motion-reducing baffle, the separation vessel comprising a high pressure refrigerant stream (B) a gas-liquid refrigerant pipe for delivering the liquid refrigerant stream from the separation vessel to an external heat exchanger core, and (c) At least one external heat exchanger core, wherein the external heat exchanger core is external to the kettle, and the liquid refrigerant stream and warmer process stream undergo indirect heat exchange in the external heat exchanger core; Thereby producing a cooled process stream and a vaporized refrigerant stream, wherein the cooled process stream is delivered to a location external to the external heat exchanger core; and (e) the partial air A partially vaporized refrigerant pipe for delivering vaporized refrigerant from the external heat exchanger core to the separation vessel, wherein the partially vaporized refrigerant pipe provides a minimum pressure drop, and the partially vaporized refrigerant pipe has a thermosyphon effect. Including that which is guaranteed to be maintained.

他の態様において、動き環境下でプロセスガスを冷却または液化するためのシステムは、(a)分離容器、ここで該分離容器は、冷媒流を分離しそれにより気体冷媒流と液体冷媒流を生成するものであり、(b)前記液体冷媒流を前記分離容器から外部の熱交換器コアに送達するための気液冷媒パイプ、(c)少なくとも1つの外部熱交換器コア、ここで前記液体冷媒流およびより暖かいプロセス流が前記外部熱交換器コアにおいて間接的な熱交換を受け、それにより、冷却されたプロセス流および気化した冷媒流を生成し、(d)前記部分気化冷媒を前記外部熱交換器コアから前記分離容器に送達するための部分気化冷媒パイプ、を含む。   In another aspect, a system for cooling or liquefying a process gas under a moving environment includes: (a) a separation vessel, wherein the separation vessel separates a refrigerant stream and thereby generates a gaseous refrigerant stream and a liquid refrigerant stream (B) a gas-liquid refrigerant pipe for delivering the liquid refrigerant stream from the separation vessel to an external heat exchanger core, (c) at least one external heat exchanger core, wherein the liquid refrigerant And a warmer process stream undergoes indirect heat exchange in the external heat exchanger core, thereby producing a cooled process stream and a vaporized refrigerant stream, and (d) the partially vaporized refrigerant is removed from the external heat A partially vaporized refrigerant pipe for delivery from the exchanger core to the separation vessel.

さらに他の態様において、動き環境下で天然ガスを液化するための方法は、(a)冷(refrigeration)を分離容器に導入し、それにより気体冷媒流と液体冷媒流を生成すること、ここで、前記分離容器は、動き抑制バッフルを含み、(b)前記液体冷媒流を外部熱交換器コアの底近傍に導入すること、(c)より暖かいプロセス流を前記液体冷媒流の上部の位置で前記外部熱交換器コアに導入すること、(d)前記より暖かいプロセス流を前記液体冷媒流との間接的熱交換により冷却し、それにより冷却されたプロセス流と部分気化冷媒流とを生成すること、(e)前記冷却されたプロセス流と部分気化冷媒流とを前記外部熱交換器から取り出すこと、(f)前記部分気化冷媒流を前記分離容器に送達すること、(g)前記冷却されたプロセス流を前記外部熱交換器の外部の位置に送達すること、を含む。   In yet another aspect, a method for liquefying natural gas in a moving environment comprises: (a) introducing refrigeration into a separation vessel, thereby generating a gaseous refrigerant stream and a liquid refrigerant stream, wherein The separation vessel includes a motion-suppressing baffle; (b) introducing the liquid refrigerant stream near the bottom of the external heat exchanger core; and (c) a warmer process stream at a position above the liquid refrigerant stream. Introducing into the external heat exchanger core; (d) cooling the warmer process stream by indirect heat exchange with the liquid refrigerant stream, thereby producing a cooled process stream and a partially vaporized refrigerant stream. (E) removing the cooled process stream and the partially vaporized refrigerant stream from the external heat exchanger; (f) delivering the partially vaporized refrigerant stream to the separation vessel; (g) the cooled Process flow Delivering to a location external to the external heat exchanger.

さらなる態様において、動き環境下で天然ガスを液化するための方法は、(a)分離容器に冷(refrigeration)を導入し、それにより気体冷媒流と液体冷媒流を生成すること、(b)前記液体冷媒流を外部熱交換器コアの底近傍に導入すること、(c)より暖かいプロセス流を前記液体冷媒流の上部の位置で前記外部熱交換器コアに導入すること、(d)前記より暖かいプロセス流を前記外部熱交換器コアにおいて前記液体冷媒流との間接的熱交換により冷却し、それにより冷却されたプロセス流と部分気化冷媒流とを生成すること、(e)前記冷却されたプロセス流と前記部分気化冷媒流とを前記外部熱交換器から取り出すこと、を含む。   In a further aspect, a method for liquefying natural gas in a moving environment comprises: (a) introducing a refrigeration into a separation vessel, thereby producing a gaseous refrigerant stream and a liquid refrigerant stream; Introducing a liquid refrigerant stream into the vicinity of the bottom of the external heat exchanger core; (c) introducing a warmer process stream into the external heat exchanger core at a position above the liquid refrigerant stream; Cooling a warm process stream by indirect heat exchange with the liquid refrigerant stream in the external heat exchanger core, thereby producing a cooled process stream and a partially vaporized refrigerant stream; (e) the cooled Removing a process stream and the partially vaporized refrigerant stream from the external heat exchanger.

本発明は、そのさらなる利点とともに、以下の記載を添付の図面とともに参照することにより最もよく理解され得る。
1つの外部熱交換器コアを含む、本発明の一つの態様による分離容器の概略図。 複数の外部熱交換器コアを含む、本発明の一つの態様による分離容器の概略図。
The invention, together with further advantages thereof, may best be understood by referring to the following description in conjunction with the accompanying drawings.
1 is a schematic view of a separation vessel according to one embodiment of the present invention, including one external heat exchanger core. FIG. 1 is a schematic diagram of a separation vessel according to one embodiment of the present invention including a plurality of external heat exchanger cores. FIG.

発明の詳細な説明
さて、本発明の態様を詳細に参照するが、本発明の一つまたはそれ以上の例が添付の図面に図解されている。各例は、本発明の説明として提示されるものであって、本発明の限定としてのものではない。本発明の範囲ないし精神から逸脱することなく本発明において種々の修飾および変形を行うことができるということは当業者に明らかであろう。例えば、一つの態様の部分として例証ないし記述された特徴は、なおさらなる態様を生じさせるために他の態様に用いることができる。すなわち、本発明は添付の特許請求の範囲内で生じるそのような修飾および変形並びにその均等物をカバーすることが意図されている。
DETAILED DESCRIPTION OF THE INVENTION Reference will now be made in detail to aspects of the present invention, one or more examples of which are illustrated in the accompanying drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For example, features illustrated or described as part of one embodiment can be used in another embodiment to yield a still further embodiment. That is, the present invention is intended to cover such modifications and variations as may occur within the scope of the appended claims and their equivalents.

シェル内コア熱交換器の原理設計は、熱いプロセス供給流のより冷たい気化させる流体に対する交差交換を提供する。気化させる流体は、圧力容器内に存在し、そこではアルミニウムろう付けコンパクト交換器コアが搭載され、沸点またはその近くにある気化させる流体中に完全に沈潜している。この液体は、交換器の底面中に引き込まれ、そこでそれはコア内のより熱い表面と接触する。ついで、気化させる流体は、交換器コアチャンネルを通して熱を移動させる。熱移動の大部分は、気化させる流体の蒸発潜熱からのものである。供給流は、それが交換器コア内のチャンネルの反対側を通り過ぎるときに冷却または凝縮される。   The principle design of the in-shell core heat exchanger provides a cross exchange for the cooler vaporizing fluid of the hot process feed stream. The vaporizing fluid resides in a pressure vessel where an aluminum brazed compact exchanger core is mounted and completely submerged in the vaporizing fluid at or near the boiling point. This liquid is drawn into the bottom of the exchanger where it contacts the hotter surface in the core. The vaporizing fluid then transfers heat through the exchanger core channel. Most of the heat transfer is from the latent heat of vaporization of the fluid being vaporized. The feed stream is cooled or condensed as it passes across the opposite side of the channel in the exchanger core.

シェル内コア熱交換器の熱水力性能は、交換器内の液体のレベルに依存する。交換器コア中への気化させる流体の循環のための支配的な駆動力は、熱サイフォン効果である。熱サイフォン効果は、自然対流熱力に由来する受動的な流体移送現象である。流体の気化が生じると、流体は加熱され、そして流体の密度は減少する。それが自然にチャンネル内を上方に流れると、新たな液体が引き込まれる。これは、コア内の熱勾配により誘起される、コアのチャンネル中への気化させる流体の自然循環を結果として生じさせる。チャンネル中のすべての液体が気化されるのではなく、典型的に液体と気体の混合物が交換器コアのチャンネルを通って上方に輸送され、コアの頂部を通って放出される。コアの上方には、気体のみがコアのシェル側のオーバーヘッド部から出るように、気体と液体が乖離するための適切なスペースが設けられなければならない。ついで、交換器の上部において分離した液体は、容器の底へと再循環され、そこにおいてそれは次にコア内で気化される。シェル内コア熱交換器の上部における液体と気体の分離のための駆動力は、重力である。   The thermal hydraulic performance of the in-shell core heat exchanger depends on the level of liquid in the exchanger. The dominant driving force for the circulation of the vaporizing fluid into the exchanger core is the thermosyphon effect. The thermosyphon effect is a passive fluid transfer phenomenon derived from natural convection heat. When fluid vaporization occurs, the fluid is heated and the density of the fluid decreases. As it naturally flows upward in the channel, new liquid is drawn. This results in a natural circulation of the vaporizing fluid into the core channels, induced by a thermal gradient in the core. Rather than all the liquid in the channel being vaporized, typically a mixture of liquid and gas is transported upward through the channel of the exchanger core and discharged through the top of the core. Above the core, an appropriate space for gas and liquid to separate must be provided so that only the gas exits the overhead part on the shell side of the core. The liquid separated at the top of the exchanger is then recycled to the bottom of the vessel where it is then vaporized in the core. The driving force for the separation of liquid and gas at the top of the in-shell core heat exchanger is gravity.

コア内の熱サイフォン循環効果は、コア内の実効液体レベル対コア外の液体レベル間の外部水圧(レベル差)により増大されまたは減じられる。シェル内の液体のレベルが低下すると、交換器コア中への液体の移動のための駆動力が減少し、実効熱移動が低下する。液体レベルがコアより下に低下すると、熱サイフォン効果の消失により気化させる液体の循環が停止し、これが熱移動の消失をもたらす。液体レベルがコアよりも高い状態で、すなわち浸漬状態で熱交換器が操作されると、コア内で生成した気体が追加のヘッドを乗り越えてコアから抜け出さなければならないので、移動される熱はさらに減少する。   The thermosiphon circulation effect in the core is increased or decreased by the external water pressure (level difference) between the effective liquid level in the core and the liquid level outside the core. As the liquid level in the shell decreases, the driving force for movement of the liquid into the exchanger core decreases and the effective heat transfer decreases. As the liquid level drops below the core, the circulation of the liquid that is vaporized by the disappearance of the thermosyphon effect stops, which results in the loss of heat transfer. When the heat exchanger is operated at a higher liquid level than the core, i.e. immersed, the gas generated in the core must get over the additional head and escape from the core, so the transferred heat is further Decrease.

シェル内に必要な液体レベルを維持することに対する懸念を緩和するために、アルミニウムろう付けコンパクト熱交換器コアをシェルから取り出す。図1は、ケトル/分離容器42に接続された外部熱交換器コア50の例示的構成を描写する。   In order to alleviate concerns about maintaining the required liquid level in the shell, the aluminum brazed compact heat exchanger core is removed from the shell. FIG. 1 depicts an exemplary configuration of an external heat exchanger core 50 connected to a kettle / separation vessel 42.

高圧液体冷媒流の少なくとも一部が、予め凝縮されて、導管2を介してLNG設備を抜け出、膨張手段(膨張弁40として図示されている)へと輸送され、そこで、その流れは、減圧され、それにより膨張した冷媒部分を導管4内で生成する。膨張弁40は、分離容器42内のレベルを制御するための制御弁として利用することができる。この膨張された冷媒流の少なくとも一部が分離容器42に導入され、それにより導管6内での気体冷媒流と、液体冷媒流とを生成する。一つの態様において、分離容器は、液体のスロッシングを減少させるために、動き抑制バッフルを含む。動き抑制バッフル52は、水平に配置、垂直に配置、またはその組合せとすることができる。分離容器内の液体レベルは、モニターし、制御すべきである。この容器は、また、液体が容器中で最小レベルに維持されることを保証するために、堰板を備えることができる。   At least a portion of the high pressure liquid refrigerant stream is precondensed and exits the LNG facility via conduit 2 and is transported to expansion means (shown as expansion valve 40) where the flow is depressurized. Thereby producing an expanded refrigerant portion in the conduit 4. The expansion valve 40 can be used as a control valve for controlling the level in the separation container 42. At least a portion of this expanded refrigerant stream is introduced into the separation vessel 42, thereby generating a gaseous refrigerant stream and a liquid refrigerant stream in the conduit 6. In one embodiment, the separation vessel includes a motion restraining baffle to reduce liquid sloshing. The motion suppression baffle 52 can be arranged horizontally, arranged vertically, or a combination thereof. The liquid level in the separation vessel should be monitored and controlled. The container can also be provided with a weir plate to ensure that the liquid is maintained at a minimum level in the container.

液体冷媒流の一部が、液体冷媒パイプ8を介して、外部熱交換器コア50の底に導入される。より暖かいプロセス流も、導管12を介して、外部熱交換器コア50に導入され、それによりそのより暖かいプロセス供給流は液体冷媒流との間接的熱交換により冷却され、それにより冷却されたプロセス流と、部分気化液体冷媒流とを生成する。   A part of the liquid refrigerant flow is introduced into the bottom of the external heat exchanger core 50 via the liquid refrigerant pipe 8. A warmer process stream is also introduced into the external heat exchanger core 50 via conduit 12 so that the warmer process feed stream is cooled by indirect heat exchange with the liquid refrigerant stream, thereby cooling the process. And a partially vaporized liquid refrigerant stream.

部分気化液体冷媒流は、パイプ16を介して、分離容器中へと再循環される。気化の量は、適切なガス分散を確保するために制御され、そして二相流状態が分散領域内で維持される。配管のサイズおよび間隔は、最小の圧力降下を確保するために制御され、熱サイフォン効果が維持される。パイプ中の圧力降下が高いほど、外部熱交換器コアへの流れが維持されることを保証するために液体レベルを高く維持しなければならない。適切な気体乖離スペースが、分離が再循環流について維持されることを保証するために分離容器内で部分気化液体冷媒輸送パイプの上方に設けられる。   The partially vaporized liquid refrigerant stream is recirculated via pipe 16 into the separation vessel. The amount of vaporization is controlled to ensure proper gas dispersion and a two-phase flow state is maintained in the dispersion region. The size and spacing of the piping is controlled to ensure a minimum pressure drop and the thermosyphon effect is maintained. The higher the pressure drop in the pipe, the higher the liquid level must be maintained to ensure that the flow to the external heat exchanger core is maintained. A suitable gas separation space is provided in the separation vessel above the partially vaporized liquid refrigerant transport pipe to ensure that the separation is maintained for recirculation flow.

液体冷媒流の残りの部分は、膨張手段(膨張弁48として図示されている)へと輸送され、そこで、その流れは、減圧され、それにより導管18内にオーバーフロー冷媒を生成し、これは、後のより低圧の段階の冷却に使用することができる。   The remaining portion of the liquid refrigerant stream is transported to expansion means (shown as expansion valve 48), where the flow is depressurized, thereby producing overflow refrigerant in conduit 18, which Can be used for later lower pressure stage cooling.

外部熱交換器コアを他の下流プロセスに対して位置決めする際の設計のフレキシビリティー、そして1つの分離容器につき複数の外部熱交換器コアを取り扱うことができる。例えば、図2は、分離容器が複数の外部熱交換器コアに接続されているいくつかの構成を示す。   Design flexibility in positioning the external heat exchanger core relative to other downstream processes, and multiple external heat exchanger cores per separation vessel can be handled. For example, FIG. 2 shows several configurations in which the separation vessel is connected to multiple external heat exchanger cores.

分離容器に対して外部にあるという交換器の構成は、また、その圧力容器が冷媒分離機と圧縮機求引スクラバーとの両方として機能し得るので、下流の冷媒圧縮機スクラバーを除去するという利点を与える。   The configuration of the exchanger being external to the separation vessel also has the advantage of removing downstream refrigerant compressor scrubbers because the pressure vessel can function as both a refrigerant separator and a compressor pulling scrubber. give.

ベーンミストエリミネーター(vane mist eliminator)のような分離容器42の内部構造物のサイズを最小限に抑えるために、メッシュパッドもしくはサイクロン式ベーンミストエリミネーターを組み込んで分離容器のサイズを最小限に抑えることができる。   In order to minimize the size of the internal structure of the separation vessel 42 such as a vane mist eliminator, a mesh pad or cyclone vane mist eliminator can be incorporated to minimize the size of the separation vessel it can.

最後に、いずれもの参考文献、特に本出願の優先日の後の刊行日を持ち得るいずれもの参考文献についての検討は、それが本発明に対する先行技術であることを認めるものではないということに注意すべきである。同時に、以下のどの請求項も、本発明の追加の態様として、この詳細な説明もしくは明細書中に組み込まれるものである。   Finally, note that any reference to any reference, particularly any reference that may have a publication date after the priority date of this application, does not admit that it is prior art to the present invention. Should. At the same time, any of the following claims is incorporated into this detailed description or specification as an additional aspect of the present invention.

ここに記載したシステムおよび方法を詳細に説明したが、以下の特許請求の範囲により規定される本発明の精神および範囲から逸脱することなく種々の変更、置換および代替をすることができる。当業者は、好ましい態様を検討し、ここには正確には記載されていない、本発明を実施する他の方策を突き止めることができる。本発明の変形および均等は、特許請求の範囲内のものである一方、記載、要約および図面は本発明の範囲を限定するために使用去るべきではないということが本発明者らの意図である。本発明は、以下の特許請求の範囲およびその均等物と同じ幅であることが具体的に意図されている。   Although the systems and methods described herein have been described in detail, various changes, substitutions, and alternatives can be made without departing from the spirit and scope of the present invention as defined by the following claims. Those skilled in the art will be able to review the preferred embodiments and find other ways of practicing the invention that are not precisely described herein. It is the intention of the inventors that variations and equivalents of the invention are within the scope of the claims, while the description, summary and drawings should not be used to limit the scope of the invention. . The invention is specifically intended to be as wide as the following claims and their equivalents.

参考文献
ここに引用したすべての参考文献は、参照により明示的に組み込まれる。いずれもの参考文献、特に本出願の優先日の後の刊行日を持ついずれもの参考文献についての検討は、それが本発明に対する先行技術であることを認めるものではない。組み込まれた参考文献は便宜のために再度掲げる:
1.US6543210(ロストウヒャー;ペテルシュミット;バラット);「改良された切断機構を有する切断機」(2001)
2.Lastname, F., et al., "Article title", J. Abbr. 2: 23-4 (2000)
References All references cited herein are expressly incorporated by reference. A review of any reference, particularly any reference with a publication date after the priority date of this application, does not admit that it is prior art to the present invention. The incorporated references are listed again for convenience:
1. US 6543210 (Lost Ucher; Peterschmitt; Barat); "Cutter with improved cutting mechanism" (2001)
2. Lastname, F., et al., "Article title", J. Abbr. 2: 23-4 (2000)

Claims (23)

動き環境下でプロセスガスを冷却または液化するためのシステムであって、
a.分離容器、ここで該分離容器は複数の動き抑制バッフルを含み、該分離容器は、高圧冷媒流を分離しそれにより気体冷媒流と液体冷媒流を生成するものであり、
b.前記液体冷媒流を前記分離容器から外部の熱交換器コアに送達するための気液冷媒パイプ、
c.少なくとも1つの外部熱交換器コア、ここで該外部熱交換器コアは、ケトルの外部にあり、前記液体冷媒流およびより暖かいプロセス流が前記外部熱交換器コアにおいて間接的な熱交換を受け、それにより、冷却されたプロセス流および気化した冷媒流を生成し、前記冷却されたプロセス流は、前記外部熱交換器コアの外部の位置に送達されるものであり、
d.前記部分気化冷媒を前記外部熱交換器コアから前記分離容器に送達するための部分気化冷媒パイプ、ここで前記部分気化冷媒パイプは最小の圧力降下を提供し、前記部分気化冷媒パイプは、熱サイフォン効果が維持されるのを保証するものである、
を含む該システム。
A system for cooling or liquefying process gas in a moving environment,
a. A separation vessel, wherein the separation vessel includes a plurality of motion-suppressing baffles, the separation vessel separating a high-pressure refrigerant stream and thereby generating a gaseous refrigerant stream and a liquid refrigerant stream;
b. A gas-liquid refrigerant pipe for delivering the liquid refrigerant stream from the separation vessel to an external heat exchanger core;
c. At least one external heat exchanger core, wherein the external heat exchanger core is external to the kettle, and the liquid refrigerant stream and warmer process stream undergo indirect heat exchange in the external heat exchanger core; Thereby producing a cooled process stream and a vaporized refrigerant stream, wherein the cooled process stream is delivered to a location external to the external heat exchanger core;
d. A partially vaporized refrigerant pipe for delivering the partially vaporized refrigerant from the external heat exchanger core to the separation vessel, wherein the partially vaporized refrigerant pipe provides a minimum pressure drop, and the partially vaporized refrigerant pipe is a thermosyphon Guarantees that the effect is maintained,
Including the system.
前記複数の動き抑制バッフルが、水平に配置されている請求項1に記載のシステム。   The system of claim 1, wherein the plurality of motion suppression baffles are arranged horizontally. 前記複数の動き抑制バッフルが、垂直に配置されている請求項1に記載のシステム。   The system of claim 1, wherein the plurality of motion suppression baffles are arranged vertically. 前記複数の動き抑制バッフルが、水平および垂直に配置されている請求項1に記載のシステム。   The system of claim 1, wherein the plurality of motion suppression baffles are arranged horizontally and vertically. 動き環境下でプロセスガスを冷却または液化するためのシステムであって、
a.分離容器、ここで該分離容器は、冷媒流を分離しそれにより気体冷媒流と液体冷媒流を生成するものであり、
b.前記液体冷媒流を前記分離容器から外部の熱交換器コアに送達するための気液冷媒パイプ、
c.少なくとも1つの外部熱交換器コア、ここで前記液体冷媒流およびより暖かいプロセス流が前記外部熱交換器コアにおいて間接的な熱交換を受け、それにより、冷却されたプロセス流および気化した冷媒流を生成し、
d.前記部分気化冷媒を前記外部熱交換器コアから前記分離容器に送達するための部分気化冷媒パイプ、
を含む該システム。
A system for cooling or liquefying process gas in a moving environment,
a. A separation vessel, wherein the separation vessel separates the refrigerant stream and thereby generates a gaseous refrigerant stream and a liquid refrigerant stream;
b. A gas-liquid refrigerant pipe for delivering the liquid refrigerant stream from the separation vessel to an external heat exchanger core;
c. At least one external heat exchanger core, wherein the liquid refrigerant stream and warmer process stream undergo indirect heat exchange in the external heat exchanger core, thereby reducing the cooled process stream and the vaporized refrigerant stream. Generate
d. A partially vaporized refrigerant pipe for delivering the partially vaporized refrigerant from the external heat exchanger core to the separation vessel;
Including the system.
前記冷媒流が、高圧液体冷媒として前記分離容器に送達される請求項6に記載のシステム。   The system of claim 6, wherein the refrigerant stream is delivered to the separation vessel as a high pressure liquid refrigerant. 前記分離容器が、複数の動き抑制バッフルを含む請求項6に記載のシステム。   The system of claim 6, wherein the separation vessel includes a plurality of motion restraining baffles. 前記複数の動き抑制バッフルが、水平に配置されている請求項7に記載のシステム。   The system of claim 7, wherein the plurality of motion suppression baffles are arranged horizontally. 前記複数の動き抑制バッフルが、垂直に配置されている請求項7に記載のシステム。   The system of claim 7, wherein the plurality of motion suppression baffles are arranged vertically. 前記複数の動き抑制バッフルが、水平および垂直に配置されている請求項7に記載のシステム。   The system of claim 7, wherein the plurality of motion suppression baffles are arranged horizontally and vertically. 前記部分気化冷媒パイプが、最小の圧力降下を提供する請求項6に記載のシステム。   The system of claim 6, wherein the partially vaporized refrigerant pipe provides a minimum pressure drop. 前記部分気化冷媒パイプが、熱サイフォン効果が維持されることを確保する請求項6に記載のシステム。   The system of claim 6, wherein the partially vaporized refrigerant pipe ensures that the thermosyphon effect is maintained. 前記冷却された供給流が、前記外部熱交換器コアの外部の場所に送達される請求項6に記載のシステム。   The system of claim 6, wherein the cooled feed stream is delivered to a location external to the external heat exchanger core. 動き環境下で天然ガスを液化するための方法であって、
a.冷(refrigeration)を分離容器に導入し、それにより気体冷媒流と液体冷媒流を生成すること、ここで、前記分離容器は、複数の動き抑制バッフルを含み、
b.前記液体冷媒流を外部熱交換器コアの底近傍に導入すること、
c.より暖かいプロセス流を前記液体冷媒流の上部の位置で前記外部熱交換器コアに導入すること、
d.前記より暖かいプロセス流を前記液体冷媒流との間接的熱交換により冷却し、それにより冷却されたプロセス流と部分気化冷媒流とを生成すること、
e.前記冷却されたプロセス流と部分気化冷媒流とを前記外部熱交換器から取り出すこと、
f.前記部分気化冷媒流を前記分離容器に送達すること、
g.前記冷却されたプロセス流を前記外部熱交換器の外部の位置に送達すること、
を含む該方法。
A method for liquefying natural gas in a moving environment,
a. Introducing refrigeration into the separation vessel, thereby producing a gaseous refrigerant stream and a liquid refrigerant stream, wherein the separation vessel comprises a plurality of motion-reducing baffles;
b. Introducing the liquid refrigerant stream near the bottom of the external heat exchanger core;
c. Introducing a warmer process stream into the external heat exchanger core at a position above the liquid refrigerant stream;
d. Cooling the warmer process stream by indirect heat exchange with the liquid refrigerant stream, thereby producing a cooled process stream and a partially vaporized refrigerant stream;
e. Removing the cooled process stream and the partially vaporized refrigerant stream from the external heat exchanger;
f. Delivering the partially vaporized refrigerant stream to the separation vessel;
g. Delivering the cooled process stream to a location external to the external heat exchanger;
The method comprising.
前記複数の動き抑制バッフルが、水平に配置されている請求項14に記載の方法。   The method of claim 14, wherein the plurality of motion suppression baffles are arranged horizontally. 前記複数の動き抑制バッフルが、水平および垂直に配置されている請求項14に記載の方法。   The method of claim 14, wherein the plurality of motion suppression baffles are arranged horizontally and vertically. 動き環境下で天然ガスを液化するための方法であって、
a.分離容器に冷(refrigeration)を導入し、それにより気体冷媒流と液体冷媒流を生成すること、
b.前記液体冷媒流を外部熱交換器コアの底近傍に導入すること、
c.より暖かいプロセス流を前記液体冷媒流の上部の位置で前記外部熱交換器コアに導入すること、
d.前記より暖かいプロセス流を前記外部熱交換器コアにおいて前記液体冷媒流との間接的熱交換により冷却し、それにより冷却されたプロセス流と部分気化冷媒流とを生成すること、
e.前記冷却されたプロセス流と前記部分気化冷媒流とを前記外部熱交換器から取り出すこと、
を含む該方法。
A method for liquefying natural gas in a moving environment,
a. Introducing refrigeration into the separation vessel, thereby producing a gas refrigerant stream and a liquid refrigerant stream;
b. Introducing the liquid refrigerant stream near the bottom of the external heat exchanger core;
c. Introducing a warmer process stream into the external heat exchanger core at a position above the liquid refrigerant stream;
d. Cooling the warmer process stream by indirect heat exchange with the liquid refrigerant stream in the external heat exchanger core, thereby producing a cooled process stream and a partially vaporized refrigerant stream;
e. Removing the cooled process stream and the partially vaporized refrigerant stream from the external heat exchanger;
The method comprising.
(f)前記部分気化冷媒流を、前記分離容器に送達することをさらに含む請求項17に記載の方法。   18. The method of claim 17, further comprising (f) delivering the partially vaporized refrigerant stream to the separation vessel. (g)前記冷却された供給流を、前記外部熱交換器コアの外部の場所に送達することをさらに含む請求項17に記載の方法。   The method of claim 17, further comprising: (g) delivering the cooled feed stream to a location external to the external heat exchanger core. 前記分離容器が、複数の動き抑制バッフルを含む請求項19に記載のシステム。   The system of claim 19, wherein the separation vessel includes a plurality of motion restraining baffles. 前記複数の動き抑制バッフルが、垂直に配置されている請求項19に記載のシステム。   The system of claim 19, wherein the plurality of motion suppression baffles are arranged vertically. 前記複数の動き抑制バッフルが、水平に配置されている請求項19に記載のシステム。   The system of claim 19, wherein the plurality of motion suppression baffles are arranged horizontally. 前記複数の動き抑制バッフルが、水平および垂直に配置されている請求項19に記載のシステム。   The system of claim 19, wherein the plurality of motion suppression baffles are arranged horizontally and vertically.
JP2014548840A 2011-12-20 2012-12-19 Natural gas liquefaction in a moving environment Ceased JP2015506454A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161578085P 2011-12-20 2011-12-20
US61/578,085 2011-12-20
PCT/US2012/070647 WO2013096464A1 (en) 2011-12-20 2012-12-19 Liquefying natural gas in a motion environment

Publications (2)

Publication Number Publication Date
JP2015506454A true JP2015506454A (en) 2015-03-02
JP2015506454A5 JP2015506454A5 (en) 2015-11-12

Family

ID=48653241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014548840A Ceased JP2015506454A (en) 2011-12-20 2012-12-19 Natural gas liquefaction in a moving environment

Country Status (8)

Country Link
US (1) US20130160487A1 (en)
EP (1) EP2795214A4 (en)
JP (1) JP2015506454A (en)
CN (1) CN104011487B (en)
AP (1) AP2014007703A0 (en)
AU (1) AU2012359032A1 (en)
RU (1) RU2620310C2 (en)
WO (1) WO2013096464A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2015225689B2 (en) * 2014-03-07 2019-01-03 Conocophillips Company Heat exchanger system with mono-cyclone inline separator
AU2015252986B2 (en) 2014-05-01 2019-07-11 Conocophillips Company Liquid drains in core-in-shell heat exchanger
CN106024074A (en) * 2016-05-11 2016-10-12 中广核研究院有限公司 Nuclear power plant voltage stabilizer for inhibiting liquid level sloshing
CN105957565B (en) * 2016-06-23 2018-05-29 中广核研究院有限公司 Constrain pond and the containment with the constrain pond
CN114777412B (en) * 2022-04-01 2023-03-24 中国科学院理化技术研究所 Hydrogen liquefying plant with thermal siphon type hydrogen subcooler

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3326280A (en) * 1962-11-22 1967-06-20 Air Liquide Heat exchanger with baffle structure
JPS5128101A (en) * 1974-08-09 1976-03-09 Linde Ag Tennengasuno ekikahoho
JPS5733298A (en) * 1980-07-31 1982-02-23 Mitsubishi Heavy Ind Ltd Liquefaction/recovery device for evaporated gas in ship's tank
JPS5981483A (en) * 1982-08-30 1984-05-11 エア・プロダクツ・アンド・ケミカルズ・インコ−ポレイテツド Method of liquefying methane
JPS6099982A (en) * 1983-05-06 1985-06-03 コンパニユエ・フランセ−ズ・デチユ−ド・エ・ド・コンストリユクチオン・“テクニツプ” Method and device for cooling and liquefying at least one gas having low melting point such as natural gas
JPS6163566U (en) * 1984-09-25 1986-04-30
JPH06159928A (en) * 1992-11-20 1994-06-07 Chiyoda Corp Liquefying method for natural gas
JPH06299174A (en) * 1992-07-24 1994-10-25 Chiyoda Corp Cooling system using propane coolant in natural gas liquefaction process
JPH08159652A (en) * 1994-12-09 1996-06-21 Kobe Steel Ltd Liquefying method for gas
JPH11244671A (en) * 1998-02-27 1999-09-14 Mitsubishi Rayon Co Ltd Hollow-fiber membrane module for treating crude oil, treatment of crude oil using the module and crude oil treating device
JP2002530616A (en) * 1998-11-18 2002-09-17 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Natural gas liquefaction plant
JP2004536176A (en) * 2001-06-29 2004-12-02 エクソンモービル アップストリーム リサーチ カンパニー A method for recovering ethane and heavier hydrocarbons from a methane-rich pressurized liquid mixture
US20070245941A1 (en) * 2004-07-02 2007-10-25 Sandstrom Robert E Lng Sloshing Impact Reduction System
JP2008504509A (en) * 2004-06-23 2008-02-14 エクソンモービル アップストリーム リサーチ カンパニー Mixed refrigerant liquefaction method
JP2008509374A (en) * 2004-08-06 2008-03-27 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド Natural gas liquefaction method
JP2010510369A (en) * 2006-11-22 2010-04-02 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Method and apparatus for obtaining gas-liquid phase uniformity in a mixed flow
WO2010109130A1 (en) * 2009-03-25 2010-09-30 Technip France Method for processing a natural load gas for obtaining a natural processed gas and a reduction in c5+ hydrocarbons, and associated installation
JP2011505298A (en) * 2007-12-04 2011-02-24 三星重工業株式会社 Sloshing suppression structure for LNG cargo tank
JP2011525161A (en) * 2008-06-20 2011-09-15 シーワン マリタイム コーポレーション Integrated system for storage and transport of natural gas in light hydrocarbon media

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US436003A (en) * 1890-09-09 Process of circulating liquefied refrigerating agents
EP0723125B1 (en) * 1994-12-09 2001-10-24 Kabushiki Kaisha Kobe Seiko Sho Gas liquefying method and plant
MY117899A (en) * 1995-06-23 2004-08-30 Shell Int Research Method of liquefying and treating a natural gas.
MY122625A (en) * 1999-12-17 2006-04-29 Exxonmobil Upstream Res Co Process for making pressurized liquefied natural gas from pressured natural gas using expansion cooling
US6220287B1 (en) * 2000-02-03 2001-04-24 The Boeing Company Baffle for suppressing slosh in a tank and a tank for incorporating same
WO2001088447A1 (en) * 2000-05-18 2001-11-22 Phillips Petroleum Company Enhanced ngl recovery utilizing refrigeration and reflux from lng plants
US20100293996A1 (en) * 2007-11-16 2010-11-25 Michiel Gijsbert Van Aken Method and apparatus for liquefying a hydrocarbon stream and floating vessel or offshore platform comprising the same
US20090139263A1 (en) * 2007-12-04 2009-06-04 Air Products And Chemicals, Inc. Thermosyphon reboiler for the denitrogenation of liquid natural gas
RU2382301C1 (en) * 2008-10-20 2010-02-20 Открытое акционерное общество "Научно-исследовательский и проектный институт по переработке газа" ОАО "НИПИгазпереработка" Unit for low-temperature separation of hydrocarbon gas
FR2944523B1 (en) * 2009-04-21 2011-08-26 Technip France PROCESS FOR PRODUCING METHANE-RICH CURRENT AND CUTTING RICH IN C2 + HYDROCARBONS FROM A NATURAL LOAD GAS CURRENT, AND ASSOCIATED PLANT
US20100281915A1 (en) * 2009-05-05 2010-11-11 Air Products And Chemicals, Inc. Pre-Cooled Liquefaction Process
US9829246B2 (en) * 2010-07-30 2017-11-28 Exxonmobil Upstream Research Company Cryogenic systems for removing acid gases from a hydrocarbon gas stream using co-current separation devices

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3326280A (en) * 1962-11-22 1967-06-20 Air Liquide Heat exchanger with baffle structure
JPS5128101A (en) * 1974-08-09 1976-03-09 Linde Ag Tennengasuno ekikahoho
JPS5733298A (en) * 1980-07-31 1982-02-23 Mitsubishi Heavy Ind Ltd Liquefaction/recovery device for evaporated gas in ship's tank
JPS5981483A (en) * 1982-08-30 1984-05-11 エア・プロダクツ・アンド・ケミカルズ・インコ−ポレイテツド Method of liquefying methane
JPS6099982A (en) * 1983-05-06 1985-06-03 コンパニユエ・フランセ−ズ・デチユ−ド・エ・ド・コンストリユクチオン・“テクニツプ” Method and device for cooling and liquefying at least one gas having low melting point such as natural gas
JPS6163566U (en) * 1984-09-25 1986-04-30
JPH06299174A (en) * 1992-07-24 1994-10-25 Chiyoda Corp Cooling system using propane coolant in natural gas liquefaction process
JPH06159928A (en) * 1992-11-20 1994-06-07 Chiyoda Corp Liquefying method for natural gas
JPH08159652A (en) * 1994-12-09 1996-06-21 Kobe Steel Ltd Liquefying method for gas
JPH11244671A (en) * 1998-02-27 1999-09-14 Mitsubishi Rayon Co Ltd Hollow-fiber membrane module for treating crude oil, treatment of crude oil using the module and crude oil treating device
JP2002530616A (en) * 1998-11-18 2002-09-17 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Natural gas liquefaction plant
JP2004536176A (en) * 2001-06-29 2004-12-02 エクソンモービル アップストリーム リサーチ カンパニー A method for recovering ethane and heavier hydrocarbons from a methane-rich pressurized liquid mixture
JP2008504509A (en) * 2004-06-23 2008-02-14 エクソンモービル アップストリーム リサーチ カンパニー Mixed refrigerant liquefaction method
US20070245941A1 (en) * 2004-07-02 2007-10-25 Sandstrom Robert E Lng Sloshing Impact Reduction System
JP2008509374A (en) * 2004-08-06 2008-03-27 ビーピー・コーポレーション・ノース・アメリカ・インコーポレーテッド Natural gas liquefaction method
JP2010510369A (en) * 2006-11-22 2010-04-02 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Method and apparatus for obtaining gas-liquid phase uniformity in a mixed flow
JP2011505298A (en) * 2007-12-04 2011-02-24 三星重工業株式会社 Sloshing suppression structure for LNG cargo tank
JP2011525161A (en) * 2008-06-20 2011-09-15 シーワン マリタイム コーポレーション Integrated system for storage and transport of natural gas in light hydrocarbon media
WO2010109130A1 (en) * 2009-03-25 2010-09-30 Technip France Method for processing a natural load gas for obtaining a natural processed gas and a reduction in c5+ hydrocarbons, and associated installation

Also Published As

Publication number Publication date
CN104011487B (en) 2017-03-01
EP2795214A4 (en) 2016-01-06
CN104011487A (en) 2014-08-27
AU2012359032A1 (en) 2014-07-03
US20130160487A1 (en) 2013-06-27
EP2795214A1 (en) 2014-10-29
WO2013096464A1 (en) 2013-06-27
AP2014007703A0 (en) 2014-06-30
RU2620310C2 (en) 2017-05-24
RU2014129588A (en) 2016-02-20

Similar Documents

Publication Publication Date Title
JP6270734B2 (en) Internal baffle for sloshing suppression in core heat exchanger in shell
JP2015506454A (en) Natural gas liquefaction in a moving environment
JP5898264B2 (en) LNG system using stacked vertical heat exchanger to provide liquid reflux stream
US11162746B2 (en) Liquid drains in core-in-shell heat exchanger
KR20150093333A (en) Supplying System And Method Of Refrigerant
CA2942710C (en) Weather-vaning air-cooled heat exchangers
JP6170943B2 (en) Method and apparatus for reducing the effects of motion in an in-shell core heat exchanger
CN108106325A (en) Suitable for marine natural gas liquefaction system
KR101751830B1 (en) Floating marine structure including an apparatus for fractionating natural gas
KR20190043290A (en) small LNG regasification apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150925

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170822

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20180109