JP2015502457A - Heat treatment process in manufacturing method of drive belt metal ring element - Google Patents

Heat treatment process in manufacturing method of drive belt metal ring element Download PDF

Info

Publication number
JP2015502457A
JP2015502457A JP2014544696A JP2014544696A JP2015502457A JP 2015502457 A JP2015502457 A JP 2015502457A JP 2014544696 A JP2014544696 A JP 2014544696A JP 2014544696 A JP2014544696 A JP 2014544696A JP 2015502457 A JP2015502457 A JP 2015502457A
Authority
JP
Japan
Prior art keywords
ring
heat treatment
treatment process
weight percent
nitriding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014544696A
Other languages
Japanese (ja)
Other versions
JP2015502457A5 (en
JP6008976B2 (en
Inventor
ペニングス ベルト
ペニングス ベルト
トラン ミン−デュク
トラン ミン−デュク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JP2015502457A publication Critical patent/JP2015502457A/en
Publication of JP2015502457A5 publication Critical patent/JP2015502457A5/ja
Application granted granted Critical
Publication of JP6008976B2 publication Critical patent/JP6008976B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/32Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for gear wheels, worm wheels, or the like
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • C22C38/105Ferrous alloys, e.g. steel alloys containing cobalt containing Co and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/16V-belts, i.e. belts of tapered cross-section consisting of several parts

Abstract

本発明は、ドライブベルト(1)に使用するための金属リング(14)の製造方法における熱処理プロセスに関する。リング(14)は、2つのステップで製造される。第1のステップでは、リング(14)は、3時間以上450℃〜500℃の範囲の温度でアンモニアガスを含まない雰囲気中に保たれ、第2のステップでは、リング(14)は、425℃〜475℃の範囲の温度で、少なくとも2体積パーセント、但し10体積パーセント未満のアンモニアを含む雰囲気中に保たれる。The present invention relates to a heat treatment process in a method for producing a metal ring (14) for use in a drive belt (1). The ring (14) is manufactured in two steps. In the first step, the ring (14) is kept in an atmosphere containing no ammonia gas at a temperature in the range of 450 ° C. to 500 ° C. for 3 hours or more, and in the second step, the ring (14) is 425 ° C. Maintained in an atmosphere containing at least 2 volume percent but less than 10 volume percent ammonia at a temperature in the range of ~ 475 ° C.

Description

本発明は、ドライブベルトに使用される金属リングの製造方法、特に請求項1の上位概念に記載された製造方法の熱処理プロセス部分に関する。ドライブベルトは、典型的には、広く知られた、主に自動車に適用される連続可変トランスミッションの調整可能な2つのプーリの間の動力伝達用の手段として使用される。   The present invention relates to a method of manufacturing a metal ring used for a drive belt, and more particularly to a heat treatment process part of the manufacturing method described in the superordinate concept of claim 1. The drive belt is typically used as a means for power transmission between two adjustable pulleys of a widely known and continuously variable transmission mainly applied to automobiles.

広く知られた1タイプのドライブベルトが欧州特許出願公開第1403551号明細書に詳説されている。このドライブベルトは、比較的薄い多数の横方向金属エレメントから形成されている。横方向金属エレメントは、積層された2つのエンドレスな引張り手段に摺動可能に組み付けられており、引張り手段の各々は、択一的にエンドレスなバンド又はフープと云われる、相互に組み込まれた1セットのフラットな金属リングから構成されている。そのようなリングは、典型的には、マルエージング鋼のような析出硬化鋼から製作されている。析出硬化鋼は、際立った引張り強さ、曲げ疲労及び引張り応力に対する良好な耐性の特性と、シート材料から鋼を所望の形状に製作する比較的好適な可能性及び最終製品リングの材料特性(好適にはリングの周に沿って変動すべきではない)とを兼ね備える。本発明は、特に、17質量パーセント〜19質量パーセントのニッケル、4質量パーセント〜6質量パーセントのモリブデン、8質量パーセント〜18質量パーセントのコバルト、1質量パーセント未満のチタン、場合によっては少量の(例えば1質量パーセント未満)他の合金成分及び/又は不純物を含む基礎組成を有し、残余が鉄であるマルエージング鋼合金の範囲に関する。   One well-known type of drive belt is described in detail in EP 1403551. The drive belt is formed from a number of relatively thin transverse metal elements. The transverse metal elements are slidably assembled to two stacked endless tensioning means, each of the tensioning means being one of the mutually integrated ones, alternatively called an endless band or hoop. It consists of a set of flat metal rings. Such rings are typically made from precipitation hardened steel such as maraging steel. Precipitation hardened steels have outstanding tensile strength, bending fatigue, and good resistance to tensile stress, a relatively favorable possibility of producing steel from sheet material into the desired shape, and material properties of the final product ring (preferred Should not vary along the circumference of the ring). The present invention specifically relates to 17 to 19 weight percent nickel, 4 to 6 weight percent molybdenum, 8 to 18 weight percent cobalt, less than 1 weight percent titanium, and optionally a small amount (e.g., (Less than 1 percent by weight) relates to a range of maraging steel alloys having a basic composition containing other alloy components and / or impurities, the balance being iron.

前述の所望の材料特性は、際立った引張り強さの特性とリングの長手方向の曲げを可能にするのに十分な弾性とを兼ね備えるためのリングコア材料の適正な硬さと、耐摩耗性を得るためのリングの極めて硬い外側表面層とを含む。追加的に、外側表面層は、金属疲労に対する高い耐性を得るために、残留圧縮応力を有する。これは、リングがベルトの使用期間の間に曝される多数の負荷及び曲げサイクルに基づいて、リングの主な特徴となっている。   The aforementioned desired material properties are to obtain the proper hardness and wear resistance of the ring core material in order to combine outstanding tensile strength properties with sufficient elasticity to allow longitudinal bending of the ring. And a very hard outer surface layer of the ring. In addition, the outer surface layer has a residual compressive stress in order to obtain a high resistance to metal fatigue. This is a key feature of the ring based on the numerous loads and bending cycles that the ring is exposed to during the life of the belt.

そのようなリングの公知の製造方法の原理は、当該技術分野で広く知られていて、例えば欧州特許出願公開第1753889号明細書に記載されている。リングは、シート素材から形成されている。シート素材は、曲げられ、円筒形の形状又はチューブに溶接され、これが熱処理され、つまり焼きなましされ、元来の材料特性に戻される、つまり曲げ及び溶接により導入された変化が十分に除去される。次いで、チューブは、多数のフープに切断される。フープは、続いて、ロール加工され引き伸ばされ、典型的には最終製品で約0.185mmである所望の厚さにされる。ロール加工後に、フープは、通常、リング又はバンドと云われる。リングは、更なる焼きなましステップに曝され、ロール加工中に導入された内部応力が除去される。その後、リングは、寸法調整され、つまりリングは、2つの回転ローラの周りに取り付けられ、所定の周長さに伸ばされる。   The principles of known manufacturing methods for such rings are widely known in the art and are described, for example, in EP-A-1753889. The ring is formed from a sheet material. The sheet material is bent and welded to a cylindrical shape or tube, which is heat treated, i.e. annealed, to return to its original material properties, i.e. the changes introduced by bending and welding are sufficiently eliminated. The tube is then cut into multiple hoops. The hoop is then rolled and stretched to a desired thickness that is typically about 0.185 mm in the final product. After roll processing, the hoop is usually referred to as a ring or band. The ring is subjected to a further annealing step to remove internal stresses introduced during roll processing. The ring is then sized, i.e. the ring is mounted around two rotating rollers and stretched to a predetermined circumference.

最終的に、欧州特許出願公開第1753889号明細書によれば、リングは、析出硬化、つまり時効又はコア硬化の熱処理と、ガス軟窒化、つまりリングの鋼格子への窒素原子の挿入による表面硬化の熱処理との両方を含む組み合わされた単一のプロセスステップに曝される。欧州特許出願公開第1753889号明細書によれば、そのような時効及び窒化の組み合わされたプロセスステップでは、リングを、45分〜65分間440℃〜480℃のプロセス雰囲気を含むアンモニアガス中に保つ必要がある。   Finally, according to EP-A-1753889, the ring is subjected to precipitation hardening, i.e. heat treatment of aging or core hardening, and gas soft nitriding, i.e. surface hardening by insertion of nitrogen atoms into the steel lattice of the ring. Exposed to a combined single process step including both heat treatment. According to EP-A-1753889, in such a combined aging and nitriding process step, the ring is kept in ammonia gas containing a process atmosphere of 440 ° C. to 480 ° C. for 45 minutes to 65 minutes. There is a need.

長年来、特に窒化熱処理の化学は広範に研究されて、ますます理解されている。未だ公開されていないPCT/EP2010/007783号明細書は、そのような新たに得られた詳しい理解に基づいており、それにより、時効及び窒化が組み合わされた公知のプロセスステップの有効性は依然として大幅に改善できることが指摘されている。特に、そこには、そのようなプロセス雰囲気が500℃又はそれ以上で維持される条件で、プロセス雰囲気のアンモニアガス含有量が10体積パーセントを十分に下回るように低減できることが提案されている。そこのような後者のプロセス設定の利点は、極めて少量のアンモニアが使用され、従って窒化熱処理及びその周囲の影響に係るコストが好適に低減されることにある。   Over the years, the chemistry of nitriding heat treatment has been extensively studied and increasingly understood. PCT / EP2010 / 007783, which has not yet been published, is based on such newly gained detailed understanding, whereby the effectiveness of the known process steps combined with aging and nitridation is still significant. It is pointed out that it can be improved. In particular, it has been proposed that the ammonia gas content of the process atmosphere can be reduced well below 10 volume percent under conditions where such a process atmosphere is maintained at 500 ° C. or higher. The advantage of the latter process setting as such is that a very small amount of ammonia is used, so that the costs associated with the nitriding heat treatment and its surrounding effects are advantageously reduced.

PCT/EP2010/007783号明細書でも認められているように、前述の新しいプレセス設定は、正確にコントロールしなければならず、そうでない場合には、例えばプロセス温度又はアンモニア濃度の不意の上昇が生じるとき、いわゆる鉄窒化物の化合物層がリングの表面に形成され、これにより、リングの(金属)疲労強さは、許容不能に低減される。この化合物層形成の現象は、特に、窒化チタンのような非金属含有物を含まない又は極めて少量しか含まないマルエージング鋼リング材料の現行の範囲に関係し、この材料は、そのような含有からではなく表面欠陥からの亀裂発生による金属疲労から最終的に破損する傾向にある。実際に、特に大量生産環境で、化合物層及び/又は他の表面欠陥が形成されない狭い範囲の内側で実際のプロセス設定を確実にコントロールすることは極めて困難であると判った。   As recognized in PCT / EP2010 / 007783, the new process settings described above must be precisely controlled, otherwise an unexpected increase in process temperature or ammonia concentration, for example, will occur. Sometimes a so-called iron nitride compound layer is formed on the surface of the ring, which unacceptably reduces the (metal) fatigue strength of the ring. This phenomenon of compound layer formation relates in particular to the current range of maraging steel ring materials that do not contain non-metal inclusions such as titanium nitride or contain very little, and this material is Instead, it tends to eventually break from metal fatigue due to cracking from surface defects. In fact, it has proved extremely difficult to reliably control the actual process settings within a narrow range where compound layers and / or other surface defects are not formed, especially in a mass production environment.

以下のことがこの新たなプロセス設定の更なる制限となることが判った。つまり、この新しいプロセス設定は、マルエージング鋼リング材料組成の制限された範囲にしか適していない、つまり析出硬化の要求された割合を実現するために比較的高いコバルト及び/又はモリブデン含有量を有するマルエージング鋼材料組成にしか適していない。この種の鋼は、単純に前述の高いコバルト及び/又はモリブデン含有量により、割合高価である。   The following were found to be further limitations on this new process setting: That is, this new process setting is only suitable for a limited range of maraging steel ring material composition, i.e. has a relatively high cobalt and / or molybdenum content to achieve the required rate of precipitation hardening. Only suitable for maraging steel material composition. This type of steel is relatively expensive due to the high cobalt and / or molybdenum content mentioned above.

従って、前述のプロセス設定が、好適には窒化におけるプロセス雰囲気の少量のアンモニア含有量を維持しつつ、(i)化合物層形成のリスクを低減するために、(ii)マルエージング鋼組成の境界範囲に適合させるために、変化できると、好適であると考えられる。   Therefore, in order to reduce the risk of (i) compound layer formation, while the above process settings preferably maintain a small ammonia content of the process atmosphere in nitriding, (ii) the boundary range of the maraging steel composition It is considered suitable to be able to change to fit.

本発明によれば、本発明の目的は、別個の時効及び窒化のステップを含む熱処理プロセスにより実現される。その際、時効熱処理は、180分間以上450℃〜500℃の温度で窒化ガス中にリングを保つことを必要とし、窒化熱処理は、45〜90分間425℃〜475℃の温度で、想定量の、但し12体積パーセント未満、好適には10体積パーセント未満のアンモニアガスを含むプロセス雰囲気中にリングを保つことを必要とする。特に、良好な結果は、200分間490℃で行われた時効熱処理で得られ、かつ/又は4体積パーセント〜8体積パーセントのアンモニアを含むプロセス雰囲気において75分間450℃で行われた窒化熱処理で得られた。   According to the present invention, the object of the present invention is realized by a heat treatment process comprising separate aging and nitriding steps. In this case, the aging heat treatment requires keeping the ring in the nitriding gas at a temperature of 450 ° C. to 500 ° C. for 180 minutes or more, and the nitriding heat treatment is performed at a temperature of 425 ° C. to 475 ° C. for 45 to 90 minutes. However, it is necessary to keep the ring in a process atmosphere containing less than 12 volume percent, preferably less than 10 volume percent ammonia gas. In particular, good results have been obtained with an aging heat treatment performed at 490 ° C. for 200 minutes and / or with a nitridation heat treatment performed at 450 ° C. for 75 minutes in a process atmosphere containing 4 to 8 volume percent ammonia. It was.

本発明の上述の基本的な特性は、付属の図面につき、図示の例を用いて説明される。   The above-described basic characteristics of the present invention will be described with reference to the accompanying drawings and the illustrated examples.

本発明におけるドライブベルト及びドライブベルトが適用されたトランスミッションを示す概略図である。It is the schematic which shows the transmission to which the drive belt and drive belt in this invention were applied. 積層された引張り手段及び横方向エレメントがドライブベルト内で相互に配向された状態を示す概略図である。FIG. 2 is a schematic diagram showing the stacked tensioning means and transverse elements oriented relative to each other in the drive belt. 組み合わせられた時効及び窒化のプロセスステップを含む、ドライブベルトのエンドレスな引張り手段に適用される金属リングの公知の製造方法を表す線図である。1 is a diagram representing a known manufacturing method of a metal ring applied to an endless tensioning means of a drive belt, including combined aging and nitriding process steps. 本発明によるドライブベルトの引張り手段のリング要素の時効及び窒化の熱処理を表す線図である。FIG. 4 is a diagram representing the aging and nitriding heat treatment of the ring element of the drive belt tensioning means according to the invention.

図面において、公知の製造方法及び新たな製造方法の別個のプロセスステップは、ローマ数字で表されている。   In the drawings, the separate process steps of the known manufacturing method and the new manufacturing method are represented by Roman numerals.

図1には、2つのプーリ4,5の周りに巻き掛けられたドライブベルト1を備える連続可変トランスミッション(CVT;無段変速機)が概略的に示されている。このベルト1は、2セットの、相互に組み込まれた薄くてフラットな金属リング14(図2)(択一的にバンド14と云われる)の構成をした、積層されたエンドレスな引張り手段2と、多数の横方向部材3(択一的に横方向エレメントと云われる)とから構成されている。横方向部材3は、引張り手段2の周囲に沿って実質的に連続的な列を成して取り付けられていて、その周囲に沿って摺動自在である。そのような連続可変トランスミッションは、それ自体広く知られている。   FIG. 1 schematically shows a continuously variable transmission (CVT; continuously variable transmission) comprising a drive belt 1 wound around two pulleys 4 and 5. The belt 1 is composed of two sets of interleaved thin flat metal rings 14 (FIG. 2) (alternatively referred to as bands 14), laminated endless pulling means 2 and A plurality of transverse members 3 (alternatively referred to as transverse elements). The transverse members 3 are mounted in a substantially continuous row along the circumference of the pulling means 2 and are slidable along the circumference. Such continuously variable transmissions are well known per se.

図2には、横方向部材3の正面図及び引張り手段2の横断面図を示す、公知のベルト1の横断面が示されている。横方向部材3は、それぞれ側方に側面6を有し、側面6により、横方向部材3は、2つのトランスミッションプーリ4,5のプーリディスクに係合する。引張り手段2のリング14は、高品質マルエージング鋼から製作されている。リング14の典型的な厚さは、0.15mm〜0.25mmの範囲にあり、その典型的な幅は、8mm〜35mmの範囲にあり、その典型的な周長さは、500mm〜1000mmの範囲にある。   FIG. 2 shows a cross section of a known belt 1, showing a front view of the transverse member 3 and a cross section of the tension means 2. The lateral members 3 each have side surfaces 6 on the sides, by which the lateral members 3 engage the pulley disks of the two transmission pulleys 4, 5. The ring 14 of the tensioning means 2 is made from high quality maraging steel. The typical thickness of the ring 14 is in the range of 0.15 mm to 0.25 mm, its typical width is in the range of 8 mm to 35 mm, and its typical circumference is 500 mm to 1000 mm. Is in range.

図3には、金属プッシュベルト製作の初期から実施されている、上述のベルト1、特にベルト1のリング14の公知の製造方法のうちの本発明に関係する部分が示されている。第1のプロセスステップIでは、素材11のシートが、円筒形の形状に曲げられ、その際、相互に当接するシート端部12は、第2のプロセスステップIIで溶接し合わされ、チューブ13が形成される。プロセスの第3のステップIIIでは、チューブ13が、真空又は窒素ガスN2のような不活性プロセス雰囲気中で800℃を超える温度で焼きなまされる。その後、第4のプロセスステップIVで、チューブ13は、多数のフープ14に切断される。フープ14は、続いて、プロセスステップVで、所望の厚さにロール加工され引き伸ばされる。ロール加工後に、輪14は、通常、リング14又はバンド14と云われる。リング14は、更なる焼きなましプロセスステップVIに曝され、ロール加工の間に導入された内部応力が除去される。その後、第7のプロセスステップVIIで、リング14は寸法調整され、つまり、リング14は、2つの回転ローラの周りに取り付けられ、所定の周長さに引き伸ばされる。この第7のプロセスステップVIIでは、リング14に内部応力分配も生ぜしめられる。内部応力分配は、各リング14のいわゆるカール半径を規定する。最後に、公知の製造方法の第8のステップVIIIで、リング14は、析出硬化又は時効及びガス軟窒化、すなわちリングの鋼格子への窒素原子の挿入による表面硬化の2つの熱処理に曝される。時効及び窒化のような2つの熱処理を別個に、すなわち2つの別個の連続的なプロセスステップで、又は、同時に単一のプロセスステップで行うことが公知である。 FIG. 3 shows a portion of the above-described known manufacturing method of the belt 1, particularly the ring 14 of the belt 1, which has been implemented from the beginning of the metal push belt manufacturing, and which relates to the present invention. In the first process step I, the sheet of material 11 is bent into a cylindrical shape, with the sheet ends 12 abutting against each other being welded together in the second process step II to form the tube 13. Is done. In the third step III of the process, the tube 13 is annealed at a temperature above 800 ° C. in an inert process atmosphere such as vacuum or nitrogen gas N 2 . Thereafter, in a fourth process step IV, the tube 13 is cut into a number of hoops 14. The hoop 14 is subsequently rolled and stretched to the desired thickness in process step V. After rolling, the wheel 14 is usually referred to as the ring 14 or band 14. Ring 14 is exposed to further annealing process step VI to remove internal stresses introduced during roll processing. Thereafter, in a seventh process step VII, the ring 14 is sized, i.e. the ring 14 is mounted around two rotating rollers and stretched to a predetermined circumferential length. In this seventh process step VII, internal stress distribution is also produced in the ring 14. The internal stress distribution defines the so-called curl radius of each ring 14. Finally, in the eighth step VIII of the known manufacturing method, the ring 14 is subjected to two heat treatments, precipitation hardening or aging and gas soft nitriding, ie surface hardening by insertion of nitrogen atoms into the steel lattice of the ring. . It is known to perform two heat treatments, such as aging and nitriding, separately, ie in two separate sequential process steps, or simultaneously in a single process step.

窒化では、リング14は、アンモニアガス含有プロセス雰囲気中に保たれる。最近の開発では、窒化において10体積パーセント未満の従来にはないほど少量のアンモニアの使用に成功している。窒化におけるそのような少量のアンモニア含有量はそれ自体好適であるが、プロセスパラメータ(つまり温度、時間及び雰囲気)における変動に対する許容が狭くなる(耐性が低くなる)欠点を伴い、リング材料(つまりマルエージング鋼組成)に関してより厳しい要求が課せられることが判った。   In nitriding, the ring 14 is kept in an ammonia gas containing process atmosphere. Recent developments have successfully used less than 10 volume percent of unconventional ammonia in nitriding. Such small amounts of ammonia content in nitriding are suitable per se, but with the disadvantage that the tolerances to variations in process parameters (ie temperature, time and atmosphere) are narrow (less resistant), and ring materials (ie It has been found that more stringent requirements are imposed on the aging steel composition).

図4に線図で示された本発明は、より広い範囲のリング材料組成に対して、窒化において10体積パーセント未満のそのような少量のアンモニアを使用する方法を提供する一方、プロセスパラメータのコントロールの正確性に関する要求がなくなる。本発明によれば、リング14の時効及び窒化の熱処理は、別個の2つの、つまり連続的なプロセスステップVIII−A,VIII−Bを含む。本発明における第1のプロセスステップVIII−Aでは、リング14は、180分以上のプロセス継続時間の間、450℃〜500℃のプロセス温度で、アンモニアガスを含まず、そして単一の、又は少なくとも主に窒素ガスから成るプロセス雰囲気中に保たれる。本発明における第2のプロセスステップVIII−Bでは、リング14は、45分〜90分のプロセス経過時間の間、425℃〜475℃のプロセス温度で、2体積パーセント〜12体積パーセント未満のアンモニアガスを含むプロセス雰囲気中に保たれる。   The present invention, shown diagrammatically in FIG. 4, provides a method for using such a small amount of ammonia in nitriding, less than 10 volume percent, for a wider range of ring material compositions, while controlling process parameters. There is no need for accuracy. According to the present invention, the aging and nitriding heat treatment of the ring 14 comprises two separate or sequential process steps VIII-A, VIII-B. In the first process step VIII-A according to the present invention, the ring 14 is free of ammonia gas at a process temperature of 450 ° C. to 500 ° C. for a process duration of 180 minutes or more and is single or at least Maintained in a process atmosphere consisting primarily of nitrogen gas. In the second process step VIII-B according to the present invention, the ring 14 is in the range of 2 volume percent to less than 12 volume percent ammonia gas at a process temperature of 425 ° C. to 475 ° C. for a process elapsed time of 45 minutes to 90 minutes. Kept in a process atmosphere containing

本発明は、更に、上述の記載、及び、説明されていないが専門家には直ぐにしかも一義的に明らかである図面の全ての詳細の他に、以下の特許請求の範囲の全ての詳細に関する。   The present invention further relates to all the details of the following claims, in addition to the above description and all the details of the drawings which have not been explained but are readily apparent to the expert.

Claims (6)

ドライブベルト(1)に使用するための金属リング(14)の製造方法における熱処理プロセスであって、
リング(14)を、時効及び窒化の2つのステップでそれぞれ製造し、時効のプロセスステップにおいて、リング(14)を、450℃〜500℃の範囲の温度でアンモニアガスを含まない雰囲気中に保ち、窒化のプロセスステップにおいて、リング(14)を、425℃〜475℃の範囲の温度でアンモニアガスを含む雰囲気中に保つ、
熱処理プロセスにおいて、
リング(14)を、時効のプロセスステップで3時間以上処理し、
リング(14)を、窒化のプロセスステップで少なくとも2体積パーセント、但し12体積パーセント未満のアンモニアを含有する雰囲気内で処理する、
ことを特徴とする、熱処理プロセス。
A heat treatment process in a method for producing a metal ring (14) for use in a drive belt (1),
Ring (14) is produced in two steps, aging and nitriding, respectively, and in the aging process step, ring (14) is kept in an atmosphere free from ammonia gas at a temperature in the range of 450 ° C. to 500 ° C., In the nitriding process step, the ring (14) is kept in an atmosphere containing ammonia gas at a temperature in the range of 425 ° C. to 475 ° C.,
In the heat treatment process,
Treat ring (14) for more than 3 hours with aging process steps,
Treating ring (14) in an atmosphere containing at least 2 volume percent, but less than 12 volume percent ammonia, in a nitriding process step;
A heat treatment process characterized by that.
窒化のプロセスステップで、リング(14)を、4体積パーセント〜8体積パーセントのアンモニアを含有する雰囲気内で処理する、請求項1記載の熱処理プロセス。   The heat treatment process according to claim 1, wherein the nitriding process step treats the ring (14) in an atmosphere containing 4 to 8 volume percent ammonia. 窒化のプロセスステップで、リング(14)を、75分間450℃で処理する、請求項1記載の熱処理プロセス。   The heat treatment process according to claim 1, wherein the ring (14) is treated at 450 ° C for 75 minutes in a nitriding process step. 時効のプロセスステップで、リング(14)を、200分間490℃で処理する、請求項1から3までのいずれか1項記載の熱処理プロセス。   The heat treatment process according to any one of claims 1 to 3, wherein the ring (14) is treated at 490 ° C for 200 minutes in an aging process step. リング(14)は、17質量パーセント〜19質量パーセントのニッケル、4質量パーセント〜6質量パーセントのモリブデン、8質量パーセント〜18質量パーセントのコバルト、1質量パーセント未満のチタンを含み、残部が鉄のマルエージング鋼合金の範囲のマルエージング鋼合金から成っている、請求項1から4までのいずれか1項記載の熱処理プロセス。   The ring (14) comprises 17 weight percent to 19 weight percent nickel, 4 weight percent to 6 weight percent molybdenum, 8 weight percent to 18 weight percent cobalt, less than 1 weight percent titanium, the balance being iron 5. A heat treatment process according to any one of claims 1 to 4, comprising a maraging steel alloy in the range of an aging steel alloy. 積層されたエンドレスな引張り手段(2)と、引張り手段(2)上に摺動可能に提供された複数の金属エレメント(3)とを備え、引張り手段(2)は、請求項1から5までのいずれか1項記載の熱処理方法に曝された、相互に重ね合わせられた金属リング(14)のセットから構成されている、自動車用の連続可変トランスミッション用のドライブベルト(1)。   A laminated endless pulling means (2) and a plurality of metal elements (3) slidably provided on the pulling means (2), the pulling means (2) comprising: A drive belt (1) for a continuously variable transmission for an automobile, comprising a set of metal rings (14) superposed on each other exposed to the heat treatment method according to any one of the preceding claims.
JP2014544696A 2011-11-30 2011-11-30 Heat treatment process in manufacturing method of drive belt metal ring element Active JP6008976B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/NL2011/000078 WO2013081451A1 (en) 2011-11-30 2011-11-30 Heat treatment process in a manufacturing method for a drive belt metal ring component

Publications (3)

Publication Number Publication Date
JP2015502457A true JP2015502457A (en) 2015-01-22
JP2015502457A5 JP2015502457A5 (en) 2016-05-19
JP6008976B2 JP6008976B2 (en) 2016-10-19

Family

ID=45420928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014544696A Active JP6008976B2 (en) 2011-11-30 2011-11-30 Heat treatment process in manufacturing method of drive belt metal ring element

Country Status (2)

Country Link
JP (1) JP6008976B2 (en)
WO (1) WO2013081451A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001026857A (en) * 1999-07-15 2001-01-30 Honda Motor Co Ltd Gas nitriding method for maraging steel
JP2002038251A (en) * 2000-07-24 2002-02-06 Dowa Mining Co Ltd Method for manufacturing endless ring for metal belt of continuously variable transmission
JP2003231921A (en) * 2002-02-07 2003-08-19 Honda Motor Co Ltd Method for heat-treating metal ring
JP2011526963A (en) * 2008-06-30 2011-10-20 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Heat treatment process for metal ring components of drive belt

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1176224B1 (en) * 2000-07-24 2014-04-16 Dowa Thermotech Co., Ltd. Nitrided maraging steel and method of manufacturing thereof
WO2004029320A1 (en) * 2002-09-24 2004-04-08 Honda Giken Kogyo Kabushiki Kaisha Method of nitriding metal ring and apparatus therefor
ATE321223T1 (en) 2002-09-30 2006-04-15 Doornes Transmissie Bv DRIVE BELT AND CONTINUOUSLY VARIABLE TRANSMISSION USING SAME
EP1753889B1 (en) 2004-05-19 2017-04-12 Robert Bosch Gmbh Push belt and manufacturing method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001026857A (en) * 1999-07-15 2001-01-30 Honda Motor Co Ltd Gas nitriding method for maraging steel
JP2002038251A (en) * 2000-07-24 2002-02-06 Dowa Mining Co Ltd Method for manufacturing endless ring for metal belt of continuously variable transmission
JP2003231921A (en) * 2002-02-07 2003-08-19 Honda Motor Co Ltd Method for heat-treating metal ring
JP2011526963A (en) * 2008-06-30 2011-10-20 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Heat treatment process for metal ring components of drive belt

Also Published As

Publication number Publication date
JP6008976B2 (en) 2016-10-19
WO2013081451A1 (en) 2013-06-06

Similar Documents

Publication Publication Date Title
JP5174963B2 (en) Heat treatment process for metal ring components of drive belt
JP2008520437A (en) Push belt and its manufacturing method
WO2013002633A1 (en) Manufacturing method for a drive belt ring component
JP3630299B2 (en) Method for manufacturing endless ring for metal belt of continuously variable transmission
EP3234211B1 (en) Method for producing a flexible steel ring for a drive belt for a continuously variable transmission
JP5784144B2 (en) Heat treatment process for manufacturing process of drive belt metal ring components
JP5528347B2 (en) Ring component of transmission belt and manufacturing method therefor
KR20110000568A (en) Drive belt ring component and manufacturing method and maraging steel base material therefor
WO2013000491A1 (en) Flexible ring for a drive belt for a continuously variable transmission and method for producing such
JP6008976B2 (en) Heat treatment process in manufacturing method of drive belt metal ring element
JP5882357B2 (en) Heat treatment process for manufacturing drive belt metal ring components
JP6605474B2 (en) Drive belt metal ring component manufacturing method and metal ring manufactured according to the manufacturing method
US20190331197A1 (en) Endless metal ring and method of producing the same
JP5701193B2 (en) CVT ring member manufacturing method, CVT ring member and CVT belt
JP6788969B2 (en) Heat treatment process in the method of manufacturing ring sets for drive belts
JP3784618B2 (en) Manufacturing method of laminated ring
JP6478919B2 (en) Ring set for continuously variable transmission drive belt
WO2015039933A1 (en) Flexible steel ring for a drive belt for a continuously variable transmission and method for producing such
JP2024506781A (en) Calibration process of ring circumferential length in ring set assembly method for drive belt
JP2019119899A (en) Cvt ring raw material, cvt ring member, and manufacturing method therefor
JP2019119898A (en) Cvt ring raw material, cvt ring member, and manufacturing method therefor
JP2019528409A (en) Flexible steel ring formed from maraging steel and provided with a nitrided surface layer
JP2000337452A (en) Manufacture of endless metallic belt

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150928

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20151225

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20160324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160913

R150 Certificate of patent or registration of utility model

Ref document number: 6008976

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250