JP2015232522A - Optical fiber sensor device - Google Patents
Optical fiber sensor device Download PDFInfo
- Publication number
- JP2015232522A JP2015232522A JP2014119924A JP2014119924A JP2015232522A JP 2015232522 A JP2015232522 A JP 2015232522A JP 2014119924 A JP2014119924 A JP 2014119924A JP 2014119924 A JP2014119924 A JP 2014119924A JP 2015232522 A JP2015232522 A JP 2015232522A
- Authority
- JP
- Japan
- Prior art keywords
- optical fiber
- light
- core
- hetero
- sensor device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 152
- 230000005540 biological transmission Effects 0.000 claims abstract description 67
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims abstract description 58
- 239000010931 gold Substances 0.000 claims abstract description 58
- 229910052737 gold Inorganic materials 0.000 claims abstract description 58
- 239000002105 nanoparticle Substances 0.000 claims abstract description 58
- 125000005842 heteroatom Chemical group 0.000 claims abstract description 54
- 230000002093 peripheral effect Effects 0.000 claims abstract description 43
- 239000000463 material Substances 0.000 claims abstract description 25
- 230000031700 light absorption Effects 0.000 claims abstract description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 54
- 238000005259 measurement Methods 0.000 claims description 48
- 239000000446 fuel Substances 0.000 claims description 46
- 239000000126 substance Substances 0.000 claims description 37
- 238000005253 cladding Methods 0.000 claims description 32
- 230000003287 optical effect Effects 0.000 claims description 30
- 229920006395 saturated elastomer Polymers 0.000 claims description 10
- 239000000725 suspension Substances 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 239000000835 fiber Substances 0.000 claims description 3
- 230000035945 sensitivity Effects 0.000 abstract description 27
- 238000012360 testing method Methods 0.000 description 23
- 238000012795 verification Methods 0.000 description 23
- 238000001228 spectrum Methods 0.000 description 10
- 238000007654 immersion Methods 0.000 description 9
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 7
- 238000009826 distribution Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- TUSDEZXZIZRFGC-UHFFFAOYSA-N 1-O-galloyl-3,6-(R)-HHDP-beta-D-glucose Natural products OC1C(O2)COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC1C(O)C2OC(=O)C1=CC(O)=C(O)C(O)=C1 TUSDEZXZIZRFGC-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 239000001263 FEMA 3042 Substances 0.000 description 1
- 239000002211 L-ascorbic acid Substances 0.000 description 1
- 235000000069 L-ascorbic acid Nutrition 0.000 description 1
- LRBQNJMCXXYXIU-PPKXGCFTSA-N Penta-digallate-beta-D-glucose Natural products OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-PPKXGCFTSA-N 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229960004106 citric acid Drugs 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- LRBQNJMCXXYXIU-QWKBTXIPSA-N gallotannic acid Chemical compound OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@H]2[C@@H]([C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-QWKBTXIPSA-N 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000012280 lithium aluminium hydride Substances 0.000 description 1
- -1 lithium aluminum hydride Chemical compound 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 229940033123 tannic acid Drugs 0.000 description 1
- 235000015523 tannic acid Nutrition 0.000 description 1
- 229920002258 tannic acid Polymers 0.000 description 1
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
本発明は、光ファイバを用いて構成されるセンサ装置に関する。 The present invention relates to a sensor device configured using an optical fiber.
液体の屈折率、あるいは、濃度等を測定するセンサ装置として、光ファイバを用いて構成されるセンサ装置が従来知られている。 As a sensor device for measuring the refractive index or concentration of a liquid, a sensor device configured using an optical fiber is conventionally known.
例えば特許文献1には、光ファイバの一部に形成したヘテロコア部(コアの径が他の部分と異なる部分)のクラッドの外周面に、クロム膜に金膜を積層してなる金属膜と、エタノールにより収縮又は膨張することで屈折率が変化する交互積層膜とを装着した構造のエタノールセンサが本願出願人により提案されている。 For example, Patent Document 1 discloses a metal film obtained by laminating a gold film on a chromium film on the outer peripheral surface of a clad of a hetero-core part (a part having a different core diameter from other parts) formed in a part of an optical fiber, The applicant of the present application has proposed an ethanol sensor having a structure in which an alternating laminated film whose refractive index changes by contraction or expansion due to ethanol is mounted.
このエタノールセンサは、金属膜が装着された光ファイバのヘテロコア部のクラッドの外周面で表面プラズモン共鳴(SPR)を発生させることで、ヘテロコア部の周囲のエタノール濃度に応じた交互積層膜の屈折率の変化に応じて、光の伝送強度を変化させるように構成されている。 This ethanol sensor generates surface plasmon resonance (SPR) on the outer peripheral surface of the clad of the hetero-core portion of the optical fiber on which the metal film is mounted, so that the refractive index of the alternately laminated film according to the ethanol concentration around the hetero-core portion The transmission intensity of the light is changed in accordance with the change of.
また、例えば非特許文献1には、光ファイバの端部のクラッドを除去することで露出させたコアの外周面に、金ナノ粒子を固着させた構造のセンサが記載されている。該非特許文献1には、コアの外周面の金ナノ粒子によって、局在表面プラズモン共鳴という現象を発生させることで、光ファイバのコアの露出部分による光の吸収度合がピーク値となる波長が、該露出部分のコアの周囲の物質の屈折率に応じて変化することが記載されている。 For example, Non-Patent Document 1 describes a sensor having a structure in which gold nanoparticles are fixed to the outer peripheral surface of a core exposed by removing a clad at an end of an optical fiber. In Non-Patent Document 1, by generating a phenomenon called localized surface plasmon resonance by the gold nanoparticles on the outer peripheral surface of the core, the wavelength at which the light absorption by the exposed portion of the core of the optical fiber has a peak value is It is described that it varies depending on the refractive index of the material around the core of the exposed portion.
近年、液体等の物質の屈折率や濃度等を精度よく高感度に測定し得るセンサが望まれている。例えば、自動車産業等において、ガソリンとエタノール等のアルコールとの混合燃料におけるガソリン及びアルコールの混合割合を精度よく高感度に測定し得る安価なセンサが望まれている。 In recent years, a sensor capable of measuring the refractive index, concentration, etc. of a substance such as a liquid accurately and with high sensitivity is desired. For example, in the automobile industry and the like, an inexpensive sensor that can accurately and highly sensitively measure the mixing ratio of gasoline and alcohol in a mixed fuel of gasoline and alcohol such as ethanol is desired.
しかるに、前記特許文献1、あるいは、非特許文献1に見られる如きセンサでは、液体などの物質の屈折率や濃度等の特性を高感度に計測する上では、不十分なものであった。 However, the sensor as described in Patent Document 1 or Non-Patent Document 1 is insufficient for measuring characteristics such as refractive index and concentration of a substance such as a liquid with high sensitivity.
本発明はかかる背景に鑑みてなされたものであり、物質の屈折率や濃度等の特性を高感度に測定することを可能とする光ファイバセンサ装置を提供することを目的とする。 The present invention has been made in view of such a background, and an object of the present invention is to provide an optical fiber sensor device capable of measuring characteristics such as a refractive index and a concentration of a substance with high sensitivity.
また、かかる光ファイバセンサ装置を容易に製造することができる方法を提供することを目的とする。 It is another object of the present invention to provide a method capable of easily manufacturing such an optical fiber sensor device.
また、物質の屈折率や濃度等の特性を安価なシステム構成で実現できる測定システムを提供することを目的とする。 It is another object of the present invention to provide a measurement system that can realize characteristics such as refractive index and concentration of a substance with an inexpensive system configuration.
本発明の光ファイバセンサ装置は、上記目的を達成するために、コア及びクラッドを有する光伝送部と該光伝送部のコア及びクラッドに各々連なるコア及びクラッドを有するヘテロコア部とを備え、該ヘテロコア部が、前記光伝送部のコアよりも小径のコアを有する光ファイバと、前記ヘテロコア部のクラッドの外周面に固着された金ナノ粒子とを備え、前記光伝送部と前記ヘテロコア部とを経由させて前記光ファイバでの光の伝送を行った場合に、前記ヘテロコア部での所定波長の光の吸収度合が、該ヘテロコア部の周囲の物質の屈折率に応じて変化するように構成されていることを特徴とする(第1発明)。 In order to achieve the above object, an optical fiber sensor device of the present invention includes an optical transmission unit having a core and a clad, and a heterocore unit having a core and a clad respectively connected to the core and the clad of the optical transmission unit. The optical fiber having a core having a smaller diameter than the core of the optical transmission unit, and gold nanoparticles fixed to the outer peripheral surface of the cladding of the hetero core unit, and passing through the optical transmission unit and the hetero core unit When the light is transmitted through the optical fiber, the degree of absorption of light of a predetermined wavelength in the hetero core portion is configured to change according to the refractive index of the material around the hetero core portion. (First invention).
ここで、本願発明者の各種実験、検討によって、前記ヘテロコア部のクラッドの外周面に金ナノ粒子を固着させた構造の光ファイバセンサ装置では、前記光伝送部から前記ヘテロコア部のクラッドに進入する光が該クラッドの外周面の金ナノ粒子に作用するこで励起される局在表面プラズモン共鳴に起因して、前記ヘテロコア部での所定波長の光の吸収度合(ひいては、前記光ファイバでの所定波長の光の伝送強度の減衰度合)が、ヘテロコア部のクラッドの周囲の屈折率の変化に対して、前記特許文献1,2に見られる如き従来のセンサ装置に比して大幅に高感度なものとなることが判明した。 Here, in the optical fiber sensor device having a structure in which gold nanoparticles are fixed to the outer peripheral surface of the clad of the hetero core part through various experiments and examinations of the inventor of the present application, the optical fiber sensor device enters the clad of the hetero core part from the optical transmission part. Due to the localized surface plasmon resonance excited by light acting on the gold nanoparticles on the outer peripheral surface of the cladding, the degree of absorption of light of a predetermined wavelength in the heterocore portion (and thus a predetermined amount in the optical fiber). The degree of attenuation of the transmission intensity of light having a wavelength) is significantly more sensitive to changes in the refractive index around the cladding of the hetero-core portion than the conventional sensor devices as seen in Patent Documents 1 and 2 above. It turned out to be something.
そこで、本発明の光ファイバセンサ装置は、上記の如く構成した。これにより、本発明の光ファイバセンサ装置によれば、物質の屈折率や濃度等の特性を高感度に測定することが可能となる。 Therefore, the optical fiber sensor device of the present invention is configured as described above. As a result, according to the optical fiber sensor device of the present invention, it is possible to measure properties such as the refractive index and concentration of a substance with high sensitivity.
補足すると、ヘテロコア部の周囲の物質が、例えば2種類以上の物質の混合物質である場合、該混合物質の屈折率は、一般に、該混合物質を構成する組成物質の濃度に応じて変化する。このため、ヘテロコア部での光の吸収度合は、該ヘテロコア部の周囲の物質の濃度に応じて変化し得る。従って、本発明の光ファイバセンサ装置は、物質の屈折率に限らず、該屈折率に影響を及ぼす物質の濃度等の他の特性を高感度に測定し得る装置としても利用できる。 Supplementally, when the material around the heterocore portion is, for example, a mixed material of two or more types of materials, the refractive index of the mixed material generally changes according to the concentration of the composition material constituting the mixed material. For this reason, the degree of light absorption in the heterocore portion can vary depending on the concentration of the substance around the heterocore portion. Therefore, the optical fiber sensor device of the present invention can be used not only as a refractive index of a substance but also as an apparatus capable of measuring other characteristics such as a concentration of a substance affecting the refractive index with high sensitivity.
上記第1発明では、前記金ナノ粒子が固着されたヘテロコア部のクラッドの周囲の物質の屈折率を一定の屈折率に維持した状態で、前記光ファイバでの光の伝送を行った場合における該光の伝送強度の減衰度合いをXと定義し、前記ヘテロコア部のクラッドの外周面に前記金ナノ粒子が固着されておらず、且つ、前記ヘテロコア部の周囲の物質の屈折率を前記一定の屈折率に維持した状態で、前記光ファイバでの光の伝送を行った場合における該光の伝送強度の減衰度合いをX0と定義したとき、前記金ナノ粒子は、前記X0に対する前記Xの比率が1/100以下となる密度で、前記ヘテロコア部のクラッドの外周面に固着されていることが好ましい(第2発明)。 In the first invention, in the case where light is transmitted through the optical fiber in a state where the refractive index of the material around the cladding of the hetero core portion to which the gold nanoparticles are fixed is maintained at a constant refractive index. The degree of attenuation of light transmission intensity is defined as X, the gold nanoparticles are not fixed to the outer peripheral surface of the cladding of the hetero core portion, and the refractive index of the substance around the hetero core portion is the constant refraction When the transmission degree of light transmitted through the optical fiber is defined as X0 when the transmission rate is maintained at a rate, the gold nanoparticle has a ratio of X to X0 of 1. It is preferably fixed to the outer peripheral surface of the cladding of the hetero-core portion at a density of / 100 or less (second invention).
本願発明者の各種実験、検討によれば、前記ヘテロコア部のクラッドの外周面に固着された金ナノ粒子の密度(単位面積当たりの金ナノ粒子の個数)が大きいほど、X0に対する前記Xの比率が減少する傾向がある。そして、該比率が1/100以下となる状態は、ヘテロコア部のクラッドの外周面に固着されている金ナノ粒子の密度が高密度となっている状態である。 According to various experiments and examinations by the inventors of the present application, the ratio of X to X0 increases as the density of gold nanoparticles (the number of gold nanoparticles per unit area) fixed to the outer peripheral surface of the cladding of the hetero core portion increases. Tend to decrease. The state in which the ratio is 1/100 or less is a state in which the density of the gold nanoparticles fixed to the outer peripheral surface of the cladding of the heterocore portion is high.
このような状態では、ヘテロコア部での光の吸収度合は、近赤外域の波長において、ヘテロコア部の周囲の物質の屈折率の変化に対して顕著に高感度なものとなることが本願発明者の各種、実験、検討により判明した。 In such a state, the inventor of the present application shows that the degree of light absorption in the heterocore portion is significantly sensitive to changes in the refractive index of the substance around the heterocore portion at wavelengths in the near infrared region. It became clear by various experiment, examination.
そこで、第2発明の光ファイバセンサ装置を上記の如く構成した。この光ファイバセンサ装置によれば、光ファイバでの近赤外域の波長の光の伝送強度の減衰度合を計測することで、ヘテロコア部の周囲の物質の屈折率等の特性を高感度に計測することが可能となる。 Therefore, the optical fiber sensor device of the second invention is configured as described above. According to this optical fiber sensor device, by measuring the attenuation degree of the transmission intensity of light in the near-infrared region in the optical fiber, the characteristics such as the refractive index of the material around the heterocore portion are measured with high sensitivity. It becomes possible.
ここで、近赤外域の光は、可視光域の光に比べて、光ファイバの単位距離当たりの伝送強度の減衰が小さい。また、近赤外域の光は、一般に普及しているフォトダイオード等の安価な受光素子により検出できる。 Here, near-infrared light has a smaller attenuation of transmission intensity per unit distance of the optical fiber than light in the visible light region. Further, light in the near infrared region can be detected by an inexpensive light receiving element such as a photodiode that is generally used.
このため、第2発明の光ファイバセンサ装置を使用することで、ヘテロコア部の周囲の物質の屈折率等の特性を測定するための安価な測定システムを構築することができる。また、光ファイバの必要長が長くなる環境下でも、ヘテロコア部の周囲の物質の屈折率等の特性を高感度に測定し得る測定システムを構築することができる。 For this reason, by using the optical fiber sensor device of the second invention, it is possible to construct an inexpensive measurement system for measuring characteristics such as the refractive index of the substance around the heterocore portion. In addition, even in an environment where the required length of the optical fiber becomes long, it is possible to construct a measurement system that can measure characteristics such as the refractive index of the substance around the heterocore portion with high sensitivity.
また、本発明の測定システムは、前記第1発明の光ファイバセンサ装置と、所定波長の光を少なくとも含む光を前記光ファイバに入射する光源と、前記光ファイバから出射する所定波長の光の強度を検出する光検出器とを備え、該光検出器の出力に基づいて前記ヘテロコア部のクラッドの周囲に存在する物質の特性を測定することを特徴とする(第3発明)。 In addition, the measurement system of the present invention includes the optical fiber sensor device of the first invention, a light source that enters the optical fiber at least including light of a predetermined wavelength, and the intensity of light of the predetermined wavelength that is emitted from the optical fiber. And detecting a characteristic of a substance existing around the cladding of the hetero-core portion based on the output of the photodetector (third invention).
あるいは、本発明の測定システムは、前記第2発明の光ファイバセンサ装置と、近赤外域の光を少なくとも含む光を前記光ファイバに入射する光源と、前記光ファイバから出射する近赤外外線域の所定波長の光の強度を検出する光検出器とを備え、該光検出器の出力に基づいて前記ヘテロコア部のクラッドの周囲に存在する物質の特性を測定することを特徴とする(第4発明)。 Alternatively, the measurement system of the present invention includes the optical fiber sensor device of the second invention, a light source that enters light including at least light in the near infrared region, and a near infrared outside line region that is emitted from the optical fiber. And a light detector for detecting the intensity of light having a predetermined wavelength, and measuring the characteristics of a substance existing around the cladding of the heterocore portion based on the output of the light detector (fourth feature) invention).
この第3発明又は第4発明の測定システムによれば、ヘテロコア部の周囲の物質の屈折率等の特性を、前記光検出器の出力を用いて高感度に測定できる。そして、前記光検出器は、前記所定波長の光の強度を検出し得るものでよいので、フォトダイオード等の一般に普及している安価な受光素子を使用できる。このため、測定システムを安価に構成できる。 According to the measurement system of the third or fourth aspect of the present invention, the characteristics such as the refractive index of the substance around the heterocore portion can be measured with high sensitivity using the output of the photodetector. And since the said photodetector may be what can detect the intensity | strength of the light of the said predetermined wavelength, generally inexpensive inexpensive light receiving elements, such as a photodiode, can be used. For this reason, the measurement system can be configured at low cost.
さらに、特に第4発明の測定システムでは、光ファイバの単位長当たりの近赤外域の波長の光の減衰度合が可視光域の波長の光に比べて比較的小さいことから、光源と光検出器との間の光ファイバの必要長が長いものとなる環境下でも、ヘテロコア部の周囲の物質の屈折率等の特性を、高感度に測定できる。 Further, particularly in the measurement system of the fourth invention, since the attenuation degree of the light in the near-infrared wavelength per unit length of the optical fiber is relatively smaller than the light in the visible light wavelength, the light source and the photodetector Even in an environment where the required length of the optical fiber between the two is long, characteristics such as the refractive index of the material around the heterocore portion can be measured with high sensitivity.
上記第3発明又は第4発明の測定システムは、前記物質が、ガソリンとアルコールとの混合燃料であり、該混合燃料におけるガソリン及びアルコールの混合割合を測定するシステムである場合に好適である(第5発明)。 The measurement system of the third invention or the fourth invention is suitable when the substance is a mixed fuel of gasoline and alcohol, and is a system for measuring a mixing ratio of gasoline and alcohol in the mixed fuel (first 5 invention).
ここで、前記混合燃料の屈折率は、該混合燃料におけるガソリン濃度の増加(アルコール濃度の減少)に伴い増加する。従って、第5発明によれば、前記混合燃料におけるガソリン及びアルコールの混合割合を、前記光検出器の出力に基づいて高感度に測定することができる。 Here, the refractive index of the mixed fuel increases with an increase in gasoline concentration (decrease in alcohol concentration) in the mixed fuel. Therefore, according to the fifth aspect, the mixing ratio of gasoline and alcohol in the mixed fuel can be measured with high sensitivity based on the output of the photodetector.
また、本発明の光ファイバセンサ装置の製造方法は、コア及びクラッドを有する光伝送部と該光伝送部のコア及びクラッドに各々連なるコア及びクラッドを有するヘテロコア部とを備え、該ヘテロコア部が、前記光伝送部のコアよりも小径のコアを有する光ファイバと、前記ヘテロコア部のクラッドの外周面に固着された金ナノ粒子とを備える光ファイバセンサ装置の製造方法であって、前記金ナノ粒子が固着されたヘテロコア部のクラッドの周囲の物質の屈折率を一定の屈折率に維持した状態で、前記光ファイバでの光の伝送を行った場合における該光の伝送強度の減衰度合いをXと定義し、前記ヘテロコア部のクラッドの外周面に前記金ナノ粒子が固着されておらず、且つ、前記ヘテロコア部の周囲の物質の屈折率を前記一定の屈折率に維持した状態で、前記光ファイバでの光の伝送を行った場合における該光の伝送強度の減衰度合いをX0と定義したとき、前記X0に対する前記Xの比率が飽和した状態となるまで、前記光ファイバのヘテロコア部を金ナノ粒子の懸濁液に浸漬させることにより、該ヘテロコア部のクラッドの外周面に前記金ナノ粒子を固着させたことを特徴とする(第6発明)。 Further, the method of manufacturing the optical fiber sensor device of the present invention includes an optical transmission unit having a core and a clad, and a hetero core unit having a core and a clad respectively connected to the core and the clad of the optical transmission unit. An optical fiber sensor device manufacturing method comprising: an optical fiber having a core having a smaller diameter than a core of the optical transmission unit; and gold nanoparticles fixed to an outer peripheral surface of a clad of the hetero core unit, wherein the gold nanoparticle X represents the degree of attenuation of the transmission intensity of light when the light is transmitted through the optical fiber in a state where the refractive index of the material around the cladding of the hetero-core portion to which is fixed is maintained at a constant refractive index. And the gold nanoparticles are not fixed to the outer peripheral surface of the cladding of the hetero core portion, and the refractive index of the substance around the hetero core portion is set to the constant refractive index. In a state where the transmission intensity of the light is transmitted in the state where the optical fiber is held, X0 is defined as the degree of attenuation of the transmission intensity of the light until the ratio of X to X0 is saturated. By immersing the hetero core portion of the fiber in a suspension of gold nanoparticles, the gold nanoparticles are fixed to the outer peripheral surface of the clad of the hetero core portion (the sixth invention).
ここで、本願発明者の各種実験、検討によれば、前記X0に対する前記Xの比率が飽和した状態となるまで、前記光ファイバのヘテロコア部を金ナノ粒子の懸濁液に浸漬させた場合に、前記比率が1/100以下となるような密度で、前記ヘテロコア部のクラッドの外周面に金ナノ粒子を固着させることができる。 Here, according to various experiments and examinations of the inventors of the present application, when the heterocore portion of the optical fiber is immersed in a suspension of gold nanoparticles until the ratio of X to X0 is saturated. The gold nanoparticles can be fixed to the outer peripheral surface of the cladding of the hetero-core portion at a density such that the ratio is 1/100 or less.
従って、第6発明の製造方法によれば、前記第2発明の光ファイバセンサ装置を容易に製造することができる。 Therefore, according to the manufacturing method of the sixth invention, the optical fiber sensor device of the second invention can be easily manufactured.
本発明の一実施形態を図1〜図5を参照して以下に説明する。 An embodiment of the present invention will be described below with reference to FIGS.
図1に示すように、本実施形態の光ファイバセンサ装置1は、所定長のヘテロコア部3を構成する光ファイバ2aの軸方向両端に、光伝送部4,4を構成する光ファイバ2b,2bを連接した構造の光ファイバ2と、ヘテロコア部3の外周面に固着された複数の金ナノ粒子10とを備える。 As shown in FIG. 1, the optical fiber sensor device 1 of the present embodiment includes optical fibers 2b and 2b constituting optical transmission units 4 and 4 at both ends in the axial direction of an optical fiber 2a constituting a hetero core portion 3 having a predetermined length. Are connected to each other, and a plurality of gold nanoparticles 10 fixed to the outer peripheral surface of the hetero-core portion 3.
光伝送部4を構成する各光ファイバ2bは、マルチモード光ファイバにより構成され、一定径(例えば50μm)のコア5bとその外周のクラッド6bとを有する。 Each optical fiber 2b constituting the optical transmission unit 4 is formed of a multimode optical fiber, and includes a core 5b having a constant diameter (for example, 50 μm) and a cladding 6b on the outer periphery thereof.
ヘテロコア部3を構成する光ファイバ2aは、シングルモード光ファイバにより構成され、光伝送部4のコア5bよりも小さい一定径(例えば3μm)のコア5aとその外周のクラッド6aとを有する。 The optical fiber 2a constituting the hetero-core part 3 is constituted by a single mode optical fiber, and has a core 5a having a constant diameter (for example, 3 μm) smaller than the core 5b of the optical transmission part 4 and a cladding 6a on the outer periphery thereof.
光伝送部4,4を構成する光ファイバ2b,2bは、ヘテロコア部3を構成する光ファイバ2aの軸方向両端に、融着等により同軸心に接合されている。これにより、ヘテロコア部3のコア5a及びクラッド6aは、各々、各光伝送部4のコア5b、クラッド6bに連なっている。 The optical fibers 2b and 2b constituting the optical transmission parts 4 and 4 are coaxially joined to both axial ends of the optical fiber 2a constituting the heterocore part 3 by fusion or the like. Thereby, the core 5a and the clad 6a of the hetero core part 3 are connected to the core 5b and the clad 6b of each optical transmission part 4, respectively.
なお、本実施形態では、ヘテロコア部3のコア5aの径は一定であるが、該コア5aの径は一定でなくてもよい。例えば、該コア5aの径は、ヘテロコア部3の両端寄りの部分で、徐々に変化する(光伝送部4から遠ざかるに伴い徐々に縮径する)ように形成されていてもよい。 In the present embodiment, the diameter of the core 5a of the heterocore portion 3 is constant, but the diameter of the core 5a may not be constant. For example, the diameter of the core 5a may be formed so as to gradually change at the portions near both ends of the hetero core portion 3 (the diameter gradually decreases as the distance from the optical transmission portion 4 increases).
金ナノ粒子10は、ヘテロコア部3のクラッド6aの外周面に固着されている。この固着は、例えば以下の手法によって行われる。 The gold nanoparticles 10 are fixed to the outer peripheral surface of the cladding 6 a of the heterocore portion 3. This fixing is performed by the following method, for example.
まず、光ファイバ2のヘテロコア部3の外周面をシランカップリング剤を用いて表面処理することで、該ヘテロコア部3の外周面にアミノ基を導入する。 First, an amino group is introduced into the outer peripheral surface of the heterocore portion 3 by subjecting the outer peripheral surface of the heterocore portion 3 of the optical fiber 2 to surface treatment using a silane coupling agent.
次いで、このヘテロコア部3を粒径が5nm〜100nmの金ナノ粒子10を含む懸濁液(コロイド)に浸漬する。これにより、ヘテロコア部3のクラッド6aの外周面に粒径が5nm〜100nmの複数の金ナノ粒子10が固着される。 Next, the heterocore portion 3 is immersed in a suspension (colloid) containing gold nanoparticles 10 having a particle size of 5 nm to 100 nm. As a result, a plurality of gold nanoparticles 10 having a particle size of 5 nm to 100 nm are fixed to the outer peripheral surface of the clad 6 a of the heterocore portion 3.
この場合、ヘテロコア部3を上記懸濁液に浸漬させる時間が長いほど、より多くの金ナノ粒子10がヘテロコア部3のクラッド6aの外周面に固着される。従って、ヘテロコア部3を上記懸濁液に浸漬させる時間を適宜調整することで、ヘテロコア部3のクラッド6aの外周面に固着される金ナノ粒子10の密度(単位面積あたりの金ナノ粒子10の個数)を調整できる。 In this case, the longer the time during which the hetero core portion 3 is immersed in the suspension, the more gold nanoparticles 10 are fixed to the outer peripheral surface of the clad 6 a of the hetero core portion 3. Therefore, by appropriately adjusting the time for immersing the hetero core part 3 in the suspension, the density of the gold nanoparticles 10 fixed to the outer peripheral surface of the cladding 6a of the hetero core part 3 (the gold nano particles 10 per unit area) (Number) can be adjusted.
上記懸濁液は、例えば、クエン酸、L−アスコルビン酸、タンニン酸、水素化ホウ素ナトリウム、あるいは、水素化アルミニウムリチウム等の還元剤を用いて塩化金酸を還元することで作製される。なお、懸濁液中の金ナノ粒子10の粒径、ひいては、ヘテロコア部3のクラッド6aの外周面に固着させる金ナノ粒子10の粒径は揃っていなくてもよい。 The suspension is prepared, for example, by reducing chloroauric acid using a reducing agent such as citric acid, L-ascorbic acid, tannic acid, sodium borohydride, or lithium aluminum hydride. In addition, the particle size of the gold nanoparticle 10 in the suspension, and thus the particle size of the gold nanoparticle 10 to be fixed to the outer peripheral surface of the clad 6a of the heterocore portion 3 may not be uniform.
本実施形態の光ファイバセンサ装置1は、上記如く構成されている。 The optical fiber sensor device 1 of the present embodiment is configured as described above.
次に、本実施形態の光ファイバセンサ装置1を使用した測定システムの例を図2を参照して説明する。 Next, an example of a measurement system using the optical fiber sensor device 1 of the present embodiment will be described with reference to FIG.
図2に示す測定システム20は、前記ヘテロコア部3を備える光ファイバ2に入射する光を出力する光源21と、光ファイバ2から出射する光を受光する光検出器22とを備える。 The measurement system 20 shown in FIG. 2 includes a light source 21 that outputs light incident on the optical fiber 2 including the heterocore unit 3 and a photodetector 22 that receives light emitted from the optical fiber 2.
光源21は、光ファイバ2の光伝送部4,4のうちの一方側の一端に接続される。この光源21としては、例えば多波長光としての白色光を出力する白色光源もしくは多波長光源、あるいは、所定波長のレーザ光を出力するレーザ光源が使用される。 The light source 21 is connected to one end of the optical transmission units 4 and 4 of the optical fiber 2. As the light source 21, for example, a white light source or a multi-wavelength light source that outputs white light as multi-wavelength light, or a laser light source that outputs laser light having a predetermined wavelength is used.
光検出器22は、光ファイバ2の光伝送部4,4のうちの他方側の他端に接続される。この光検出器22としては、例えばスペクトルアナライザ(分光器)、あるいは、所定波長もしくはその近辺の波長の光の受光強度に応じた出力を発生する受光素子等が使用される。 The photodetector 22 is connected to the other end on the other side of the optical transmission units 4 and 4 of the optical fiber 2. As the photodetector 22, for example, a spectrum analyzer (spectrometer) or a light receiving element that generates an output corresponding to the light receiving intensity of light having a predetermined wavelength or a wavelength in the vicinity thereof is used.
なお、図示の測定システム20では、光検出器22は、パーソナルコンピュータ等のコンピュータ23に接続されている。そして、該光検出器22の計測データをコンピュータ23にに取り込んで、データ解析等を行うことが可能となっている。 In the illustrated measurement system 20, the photodetector 22 is connected to a computer 23 such as a personal computer. Then, the measurement data of the photodetector 22 can be taken into the computer 23 to perform data analysis or the like.
また、光ファイバ2の中間部のヘテロコア部3の軸心方向の両端部分は治具24に装着される。この治具24を動かすことで、ヘテロコア部3を測定対象の液体中に浸漬させたり、測定対象の気体中に移動させることが可能となっている。 In addition, both end portions in the axial center direction of the hetero core portion 3 at the intermediate portion of the optical fiber 2 are attached to the jig 24. By moving the jig 24, the heterocore part 3 can be immersed in the liquid to be measured or moved into the gas to be measured.
かかる測定システム20による測定は次のように行われる。すなわち、光ファイバセンサ装置1のヘテロコア部3をその周囲に測定対象の物質が存在するように配置する。例えば、測定対象の物質が液体である場合には、ヘテロコア部3を該液体に浸漬させる。また、測定対象の物質が気体である場合には、ヘテロコア部3を該気体の雰囲気中に配置する。 The measurement by the measurement system 20 is performed as follows. That is, the hetero core part 3 of the optical fiber sensor device 1 is arranged so that the substance to be measured exists around it. For example, when the substance to be measured is a liquid, the heterocore part 3 is immersed in the liquid. Further, when the substance to be measured is a gas, the hetero core 3 is disposed in the atmosphere of the gas.
この状態で、光源21から光ファイバ2の一端に光を入射する。 In this state, light is incident on one end of the optical fiber 2 from the light source 21.
光ファイバ2にその一端から入射した光は、光源21側の光伝送部4のコア5bを通ってヘテロコア部3に進入し、該ヘテロコア部3を経由した後、光検出器22側の光伝送部4のコア5bを通って光ファイバ2の他端から出射する。そして、光ファイバ2の他端から出射した光が光検出器22で受光され、該光検出器22により、出射光の強度、スペクトル分布(波長分布)等が測定される。 Light incident on one end of the optical fiber 2 enters the hetero core section 3 through the core 5b of the light transmission section 4 on the light source 21 side, passes through the hetero core section 3, and then transmits light on the photodetector 22 side. The light is emitted from the other end of the optical fiber 2 through the core 5 b of the portion 4. The light emitted from the other end of the optical fiber 2 is received by the photodetector 22, and the intensity, spectrum distribution (wavelength distribution), and the like of the emitted light are measured by the photodetector 22.
ここで、光源21側の光伝送部4のコア5bからヘテロコア部3に進入する光の一部は、ヘテロコア部3のクラッド6aに進入し、該クラッド6aを光検出器22側の光伝送部4に向かって伝播する。 Here, a part of the light that enters the hetero-core unit 3 from the core 5b of the optical transmission unit 4 on the light source 21 side enters the cladding 6a of the hetero-core unit 3, and the cladding 6a is used as an optical transmission unit on the photodetector 22 side. Propagate toward 4.
そして、ヘテロコア部3のクラッド6aに進入した光のうち、該クラッド6aの外周面で全反射する光は、該クラッド6aの外周面(界面)の金ナノ粒子10に近接場光として作用することで、該クラッド6aの外周面において局在表面プラズモン共鳴(以降、LSPRという)が励起される。このLSPRの励起により、ヘテロコア部3を通る所定波長及びその近辺の波長の光のエネルギーが吸収される。 Of the light that has entered the clad 6a of the heterocore portion 3, light that is totally reflected by the outer peripheral surface of the clad 6a acts as near-field light on the gold nanoparticles 10 on the outer peripheral surface (interface) of the clad 6a. Thus, localized surface plasmon resonance (hereinafter referred to as LSPR) is excited on the outer peripheral surface of the cladding 6a. The excitation of the LSPR absorbs energy of light having a predetermined wavelength passing through the heterocore portion 3 and a wavelength in the vicinity thereof.
この場合、LSPRに起因する所定波長の光の吸収度合い、ひいては、光ファイバ2での所定波長の光の伝送強度の減衰度合いは、ヘテロコア部3の周囲の物質の屈折率に応じたものとなる。また、ヘテロコア部3の周囲の物質が、例えば、複数の物質の混合物質である場合、該混合物質の屈折率は、一般に該混合物質を組成する物質の含有割合に応じて変化する。 In this case, the degree of absorption of light of a predetermined wavelength caused by LSPR, and hence the degree of attenuation of the transmission intensity of light of the predetermined wavelength in the optical fiber 2, depends on the refractive index of the material around the heterocore portion 3. . In addition, when the material around the hetero-core part 3 is, for example, a mixed material of a plurality of materials, the refractive index of the mixed material generally varies depending on the content ratio of the material composing the mixed material.
このため、光ファイバ2における所定波長の光の伝送強度の減衰度合い(光ファイバ2の入射光の強度に対する出射光の強度の比率)は、ヘテロコア部3の周囲の物質の屈折率あるいは濃度等の特性に応じたものとなる。そして、本実施形態の構造の光ファイバセンサ装置1では、ヘテロコア部3の周囲の物質の屈折率に応じた光の伝送強度の減衰度合いの変化の感度が高いものとなる。 For this reason, the degree of attenuation of the transmission intensity of light of a predetermined wavelength in the optical fiber 2 (ratio of the intensity of the emitted light to the intensity of the incident light of the optical fiber 2) is such as the refractive index or the concentration of the substance around the hetero core portion 3. It depends on the characteristics. And in the optical fiber sensor apparatus 1 of the structure of this embodiment, the sensitivity of the change of the attenuation degree of the transmission intensity of the light according to the refractive index of the substance around the hetero core part 3 becomes high.
従って、光ファイバセンサ装置1は、ヘテロコア部3の周囲の物質の屈折率等の特性を測定するためのセンサとして使用することができる。 Therefore, the optical fiber sensor device 1 can be used as a sensor for measuring characteristics such as a refractive index of a substance around the hetero core 3.
以下に、光ファイバセンサ装置1の特性に関する検証試験について説明する。 Below, the verification test regarding the characteristic of the optical fiber sensor apparatus 1 is demonstrated.
[検証試験1]
光ファイバセンサ装置1を作製するにあたって、ヘテロコア部3のクラッド6aの外周面に金ナノ粒子10を固着させるために、金ナノ粒子10を含む前記懸濁液にヘテロコア部3を浸漬させる時間を異ならせた複数の光ファイバセンサ装置1を作製した。
[Verification test 1]
In producing the optical fiber sensor device 1, in order to fix the gold nanoparticles 10 to the outer peripheral surface of the clad 6a of the hetero core part 3, the time for immersing the hetero core part 3 in the suspension containing the gold nanoparticles 10 is different. A plurality of optical fiber sensor devices 1 were prepared.
そして、当該浸漬時間が異なる各光ファイバセンサ装置1について、そのヘテロコア部3を一定の屈折率を有する気体としての空気中に配置した状態で、前記測定システム20により、光ファイバ2の出射光のスペクトル(波長分布)を測定した。その測定結果を、図3(a)及び図3(b)のグラフに示す。なお、この場合、測定システム20の光源21として白色光源を使用し、光検出器22としてスペクトルアナライザ(分光器)を使用した。 And about each optical fiber sensor apparatus 1 from which the said immersion time differs, in the state which has arrange | positioned the hetero core part 3 in the air as gas which has a fixed refractive index, the said measurement system 20 of the emitted light of the optical fiber 2 is carried out. The spectrum (wavelength distribution) was measured. The measurement results are shown in the graphs of FIGS. 3 (a) and 3 (b). In this case, a white light source was used as the light source 21 of the measurement system 20 and a spectrum analyzer (spectrometer) was used as the photodetector 22.
図3(a)は、前記浸漬時間を異ならせた光ファイバセンサ装置1について、光の波長と、光ファイバ2の光の伝送強度の相対減衰度合いとの関係を示すグラフ、図3(b)は、所定波長(540nm)における光の伝送強度の相対減衰度合いと、前記浸漬時間との関係を示すグラフである。 FIG. 3A is a graph showing the relationship between the wavelength of light and the relative attenuation degree of the light transmission intensity of the optical fiber 2 for the optical fiber sensor device 1 with different immersion times, and FIG. These are graphs showing the relationship between the relative attenuation degree of the transmission intensity of light at a predetermined wavelength (540 nm) and the immersion time.
ここで、上記相対減衰度合いは、ヘテロコア部3のクラッド6aの外周面に金ナノ粒子を固着していない状態での光の伝送強度の減衰度合いを基準とする相対減衰度合いである。 Here, the relative attenuation degree is a relative attenuation degree based on the attenuation degree of light transmission intensity in a state where gold nanoparticles are not fixed to the outer peripheral surface of the clad 6 a of the heterocore portion 3.
より詳しくは、ヘテロコア部3のクラッド6aの外周面に金ナノ粒子を固着していない状態での光の伝送強度の減衰度合い(光ファイバ2の入射光の強度に対する出射光の強度の比率)をX0、ヘテロコア部3のクラッド6aの外周面に金ナノ粒子が固着した状態の光ファイバセンサ装置1における光の伝送強度の減衰度合いをXとしたとき、上記相対減衰度合いは、X/X0である。 More specifically, the attenuation degree of the light transmission intensity (ratio of the intensity of the emitted light to the intensity of the incident light of the optical fiber 2) in a state where the gold nanoparticles are not fixed to the outer peripheral surface of the clad 6a of the hetero core portion 3 is set. X0, where X is the degree of attenuation of the transmission intensity of light in the optical fiber sensor device 1 in a state where the gold nanoparticles are fixed to the outer peripheral surface of the clad 6a of the hetero-core portion 3, the degree of relative attenuation is X / X0. .
なお、本実施形態の説明では、上記相対減衰度合をデシベル単位で表わす。この場合、X/X0の比率で表される相対減衰度合を、デシベル単位で表したものは、10・log(X/X0)である。 In the description of the present embodiment, the degree of relative attenuation is expressed in decibels. In this case, 10 · log (X / X0) represents the relative attenuation degree expressed by the ratio of X / X0 in decibels.
図3(a)に示されるように、相対減衰度合いの大きさ(絶対値)は、前記浸漬時間を異ならせたいずれの光ファイバセンサ装置1についても、ほぼ所定波長(540nmの波長)の近辺でピーク値となる。 As shown in FIG. 3 (a), the magnitude (absolute value) of the relative attenuation degree is around the predetermined wavelength (wavelength of 540 nm) for any of the optical fiber sensor devices 1 with different immersion times. At the peak value.
また、図3(b)に示されるように、相対減衰度合いの大きさ(絶対値)がピーク値となる540nmの波長での相対減衰度合いの大きさは、基本的には、前記浸漬時間が長くなるほど、大きくなる。これは、前記浸漬時間が長いほど、ヘテロコア部3のクラッド6bの外周面に固着する金ナノ粒子10の密度(単位面積当たりの個数)が高まり、ひいては、LSPRに起因する所定波長(ここでは、540nmの波長)の光の吸収度合いが高まるためと考えられる。 Further, as shown in FIG. 3 (b), the magnitude of the relative attenuation at a wavelength of 540 nm where the magnitude (absolute value) of the relative attenuation becomes a peak value basically corresponds to the immersion time. The longer it gets, the bigger it becomes. This is because the longer the immersion time, the higher the density (number per unit area) of the gold nanoparticles 10 fixed to the outer peripheral surface of the clad 6b of the heterocore portion 3, and thus a predetermined wavelength (here, This is probably because the degree of absorption of light at a wavelength of 540 nm increases.
ただし、上記相対減衰度合いの大きさは、前記浸漬時間が概ね15分を超えると、飽和する。これは、前記浸漬時間が概ね15分を超えると、ヘテロコア部3のクラッド6bの外周面への金ナノ粒子10の固着が飽和するためと考えられる。この飽和状態での、相対減衰度合いは、約−20dB(X/X0=1/100)である。従って、相対減衰度合(X/X0)が1/100以下となった状態は、該相対減衰度合が飽和した状態(換言すれば、ヘテロコア部3のクラッド6aの外周面への金ナノ粒子10の固着が飽和した状態)とみなすことができる。以降、このように相対減衰度合いが飽和した状態を、金ナノ粒子10の固着飽和状態ということがある。 However, the magnitude of the relative attenuation is saturated when the immersion time exceeds approximately 15 minutes. This is presumably because when the immersion time exceeds approximately 15 minutes, the fixation of the gold nanoparticles 10 to the outer peripheral surface of the cladding 6b of the hetero-core portion 3 is saturated. In this saturation state, the degree of relative attenuation is about −20 dB (X / X0 = 1/100). Therefore, the state in which the relative attenuation degree (X / X0) is 1/100 or less is a state in which the relative attenuation degree is saturated (in other words, the gold nanoparticles 10 on the outer peripheral surface of the clad 6a of the heterocore portion 3). It can be considered that the fixation is saturated. Hereinafter, the state in which the relative attenuation degree is saturated in this way may be referred to as a fixed saturation state of the gold nanoparticles 10.
[検証試験2]
次に、前記浸漬時間を、前記相対減衰度合いが、金ナノ粒子10の固着飽和状態における相対減衰度合い(≒−20dB)の約80%の相対減衰度合い(≒−17dB)に達するまでの時間とした光ファイバセンサ装置1を作製した。そして、この光ファイバセンサ装置1のヘテロコア部3をガソリン及びエタノールの混合燃料に浸漬させた状態(ヘテロコア部3の周囲の物質を混合燃料とした状態)で、前記測定システム20により、光ファイバ2の出射光のスペクトル(波長分布)を測定した。
[Verification test 2]
Next, the immersion time is defined as a time until the relative attenuation degree reaches a relative attenuation degree (≈−17 dB) of about 80% of the relative attenuation degree (≈−20 dB) in the fixed saturation state of the gold nanoparticles 10. An optical fiber sensor device 1 was manufactured. Then, in the state where the hetero core portion 3 of the optical fiber sensor device 1 is immersed in a mixed fuel of gasoline and ethanol (a state in which a substance around the hetero core portion 3 is used as a mixed fuel), the optical fiber 2 is obtained by the measurement system 20. The spectrum (wavelength distribution) of the emitted light was measured.
この場合、上記混合燃料におけるガソリン及びエタノールの混合割合(ひいては、ガソリン濃度及びエタノール濃度)を複数の値に変化させて測定を行った。その測定結果を、図4(a)及び図4(b)のグラフに示す。なお、この場合、光源21として白色光源を使用し、光検出器22としてスペクトルアナライザ(分光器)を使用した。 In this case, the measurement was performed by changing the mixing ratio of gasoline and ethanol (and consequently the gasoline concentration and ethanol concentration) in the mixed fuel to a plurality of values. The measurement results are shown in the graphs of FIGS. 4 (a) and 4 (b). In this case, a white light source was used as the light source 21 and a spectrum analyzer (spectrometer) was used as the light detector 22.
図4(a)は、前記混合割合を異ならせた各混合燃料毎の測定における光の波長と、光ファイバ2の光の伝送強度の相対減衰度合いとの関係を示すグラフ、図4(b)は、所定波長(545nm)における光の伝送強度の相対減衰度合いと、前記混合割合に対応するガソリン濃度との関係を示すグラフである。 FIG. 4A is a graph showing the relationship between the wavelength of light and the relative attenuation degree of the light transmission intensity of the optical fiber 2 in the measurement for each mixed fuel with different mixing ratios, and FIG. These are graphs showing the relationship between the relative attenuation degree of the transmission intensity of light at a predetermined wavelength (545 nm) and the gasoline concentration corresponding to the mixing ratio.
図4(a)に示されるように、相対減衰度合いの大きさ(絶対値)は、前記混合割合を異ならせたいずれの混合燃料についても、ほぼ所定波長(545nmの波長)の近辺でピーク値となる。 As shown in FIG. 4 (a), the magnitude (absolute value) of the relative attenuation degree is a peak value in the vicinity of a predetermined wavelength (wavelength of 545 nm) for any of the mixed fuels having different mixing ratios. It becomes.
また、図4(b)に示されるように、相対減衰度合いの大きさ(絶対値)がほぼピーク値となる545nmの波長での相対減衰度合いの大きさは、混合燃料のガソリン濃度が高くなるほど(換言すれば、混合燃料のエタノール濃度が低くなるほど)、大きくなる。 Further, as shown in FIG. 4B, the magnitude of the relative attenuation at a wavelength of 545 nm at which the magnitude (absolute value) of the relative attenuation is almost the peak value is higher as the gasoline concentration of the mixed fuel becomes higher. (In other words, the lower the ethanol concentration of the mixed fuel), the larger.
ここで、ガソリン及びエタノールの混合燃料の屈折率は、ガソリンの濃度が高くなるほど、増加する。従って、ヘテロコア部3の周囲の混合燃料のガソリン濃度が高くなるほど、光の伝送強度の相対減衰度合いが大きくなるということは、ヘテロコア部3の周囲の混合燃料の屈折率が大きいほど、光の伝送強度の相対減衰度合いが大きくなるということに相当する。 Here, the refractive index of the mixed fuel of gasoline and ethanol increases as the concentration of gasoline increases. Therefore, the higher the gasoline concentration of the mixed fuel around the heterocore part 3 is, the greater the degree of relative attenuation of the light transmission intensity is. The larger the refractive index of the mixed fuel around the heterocore part 3 is, the more the light transmission is transmitted. This corresponds to an increase in the degree of relative attenuation of the intensity.
この場合、混合燃料のガソリン濃度が、0%から100%まで変化すると、相対減衰度合いは、11dB程度変化する。すなわち、光ファイバ2における光の伝送強度の相対減衰度合い(X/X0)は、混合燃料のガソリン濃度が0%である場合と、100%である場合とで10倍以上変化する。 In this case, when the gasoline concentration of the mixed fuel changes from 0% to 100%, the relative attenuation degree changes by about 11 dB. That is, the relative attenuation degree (X / X0) of the transmission intensity of light in the optical fiber 2 changes 10 times or more between the case where the gasoline concentration of the mixed fuel is 0% and the case where it is 100%.
従って、ガソリン及びエタノールの混合燃料の混合割合(あるいはガソリン濃度、あるいは、エタノール濃度)を、検証試験2で作製した光ファイバセンサ装置1を使用して高感度に測定できることが判る。このため、検証試験2で作製した光ファイバセンサ装置1は、上記混合燃料の混合割合(あるいはガソリン濃度、あるいは、エタノール濃度)を検出するためのセンサとして利用できる。 Therefore, it can be seen that the mixing ratio (or gasoline concentration or ethanol concentration) of the mixed fuel of gasoline and ethanol can be measured with high sensitivity using the optical fiber sensor device 1 produced in the verification test 2. For this reason, the optical fiber sensor device 1 produced in the verification test 2 can be used as a sensor for detecting the mixing ratio (or gasoline concentration or ethanol concentration) of the mixed fuel.
このように、混合燃料の混合割合を検出するためのセンサとして光ファイバセンサ装置1を使用した場合、例えば、該混合燃料により運転可能な内燃機関の運転制御(燃料噴射量の制御等)を、該混合燃料の混合割合の検出値に応じて行うことができる。 As described above, when the optical fiber sensor device 1 is used as a sensor for detecting the mixing ratio of the mixed fuel, for example, operation control (control of the fuel injection amount, etc.) of the internal combustion engine that can be operated by the mixed fuel is performed. This can be performed according to the detected value of the mixing ratio of the mixed fuel.
また、この場合、545nm付近の波長の光に対して、相対減衰度合いが混合燃料の混合割合に応じて高感度に変化することから、光ファイバ2の出射光の強度を検出する光検出器22は、スペクトルアナライザ等の分光器でなくてもよく、545nm付近の一定波長の光を検出し得るフォトダイオード等の一般に普及している受光素子でよい。従って、測定システム20を安価に構成できる。 Further, in this case, the relative attenuation degree of light having a wavelength near 545 nm changes with high sensitivity according to the mixing ratio of the mixed fuel, so that the photodetector 22 that detects the intensity of the emitted light from the optical fiber 2. May not be a spectroscope such as a spectrum analyzer, but may be a generally popular light receiving element such as a photodiode capable of detecting light having a constant wavelength near 545 nm. Therefore, the measurement system 20 can be configured at a low cost.
[検証試験3]
次に、前記金ナノ粒子10の固着飽和状態となるまで(前記相対減衰度合X/X0が飽和するまで)前記懸濁液にヘテロコア部3を浸漬させた光ファイバセンサ装置1を作製した。そして、この光ファイバセンサ装置1のヘテロコア部3を、前記検証試験2の場合と同様に、ガソリン及びエタノールの混合燃料に浸漬させた状態で、前記測定システム20により、光ファイバ2の出射光のスペクトル(波長分布)を測定した。
[Verification test 3]
Next, an optical fiber sensor device 1 was produced in which the heterocore portion 3 was immersed in the suspension until the gold nanoparticles 10 were in a fixed saturation state (until the relative attenuation degree X / X0 was saturated). Then, in the same manner as in the verification test 2, the hetero core portion 3 of the optical fiber sensor device 1 is immersed in a mixed fuel of gasoline and ethanol, and the measurement system 20 causes the output light of the optical fiber 2 to be emitted. The spectrum (wavelength distribution) was measured.
この場合、上記混合燃料におけるガソリン及びエタノールの混合割合(ひいては、ガソリン濃度及びエタノール濃度)を複数の値に変化させて測定を行った。その測定結果を、図5(a)及び図5(b)のグラフに示す。なお、この場合、測定システム20の光源21として白色光源を使用し、光検出器22としてスペクトルアナライザ(分光器)を使用した。 In this case, the measurement was performed by changing the mixing ratio of gasoline and ethanol (and consequently the gasoline concentration and ethanol concentration) in the mixed fuel to a plurality of values. The measurement results are shown in the graphs of FIGS. 5 (a) and 5 (b). In this case, a white light source was used as the light source 21 of the measurement system 20 and a spectrum analyzer (spectrometer) was used as the photodetector 22.
図5(a)は、前記混合割合を異ならせた各混合燃料毎の測定における光の波長と、光ファイバ2の光の伝送強度の相対減衰度合いとの関係を示すグラフ、図5(b)は、3種類の所定波長(415nm、580nm、900nm)における光の伝送強度の相対減衰度合いと、前記混合割合に対応するガソリン濃度との関係を示すグラフである。 FIG. 5 (a) is a graph showing the relationship between the wavelength of light and the relative attenuation degree of the light transmission intensity of the optical fiber 2 in the measurement for each mixed fuel with different mixing ratios, and FIG. 5 (b). These are graphs showing the relationship between the relative attenuation degree of the transmission intensity of light at three types of predetermined wavelengths (415 nm, 580 nm, 900 nm) and the gasoline concentration corresponding to the mixing ratio.
図5(a)に示されるように、相対減衰度合いの大きさ(絶対値)は、前記混合割合を異ならせたいずれの混合燃料についても、概ね415nm、580nm、900nmの3種類の所定波長の近辺でピーク値となる。 As shown in FIG. 5 (a), the magnitude (absolute value) of the relative attenuation level is approximately 415 nm, 580 nm, and 900 nm of three predetermined wavelengths for any of the mixed fuels with different mixing ratios. It becomes a peak value in the vicinity.
この場合、検証試験3で作製した光ファイバセンサ装置1は、前記検証試験2で作製した光ファイバセンサ装置1よりも、ヘテロコア部3のクラッド6aの外周面に高密度で金ナノ粒子10が固着されているため、光の伝送時に、相互に近接した金ナノ粒子10間で強い電場が発生する。このことに起因して、検証試験3で作製した光ファイバセンサ装置1での光の伝送強度の相対減衰度合いのスペクトル特性(波長分布特性)は、前記検証試験2で作製した光ファイバセンサ装置1と比較的大きく相違するものとなっていると考えられる。 In this case, in the optical fiber sensor device 1 manufactured in the verification test 3, the gold nanoparticles 10 are fixed at a higher density on the outer peripheral surface of the cladding 6a of the heterocore portion 3 than in the optical fiber sensor device 1 manufactured in the verification test 2. Therefore, a strong electric field is generated between the gold nanoparticles 10 that are close to each other during light transmission. Due to this, the spectral characteristic (wavelength distribution characteristic) of the relative attenuation degree of the transmission intensity of light in the optical fiber sensor device 1 manufactured in the verification test 3 is the optical fiber sensor device 1 manufactured in the verification test 2. It is considered that the difference is relatively large.
また、検証試験3で作製した光ファイバセンサ装置1では、図5(b)に示されるように、相対減衰度合いの大きさ(絶対値)がほぼピーク値となる415nmの波長、あるいは、580nmの波長、あるいは、900nmの波長での相対減衰度合いの大きさは、基本的には、混合燃料のガソリン濃度が高くなるほど(換言すれば、混合燃料のエタノール濃度が低くなるほど、あるいは、混合燃料の屈折率が大きいほど)、大きくなる。 Further, in the optical fiber sensor device 1 manufactured in the verification test 3, as shown in FIG. 5B, the wavelength of 415 nm at which the magnitude (absolute value) of the degree of relative attenuation is substantially the peak value, or 580 nm. The magnitude of the relative attenuation degree at the wavelength or 900 nm is basically as the gasoline concentration of the mixed fuel becomes higher (in other words, as the ethanol concentration of the mixed fuel becomes lower or the refractive index of the mixed fuel). The larger the rate), the larger.
ここで、図5(a)と前記検証試験2に関する図4(a)とを比較して判るように、ヘテロコア部3への金ナノ粒子10の固着が前記固着飽和状態に達していない状態の光ファイバセンサ装置1(検証試験2で作製した光ファイバセンサ装置1)では、580nm付近の波長では、混合燃料の混合割合に対する相対減衰度合いの感度が比較的高いものとなるが、金ナノ粒子10の固着飽和状態となっている光ファイバセンサ装置1(検証試験3で作製した光ファイバセンサ装置1)では、580nm付近の波長では、混合燃料の混合割合に対する相対減衰度合いの変化の感度が比較的低いものとなる。 Here, as can be seen by comparing FIG. 5A and FIG. 4A relating to the verification test 2, the fixation of the gold nanoparticle 10 to the heterocore portion 3 does not reach the fixed saturation state. In the optical fiber sensor device 1 (the optical fiber sensor device 1 produced in the verification test 2), the sensitivity of the relative attenuation degree with respect to the mixing ratio of the mixed fuel is relatively high at a wavelength near 580 nm. In the optical fiber sensor device 1 (the optical fiber sensor device 1 manufactured in the verification test 3) in a fixed saturation state, the sensitivity of the change in the relative attenuation degree with respect to the mixture ratio of the mixed fuel is relatively high at a wavelength near 580 nm. It will be low.
一方、ヘテロコア部3への金ナノ粒子10の固着が前記固着飽和状態に達していない状態の光ファイバセンサ装置1(検証試験2で作製した光ファイバセンサ装置1)では、近赤外域の波長である900nmの波長では、混合燃料の混合割合に対する相対減衰度合いの変化の感度が低いのに対して、金ナノ粒子10の固着飽和状態となっている光ファイバセンサ装置1(検証試験3で作製した光ファイバセンサ装置1)では、900nm付近の波長では、混合燃料の混合割合に対する相対減衰度合いの変化の感度が高いものとなる。 On the other hand, in the optical fiber sensor device 1 (the optical fiber sensor device 1 produced in the verification test 2) in which the gold nanoparticles 10 are not fixed to the hetero core portion 3 in the fixed saturation state, the wavelength is in the near infrared region. At a certain wavelength of 900 nm, the sensitivity of the change in the relative attenuation degree with respect to the mixing ratio of the mixed fuel is low, whereas the optical fiber sensor device 1 in which the gold nanoparticles 10 are in a saturated saturation state (produced in the verification test 3). In the optical fiber sensor device 1), at a wavelength near 900 nm, the sensitivity of the change in the relative attenuation degree with respect to the mixing ratio of the mixed fuel becomes high.
具体的には、検証試験3で作製した光ファイバセンサ装置1では、900nm付近の波長での相対減衰度合いの大きさは、混合燃料のガソリン濃度が、0%から100%まで変化すると、11dB程度変化する。すなわち、光ファイバ2における近赤外域の光の伝送強度の減衰度合い(X/X0)は、混合燃料のガソリン濃度が0%である場合と、100%である場合とで10倍以上変化する。 Specifically, in the optical fiber sensor device 1 manufactured in the verification test 3, the magnitude of the relative attenuation at a wavelength near 900 nm is about 11 dB when the gasoline concentration of the mixed fuel is changed from 0% to 100%. Change. That is, the degree of attenuation (X / X0) of the near-infrared light transmission intensity in the optical fiber 2 changes 10 times or more when the gasoline concentration of the mixed fuel is 0% and when it is 100%.
従って、ガソリン及びエタノールの混合燃料の混合割合(あるいはガソリン濃度、あるいは、エタノール濃度)を、検証試験3で作製した光ファイバセンサ装置1を使用して高感度に測定できることが判る。このため、検証試験3で作製した光ファイバセンサ装置1は、上記混合燃料の混合割合(あるいはガソリン濃度、あるいは、エタノール濃度)を検出するためのセンサとして利用できる。 Therefore, it can be seen that the mixing ratio (or gasoline concentration or ethanol concentration) of the mixed fuel of gasoline and ethanol can be measured with high sensitivity using the optical fiber sensor device 1 produced in the verification test 3. For this reason, the optical fiber sensor device 1 produced in the verification test 3 can be used as a sensor for detecting the mixing ratio (or gasoline concentration or ethanol concentration) of the mixed fuel.
また、この場合、特に、近赤外域の波長の光に対して、相対減衰度合いが混合燃料の混合割合に応じて高感度に変化することから、光ファイバ2の出射光の強度を検出する光検出器22は、スペクトルアナライザ等の分光器でなくてもよく、近赤外域の一定波長の光を検出し得る受光素子を使用できる。そして、このような受光素子は、一般に広く普及している。従って、測定システム20を安価に構成できる。 In this case, in particular, the light for detecting the intensity of the emitted light from the optical fiber 2 because the relative attenuation level changes with high sensitivity according to the mixing ratio of the mixed fuel with respect to light having a wavelength in the near infrared region. The detector 22 may not be a spectroscope such as a spectrum analyzer, and a light receiving element capable of detecting light of a constant wavelength in the near infrared region can be used. Such light receiving elements are generally widely used. Therefore, the measurement system 20 can be configured at a low cost.
さらに、近赤外域の波長の光は、それよりも低い波長(例えば415nm、580nm等)の光に比べて、光ファイバ2の光伝送部4での減衰が生じにくいために、該光伝送部4での単位長当たりの光の減衰度合が小さい。このため、光ファイバ2の必要長が比較的長いものとなる測定システム20においても、前記混合燃料の混合割合、あるいは、ヘテロコア部3の周囲の物質の屈折率などを高感度に測定することができる。 Further, since light having a wavelength in the near infrared region is less likely to be attenuated in the optical transmission unit 4 of the optical fiber 2 than light having a wavelength lower than that (for example, 415 nm, 580 nm, etc.), the optical transmission unit The light attenuation per unit length at 4 is small. For this reason, even in the measurement system 20 in which the required length of the optical fiber 2 is relatively long, it is possible to measure the mixing ratio of the mixed fuel or the refractive index of the substance around the heterocore portion 3 with high sensitivity. it can.
以上の如く、本実施形態の光ファイバセンサ装置1によれば、ヘテロコア部3のクラッド6aの外周面に、金ナノ粒子10を固着させたことによって、光ファイバ2で光の伝送を行った場合に、ある所定波長での光の伝送強度の相対減衰度合が、ヘテロコア部3の周囲の物質の屈折率に応じて高感度に変化する。このため、該物質の屈折率、あるいは、該屈折率を規定する濃度等の特性を、光ファイバ2から出射する所定波長の光の強度を検出する光検出器22の出力に基づいて高感度に測定することができる。 As described above, according to the optical fiber sensor device 1 of the present embodiment, when light is transmitted through the optical fiber 2 by fixing the gold nanoparticles 10 to the outer peripheral surface of the cladding 6a of the hetero-core portion 3. In addition, the relative attenuation degree of the transmission intensity of light at a predetermined wavelength changes with high sensitivity in accordance with the refractive index of the substance around the hetero core portion 3. For this reason, the refractive index of the substance, or the characteristics such as the concentration that defines the refractive index, is highly sensitive based on the output of the photodetector 22 that detects the intensity of light having a predetermined wavelength emitted from the optical fiber 2. Can be measured.
また、所定波長の光の強度を検出し得る比較的安価な光検出器22を使用して測定システム20を構成できるので、該測定システム20を安価に構成できる。 In addition, since the measurement system 20 can be configured using the relatively inexpensive photodetector 22 that can detect the intensity of light of a predetermined wavelength, the measurement system 20 can be configured at low cost.
また、特に、ヘテロコア部3のクラッド6aの外周面に、金ナノ粒子10を固着飽和状態まで固着させた場合には、近赤外域の波長において、光の伝送強度の相対減衰度合が、ヘテロコア部3の周囲の物質の屈折率に応じて高感度に変化する。 In particular, when the gold nanoparticles 10 are fixed to the outer peripheral surface of the clad 6a of the hetero-core part 3 to the fixed saturation state, the relative attenuation degree of the light transmission intensity at the near-infrared wavelength is the hetero-core part. 3 changes with high sensitivity according to the refractive index of the surrounding material.
このため、ヘテロコア部3の周囲の物質の屈折率、あるいは、該屈折率を規定する濃度等の特性を高感度に測定し得る測定システム20を安価に構成できるだけでなく、光ファイバ2の必要長が比較的長いものとなる場合でも、ヘテロコア部3の周囲の物質の屈折率あるいは濃度等を、高出力の光源21等を使用せずとも適切に測定できる。 For this reason, not only can the measurement system 20 capable of measuring the refractive index of the substance around the hetero-core portion 3 or the characteristics such as the concentration defining the refractive index with high sensitivity be constructed at low cost, but also the required length of the optical fiber 2 Can be appropriately measured without using the high-power light source 21 or the like, even if the refractive index or the concentration of the material around the hetero-core portion 3 is relatively long.
なお、以上説明した実施形態では、測定対象の物質の一例として、ガソリン及びエタノールの混合燃料を例示したが、ガソリンとエタノール以外のアルコール(メタノール等)との混合燃料の混合割合(あるいはガソリン濃度、あるいは、アルコール濃度)を、前記実施形態の光ファイバセンサ装置1を使用した測定システム20により高感度に測定することもできる。 In the embodiment described above, a mixed fuel of gasoline and ethanol is exemplified as an example of a substance to be measured. However, a mixed ratio of a mixed fuel of gasoline and alcohol other than ethanol (such as methanol) (or gasoline concentration, Alternatively, the alcohol concentration can be measured with high sensitivity by the measurement system 20 using the optical fiber sensor device 1 of the embodiment.
また、前記実施形態では、ヘテロコア部3を中間部に備える光ファイバ2の一端から他端まで光を伝送する測定システム20を例示したが、例えば、図6に示す如く測定システムを構成してもよい。 Moreover, in the said embodiment, although the measurement system 20 which transmits light from the one end of the optical fiber 2 which equips the intermediate | middle part with the hetero core part 3 was illustrated, for example, even if it comprises a measurement system as shown in FIG. Good.
図6に示す測定システム30では、光ファイバセンサ装置1のヘテロコア部3を構成する光ファイバ2aの一端に光伝送部4を構成する光ファイバ2bが連接される一方、ヘテロコア部3を構成する光ファイバ2aの他端部には、反射鏡7が装着されている。そして、光伝送部4を構成する光ファイバ2bは、カプラ25を介して光源21と、光検出器22とに接続されている。 In the measurement system 30 shown in FIG. 6, the optical fiber 2 b constituting the optical transmission unit 4 is connected to one end of the optical fiber 2 a constituting the heterocore unit 3 of the optical fiber sensor device 1, while the light constituting the heterocore unit 3 is connected. A reflecting mirror 7 is attached to the other end of the fiber 2a. The optical fiber 2 b constituting the optical transmission unit 4 is connected to the light source 21 and the photodetector 22 via the coupler 25.
このように構成された測定システム30では、光源21から光ファイバ2bにカプラ25を介して入射される光は、光ファイバ2bからヘテロコア部3に進入した後、反射鏡7で反射されて光ファイバ2bに戻る。そして、この戻り光は、カプラ25を経由して光検出器22で受光される。 In the measurement system 30 configured in this way, light incident on the optical fiber 2b from the light source 21 via the coupler 25 enters the heterocore portion 3 from the optical fiber 2b, and then is reflected by the reflecting mirror 7 and is reflected by the optical fiber. Return to 2b. This return light is received by the photodetector 22 via the coupler 25.
かかる測定システム30においても、光検出器22で受光される所定波長の光の強度は、ヘテロコア部3の周囲の物質の屈折率に応じて高感度に変化する。このため、ヘテロコア部3の周囲の物質の屈折率、あるいは、これを規定する濃度等を光検出器22で受光される所定波長の光の強度に基づいて高感度に測定することができる。 Also in such a measurement system 30, the intensity of light of a predetermined wavelength received by the photodetector 22 changes with high sensitivity according to the refractive index of the substance around the heterocore portion 3. For this reason, the refractive index of the substance around the hetero core portion 3 or the concentration defining the substance can be measured with high sensitivity based on the intensity of light of a predetermined wavelength received by the photodetector 22.
1…光ファイバセンサ装置、2,2a,2b…光ファイバ、3…ヘテロコア部、4…光伝送部、5a,5b…コア、6a,6b…クラッド、10…金ナノ粒子、20…測定システム、21…光源、22…光検出器。 DESCRIPTION OF SYMBOLS 1 ... Optical fiber sensor apparatus, 2, 2a, 2b ... Optical fiber, 3 ... Hetero core part, 4 ... Optical transmission part, 5a, 5b ... Core, 6a, 6b ... Cladding, 10 ... Gold nanoparticle, 20 ... Measurement system, 21: Light source, 22: Photo detector.
Claims (6)
前記ヘテロコア部のクラッドの外周面に固着された金ナノ粒子とを備え、
前記光伝送部と前記ヘテロコア部とを経由させて前記光ファイバでの光の伝送を行った場合に、前記ヘテロコア部での所定波長の光の吸収度合が、該ヘテロコア部の周囲の物質の屈折率に応じて変化するように構成されていることを特徴とする光ファイバセンサ装置。 An optical transmission unit having a core and a clad; and a heterocore unit having a core and a clad respectively connected to the core and the clad of the optical transmission unit, wherein the heterocore unit has a smaller core than the core of the optical transmission unit Optical fiber,
Comprising gold nanoparticles fixed to the outer peripheral surface of the cladding of the hetero-core portion,
When light is transmitted through the optical fiber via the optical transmission unit and the hetero core unit, the degree of absorption of light of a predetermined wavelength in the hetero core unit is the refraction of the material around the hetero core unit. An optical fiber sensor device configured to change according to a rate.
前記金ナノ粒子が固着されたヘテロコア部のクラッドの周囲の物質の屈折率を一定の屈折率に維持した状態で、前記光ファイバでの光の伝送を行った場合における該光の伝送強度の減衰度合いをXと定義し、前記ヘテロコア部のクラッドの外周面に前記金ナノ粒子が固着されておらず、且つ、前記ヘテロコア部の周囲の物質の屈折率を前記一定の屈折率に維持した状態で、前記光ファイバでの光の伝送を行った場合における該光の伝送強度の減衰度合いをX0と定義したとき、前記金ナノ粒子は、前記X0に対する前記Xの比率が1/100以下となる密度で、前記ヘテロコア部のクラッドの外周面に固着されていることを特徴とする光ファイバセンサ装置。 The optical fiber sensor device according to claim 1,
Attenuation of light transmission intensity when light is transmitted through the optical fiber in a state where the refractive index of the material around the cladding of the hetero-core portion to which the gold nanoparticles are fixed is maintained at a constant refractive index. The degree is defined as X, the gold nanoparticles are not fixed to the outer peripheral surface of the cladding of the heterocore portion, and the refractive index of the substance around the heterocore portion is maintained at the constant refractive index. When the degree of attenuation of the transmission intensity of light when the light is transmitted through the optical fiber is defined as X0, the gold nanoparticles have a density such that the ratio of X to X0 is 1/100 or less. The optical fiber sensor device is fixed to the outer peripheral surface of the clad of the hetero core portion.
前記金ナノ粒子が固着されたヘテロコア部のクラッドの周囲の物質の屈折率を一定の屈折率に維持した状態で、前記光ファイバでの光の伝送を行った場合における該光の伝送強度の減衰度合いをXと定義し、前記ヘテロコア部のクラッドの外周面に前記金ナノ粒子が固着されておらず、且つ、前記ヘテロコア部の周囲の物質の屈折率を前記一定の屈折率に維持した状態で、前記光ファイバでの光の伝送を行った場合における該光の伝送強度の減衰度合いをX0と定義したとき、前記X0に対する前記Xの比率が飽和した状態となるまで、前記光ファイバのヘテロコア部を金ナノ粒子の懸濁液に浸漬させることにより、該ヘテロコア部のクラッドの外周面に前記金ナノ粒子を固着させたことを特徴とする光ファイバセンサ装置の製造方法。
An optical transmission unit having a core and a clad, and a hetero core unit having a core and a clad respectively connected to the core and the clad of the optical transmission unit, wherein the hetero core unit has a smaller core than the core of the optical transmission unit A manufacturing method of an optical fiber sensor device comprising a fiber and gold nanoparticles fixed to the outer peripheral surface of the cladding of the hetero core part,
Attenuation of light transmission intensity when light is transmitted through the optical fiber in a state where the refractive index of the material around the cladding of the hetero-core portion to which the gold nanoparticles are fixed is maintained at a constant refractive index. The degree is defined as X, the gold nanoparticles are not fixed to the outer peripheral surface of the cladding of the heterocore portion, and the refractive index of the substance around the heterocore portion is maintained at the constant refractive index. When the degree of attenuation of the transmission intensity of light when transmitting light through the optical fiber is defined as X0, the hetero-core portion of the optical fiber until the ratio of X to X0 is saturated. A method of manufacturing an optical fiber sensor device, wherein the gold nanoparticles are fixed to the outer peripheral surface of the clad of the hetero-core portion by immersing in a suspension of gold nanoparticles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014119924A JP6391305B2 (en) | 2014-06-10 | 2014-06-10 | Optical fiber sensor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014119924A JP6391305B2 (en) | 2014-06-10 | 2014-06-10 | Optical fiber sensor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015232522A true JP2015232522A (en) | 2015-12-24 |
JP6391305B2 JP6391305B2 (en) | 2018-09-19 |
Family
ID=54934045
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014119924A Active JP6391305B2 (en) | 2014-06-10 | 2014-06-10 | Optical fiber sensor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6391305B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019032229A (en) * | 2017-08-08 | 2019-02-28 | 学校法人 創価大学 | Optical fiber hydrogen sensor and manufacturing method thereof |
KR20190036702A (en) * | 2017-09-28 | 2019-04-05 | 주식회사 레신저스 | Humidity sensor |
JP2021032569A (en) * | 2019-08-15 | 2021-03-01 | 学校法人 創価大学 | Salt sensor device and manufacturing method thereof |
JP2021081356A (en) * | 2019-11-21 | 2021-05-27 | トヨタ自動車株式会社 | Method for estimating concentration of sulfur composition in gasoline |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006030155A (en) * | 2004-07-20 | 2006-02-02 | Yukio Nagasaki | Plate assay using spectroscopy |
JP2006047018A (en) * | 2004-08-02 | 2006-02-16 | Tama Tlo Kk | Level gauge using optical fiber sensor, level, manometer, and thermometer |
JP2007170928A (en) * | 2005-12-20 | 2007-07-05 | Stanley Electric Co Ltd | Surface plasmon resonance sensor element |
JP2010101801A (en) * | 2008-10-24 | 2010-05-06 | Mitsubishi Electric Corp | Fuel property detection device |
JP2010223817A (en) * | 2009-03-24 | 2010-10-07 | Soka Univ | Ethanol sensor and ethanol measurement system using the same |
JP2010223734A (en) * | 2009-03-23 | 2010-10-07 | Aisan Ind Co Ltd | Alcohol concentration detecting sensor |
-
2014
- 2014-06-10 JP JP2014119924A patent/JP6391305B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006030155A (en) * | 2004-07-20 | 2006-02-02 | Yukio Nagasaki | Plate assay using spectroscopy |
JP2006047018A (en) * | 2004-08-02 | 2006-02-16 | Tama Tlo Kk | Level gauge using optical fiber sensor, level, manometer, and thermometer |
JP2007170928A (en) * | 2005-12-20 | 2007-07-05 | Stanley Electric Co Ltd | Surface plasmon resonance sensor element |
JP2010101801A (en) * | 2008-10-24 | 2010-05-06 | Mitsubishi Electric Corp | Fuel property detection device |
JP2010223734A (en) * | 2009-03-23 | 2010-10-07 | Aisan Ind Co Ltd | Alcohol concentration detecting sensor |
JP2010223817A (en) * | 2009-03-24 | 2010-10-07 | Soka Univ | Ethanol sensor and ethanol measurement system using the same |
Non-Patent Citations (5)
Title |
---|
"A surface plasmon resonance hydrogen sensor using Au/Ta2O5/Pd multi-layers on hetero-core optical fi", SENSORS AND ACTUATORS B: CHEMICAL, vol. 185, JPN6018019704, 14 May 2013 (2013-05-14), pages 53 - 58, ISSN: 0003855618 * |
"Optimization of gold-nanoparticle-based optical fibre surface plasmon resonance (SPR)-based sensors", SENSORS AND ACTUATORS B: CHEMICAL, vol. 164, JPN6018019701, 4 February 2010 (2010-02-04), pages 43 - 53, ISSN: 0003805057 * |
プラズモニクス−基礎と応用, JPN7018001748, 1 October 2010 (2010-10-01), ISSN: 0003805056 * |
佐々木博幸 (コアシステムジャパン), 関篤志, 渡辺一弘 (創価大 工): "ヘテロコア光ファイバ型SPRセンサを用いるエタノール中のガソリン濃度の測定", 電子情報通信学会技術研究報告, vol. 111, no. 449, JPN7018001747, 2 March 2012 (2012-03-02), pages 11 - 14, ISSN: 0003805055 * |
関篤志: "金ナノ粒子を固定化したヘテロコア光ファイバを用いる燃料成分センサの開発", 科学研究費助成事業データベース, JPN6018019703, 21 May 2013 (2013-05-21), JP, pages 25420420, ISSN: 0003855617 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019032229A (en) * | 2017-08-08 | 2019-02-28 | 学校法人 創価大学 | Optical fiber hydrogen sensor and manufacturing method thereof |
KR20190036702A (en) * | 2017-09-28 | 2019-04-05 | 주식회사 레신저스 | Humidity sensor |
KR102005058B1 (en) * | 2017-09-28 | 2019-07-30 | 주식회사 레신저스 | Humidity sensor |
JP2021032569A (en) * | 2019-08-15 | 2021-03-01 | 学校法人 創価大学 | Salt sensor device and manufacturing method thereof |
JP7303512B2 (en) | 2019-08-15 | 2023-07-05 | 学校法人 創価大学 | Salt sensor device and manufacturing method thereof |
JP2021081356A (en) * | 2019-11-21 | 2021-05-27 | トヨタ自動車株式会社 | Method for estimating concentration of sulfur composition in gasoline |
JP7144388B2 (en) | 2019-11-21 | 2022-09-29 | トヨタ自動車株式会社 | Method for estimating the concentration of sulfur components in gasoline |
US11933725B2 (en) | 2019-11-21 | 2024-03-19 | Toyota Jidosha Kabushiki Kaisha | Method for estimating sulfur component concentration in gasoline |
Also Published As
Publication number | Publication date |
---|---|
JP6391305B2 (en) | 2018-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Verma et al. | Theoretical modelling of a bi-dimensional U-shaped surface plasmon resonance based fibre optic sensor for sensitivity enhancement | |
Villatoro et al. | High resolution refractive index sensing with cladded multimode tapered optical fibre | |
JP6391305B2 (en) | Optical fiber sensor device | |
CN1625680A (en) | Fiber-optic based cavity ring-down spectroscopy apparatus | |
CN1628241A (en) | Method and apparatus for enhanced evanescent field exposure in an optical fiber resonator for spectroscopic measurement of trace species | |
CN108844919B (en) | Cladding reflection type inclined fiber grating refractive index sensor and manufacturing and measuring methods thereof | |
CN106323915B (en) | Device for detecting hydrogen sulfide gas based on optical fiber M-Z interferometer | |
TW200523530A (en) | Tapered fiber optic strain gauge using cavity ring-down spectroscopy | |
CN105911025A (en) | Distributed spiral core optical fiber surface plasmon resonance sensor and measurement method thereof | |
Zhang et al. | Reflective fiber-optic refractometer using broadband cladding mode coupling mediated by a tilted fiber Bragg grating and an in-fiber mirror | |
Teng et al. | Plastic optical fiber based SPR sensor for simultaneous measurement of refractive index and liquid level | |
Sinchenko et al. | The effect of the cladding refractive index on an optical fiber evanescent-wave sensor | |
Dhara et al. | Reflectance-based low-cost disposable optical fiber surface plasmon resonance probe with enhanced biochemical sensitivity | |
Chopra et al. | Tuning the sensitivity of a fiber-optic plasmonic sensor: An interplay among gold thickness, tapering ratio and surface roughness | |
JP2017102107A (en) | Optical fiber device and sensor system | |
Sharma et al. | Fibre optic sensor based on long-range surface plasmon resonance: a theoretical analysis | |
Fukano et al. | High-sensitivity optical fiber refractive index sensor using multimode interference structure | |
Zeng et al. | Application of fiber optic surface plasmon resonance sensor for measuring liquid refractive index | |
Jiang et al. | Precise measurement of liquid-level by fiber loop ring-down technique incorporating an etched fiber | |
Hosoki et al. | Multipoint hydrogen sensing of hetero-core fiber SPR tip sensors with pseudorandom noise code correlation reflectometry | |
JP2016080366A (en) | Refractive index detection method and optical fiber sensor system | |
CN103697920B (en) | A kind of optical fiber sensor head and based on this sensing head measure the optical fiber sensing system of liquid refractivity and method | |
Liyun et al. | Optical fiber sensor determination of the water salinity based on surface plasmon resonance | |
JP2008232947A (en) | Optical fiber type surface plasmon sensor and measuring device using it | |
CN111928880B (en) | Mach-Zehnder interference optical fiber based on surface plasma effect and sensor thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170609 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180510 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180529 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180727 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180814 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180821 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6391305 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |