JP2015231938A - Ferrite core, electronic component and electric power unit - Google Patents

Ferrite core, electronic component and electric power unit Download PDF

Info

Publication number
JP2015231938A
JP2015231938A JP2015049587A JP2015049587A JP2015231938A JP 2015231938 A JP2015231938 A JP 2015231938A JP 2015049587 A JP2015049587 A JP 2015049587A JP 2015049587 A JP2015049587 A JP 2015049587A JP 2015231938 A JP2015231938 A JP 2015231938A
Authority
JP
Japan
Prior art keywords
ppm
terms
ferrite core
amount
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015049587A
Other languages
Japanese (ja)
Other versions
JP6536790B2 (en
Inventor
義人 岡
Yoshito Oka
義人 岡
森 健太郎
Kentaro Mori
健太郎 森
安原 克志
Katsushi Yasuhara
克志 安原
潤 有馬
Jun Arima
潤 有馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2015049587A priority Critical patent/JP6536790B2/en
Priority to KR1020150065372A priority patent/KR20150131981A/en
Priority to CN201510250244.XA priority patent/CN105097169B/en
Publication of JP2015231938A publication Critical patent/JP2015231938A/en
Priority to KR1020170027805A priority patent/KR20170029462A/en
Application granted granted Critical
Publication of JP6536790B2 publication Critical patent/JP6536790B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof

Abstract

PROBLEM TO BE SOLVED: To provide a ferrite core having small saturation magnetostriction near to 100°C, suppressed sound squeak at drive and high saturation flux density.SOLUTION: There is provided a ferrite core 10 which is a MnZn-based ferrite containing iron oxide of 51.5 to 54.5 mol% in terms of FeO, zinc oxide of 7.0 to 11.5 mol% in terms of ZnO and the balance manganese oxide as a main component, and Ni of 500 to 10000 ppm in terms of NiO, Ti of 100 to 6000 ppm in term of TiOand Co of 500 to 4000 ppm in terms of CaO to the main component.

Description

本発明は、100℃近傍の飽和磁歪が低く、駆動時の音鳴きが抑制され、且つ、飽和磁束密度が高いフェライトコアに関するものである。 The present invention relates to a ferrite core having a low saturation magnetostriction in the vicinity of 100 ° C., a noise reduction during driving, and a high saturation magnetic flux density.

電源用トランスなどの磁心材料として、フェライト焼結体が使用されている。コア(磁心)を形成するフェライト焼結体は、フェライトコアと呼ばれ、Mn及びZnを含有するMnZn系フェライトが広く使用されている。また、近年では電源の小型化に伴い高温で高い飽和磁束密度が求められている。 Ferrite sintered bodies are used as magnetic core materials for power transformers and the like. The ferrite sintered body forming the core (magnetic core) is called a ferrite core, and MnZn-based ferrite containing Mn and Zn is widely used. In recent years, a high saturation magnetic flux density at a high temperature has been demanded with the miniaturization of a power source.

たとえば特許文献1のフェライトではFe:52〜56mol%、ZnO:6〜14mol%、NiO:4mol%以下、CoO:0.01〜0.6mol%、残部が実質的にMnOの組成となる基本成分に対して、外枠量でSiO:0.0050〜0.0500wt%及びCaO:0.0200〜0.2000wt%を含有し、さらに、Ta、ZrO、Nb、V、KO、TiO、SnO及びHfOのうちから選ばれる少なくとも1種の添加成分を所定量含有し、かつ、高い飽和磁束密度を有することを特徴としている。 For example, in the ferrite of Patent Document 1, Fe 2 O 3 : 52 to 56 mol%, ZnO: 6 to 14 mol%, NiO: 4 mol% or less, CoO: 0.01 to 0.6 mol%, and the balance is substantially composed of MnO. The basic component contains SiO 2 : 0.0050 to 0.0500 wt% and CaO: 0.0200 to 0.2000 wt% in the outer frame amount, and further Ta 2 O 5 , ZrO 2 , Nb 2 O. 5 , V 2 O 5 , K 2 O, TiO 2 , SnO 2, and HfO 2 are contained in a predetermined amount and have a high saturation magnetic flux density.

一方、電源の駆動時に発生する音鳴きについても重要であり、たとえば特許文献2では複数の脚部を持つコアの脚と脚の間に制振材を挟むことによって、トランス鳴きが低減または防止されるトランスを提供することを特徴としている。 On the other hand, the noise generated when the power source is driven is also important. For example, in Patent Document 2, transformer noise is reduced or prevented by sandwiching a damping material between the legs of the core having a plurality of legs. It is characterized by providing a transformer.

特許第3968188号公報Japanese Patent No. 3968188 特開2013−118308号公報JP 2013-118308 A

音鳴きは磁歪振動することが原因であると一般的に知られている。特許文献2では音鳴きは低減しているものの、音鳴きの原因である磁歪を低減しているものではなく根本的な解決の方法とはいえない。また、制振材を用いることにより、製造時のコストや手間がかかってしまうという問題もある。 It is generally known that squeal is caused by magnetostrictive vibration. In Patent Document 2, although the noise is reduced, it does not reduce the magnetostriction that causes the noise and cannot be said to be a fundamental solution. In addition, there is a problem that the use of the vibration damping material increases the cost and labor during manufacturing.

そこで本発明の目的は、従来技術が抱えている上述した課題を解決できるフェライトコアを提供することにある。特に100℃における磁歪を小さくすることで駆動時の音鳴きを抑え、且つ、高い飽和磁束密度を示すフェライトコアを提供することにある。 Accordingly, an object of the present invention is to provide a ferrite core that can solve the above-described problems of the prior art. In particular, an object of the present invention is to provide a ferrite core that reduces noise during driving by reducing magnetostriction at 100 ° C. and exhibits a high saturation magnetic flux density.

かかる目的のもと、本発明者等はMnZn系フェライトに含まれる主成分として酸化鉄、酸化マンガン、酸化亜鉛、副成分として酸化ニッケル、酸化コバルトおよび酸化チタンの組成に着目してその特性について鋭意研究を行った。その結果、100℃において飽和磁歪が小さく、駆動時の音鳴きを抑え、かつ、高い飽和磁束密度を実現できることを見出し、本発明を完成させるに至った。 Under such a purpose, the present inventors pay attention to the composition of iron oxide, manganese oxide, zinc oxide as main components contained in MnZn-based ferrite and nickel oxide, cobalt oxide and titanium oxide as subcomponents, and diligently their characteristics. I did research. As a result, it has been found that the saturation magnetostriction is small at 100 ° C., the noise during driving can be suppressed, and a high saturation magnetic flux density can be realized, and the present invention has been completed.

すなわち、本発明に係るフェライトコアは、酸化鉄をFe換算で51.5〜54.5mol%、酸化亜鉛をZnO換算で7.0〜11.5mol%、残部が酸化マンガンである主成分を含むMnZn系フェライトであって、この主成分に対して、NiをNiO換算で500〜10000ppmを含むこと、TiをTiO換算で100〜6000ppmを含むこと、CoをCoO換算で500〜4000ppm含むことを特徴とするフェライトコアである。 That is, the ferrite core of the present invention, 51.5~54.5Mol% iron oxide calculated as Fe 2 O 3, 7.0~11.5Mol% of zinc oxide calculated as ZnO, the main balance being manganese oxide It is MnZn type ferrite containing a component, Comprising: With respect to this main component, Ni contains 500 to 10000 ppm in terms of NiO, Ti contains 100 to 6000 ppm in terms of TiO 2 , and Co contains 500 to 4000 ppm in terms of CoO It is a ferrite core characterized by including.

また本発明のフェライトコアにおいて、副成分として、主成分に対してSiをSiO換算で50〜300ppm及びCaをCaCO換算で200〜3000ppm含むことが好ましい。 Moreover, in the ferrite core of the present invention, it is preferable that Si and Si are contained in an amount of 50 to 300 ppm in terms of SiO 2 and Ca in an amount of 200 to 3000 ppm in terms of CaCO 3 as subcomponents.

さらに本発明のフェライトコアにおいて、副成分として、主成分に対してNbをNb換算で50〜750ppm、TaをTa換算で50〜1500ppm、VをV換算で50〜1000ppm、SnをSnO換算で500〜8000ppmを1種または2種以上含むことが好ましい。 Furthermore, in the ferrite core of the present invention, as subcomponents, Nb is 50 to 750 ppm in terms of Nb 2 O 5 , Ta is 50 to 1500 ppm in terms of Ta 2 O 5 , and V is 50 in terms of V 2 O 5 as subcomponents. ~1000Ppm, it is preferable to include one or more 500~8000ppm the Sn in terms of SnO 2.

100℃における飽和磁歪を低減することで駆動時の音鳴きを抑えることができ、且つ、高い飽和磁束密度を実現できる。 By reducing the saturation magnetostriction at 100 ° C., it is possible to suppress squeaking during driving and to realize a high saturation magnetic flux density.

はじめに、本発明における成分の限定理由を説明する。
本発明のフェライトコアは主成分としてのFe量をFe換算で51.5〜54.5mol%とする。なお、以下では、Fe量をFe換算で、との表記を単に、Fe量等と表記する。Fe量が51.5mol%未満だと、100℃における飽和磁歪は低減されるが飽和磁束密度が小さくなってしまう。一方、Fe量が54.5mol%を超えると100℃における飽和磁歪が大きくなってしまう。したがって、本発明ではFe量を51.5〜54.5mol%とする。好ましい量は51.5〜54mol%である。
First, the reasons for limiting the components in the present invention will be described.
In the ferrite core of the present invention, the amount of Fe as a main component is 51.5 to 54.5 mol% in terms of Fe 2 O 3 . Hereinafter, the notation of Fe amount in terms of Fe 2 O 3 is simply expressed as Fe 2 O 3 amount or the like. When the amount of Fe 2 O 3 is less than 51.5 mol%, the saturation magnetostriction at 100 ° C. is reduced, but the saturation magnetic flux density is reduced. On the other hand, when the amount of Fe 2 O 3 exceeds 54.5 mol%, saturation magnetostriction at 100 ° C. increases. Therefore, in the present invention, the amount of Fe 2 O 3 is 51.5 to 54.5 mol%. A preferred amount is 51.5 to 54 mol%.

ZnO量も飽和磁束密度及び飽和磁歪に影響を与える。ZnO量が7.0mol%より少ないと飽和磁歪が大きくなってしまう。ZnOが11.5mol%を超えると100℃における飽和磁束密度が小さくなってしまう。したがって本発明ではZnO量を7.0〜11.5mol%とする。本発明のフェライトコアは主成分として、上記以外に不可避的不純物を除いて残部がMnOから構成される。 The amount of ZnO also affects the saturation magnetic flux density and saturation magnetostriction. When the amount of ZnO is less than 7.0 mol%, the saturation magnetostriction becomes large. When ZnO exceeds 11.5 mol%, the saturation magnetic flux density at 100 ° C. becomes small. Therefore, in the present invention, the amount of ZnO is set to 7.0 to 11.5 mol%. The ferrite core of the present invention is composed of MnO as the main component except for the inevitable impurities other than the above.

次に本発明における副成分について説明する。
本発明のフェライトコアは、副成分として、Ni量をNiO換算で500〜10000ppmとする。NiOは磁歪を抑制するのに有効であり、その効果を得るために主成分に対して500ppm以上添加する。但し、添加量が多すぎると、飽和磁束密度が小さくなってしまう。したがって本発明ではNiO量を10000ppm以下とする。好ましい量は2000〜10000ppmである。
Next, subcomponents in the present invention will be described.
In the ferrite core of the present invention, the amount of Ni is 500 to 10,000 ppm in terms of NiO as a subcomponent. NiO is effective in suppressing magnetostriction, and is added in an amount of 500 ppm or more with respect to the main component in order to obtain the effect. However, when there is too much addition amount, a saturation magnetic flux density will become small. Therefore, in the present invention, the amount of NiO is 10000 ppm or less. A preferred amount is 2000-10000 ppm.

本発明のフェライトコアは、副成分として、Ti量をTiO換算で100〜6000ppmとする。TiOは4価のTiイオンとしてスピネル格子中のFeと置換して磁歪を低減できる。その効果を得るためには主成分に対し100ppm以上添加する。但し、添加量が多すぎると、飽和磁束密度が小さくなる。したがって本発明ではTiO量を6000ppm以下とする。好ましい量は1000〜3000ppmである。 In the ferrite core of the present invention, the Ti content is set to 100 to 6000 ppm as TiO 2 in terms of TiO 2 . TiO 2 can be replaced with Fe in the spinel lattice as tetravalent Ti ions to reduce magnetostriction. In order to obtain the effect, 100 ppm or more is added to the main component. However, when the addition amount is too large, the saturation magnetic flux density becomes small. Therefore, in the present invention, the amount of TiO 2 is set to 6000 ppm or less. A preferred amount is 1000 to 3000 ppm.

本発明のフェライトコアは、副成分として、Co量をCoO換算で500〜4000ppmとする。CoOは磁歪を抑制するのに有効であり、その効果を得るために主成分に対して500ppm以上添加する。但し、その添加量が多すぎると、飽和磁束密度が小さくなってしまう。したがって本発明では、CoO量を4000ppm以下とする。好ましいCoO量は500〜3000ppmである。 In the ferrite core of the present invention, the Co amount is set to 500 to 4000 ppm in terms of CoO as a subcomponent. CoO is effective in suppressing magnetostriction, and in order to obtain the effect, 500 ppm or more is added to the main component. However, when the addition amount is too large, the saturation magnetic flux density is reduced. Therefore, in this invention, the amount of CoO shall be 4000 ppm or less. A preferable amount of CoO is 500 to 3000 ppm.

また、Ni、Ti、Coは同時に添加することでその効果はさらに高まる。NiやCoはスピネル結晶中のBサイトに固溶することで磁歪抑制効果が得られる。しかし、これらを単体で添加すると、BサイトだけではなくAサイトにも固溶してしまい、添加量に対して十分な効果が得られない。しかし、Tiを同時に添加することでNiやCoがBサイトに固溶しやすくなり単体で添加するよりも大きい磁歪抑制効果を得ることができると考えられる。 Moreover, the effect is further enhanced by adding Ni, Ti and Co simultaneously. Ni or Co is dissolved in the B site in the spinel crystal to obtain a magnetostriction suppressing effect. However, when these are added alone, they are dissolved not only in the B site but also in the A site, and a sufficient effect on the amount added cannot be obtained. However, it is considered that Ni and Co are easily dissolved in the B site by adding Ti at the same time, and a larger magnetostriction suppressing effect can be obtained than when adding alone.

本発明のフェライトコアは、上述した組成を適宜選択することにより100℃における飽和磁束密度が380mT以上と高く、且つ、100℃における飽和磁歪を低減し駆動時の音鳴きを抑えることができる。 In the ferrite core of the present invention, the saturation magnetic flux density at 100 ° C. is as high as 380 mT or more by appropriately selecting the above-described composition, and the saturation magnetostriction at 100 ° C. can be reduced to suppress noise during driving.

本発明では次のように副成分を制限することでコア損失を抑えることができる。
本発明のフェライトコアは、副成分として、SiOを50〜300ppm及びCaCOを200〜3000ppmの範囲内で含むことができる。Si及びCaは、結晶粒界に偏析して高抵抗層を形成して低損失に寄与するとともに焼結助剤として焼結密度を向上する効果を有する。SiがSiO換算で50ppm未満、あるいはCaがCaCO換算で200ppm未満だと上記効果を十分に得ることができない。また、SiがSiO換算で300ppm、あるいはCaがCaCO換算で3000ppmを超えると、異常粒成長によるコア損失の劣化が大きくなる。SiOは50〜150ppm及びCaCOは500〜2000ppmとすることが好ましく、さらにSiOは75〜125ppm及びCaCOは800〜1600ppmとすることが好ましい。
In the present invention, the core loss can be suppressed by limiting the subcomponents as follows.
The ferrite core of the present invention can contain 50 to 300 ppm of SiO 2 and 200 to 3000 ppm of CaCO 3 as subcomponents. Si and Ca are segregated at the grain boundaries to form a high resistance layer and contribute to low loss, and have the effect of improving the sintering density as a sintering aid. If Si is less than 50 ppm in terms of SiO 2 or Ca is less than 200 ppm in terms of CaCO 3 , the above effects cannot be obtained sufficiently. On the other hand, when Si exceeds 300 ppm in terms of SiO 2 or Ca exceeds 3000 ppm in terms of CaCO 3 , the core loss deteriorates due to abnormal grain growth. SiO 2 is 50~150ppm and CaCO 3 are preferably be 500~2000Ppm, further SiO 2 is 75~125ppm and CaCO 3 is preferably set to 800~1600Ppm.

本発明のフェライトコアは、副成分として、Nbを50〜750ppm及びTaを50〜1500ppmの範囲内で含むことができる。Nb及びTaは粒界抵抗を高める働きがある成分である。NbがNb換算で50ppm未満、あるいはTaがTaを換算で50ppm未満では改善効果がない。また、NbがNb換算で750ppmを超え、あるいはTaがTa換算で1500ppmを超えると異常粒成長によりコア損失が大きくなるため、Nbを50〜750ppm及びTaを50〜1500ppmの範囲に限定した。含有量が多くなると異常粒成長を起こすためNbを100〜300ppm及びTaを100〜600ppmの範囲で含有させるのが好ましい。 The ferrite core of the present invention can contain 50 to 750 ppm of Nb 2 O 5 and 50 to 1500 ppm of Ta 2 O 5 as subcomponents. Nb and Ta are components that have a function of increasing the grain boundary resistance. If Nb is less than 50 ppm in terms of Nb 2 O 5 , or Ta is less than 50 ppm in terms of Ta 2 O 5 , there is no improvement effect. Further, when Nb exceeds 750 ppm in terms of Nb 2 O 5 or Ta exceeds 1500 ppm in terms of Ta 2 O 5 , the core loss increases due to abnormal grain growth. Therefore, Nb 2 O 5 is increased to 50 to 750 ppm and Ta 2 O 5 was limited to the range of 50 to 1500 ppm. When the content is increased, abnormal grain growth occurs, so that it is preferable to contain Nb 2 O 5 in the range of 100 to 300 ppm and Ta 2 O 5 in the range of 100 to 600 ppm.

本発明のフェライトコアは、副成分として、Vを50〜1000ppmの範囲内で含むことができる。Vは粒界抵抗を高める働きがある成分である。VがVを換算で50ppm未満では改善効果がない。また、VがV換算で1000ppmを超えると異常粒成長によりコア損失が大きくなるため、Vを50〜1000ppmの範囲に限定した。含有量が多くなると異常粒成長を起こすためVを100〜500ppmの範囲で含有させるのが好ましい。 The ferrite core of the present invention can contain V 2 O 5 in the range of 50 to 1000 ppm as a subcomponent. V is a component having a function of increasing the grain boundary resistance. When V is less than 50 ppm in terms of V 2 O 5 , there is no improvement effect. Also, V is because the core loss increases due to abnormal grain growth exceeds 1000ppm in terms of V 2 O 5, with limited V 2 O 5 in the range of 50 to 1000 ppm. When the content increases, abnormal grain growth occurs, so that V 2 O 5 is preferably contained in the range of 100 to 500 ppm.

本発明のフェライトコアは、副成分として、SnOを500〜8000ppm含むことができる。SnOは、一部粒界に存在し焼結後の冷却過程で粒界再酸化を助長して損失を低下させる成分である。SnOは4価のイオンとしてスピネル格子の原子とも置換してボトム温度を低下させる働きもある。しかしながら、添加量が多すぎると異常粒成長を引き起こして損失が高くなるため、SnOは500〜8000ppm、の範囲で含有させる。好ましくは、SnOを1000〜3000ppmの範囲で含有させる。なお、これらの成分は必ずしも酸化物の形で添加する必要はなく、たとえば、炭酸塩の形で混合してもかまわない。 The ferrite core of the present invention may contain 500 to 8000 ppm of SnO 2 as a subcomponent. SnO 2 is a component that partially exists at the grain boundary and promotes grain boundary reoxidation in the cooling process after sintering to reduce loss. SnO 2 also serves to lower the bottom temperature by substituting with atoms of the spinel lattice as tetravalent ions. However, if the added amount is too large, abnormal grain growth is caused and the loss becomes high. Therefore, SnO 2 is contained in the range of 500 to 8000 ppm. Preferably, SnO 2 is contained in the range of 1000 to 3000 ppm. These components are not necessarily added in the form of an oxide, and may be mixed in the form of a carbonate, for example.

本発明のフェライトコアは、上述した組成を適宜選択することにより100℃における損失を抑えることができる。 The ferrite core of the present invention can suppress loss at 100 ° C. by appropriately selecting the above-described composition.

次に、本発明によるフェライトコアにとって好適な製造方法を説明する。
主成分の原料としては、酸化物又は加熱により酸化物となる化合物の粉末を用いる。具体的には、Fe粉末、Mn粉末及びZnO粉末等を用いることができる。各原料粉末の平均粒径は0.1〜3μmの範囲で適宜選択すればよい。主成分の原料粉末を湿式混合した後、仮焼きを行う。仮焼きの温度は800〜1100℃の範囲内での所定温度とすればよい。仮焼きの安定時間は0.5〜5時間の範囲で適宜選択すればよい。仮焼き後、仮焼き材を例えば、平均粒径0.5〜3μm程度まで粉砕する。なお、本発明では、上述の主成分の原料に限らず、2種以上の金属を含む複合酸化物の粉末を主成分の原料としてもよい。例えば、塩化鉄、塩化マンガンを含有する水溶液を酸化培焼することによりFe、Mnを含む複合酸化物の粉末が得られる。この粉末とZnO粉末を混合して主成分原料としてもよい。このような場合には、仮焼きは不要である。
Next, a manufacturing method suitable for the ferrite core according to the present invention will be described.
As the raw material of the main component, an oxide or a powder of a compound that becomes an oxide by heating is used. Specifically, Fe 2 O 3 powder, Mn 3 O 4 powder, ZnO powder, or the like can be used. What is necessary is just to select suitably the average particle diameter of each raw material powder in the range of 0.1-3 micrometers. The raw material powder of the main component is wet mixed and then calcined. The calcining temperature may be a predetermined temperature within the range of 800 to 1100 ° C. What is necessary is just to select the stable time of calcination suitably in the range of 0.5 to 5 hours. After the calcination, the calcined material is pulverized, for example, to an average particle size of about 0.5 to 3 μm. In the present invention, not only the above-mentioned main component materials, but also a composite oxide powder containing two or more metals may be used as the main component materials. For example, a complex oxide powder containing Fe and Mn can be obtained by oxidizing and baking an aqueous solution containing iron chloride and manganese chloride. This powder and ZnO powder may be mixed and used as a main component material. In such a case, calcining is unnecessary.

仮焼き後に副成分を添加する。仮焼き後の添加には、仮焼き材に副成分の原料を添加して上記粉砕を行ってもよいし、仮焼き材の粉砕後に副成分の原料を添加、混合することができる。ただし、NiO、TiO、CoOについては、主成分の原料とともに仮焼きに供することもできる。
副成分の原料として、酸化物又は加熱により酸化物となる化合物の粉末を用いることもできる。具体的には、NiO粉末、Co粉末、TiO粉末、SiO粉末、CaCO粉末、Nb粉末、Ta粉末、SnO粉末等を用いることができる。
Add subcomponents after calcination. For the addition after calcining, the above-mentioned pulverization may be performed by adding the raw material of the subcomponent to the calcined material, or the subcomponent raw material can be added and mixed after the calcination of the calcined material. However, NiO, TiO 2 , and CoO can be calcined together with the main component raw materials.
As a subcomponent material, an oxide or a powder of a compound that becomes an oxide by heating can also be used. Specifically, NiO powder, Co 3 O 4 powder, TiO 2 powder, SiO 2 powder, CaCO 3 powder, Nb 2 O 5 powder, Ta 2 O 5 powder, SnO 2 powder, or the like can be used.

主成分及び副成分からなる混合粉末は、後の成型工程を円滑に実行するために顆粒に造粒される。造粒は例えばスプレードライヤを用いて行うことができる。混合粉末に適当な結合材、例えばポリビニルアルコール(PVA)を少量添加し、これをスプレードライヤで噴霧、乾燥する。得られる顆粒の粒径は80〜300μm程度とすることが好ましい。 The mixed powder composed of the main component and the subcomponent is granulated into a granule in order to smoothly execute the subsequent molding process. Granulation can be performed using, for example, a spray dryer. A small amount of a suitable binder such as polyvinyl alcohol (PVA) is added to the mixed powder, and this is sprayed and dried with a spray dryer. The particle size of the obtained granules is preferably about 80 to 300 μm.

得られた顆粒は、例えば所定形状の金型を有するプレスを用いて所望の形状に成型され、この成型体は焼成工程に供される。
焼成工程においては、焼成温度と焼成雰囲気を制御する必要がある。焼成温度は1250〜1500℃の範囲から適宜選択することができるが、本発明のフェライトコアの効果を十分引き出すには、1300〜1400℃の範囲で焼成することが好ましい。焼成雰囲気は、窒素と酸素の混合雰囲気において、酸素分圧を適宜調整すればよい。
The obtained granules are molded into a desired shape using, for example, a press having a mold having a predetermined shape, and this molded body is subjected to a firing step.
In the firing step, it is necessary to control the firing temperature and firing atmosphere. The firing temperature can be appropriately selected from the range of 1250 to 1500 ° C., but it is preferably fired in the range of 1300 to 1400 ° C. in order to sufficiently bring out the effect of the ferrite core of the present invention. As the firing atmosphere, the oxygen partial pressure may be appropriately adjusted in a mixed atmosphere of nitrogen and oxygen.

焼成された本発明によるフェライトコアは、93%以上、さらに好ましくは95%以上の相対密度を得ることができる。
本発明により得られたフェライトコアはトランスに用いることが可能であり、本発明により得られたトランスは、スイッチング電源装置に用いることが可能である。
The sintered ferrite core according to the present invention can obtain a relative density of 93% or more, more preferably 95% or more.
The ferrite core obtained by the present invention can be used for a transformer, and the transformer obtained by the present invention can be used for a switching power supply device.

図1(a)は、本実施形態に係るE字型フェライトコア(磁心)を示す斜視図である。図1(a)に示すように、E字型のフェライトコア10は、E型コアなどと呼ばれ、トランスなどに使用される。フェライトコア10のようなE型コアが採用されたトランスとしては、図1(b)に示すような、内部に2つのE型コアが対向配置されたものが知られている。 FIG. 1A is a perspective view showing an E-shaped ferrite core (magnetic core) according to this embodiment. As shown in FIG. 1A, an E-shaped ferrite core 10 is called an E-type core and is used for a transformer or the like. As a transformer in which an E-type core such as the ferrite core 10 is employed, a transformer in which two E-type cores are arranged to face each other as shown in FIG. 1B is known.

図2は、スイッチング電源装置の構成を示すブロック図である。 FIG. 2 is a block diagram illustrating a configuration of the switching power supply apparatus.

図2に示すスイッチング電源装置200は、直流入力電圧Vinを直流出力電圧Voutに変換するための装置(DC/DCコンバーター)であり、直流出力電圧Vinに含まれるノイズ成分を除去する入力フィルタ201と、入力フィルタ201の出力を交流に変換するスイッチング回路202と、スイッチング回路202の出力を変圧するトランス203と、トランス203の出力を直流に変換する整流回路204と、整流回路の出力を平滑化する平滑回路205とを備えている。このような構成を有するスイッチング電源装置200において、トランス203のコアとして本発明によるコアを用いれば、トランス203にて発生する音鳴きを抑制できることから、スイッチング電源装置200の騒音問題を解決することができる。 Switching power supply device 200 shown in FIG. 2 is a device for converting a DC input voltage V in to a DC output voltage V out (DC / DC converter), input for removing a noise component included in the DC output voltage V in Filter 201, switching circuit 202 that converts the output of input filter 201 into alternating current, transformer 203 that transforms the output of switching circuit 202, rectifier circuit 204 that converts the output of transformer 203 into direct current, and the output of the rectifier circuit And a smoothing circuit 205 for smoothing. In the switching power supply device 200 having such a configuration, if the core according to the present invention is used as the core of the transformer 203, the noise generated in the transformer 203 can be suppressed, so that the noise problem of the switching power supply device 200 can be solved. it can.

図2に示したスイッチング電源装置200は、特に自動車用のスイッチング電源装置として利用することが好適である。 The switching power supply device 200 shown in FIG. 2 is particularly suitable for use as a switching power supply device for automobiles.

図3は、スイッチング電源装置200を備えた自動車の主要部分を概略的に示すブロック図である。 FIG. 3 is a block diagram schematically showing the main part of the automobile provided with the switching power supply device 200.

図3に示すように、スイッチング電源装置200を自動車用に用いた場合、スイッチング電源装置200は、高圧バッテリー210と電気機器220及び低圧バッテリー230との間に設けられ、高圧バッテリー210より供給される約144Vや約288Vの高電圧を約14Vに降圧してこれを電気機器220に供給するとともに、低圧バッテリー230を充電する役割を果たす。電気機器220としては、自動車に備えられるエアコンやオーディオ等が挙げられる。 As shown in FIG. 3, when the switching power supply device 200 is used for an automobile, the switching power supply device 200 is provided between the high voltage battery 210, the electric device 220, and the low voltage battery 230, and is supplied from the high voltage battery 210. The high voltage of about 144V or about 288V is stepped down to about 14V and supplied to the electric device 220, and the low voltage battery 230 is charged. Examples of the electric device 220 include an air conditioner and an audio device provided in an automobile.

高圧バッテリー210への充電は、発電装置240より供給される電力によって行われる。また、高圧バッテリー210の出力はモータ250にも供給され、モータ250は、高圧バッテリー210より供給される高電圧(約144Vや約288V)に基づいて駆動系260を駆動する。尚、燃料電池車においては燃料電池本体が発電装置240となり、ハイブリッド車においてはモータ250が発電装置240を兼ねることになる。 Charging the high-voltage battery 210 is performed by electric power supplied from the power generation device 240. The output of the high voltage battery 210 is also supplied to the motor 250, and the motor 250 drives the drive system 260 based on the high voltage (about 144V or about 288V) supplied from the high voltage battery 210. In the fuel cell vehicle, the fuel cell main body serves as the power generator 240, and in the hybrid vehicle, the motor 250 also serves as the power generator 240.

以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。 The preferred embodiments of the present invention have been described above, but the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention. Needless to say, it is included in the range.

以下、本発明を具体的な実施例に基づいて説明する。
主成分の原料としてFe粉末、Mn粉末及びZnO粉末、副成分の原料としてNiO粉末、TiO粉末、Co粉末、SiO粉末、CaCO粉末、Nb粉末、V粉末、Ta粉末及びSnO粉末を用いた。主成分の組成、副成分の組成を表1〜3に示す。また、表1、2は表に示した材料の他にSiOを100ppm、CaCOを1000ppm、Nbを200ppmを添加した。これらの粉末を湿式混合した後、大気中、900℃で3時間仮焼きした。
得られた混合物にバインダを加え、顆粒化した後、成型してトロイダル形状の成型体、I型形状の成型体、及び、E型形状の成型体を得た。得られた成型体を酸素分圧制御下において、温度1300℃(安定部5時間、安定部酸素分圧2%)で焼成することにより、トロイダル形状のフェライトコア(外径20mm、内径10mm、厚さ5mm)、I字型形状のフェライトコア(長さ70mm、幅8mm、厚さ8mm)及びE字型形状のフェライトコア(長さ40mm、高さ15mm、幅5mm)を得た。
Hereinafter, the present invention will be described based on specific examples.
Fe 2 O 3 powder, Mn 3 O 4 powder and ZnO powder as main component raw materials, NiO powder, TiO 2 powder, Co 3 O 4 powder, SiO 2 powder, CaCO 3 powder, Nb 2 O 5 as auxiliary component raw materials Powder, V 2 O 5 powder, Ta 2 O 5 powder and SnO 2 powder were used. Tables 1 to 3 show the composition of the main component and the composition of the subcomponents. In Tables 1 and 2, in addition to the materials shown in the table, 100 ppm of SiO 2 , 1000 ppm of CaCO 3 and 200 ppm of Nb 2 O 5 were added. After these powders were wet mixed, they were calcined in the atmosphere at 900 ° C. for 3 hours.
A binder was added to the obtained mixture, granulated, and then molded to obtain a toroidal shaped body, an I-shaped shaped body, and an E-shaped shaped body. The obtained molded body was fired at a temperature of 1300 ° C. (stable part 5 hours, stable part oxygen partial pressure 2%) under oxygen partial pressure control, toroidal ferrite core (outer diameter 20 mm, inner diameter 10 mm, thickness 5 mm), an I-shaped ferrite core (length 70 mm, width 8 mm, thickness 8 mm) and an E-shaped ferrite core (length 40 mm, height 15 mm, width 5 mm).

次に本発明の測定方法について説明する。
100℃における磁歪の測定は共和電業製の歪ゲージ(KFG:汎用箔ひずみゲージ)を用いて行った。I型のフェライトコアの中心部側面に歪ゲージを貼り付けた。Iコアを励磁して歪量が変化しなくなった時点における歪量の変化率の絶対値を飽和磁歪λsとした。なお、以下ではIコアを励磁して歪量が変化しなくなった時点における歪量の変化率の絶対値を飽和磁歪λs、との表記を単に飽和磁歪またはλsと表記する。
Next, the measurement method of the present invention will be described.
The magnetostriction at 100 ° C. was measured using a strain gauge (KFG: general-purpose foil strain gauge) manufactured by Kyowa Denki. A strain gauge was attached to the side surface of the central portion of the I-type ferrite core. The absolute value of the rate of change in strain when the I core was excited and the strain no longer changed was defined as the saturation magnetostriction λs. In the following, the absolute value of the rate of change in the amount of distortion when the I core is excited and the amount of distortion does not change is simply expressed as saturated magnetostriction λs, or simply as saturated magnetostriction or λs.

100℃における音鳴きはE型コア各組成を簡易無響箱内に設置して行った。測定はコアと騒音計のマイク先端部を30mm離れた位置に設置して行った。音圧レベルは小野測器製の騒音計(LA−5570)を用いて測定した。データはA特性変換後のオーバーオール値(OA値)を示す。A特性は、人間の聴感に基づいた音圧レベルを表す量として周波数の重みをつけた値である。OA値は、周波数分析された各音圧レベルの合計である。 The squealing at 100 ° C. was performed by placing each E-type core composition in a simple anechoic box. The measurement was performed by installing the core and the tip of the microphone of the sound level meter at a position 30 mm away. The sound pressure level was measured using a sound level meter (LA-5570) manufactured by Ono Sokki. The data shows the overall value (OA value) after A characteristic conversion. The A characteristic is a value weighted with a frequency as an amount representing a sound pressure level based on human hearing. The OA value is the sum of each sound pressure level subjected to frequency analysis.

100℃における飽和磁束密度Bsはトロイダル形状のコアを、メトロン技研製直流磁化特性試験装置(SK−110)により、励磁磁界1194A/mの条件下で測定した。 The saturation magnetic flux density Bs at 100 ° C. was measured on a toroidal core under the condition of an excitation magnetic field of 1194 A / m using a Metron Giken DC magnetization characteristic tester (SK-110).

100℃におけるコア損失Pcvはトロイダル形状のフェライトコアを用いて、1次側5巻、2次側5巻の巻線を施し、100kHzの周波数で最大磁束密度200mTの条件下でIWATSU製BHアナライザー(SY−8217)により測定した。

Figure 2015231938
Figure 2015231938

Figure 2015231938
The core loss Pcv at 100 ° C. is obtained by using a toroidal ferrite core, winding 5 turns on the primary side and 5 turns on the secondary side, and a BH analyzer manufactured by IWASUSU under the condition of a maximum magnetic flux density of 200 mT at a frequency of 100 kHz. SY-8217).
Figure 2015231938
Figure 2015231938

Figure 2015231938

以上の測定結果より、以下のことが判る。
表中の「−」はその材料を添加していないことを示している。
From the above measurement results, the following can be understood.
“-” In the table indicates that the material is not added.

(表1)
Fe量が51.5mol%未満(比較例1、2参照)だと100℃における飽和磁束密度Bs(以下、100℃における、は省略)が380mTより小さくなってしまう。また、Fe量が54.5mol%を超える(比較例7、8参照)と飽和磁歪が1.5×10−6より大きくなりOA値が45dBより大きくなってしまう。
また、ZnO量が7.0mol%未満(比較例3、5参照)では飽和磁歪が1.5×10−6より大きくなってしまいOA値が45dBより大きくなってしまう。また、ZnO量が11.5mol%を超える(比較例4、6参照)と飽和磁歪は小さくなるが飽和磁束密度Bsが380mTより小さくなってしまう。
(Table 1)
If the amount of Fe 2 O 3 is less than 51.5 mol% (see Comparative Examples 1 and 2), the saturation magnetic flux density Bs at 100 ° C. (hereinafter omitted at 100 ° C.) will be smaller than 380 mT. Further, when the amount of Fe 2 O 3 exceeds 54.5 mol% (see Comparative Examples 7 and 8), the saturation magnetostriction becomes larger than 1.5 × 10 −6 and the OA value becomes larger than 45 dB.
If the ZnO amount is less than 7.0 mol% (see Comparative Examples 3 and 5), the saturation magnetostriction becomes larger than 1.5 × 10 −6 and the OA value becomes larger than 45 dB. Further, when the ZnO amount exceeds 11.5 mol% (see Comparative Examples 4 and 6), the saturation magnetostriction becomes small, but the saturation magnetic flux density Bs becomes smaller than 380 mT.

(表2)
副成分であるNiOの量が500ppmより少ない(比較例9参照)と飽和磁歪が大きくなってしまいOA値が45dBより大きくなってしまう。また、NiO量が10000ppmを超える(比較例10参照)と飽和磁歪は小さくなるが飽和磁束密度Bsが380mTより小さくなってしまう。
副成分であるTiOの量が100ppmより少ない(比較例11参照)と飽和磁歪が1.5×10−6より大きくなってしまい、OA値も45dBより大きくなってしまう。また、TiO量が6000ppmを超える(比較例12参照)と磁歪は小さくなるが飽和磁束密度Bsが380mTより小さくなってしまう。
副成分であるCoOの量が500ppmより少ない(比較例13参照)と飽和磁歪が1.5×10−6より大きくなってしまいOA値が45dBより大きくなってしまう。また、CoO量が4000ppmを超える(比較例14参照)と飽和磁束密度Bsが380mTより小さくなってしまう。
(Table 2)
If the amount of NiO as a subcomponent is less than 500 ppm (see Comparative Example 9), the saturation magnetostriction becomes large and the OA value becomes larger than 45 dB. Further, when the amount of NiO exceeds 10,000 ppm (see Comparative Example 10), the saturation magnetostriction becomes small, but the saturation magnetic flux density Bs becomes smaller than 380 mT.
When the amount of TiO 2 as a subcomponent is less than 100 ppm (see Comparative Example 11), the saturation magnetostriction becomes larger than 1.5 × 10 −6 and the OA value becomes larger than 45 dB. Further, when the amount of TiO 2 exceeds 6000 ppm (see Comparative Example 12), the magnetostriction becomes small, but the saturation magnetic flux density Bs becomes smaller than 380 mT.
If the amount of CoO as a subcomponent is less than 500 ppm (see Comparative Example 13), the saturation magnetostriction becomes larger than 1.5 × 10 −6 and the OA value becomes larger than 45 dB. Further, when the amount of CoO exceeds 4000 ppm (see Comparative Example 14), the saturation magnetic flux density Bs becomes smaller than 380 mT.

以上に対して、Fe量が51.5〜54.5mol%、ZnO量が7.0〜11.5mol%、残部MnOの主成分に対して、副成分としてNiO量を500〜10000ppm、TiO量を100〜6000ppm及びCoOを500〜4000ppmを含む場合に、100℃における飽和磁歪が1.5×10−6以下、OA値が45dB以下、飽和磁束密度Bsが380mT以上という特性を得ることができる。 On the other hand, the amount of Fe 2 O 3 is 51.5 to 54.5 mol%, the amount of ZnO is 7.0 to 11.5 mol%, and the amount of NiO is 500 to 10,000 ppm as a subcomponent with respect to the main component of the remaining MnO. When the content of TiO 2 is 100 to 6000 ppm and the content of CoO is 500 to 4000 ppm, the saturation magnetostriction at 100 ° C. is 1.5 × 10 −6 or less, the OA value is 45 dB or less, and the saturation magnetic flux density Bs is 380 mT or more. Can be obtained.

(表3)
他の副成分については以下の通りである。
SiO及びCaCOは、前述の通り、結晶粒界に偏析して高抵抗層を形成して低損失に寄与するとともに焼結助剤として焼結密度を向上する効果を有するが、表3に示すように、コア損失Pcvに影響を及ぼす。つまり、SiO及びCaCOを添加することにより、コア損失Pcvを低減することができるが、表3に示すように、添加しすぎるとコア損失が悪くなる(実施例20〜27参照)。そこで、SiO及びCaCOを添加する場合には、SiOを50〜300ppm、CaCOを200〜3000ppmとする。
また、Nb及びTaを添加することにより、コア損失Pcvを低減することができる(実施例28〜34参照)。しかし、SiO及びCaCOの場合と同様に添加しすぎるとコア損失が悪くなるので、最適な添加量の範囲はNbを50〜750ppm以下、Taを50〜1500ppm以下とする。
また、Vを添加することにより、コア損失Pcvを低減することができる(実施例35〜37参照)。しかし、SiO及びCaCOの場合と同様に添加しすぎるとコア損失が悪くなるので、最適な添加量の範囲はVを50〜1000ppm以下とする。
また、SnOを添加することにより、コア損失Pcvを低減することができる(実施例38〜40参照)。しかし、SiOをCaCOの場合と同様に添加しすぎるとコア損失が悪くなるので、最適な添加量の範囲はSnOを500〜8000ppm以下とする。
(Table 3)
Other subcomponents are as follows.
As described above, SiO 2 and CaCO 3 are segregated at the grain boundaries to form a high resistance layer and contribute to low loss and have the effect of improving the sintering density as a sintering aid. As shown, it affects the core loss Pcv. That is, by adding SiO 2 and CaCO 3 , the core loss Pcv can be reduced, but as shown in Table 3, the core loss becomes worse when added too much (see Examples 20 to 27). Therefore, when adding SiO 2 and CaCO 3 , SiO 2 is set to 50 to 300 ppm and CaCO 3 is set to 200 to 3000 ppm.
Further, by adding Nb 2 O 5 and Ta 2 O 5, it is possible to reduce the core loss Pcv (see Example 28-34). However, since the core loss is deteriorated when adding too much in the same manner as in the case of SiO 2 and CaCO 3 , the optimum addition amount ranges from 50 to 750 ppm or less for Nb 2 O 5 and 50 to 1500 ppm or less for Ta 2 O 5. To do.
Further, by adding V 2 O 5, it is possible to reduce the core loss Pcv (see Example 35-37). However, if too much is added as in the case of SiO 2 and CaCO 3, the core loss becomes worse. Therefore, the optimum range of addition amount is 50 to 1000 ppm or less for V 2 O 5 .
Moreover, the core loss Pcv can be reduced by adding SnO 2 (see Examples 38 to 40). However, if SiO 2 is added too much as in the case of CaCO 3, the core loss becomes worse, so the optimum range of addition is SnO 2 of 500 to 8000 ppm or less.

以上のように、本発明に係るフェライトコアは100℃近傍における飽和磁歪を低減することで駆動時のコアの音鳴きを十分に抑制でき、且つ、飽和磁束密度を高くすることができる。 As described above, the ferrite core according to the present invention can sufficiently suppress the squeal of the core during driving by reducing the saturation magnetostriction near 100 ° C., and can increase the saturation magnetic flux density.

(a)本実施形態に係るE字型フェライトコア(磁心)を示す斜視図である。(b)本実施形態に係る内部に2つのE型コアが対向配置されたトランスを示す斜視図である。(A) It is a perspective view which shows the E-shaped ferrite core (magnetic core) which concerns on this embodiment. (B) It is a perspective view which shows the trans | transformer by which two E type | mold cores are opposingly arranged by the inside which concerns on this embodiment. スイッチング電源装置のブロック図である。It is a block diagram of a switching power supply device. スイッチング電源装置を備えた自動車の主要部分を示すブロック図である。It is a block diagram which shows the principal part of the motor vehicle provided with the switching power supply device.

10フェライトコア(磁心)
11(中脚部)
12(コイル)
200スイッチング電源
10 ferrite core (magnetic core)
11 (middle leg)
12 (coil)
200 switching power supplies

Claims (5)

酸化鉄をFe換算で51.5〜54.5mol%、酸化亜鉛をZnO換算で7.0〜11.5mol%、残部が酸化マンガンである主成分を含むMnZn系フェライトであって、この主成分に対して、NiをNiO換算で500〜10000ppmを含むこと、TiをTiO換算で100〜6000ppmを含むこと、CoをCoO換算で500〜4000ppm含むことを特徴とするフェライトコア。 51.5~54.5Mol% iron oxide calculated as Fe 2 O 3, 7.0~11.5Mol% of zinc oxide calculated as ZnO, a MnZn ferrite containing main component balance being manganese oxide, A ferrite core comprising: Ni containing 500 to 10,000 ppm in terms of NiO, Ti containing 100 to 6000 ppm in terms of TiO 2 , and Co containing 500 to 4000 ppm in terms of CoO. 前記主成分に対し、SiをSiO換算で50〜300ppm及びCaをCaCO換算で200〜3000ppm含むことを特徴とした請求項1に記載のフェライトコア。 2. The ferrite core according to claim 1, wherein Si is contained in an amount of 50 to 300 ppm in terms of SiO 2 and Ca is contained in an amount of 200 to 3000 ppm in terms of CaCO 3 with respect to the main component. 前記主成分に対し、さらにNbをNb換算で50〜750ppm、TaをTa換算で50〜1500ppm、VをV換算で50〜1000ppm及びSnをSnO換算で500〜8000ppmを1種または2種以上含むことを特徴とした請求項1及び請求項2に記載のフェライトコア。 Furthermore, Nb is 50 to 750 ppm in terms of Nb 2 O 5 , Ta is 50 to 1500 ppm in terms of Ta 2 O 5 , V is 50 to 1000 ppm in terms of V 2 O 5 , and Sn is 500 in terms of SnO 2 with respect to the main component. The ferrite core according to claim 1, wherein the ferrite core contains 1 type or 2 types or more of ˜8000 ppm. 請求項1〜3のいずれか1項に記載のフェライトコアを用いて構成される電子部品 The electronic component comprised using the ferrite core of any one of Claims 1-3 請求項4に記載の電子部品を備えた電源装置。 A power supply device comprising the electronic component according to claim 4.
JP2015049587A 2014-05-15 2015-03-12 Ferrite core, electronic component, and power supply device Active JP6536790B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015049587A JP6536790B2 (en) 2014-05-15 2015-03-12 Ferrite core, electronic component, and power supply device
KR1020150065372A KR20150131981A (en) 2014-05-15 2015-05-11 Ferrite core, electronic component, and power supply device
CN201510250244.XA CN105097169B (en) 2014-05-15 2015-05-15 FERRITE CORE, electronic unit and supply unit
KR1020170027805A KR20170029462A (en) 2014-05-15 2017-03-03 Ferrite core, electronic component, and power supply device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014101497 2014-05-15
JP2014101497 2014-05-15
JP2015049587A JP6536790B2 (en) 2014-05-15 2015-03-12 Ferrite core, electronic component, and power supply device

Publications (2)

Publication Number Publication Date
JP2015231938A true JP2015231938A (en) 2015-12-24
JP6536790B2 JP6536790B2 (en) 2019-07-03

Family

ID=54933684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015049587A Active JP6536790B2 (en) 2014-05-15 2015-03-12 Ferrite core, electronic component, and power supply device

Country Status (2)

Country Link
JP (1) JP6536790B2 (en)
KR (2) KR20150131981A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020120064A (en) * 2019-01-28 2020-08-06 Njコンポーネント株式会社 Magnetic material
WO2022085281A1 (en) * 2020-10-20 2022-04-28 株式会社トーキン MnZn-BASED FERRITE

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102261729B1 (en) * 2019-07-19 2021-06-08 엘지이노텍 주식회사 Magnetic core
EP3767648B1 (en) * 2019-07-19 2023-12-13 LG Innotek Co., Ltd. Magnetic core

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1064715A (en) * 1996-08-14 1998-03-06 Kawasaki Steel Corp Low loss ferrite magnetic core material
JPH113813A (en) * 1997-06-12 1999-01-06 Kawasaki Steel Corp Ferrite material
JP2000286119A (en) * 1999-03-30 2000-10-13 Kawasaki Steel Corp Ferrite
JP2004161500A (en) * 2002-11-08 2004-06-10 Jfe Chemical Corp Manganese-zinc-nickel-based ferrite
JP2005213100A (en) * 2004-01-30 2005-08-11 Tdk Corp METHOD OF MANUFACTURING MnZn FERRITE AND MnZn FERRITE
JP2008127230A (en) * 2006-11-17 2008-06-05 Jfe Ferrite Corp MnZnNi FERRITE

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013118308A (en) 2011-12-05 2013-06-13 Sony Corp Transformer and switching power supply device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1064715A (en) * 1996-08-14 1998-03-06 Kawasaki Steel Corp Low loss ferrite magnetic core material
JPH113813A (en) * 1997-06-12 1999-01-06 Kawasaki Steel Corp Ferrite material
JP2000286119A (en) * 1999-03-30 2000-10-13 Kawasaki Steel Corp Ferrite
JP2004161500A (en) * 2002-11-08 2004-06-10 Jfe Chemical Corp Manganese-zinc-nickel-based ferrite
JP2005213100A (en) * 2004-01-30 2005-08-11 Tdk Corp METHOD OF MANUFACTURING MnZn FERRITE AND MnZn FERRITE
JP2008127230A (en) * 2006-11-17 2008-06-05 Jfe Ferrite Corp MnZnNi FERRITE

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020120064A (en) * 2019-01-28 2020-08-06 Njコンポーネント株式会社 Magnetic material
JP7278787B2 (en) 2019-01-28 2023-05-22 Njコンポーネント株式会社 magnetic material
WO2022085281A1 (en) * 2020-10-20 2022-04-28 株式会社トーキン MnZn-BASED FERRITE

Also Published As

Publication number Publication date
KR20150131981A (en) 2015-11-25
JP6536790B2 (en) 2019-07-03
KR20170029462A (en) 2017-03-15

Similar Documents

Publication Publication Date Title
JP6551057B2 (en) Ferrite core, electronic component, and power supply device
JP6451742B2 (en) MnZn-based ferrite and method for producing the same
JP6409553B2 (en) Ferrite core, electronic component, and power supply device
JP6536790B2 (en) Ferrite core, electronic component, and power supply device
JPWO2016104593A1 (en) Manufacturing method of MnZn ferrite and MnZn ferrite
JP5181175B2 (en) Mn-Zn-Co ferrite
JP2016056044A (en) Ferrite core, electronic component and electric power supply
JP5089963B2 (en) Method for producing MnZnNi ferrite
JP2007112695A (en) METHOD FOR PRODUCING Mn FERRITE
CN105097169B (en) FERRITE CORE, electronic unit and supply unit
JP2016141602A (en) NiMnZn-BASED FERRITE
JP2007269502A (en) Mn-Zn FERRITE MATERIAL
JP6330645B2 (en) Ferrite core, electronic component, and power supply
JP6365288B2 (en) Ferrite core, electronic component, and power supply device
JP5882811B2 (en) Ferrite sintered body and pulse transformer core comprising the same
JP2011162366A (en) MnZnNi-BASED FERRITE
JP6112396B2 (en) Mn-Zn ferrite and coil component using the same
JP2006298728A (en) Mn-Zn-BASED FERRITE MATERIAL
JP2010184845A (en) Mn-Zn-Ni-BASED FERRITE
JP4799808B2 (en) Ferrite composition, magnetic core and electronic component
JP2015006972A (en) Ferrite and transformer
JP5834408B2 (en) Ferrite composition and electronic component
JP5817118B2 (en) Ferrite composition and electronic component
JP5810629B2 (en) Ferrite composition and electronic component
JP5883835B2 (en) Mn-Zn-Ni ferrite and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171019

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190521

R150 Certificate of patent or registration of utility model

Ref document number: 6536790

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150