JP2015231042A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2015231042A
JP2015231042A JP2014118244A JP2014118244A JP2015231042A JP 2015231042 A JP2015231042 A JP 2015231042A JP 2014118244 A JP2014118244 A JP 2014118244A JP 2014118244 A JP2014118244 A JP 2014118244A JP 2015231042 A JP2015231042 A JP 2015231042A
Authority
JP
Japan
Prior art keywords
semiconductor element
heat spreader
semiconductor device
main surface
power semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014118244A
Other languages
Japanese (ja)
Inventor
山下 賢哉
Masaya Yamashita
賢哉 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2014118244A priority Critical patent/JP2015231042A/en
Publication of JP2015231042A publication Critical patent/JP2015231042A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/832Applying energy for connecting
    • H01L2224/83201Compression bonding
    • H01L2224/83205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/842Applying energy for connecting
    • H01L2224/84201Compression bonding
    • H01L2224/84205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/84801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device that secures a high frequency characteristic while securing high heat radiation performance.SOLUTION: A principal surface 50 as an element mount face of a heat spreader 22 is configured to be sloped, so that a high frequency characteristic can be secured while securing high heat radiation performance.

Description

本発明は、半導体素子を搭載するヒートスプレッダを備える半導体装置に関するものである。   The present invention relates to a semiconductor device including a heat spreader on which a semiconductor element is mounted.

従来より、Si−IGBTの実装において、放熱性を高くする取り組みが行なわれている。例えば、半導体素子の両面から放熱させる方式や、ヒートスプレッダを用いる方式がある。ヒートスプレッダを用いて電力用半導体素子の熱抵抗を低減させる例が、特許文献1に開示されており、図8に示す。図8は従来の半導体装置の構成を示す側面図である。   Conventionally, efforts have been made to increase heat dissipation in the mounting of Si-IGBT. For example, there are a method of dissipating heat from both sides of the semiconductor element and a method of using a heat spreader. An example of reducing the thermal resistance of a power semiconductor element using a heat spreader is disclosed in Patent Document 1 and is shown in FIG. FIG. 8 is a side view showing a configuration of a conventional semiconductor device.

図8に示すように、従来の半導体装置では、熱抵抗を低減させるために、ベースプレート20上の絶縁層23上の配線105に設置されたヒートスプレッダ122に、電力用半導体素子1が搭載される。大電流が流れる配線105と電力用半導体素子1とがワイヤー104にて電気的に接続される。また、同様に電力用半導体素子1のゲートパッド、ソースパッドとゲートパターンである配線106bおよびソースパターンである配線107bとが、ワイヤー108a、108bを介して電気的に接続される。   As shown in FIG. 8, in the conventional semiconductor device, the power semiconductor element 1 is mounted on the heat spreader 122 installed in the wiring 105 on the insulating layer 23 on the base plate 20 in order to reduce the thermal resistance. A wiring 105 through which a large current flows and the power semiconductor element 1 are electrically connected by a wire 104. Similarly, the gate pad and source pad of the power semiconductor element 1 are electrically connected to the wiring 106b serving as the gate pattern and the wiring 107b serving as the source pattern via the wires 108a and 108b.

電力用半導体素子1からの発熱は、ヒートスプレッダ122の熱拡散領域200を介して拡散され、45°の角度である熱拡散領域200により電力用半導体素子1の面積より拡張して絶縁層23に伝えられる。このように、ヒートスプレッダ122により絶縁層23に放熱面積を拡張させて熱を伝えることで、熱抵抗を低減させることが可能になる。   Heat generated from the power semiconductor element 1 is diffused through the heat diffusion region 200 of the heat spreader 122, and is expanded from the area of the power semiconductor element 1 by the heat diffusion region 200 having an angle of 45 ° and transmitted to the insulating layer 23. It is done. As described above, the heat spreader 122 extends the heat radiation area to the insulating layer 23 to transmit heat, thereby reducing the thermal resistance.

特開2007−180267号公報JP 2007-180267 A

しかし、例えば、SiC−MOSFETにおいて電流密度を上げるためには、半導体素子面積が小さくなる分だけヒートスプレッダ122の厚みを厚くする必要があるが、ヒートスプレッダ122が厚くなると、各配線105、106a及び106bに接続するワイヤー104、108a及び108bを、ヒートスプレッダ122の高さ分だけ長く設定しなければならない。このようにワイヤーが長くなると、ゲート・ソース配線、及び、パワー回路における主電流が流れる配線に寄生インダクタンスが発生するため、高周波動作には不向きとなる。高周波動作を可能とするには、寄生インダクタンスの制約からヒートスプレッダ122を薄く設定する必要があるが、ヒートスプレッダ122を薄くすると十分に熱拡散させることができない可能性がある。したがって、一般的なヒートスプレッダ形状では、高周波特性と放熱性がトレードオフの関係を持つという課題がある。   However, for example, in order to increase the current density in the SiC-MOSFET, it is necessary to increase the thickness of the heat spreader 122 by an amount corresponding to the reduction in the semiconductor element area. However, if the heat spreader 122 is increased, the wiring 105, 106a, and 106b are increased. The wires 104, 108a and 108b to be connected must be set longer by the height of the heat spreader 122. When the wire becomes long in this way, parasitic inductance is generated in the gate / source wiring and the wiring through which the main current flows in the power circuit, which is not suitable for high-frequency operation. In order to enable high-frequency operation, it is necessary to set the heat spreader 122 thin due to restrictions on parasitic inductance. However, if the heat spreader 122 is thin, it may not be possible to sufficiently diffuse the heat. Therefore, in the general heat spreader shape, there is a problem that high frequency characteristics and heat dissipation have a trade-off relationship.

上記課題を解決するために、本発明は、高放熱性を確保しながら、高周波数特性を確保することを目的とする。   In order to solve the above problems, an object of the present invention is to ensure high frequency characteristics while ensuring high heat dissipation.

上記目的を達成するために、本発明の半導体装置は、ベースプレートと、前記ベースプレート上に形成される絶縁層と、前記絶縁層上に形成された導電性パターンと、前記導電性パターン上に設けられたヒートスプレッダと、前記ヒートスプレッダ上に搭載された半導体素子と備え、前記ヒートスプレッダは、前記ベースプレートの前記絶縁層が形成される面に対して傾斜する主面を有し、前記半導体素子は、前記主面に搭載されることを特徴とする。   In order to achieve the above object, a semiconductor device of the present invention is provided with a base plate, an insulating layer formed on the base plate, a conductive pattern formed on the insulating layer, and the conductive pattern. A heat spreader and a semiconductor element mounted on the heat spreader, wherein the heat spreader has a main surface inclined with respect to a surface on which the insulating layer of the base plate is formed, and the semiconductor element has the main surface It is mounted on.

本発明によれば、高放熱性を確保しながら、高周波数特性を確保することができる。   According to the present invention, high frequency characteristics can be ensured while ensuring high heat dissipation.

実施の形態1における半導体装置の構成を示す図であって、(a)概略断面図、(b)要部斜視図1A and 1B are diagrams illustrating a configuration of a semiconductor device according to a first embodiment, where FIG. 1A is a schematic cross-sectional view, and FIG. 実施の形態1における半導体装置の構成を示す平面図Plan view showing a structure of a semiconductor device in the first embodiment 実施の形態1の半導体装置におけるヒートスプレッダを示す図であって、(a)構成を示す図、(b)放熱領域を示す図2A and 2B are diagrams showing a heat spreader in the semiconductor device according to the first embodiment, where FIG. 実施の形態1の電力用半導体装置におけるヒートスプレッダの角度に対する熱拡張倍率の依存性を示す図であって、(a)角度αに関する図、(b)角度θに関する図FIG. 2 is a diagram illustrating the dependence of the thermal expansion magnification on the angle of the heat spreader in the power semiconductor device according to the first embodiment, where (a) a diagram relating to the angle α and (b) a diagram relating to the angle θ. 実施の形態1における三相電力用半導体装置の構成を示す図であって、(a)構成図、(b)回路図BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the structure of the semiconductor device for three-phase electric power in Embodiment 1, Comprising: (a) Configuration figure, (b) Circuit diagram 実施の形態2における半導体装置の構成を示す図であって、(a)概略断面図、(b)要部斜視図FIG. 4 is a diagram illustrating a configuration of a semiconductor device according to a second embodiment, where (a) a schematic cross-sectional view and (b) a main part perspective view. 実施の形態2における半導体装置の構成を示す平面図Plan view showing a structure of a semiconductor device in the second embodiment 従来の半導体装置の構成を示す側面図Side view showing the configuration of a conventional semiconductor device

(実施の形態1)
まず、図1〜図5を用いて、実施の形態1における半導体装置について説明する。
図1は実施の形態1における半導体装置の構成を示す図であり、図1(a)は概略断面図、図1(b)は要部斜視図である。図2は実施の形態1における半導体装置の構成を示す平面図である。なお、図1(a)は、図2のA−A’概略断面図である。図3は実施の形態1の半導体装置におけるヒートスプレッダの構成および放熱領域を示す図である。図4は実施の形態1の電力用半導体装置におけるヒートスプレッダの傾斜角に対する熱拡張倍率の依存性を示す図である。図5は実施の形態1における三相電力用半導体装置の構成を示す図である。
(Embodiment 1)
First, the semiconductor device according to the first embodiment will be described with reference to FIGS.
1A and 1B are diagrams showing a configuration of a semiconductor device according to Embodiment 1, in which FIG. 1A is a schematic cross-sectional view, and FIG. FIG. 2 is a plan view showing the configuration of the semiconductor device according to the first embodiment. 1A is a schematic cross-sectional view taken along the line AA ′ of FIG. FIG. 3 is a diagram showing the configuration of the heat spreader and the heat dissipation area in the semiconductor device of the first embodiment. FIG. 4 is a diagram showing the dependence of the thermal expansion magnification on the inclination angle of the heat spreader in the power semiconductor device of the first embodiment. FIG. 5 is a diagram showing a configuration of the three-phase power semiconductor device according to the first embodiment.

図1,図2を用いて、本発明の電力用半導体装置の構成について説明する。電力用半導体装置は、半導体装置の一例であり、電力用半導体素子は、半導体素子の一例である。
図1、2に示すように、ベースプレート20上には絶縁層23が形成され、その上に導電性配線パターン5が形成されている。導電性配線パターン5の一部の上に搭載されたヒートスプレッダ22上には、電力用半導体素子1が搭載されている。本実施の形態の半導体装置は、その内部のヒートスプレッダ22における電力用半導体素子1を搭載した面が、ベースプレート20の素子搭載面に対して傾斜していることを特徴とする。導電性配線パターン5は、導電性パターンの一例である。
The configuration of the power semiconductor device of the present invention will be described with reference to FIGS. The power semiconductor device is an example of a semiconductor device, and the power semiconductor element is an example of a semiconductor element.
As shown in FIGS. 1 and 2, the insulating layer 23 is formed on the base plate 20, and the conductive wiring pattern 5 is formed thereon. On the heat spreader 22 mounted on a part of the conductive wiring pattern 5, the power semiconductor element 1 is mounted. The semiconductor device of the present embodiment is characterized in that the surface of the heat spreader 22 on which the power semiconductor element 1 is mounted is inclined with respect to the element mounting surface of the base plate 20. The conductive wiring pattern 5 is an example of a conductive pattern.

また、本発明の電力用半導体装置には、少なくとも一対のゲート端子6aとソース端子7aとが備えつけられており、電力用半導体素子1には、ゲートパッド6c、ソースパッド7cが設けられている。ベースプレート20上には、ゲートパターン6bおよびソースパターン7bが形成されている。ゲート端子6aが配線8bによりゲートパターン6bに電気的に接続され、ゲートパッド6cがゲート配線8aによりゲートパターン6bに電気的に接続されることにより、ゲート端子6aとゲートパッド6cとが電気的に接続される。ソース端子7aが配線9bによりソースパターン7bに電気的に接続され、ソースパッド7cがソース配線9aによりソースパターン7bに電気的に接続されることにより、ソース端子7aとソースパッド7cとが電気的に接続される。電力用半導体素子1のソース電極7dは、板状のリード4により、導電性配線パターン5に電気的に接続される。ここで、リード4と電力用半導体素子1のソース電極7dとの接続、リード4と導電性配線パターン5との接続は、半田により接合している。なお、これら接合は、超音波による接合を用いても良い。図2では、電力用半導体素子1が3並列で実装されている例を示し、板状のリード4を用いることで配線長を最短距離に最適化している。各電力用半導体素子1のドレイン電極は、図2の紙面中央および上部の導電性配線パターン5を介してパワー端子15および出力端子17に接続され、各電力用半導体素子1のソース電極は、図2の紙面中央および下部の導電性配線パターン5を介して出力端子17および接地端子16に電気的に接続される。パワー端子15と接地端子16との間には、導電性配線パターン5を介して、配線インダクタンスを低減するためのスナバコンデンサ24が実装される。   The power semiconductor device of the present invention is provided with at least a pair of gate terminal 6a and source terminal 7a, and the power semiconductor element 1 is provided with a gate pad 6c and a source pad 7c. On the base plate 20, a gate pattern 6b and a source pattern 7b are formed. The gate terminal 6a is electrically connected to the gate pattern 6b by the wiring 8b, and the gate pad 6c is electrically connected to the gate pattern 6b by the gate wiring 8a, whereby the gate terminal 6a and the gate pad 6c are electrically connected. Connected. The source terminal 7a is electrically connected to the source pattern 7b by the wiring 9b, and the source pad 7c is electrically connected to the source pattern 7b by the source wiring 9a, whereby the source terminal 7a and the source pad 7c are electrically connected. Connected. The source electrode 7 d of the power semiconductor element 1 is electrically connected to the conductive wiring pattern 5 by a plate-like lead 4. Here, the connection between the lead 4 and the source electrode 7d of the power semiconductor element 1 and the connection between the lead 4 and the conductive wiring pattern 5 are joined by solder. In addition, you may use the joining by an ultrasonic wave for these joining. FIG. 2 shows an example in which three power semiconductor elements 1 are mounted in parallel, and the wiring length is optimized to the shortest distance by using plate-like leads 4. The drain electrode of each power semiconductor element 1 is connected to the power terminal 15 and the output terminal 17 via the conductive wiring pattern 5 at the center and the upper part of FIG. 2, and the source electrode of each power semiconductor element 1 is 2 are electrically connected to the output terminal 17 and the ground terminal 16 via the conductive wiring pattern 5 at the center and lower part of the drawing. A snubber capacitor 24 for reducing wiring inductance is mounted between the power terminal 15 and the ground terminal 16 via the conductive wiring pattern 5.

ヒートスプレッダ22において、図1に示すように、電力用半導体素子1が搭載されている面を主面50、その反対側を副面51と呼ぶことにすると、主面50と副面51のなす角度θを135°程度に設定するのが好ましい。主面50は、素子搭載面である。ここで、副面51は、ベースプレート20から遠い側である主面50の上部の辺で主面50と連続する面である。これは、電力用半導体素子1から発生する熱は、ヒートスプレッダ22中で45°の方向に拡がるように熱伝導するので、主面50と副面51のなす角度θを135°よりも大きく設定すると、ヒートスプレッダ22の設置面積が大きくなって配置が困難になるのに加えて、ヒートスプレッダ22内に熱が拡散しない領域ができるため熱抵抗を下げる効率が低くなるためである。また、主面50と副面51のなす角度θを135°よりも小さく設定すると、図3(a)に示すように、放熱領域が小さくなることにより熱抵抗が大きくなってしまうため望ましくない。なお、ヒートスプレッダ22を銅により構成する場合は、銅が熱拡散の異方性を有さないため、角度θを135°に設定するのが適切となる。   In the heat spreader 22, as shown in FIG. 1, when the surface on which the power semiconductor element 1 is mounted is referred to as a main surface 50 and the opposite side is referred to as a sub surface 51, an angle formed between the main surface 50 and the sub surface 51. It is preferable to set θ to about 135 °. The main surface 50 is an element mounting surface. Here, the sub surface 51 is a surface that is continuous with the main surface 50 on the upper side of the main surface 50 that is far from the base plate 20. This is because the heat generated from the power semiconductor element 1 conducts heat so as to spread in the direction of 45 ° in the heat spreader 22, so that the angle θ formed by the main surface 50 and the sub surface 51 is set to be larger than 135 °. This is because the installation area of the heat spreader 22 becomes large and the arrangement becomes difficult, and in addition, a region where heat is not diffused in the heat spreader 22 is formed, so that the efficiency of reducing the thermal resistance is lowered. If the angle θ formed by the main surface 50 and the sub surface 51 is set to be smaller than 135 °, it is not desirable because the heat resistance increases as the heat dissipation area decreases as shown in FIG. When the heat spreader 22 is made of copper, it is appropriate to set the angle θ to 135 ° because copper does not have thermal diffusion anisotropy.

図1(b)に、導電性配線パターン5上に搭載されたヒートスプレッダ22の実装例を示す。図1(b)は、ヒートスプレッダ22上に電力用半導体素子1が、3チップ搭載されている実装例である。ここでは、ヒートスプレッダ22を三角柱としているが、必ずしもこの限りではない。主面50と副面51を有していれば、例えば断面が台形形状の四角柱でも実用上の問題はない。   FIG. 1B shows a mounting example of the heat spreader 22 mounted on the conductive wiring pattern 5. FIG. 1B shows a mounting example in which three power semiconductor elements 1 are mounted on the heat spreader 22. Here, the heat spreader 22 is a triangular prism, but this is not necessarily the case. If the main surface 50 and the sub surface 51 are provided, there is no practical problem even if, for example, the quadrangular prism has a trapezoidal cross section.

ヒートスプレッダ22を三角柱とした場合、図1(b)において、断面26で切断した形状は三角形であり、図3(a)に示すように、ヒートスプレッダ22の電力用半導体素子1が搭載された主面50と、導電性配線パターン5と接する面である底面52とが成す角度をαと定義する。底面52は、ベースプレート20に近い側である主面50の下部の辺で主面50と連続する面である。図3(b)は、電力用半導体素子1から発生した熱が導電性配線パターン5上での熱の拡がり領域を真上から見た平面図である。電力用半導体素子1において発生した熱が、電力用半導体素子1が実装された主面50から45°斜め下の範囲で拡がるように放熱されることを前提として、ヒートスプレッダ22の底面52で熱が放熱される実行面積を放熱領域53とする。ここでは、電力用半導体素子1が搭載された主面50がヒートスプレッダ22の底面52に対して傾斜しているため、放熱される放熱領域53は、台形状となる。角度αが大きくなればなるほど放熱領域53は拡張してベースプレート20と平行な方向の放熱面積が大きくなり、熱拡張効果は大きくなる。この放熱領域53の面積を電力用半導体素子1の面積で割った値を熱拡張倍率Fと定義する。このFの値が大きくなればなるほど、絶縁層23に到達する熱が分散され、ヒートスプレッダ22下の絶縁層23での熱抵抗の値は低減する。全体の熱抵抗の内訳で熱伝導率が一番大きい絶縁層23の熱抵抗が低減すれば、全体の熱抵抗も下がることになり有利となる。   When the heat spreader 22 is a triangular prism, the shape cut at the cross section 26 in FIG. 1B is a triangle, and as shown in FIG. 3A, the main surface on which the power semiconductor element 1 of the heat spreader 22 is mounted. An angle formed by 50 and a bottom surface 52 which is a surface in contact with the conductive wiring pattern 5 is defined as α. The bottom surface 52 is a surface that is continuous with the main surface 50 on the lower side of the main surface 50 that is closer to the base plate 20. FIG. 3B is a plan view of the heat spreading area on the conductive wiring pattern 5 as seen from directly above, where the heat generated from the power semiconductor element 1. Assuming that the heat generated in the power semiconductor element 1 is dissipated so as to spread in a 45 ° obliquely lower range from the main surface 50 on which the power semiconductor element 1 is mounted, the heat is generated at the bottom surface 52 of the heat spreader 22. The effective area to radiate heat is defined as a heat radiation area 53. Here, since the main surface 50 on which the power semiconductor element 1 is mounted is inclined with respect to the bottom surface 52 of the heat spreader 22, the heat dissipation region 53 to be radiated has a trapezoidal shape. As the angle α increases, the heat dissipation region 53 expands to increase the heat dissipation area in the direction parallel to the base plate 20, and the thermal expansion effect increases. A value obtained by dividing the area of the heat radiation region 53 by the area of the power semiconductor element 1 is defined as a thermal expansion factor F. As the value of F increases, the heat reaching the insulating layer 23 is dispersed, and the value of the thermal resistance in the insulating layer 23 under the heat spreader 22 decreases. If the thermal resistance of the insulating layer 23 having the highest thermal conductivity in the breakdown of the overall thermal resistance is reduced, the overall thermal resistance is lowered, which is advantageous.

このように、本実施の形態では、ヒートスプレッダ22の主面50をベースプレート20の実装面に対して傾斜させ、傾斜したヒートスプレッダ22の主面50上に電力用半導体素子1を実装する。このように構成することにより、電力用半導体素子1の斜面下方の方が斜面上方よりもヒートスプレッダ22の厚みが薄くなる。従って、図3(b)に示す放熱領域53では、ヒートスプレッダ22の厚みが薄くなるところでは熱の拡がりが小さくなり、逆側では熱の拡がりが大きくなる。本実施の形態では、このように構成することにより、ヒートスプレッダ22全体の厚みを増やすことなく、ヒートスプレッダ22全体として熱拡散領域を増やし、放熱効率を向上させることを可能としている。   As described above, in the present embodiment, the main surface 50 of the heat spreader 22 is inclined with respect to the mounting surface of the base plate 20, and the power semiconductor element 1 is mounted on the inclined main surface 50 of the heat spreader 22. With this configuration, the heat spreader 22 is thinner at the lower side of the slope of the power semiconductor element 1 than at the upper side of the slope. Therefore, in the heat radiation area 53 shown in FIG. 3B, the heat spread is reduced where the thickness of the heat spreader 22 is reduced, and the heat spread is increased on the opposite side. In the present embodiment, by configuring in this way, it is possible to increase the heat diffusion region as the whole heat spreader 22 and improve the heat radiation efficiency without increasing the thickness of the entire heat spreader 22.

同時に、本実施の形態の構成では、ゲートパッド6cおよびソースパッド7cがヒートスプレッダ22の斜面下方に配置されるため、斜面下方における電力用半導体素子1とベースプレート20との高さの差が小さくなり、これらを接続するワイヤー長を短くすることができる。そのため、寄生インダクタンスが抑制され、高周波動作が可能となる。なお、電力用半導体素子1からヒートスプレッダ22の斜面下方の底面までの距離と斜面上方の底面までの距離とは異なり、これらの間でヒートスプレッダ22の内部における熱抵抗の分布が生じるものではあるが、ヒートスプレッダ22の下側に配置された絶縁層23の熱伝導率が10W/mKであるのに対して、ヒートスプレッダ22を構成する、例えば銅の熱伝導率は198W/mKであり、ヒートスプレッダ22内での熱抵抗は、絶縁層23内の熱抵抗に比べて小さい。そのため、ヒートスプレッダ22の斜面上方における厚さと斜面下方における厚さの差による熱抵抗の分布は、実用上は問題とならない。   At the same time, in the configuration of the present embodiment, since the gate pad 6c and the source pad 7c are disposed below the slope of the heat spreader 22, the difference in height between the power semiconductor element 1 and the base plate 20 below the slope is reduced. The length of the wire connecting them can be shortened. Therefore, parasitic inductance is suppressed and high frequency operation is possible. The distance from the power semiconductor element 1 to the bottom surface below the slope of the heat spreader 22 is different from the distance from the bottom surface above the slope, and the distribution of the thermal resistance inside the heat spreader 22 occurs between them. The thermal conductivity of the insulating layer 23 disposed on the lower side of the heat spreader 22 is 10 W / mK, whereas the heat conductivity of the heat spreader 22, for example, copper is 198 W / mK, Is smaller than the thermal resistance in the insulating layer 23. Therefore, the distribution of thermal resistance due to the difference between the thickness above the slope of the heat spreader 22 and the thickness below the slope is not a problem in practice.

さらに、複数搭載する電力用半導体素子1間の距離であるチップ間距離の最適値として、電力用半導体素子1の横寸法、縦寸法を、それぞれ、a、bとし、図3(a)に示すヒートスプレッダ22の傾斜面と底面との角度αをとした場合、以下の式(1)で与えられる値以上で間隔を空けて電力用半導体素子1を配置するのが望ましい。これは、熱伝導の熱拡散角度が45°とした場合、図3(b)に示すように、ヒートスプレッダ22の傾斜角度αに依存して拡がる平面上の放熱領域53が、隣接する電力用半導体素子1の熱拡散領域と重ならず、放熱効率を維持するための条件である。

最小チップ間距離=a×tan(α)/tan(45°−α) (1)

図4に熱拡張倍率Fの角度α、θの依存性の計算結果を示す。図4(a)は、角度θを135°に固定し、角度αを変化させた際の熱拡散倍率Fの計算結果である。角度αを32°に設定すれば、熱拡張倍率Fが傾斜を設けないときの約6倍になり、SiCデバイスが最大電流密度に増大した場合でも、充分な放熱特性を有するものとなる。つまり、Si−IGBTよりも電流密度が6倍になったとしても熱抵抗を同等以下に維持することが可能となる。なお、角度αを32°より大きく設定した方がさらに熱拡張倍率Fは増大し熱抵抗を下げることができるが、この場合、急な斜面に電力用半導体素子1を実装することになり実装が困難になる。従って、角度αの上限としては、将来的なSiCデバイスの最大電流密度でも熱抵抗を適正な値まで低減できる32°が好ましい。また、現状のSiC−MOSFETの電流密度の実力が1.5倍程度(将来的には6倍程度が見込まれる)とすると、角度αの下限としては、20°程度と見積もられる。この範囲では、熱抵抗を理想的に低減することが可能となる。
Further, as the optimum value of the inter-chip distance, which is the distance between the plurality of power semiconductor elements 1 to be mounted, the horizontal dimension and the vertical dimension of the power semiconductor element 1 are a and b, respectively, as shown in FIG. When the angle α between the inclined surface and the bottom surface of the heat spreader 22 is defined, it is desirable to dispose the power semiconductor elements 1 with an interval greater than or equal to a value given by the following formula (1). When the heat diffusion angle of heat conduction is 45 °, as shown in FIG. 3B, the heat radiation region 53 on the plane that expands depending on the inclination angle α of the heat spreader 22 is adjacent to the power semiconductor. This is a condition for maintaining the heat dissipation efficiency without overlapping the thermal diffusion region of the element 1.

Minimum distance between chips = a × tan (α) / tan (45 ° −α) (1)

FIG. 4 shows a calculation result of the dependence of the thermal expansion magnification F on the angles α and θ. FIG. 4A shows a calculation result of the thermal diffusion magnification F when the angle θ is fixed to 135 ° and the angle α is changed. If the angle α is set to 32 °, the thermal expansion factor F is about 6 times that when no inclination is provided, and even if the SiC device is increased to the maximum current density, it has sufficient heat dissipation characteristics. That is, even if the current density is 6 times that of Si-IGBT, the thermal resistance can be maintained at the same level or lower. If the angle α is set to be larger than 32 °, the thermal expansion magnification F can be further increased and the thermal resistance can be lowered. In this case, however, the power semiconductor element 1 is mounted on a steep slope, and the mounting is reduced. It becomes difficult. Therefore, the upper limit of the angle α is preferably 32 °, which can reduce the thermal resistance to an appropriate value even in the future maximum current density of the SiC device. Further, assuming that the current capability of the current SiC-MOSFET is about 1.5 times (about 6 times is expected in the future), the lower limit of the angle α is estimated to be about 20 °. In this range, it is possible to ideally reduce the thermal resistance.

図4(b)は、角度αを32°に設定し、角度θを変化させた時の熱拡張倍率Fの変化を示す計算結果である。角度θを大きくする程、熱拡張倍率Fは大きくなるが、角度θを135°以上に設定すると、ヒートスプレッダ22を設置するベースプレート20の領域が大きくなり、回路構成自体の小型化が図れない。そのため、ヒートスプレッダ22の傾斜角θの加工精度を10%程度と考えると、角度θは、140°よりも小さいことが望ましい。また、現状のSiC−MOSFETの電流密度の実力が1.5倍程度(将来的には6倍程度が見込まれる)とすると、角度θの下限としては、105°程度と見積もられる。従って、α、θの範囲としては、以下の式(2)、(3)の範囲が好適な条件ということができる。   FIG. 4B shows calculation results indicating changes in the thermal expansion magnification F when the angle α is set to 32 ° and the angle θ is changed. As the angle θ is increased, the thermal expansion magnification F is increased. However, if the angle θ is set to 135 ° or more, the area of the base plate 20 on which the heat spreader 22 is installed increases, and the circuit configuration itself cannot be reduced in size. Therefore, when the processing accuracy of the inclination angle θ of the heat spreader 22 is considered to be about 10%, the angle θ is desirably smaller than 140 °. If the current density capability of the current SiC-MOSFET is about 1.5 times (about 6 times is expected in the future), the lower limit of the angle θ is estimated to be about 105 °. Therefore, as the ranges of α and θ, the ranges of the following formulas (2) and (3) can be said to be preferable conditions.


20<α≦32° (2)

105°<θ<140° (3)

次に、最適な構成の具体的な寸法例を以下に示す。

20 <α ≦ 32 ° (2)

105 ° <θ <140 ° (3)

Next, specific dimension examples of the optimum configuration are shown below.

電力用半導体素子1の大きさを、5×4.2mm□とし、図1(b)のように3チップ(電力用半導体素子1)が並列に横になるように配置するものとする。つまり、横寸法aが5mmで、縦寸法bが4.2mmとする。電力用半導体素子1を搭載するヒートスプレッダ22の主面50の傾斜角度αを32°とし、主面50と副面51とが成す角度θを135°とする。この時、上記式(1)より、最小チップ間距離は、13.5mmとなるので、15mm程度の間隔でチップを並列に並べるのがよい。本構成をとることで、熱拡張倍率Fは、約6倍となり、電力用半導体素子1の電流密度がSiC−MOSFETの6倍になっても熱抵抗を劣化させることの無い構成を提供することが可能になる。また、本構成によれば、ゲート配線を短くして実装することができ、GS間の配線インダクタンスを低く抑えると共に、主電流配線インダクタンスも大幅に低減させることが可能となる。これらにより、熱拡張倍率Fと、ゲート・ソース配線長は独立に設計することが可能になり、高周波動作と放熱性のトレードオフの関係を解消することが可能となる。また、電力半導体素子1のドレイン側の電極とゲート・ソースワイヤー間に十分な空間を確保することができるようになるため、ゲート配線に発生する寄生容量を低く抑制することができ、ノイズにも強い構造とすることができる。その結果、デバイスの十分な放熱性を確保した上でGD間、DS間インダクタンスを最適化することが可能となり、電力用半導体素子1の接合温度上昇を抑えた上で高周波動作を可能とする。その結果、電力変換装置といった機器の小型化・省エネルギー化を実現することが可能になる。   It is assumed that the size of the power semiconductor element 1 is 5 × 4.2 mm □, and three chips (power semiconductor element 1) are arranged in parallel as shown in FIG. That is, the horizontal dimension a is 5 mm and the vertical dimension b is 4.2 mm. The inclination angle α of the main surface 50 of the heat spreader 22 on which the power semiconductor element 1 is mounted is 32 °, and the angle θ formed between the main surface 50 and the sub surface 51 is 135 °. At this time, from the above formula (1), the minimum inter-chip distance is 13.5 mm, so it is preferable to arrange the chips in parallel at an interval of about 15 mm. By adopting this configuration, the thermal expansion ratio F is about 6 times, and a configuration in which the thermal resistance is not deteriorated even when the current density of the power semiconductor element 1 is 6 times that of the SiC-MOSFET is provided. Is possible. Further, according to this configuration, the gate wiring can be mounted with a short length, and the wiring inductance between the GS can be kept low and the main current wiring inductance can be greatly reduced. As a result, the thermal expansion factor F and the gate / source wiring length can be designed independently, and the trade-off relationship between high-frequency operation and heat dissipation can be eliminated. In addition, since a sufficient space can be secured between the drain-side electrode of the power semiconductor element 1 and the gate / source wire, the parasitic capacitance generated in the gate wiring can be suppressed low, and noise can be reduced. It can be a strong structure. As a result, it is possible to optimize the inductance between GD and DS while ensuring sufficient heat dissipation of the device, and to enable high-frequency operation while suppressing an increase in the junction temperature of the power semiconductor element 1. As a result, it is possible to achieve downsizing and energy saving of equipment such as a power converter.

図5(a)に、三相出力を実現する為の電力用半導体装置30の構成例を示す。実施の形態1における三相出力の電力用半導体装置30は、パワー端子15、接地端子16、出力端子17、ゲート端子6a、ソース端子7aを備え、スナバコンデンサ24が組み込まれる。   FIG. 5A shows a configuration example of the power semiconductor device 30 for realizing a three-phase output. The three-phase output power semiconductor device 30 in the first embodiment includes a power terminal 15, a ground terminal 16, an output terminal 17, a gate terminal 6a, and a source terminal 7a, and a snubber capacitor 24 is incorporated therein.

図5(b)に、電力用半導体装置30を実用回路に組み付けた際の概略回路図を記す。この回路では、直流電源45が、平滑コンデンサ43を介して接続される。必要に応じてパワー端子15と接地端子16の直近にスナバコンデンサ42が接続される。また、電力用半導体素子1がSiC−MOSFETの場合には、高周波動作を目的として、電力用半導体装置30内部にもスナバコンデンサ24を配置する。電力用半導体装置30の出力35は、負荷に対して接続される。制御信号生成基板40で発生した制御信号は、駆動基板39にて電圧、電流が増幅されて、電力用半導体素子1に対する駆動信号として伝達される。このようにして、直流電源が、交流電力に電力変換されることになる。   FIG. 5B shows a schematic circuit diagram when the power semiconductor device 30 is assembled into a practical circuit. In this circuit, a DC power supply 45 is connected via a smoothing capacitor 43. A snubber capacitor 42 is connected in the immediate vicinity of the power terminal 15 and the ground terminal 16 as necessary. When the power semiconductor element 1 is a SiC-MOSFET, the snubber capacitor 24 is also disposed inside the power semiconductor device 30 for the purpose of high-frequency operation. The output 35 of the power semiconductor device 30 is connected to a load. The control signal generated in the control signal generation board 40 is amplified in voltage and current in the drive board 39 and transmitted as a drive signal to the power semiconductor element 1. In this way, the DC power source is converted into AC power.

(実施の形態2)
次に、図6,図7を用いて、実施の形態2における半導体装置について説明する。
(Embodiment 2)
Next, the semiconductor device according to the second embodiment will be described with reference to FIGS.

図6は実施の形態2における半導体装置の構成を示す図であり、図6(a)は概略断面図、図6(b)は要部斜視図である。図7は実施の形態2における半導体装置の構成を示す平面図である。図6(a)は、図7のB−B’断面図である。   6A and 6B are diagrams showing the configuration of the semiconductor device according to the second embodiment. FIG. 6A is a schematic cross-sectional view, and FIG. FIG. 7 is a plan view showing the configuration of the semiconductor device according to the second embodiment. FIG. 6A is a B-B ′ sectional view of FIG. 7.

図6,図7は、実施の形態2の電力用半導体装置を用いてハーフブリッジ回路を構成した場合の実現例である。
実施の形態1の電力用半導体装置は、還流ダイオードを搭載しない場合の形態であった。しかし、電力変換における出力が大きくなると、還流ダイオードを搭載する必要がある場合がある。そのような場合には、図6に示すように、実施の形態2の電力用半導体装置構造のようにすれば良い。
6 and 7 are examples of realization when a half-bridge circuit is configured using the power semiconductor device of the second embodiment.
The power semiconductor device according to the first embodiment has a configuration in which no return diode is mounted. However, when the output in power conversion increases, it may be necessary to mount a freewheeling diode. In such a case, as shown in FIG. 6, the power semiconductor device structure of the second embodiment may be used.

実施の形態2の電力用半導体装置は、ベースプレート20上に絶縁層23を形成し、その上に導電性配線パターン5が形成されている。電力用半導体素子の例であるトランジスタ201とダイオード202を内包しており、導電性配線パターン5上に搭載されたヒートスプレッダ222上に搭載されている。ヒートスプレッダ222は断面が台形形状をしており、ヒートスプレッダ222において、トランジスタ201が搭載された斜面である主面(第1主面)と、ダイオード202が搭載された斜面である主面(第2主面)がある。図6(a)に示すように、ヒートスプレッダ222上面とトランジスタ201が搭載された面およびダイオード202が搭載された面とが成すそれぞれの角度η、ζは、前述の如く角度θと同じ条件に設定するのが好ましい。ここで、ヒートスプレッダ222上面は副面に相当し、主面の上部の辺で2つの主面と連続する面である。トランジスタ201とダイオード202のソースパッドおよびアノードパッドは、リード204により、導電性配線パターン5に電気的に接続される。ここで、リード204とトランジスタ201とダイオード202のそれぞれのソースパッドおよびアノードパッドの接続は、半田接着または超音波接合により接続する。   In the power semiconductor device of the second embodiment, an insulating layer 23 is formed on a base plate 20, and a conductive wiring pattern 5 is formed thereon. It includes a transistor 201 and a diode 202 which are examples of power semiconductor elements, and is mounted on a heat spreader 222 mounted on the conductive wiring pattern 5. The heat spreader 222 has a trapezoidal cross section. In the heat spreader 222, the main surface (first main surface) that is an inclined surface on which the transistor 201 is mounted and the main surface (second main surface) that is an inclined surface on which the diode 202 is mounted. Surface). As shown in FIG. 6A, the angles η and ζ formed by the upper surface of the heat spreader 222, the surface on which the transistor 201 is mounted, and the surface on which the diode 202 is mounted are set to the same conditions as the angle θ as described above. It is preferable to do this. Here, the upper surface of the heat spreader 222 corresponds to a sub surface, and is a surface continuous with the two main surfaces at the upper side of the main surface. The source pads and anode pads of the transistor 201 and the diode 202 are electrically connected to the conductive wiring pattern 5 by leads 204. Here, the source 204 and the anode pad of the lead 204, the transistor 201, and the diode 202 are connected by solder bonding or ultrasonic bonding.

このように、実施の形態2においても、ヒートスプレッダ222の素子搭載面を斜面とすることにより、ヒートスプレッダ222全体の厚みを増やすことなく、ヒートスプレッダ222全体として熱拡散領域を増やし、放熱効率を向上させることが可能になる。同時に、斜面下方はベースプレート20との段差が小さくなり、ワイヤー長を短くすることができ、寄生インダクタンスを抑制し、高周波動作が可能となる。   As described above, also in the second embodiment, by making the element mounting surface of the heat spreader 222 an inclined surface, the heat spreader 222 as a whole can be increased in heat diffusion area without increasing the thickness of the heat spreader 222, thereby improving the heat dissipation efficiency. Is possible. At the same time, the step with the base plate 20 is reduced below the slope, the wire length can be shortened, parasitic inductance is suppressed, and high-frequency operation is possible.

トランジスタ201とダイオード202は、平面視で千鳥配置にすることが好ましい。このようにすれば、トランジスタ201とダイオード202の内の一方の放熱が他方のチップ間において行われ、図3(b)に示すように、放熱領域53におけるチップ間のデッドスペースを有効活用することができる。   The transistor 201 and the diode 202 are preferably arranged in a staggered arrangement in plan view. In this way, one of the transistor 201 and the diode 202 is radiated between the other chips, and the dead space between the chips in the radiating region 53 is effectively utilized as shown in FIG. Can do.

図6(b)に、導電性配線パターン5上に搭載されたヒートスプレッダ222の実装例を示す。ヒートスプレッダ222上にトランジスタ201が3チップ、ダイオード202が2チップ搭載されている実装例である。   FIG. 6B shows a mounting example of the heat spreader 222 mounted on the conductive wiring pattern 5. This is a mounting example in which three chips of transistors 201 and two chips of diodes 202 are mounted on a heat spreader 222.

なお、上記各実施の形態では、電力用半導体素子を搭載する電力用半導体装置を例に説明したが、他の半導体素子を搭載する半導体装置にも適用でき、高放熱性と高周波数特性の両立を図ることができる。   In each of the above embodiments, the power semiconductor device on which the power semiconductor element is mounted has been described as an example. However, the power semiconductor device can be applied to a semiconductor device on which another semiconductor element is mounted, and both high heat dissipation and high frequency characteristics can be achieved. Can be achieved.

また、端子や導電性配線パターン,パッドの配置や形状,数についても、半導体素子や半導体装置の用途等に応じて任意の構成とすることができる。この際、高周波数動作に係る半導体素子のパッドがヒートスプレッダの斜面下側になるように半導体素子を配置することにより、ワイヤー長を短くでき、寄生インダクタンスを抑制し、高周波動作を実現できる。   In addition, the arrangement, shape, and number of terminals, conductive wiring patterns, and pads can be arbitrarily configured according to the use of the semiconductor element or the semiconductor device. At this time, by arranging the semiconductor element so that the pad of the semiconductor element related to the high frequency operation is below the slope of the heat spreader, the wire length can be shortened, the parasitic inductance can be suppressed, and the high frequency operation can be realized.

本発明は、ヒートスプレッダの素子搭載面を斜面にすることにより、高放熱性を確保しながら、高周波数特性を確保することができ、電力用等の半導体素子を搭載するヒートスプレッダを備える半導体装置等に有用である。   The present invention makes it possible to ensure high frequency characteristics while ensuring high heat dissipation by making the element mounting surface of the heat spreader into an inclined surface, and to a semiconductor device or the like equipped with a heat spreader on which a semiconductor element for power or the like is mounted. Useful.

1 電力用半導体素子
4、204 リード
5 導電性配線パターン
6a ゲート端子
6b ゲートパターン
6c ゲートパッド
7a ソース端子
7b ソースパターン
7c ソースパッド
7d ソース電極
8a ゲート配線
8b、9b、105、106a、106b、107b 配線
9a ソース配線
15 パワー端子
16 接地端子
17 出力端子
20 ベースプレート
22、122、222 ヒートスプレッダ
23 絶縁層
24、42 スナバコンデンサ
26 断面
30 電力半導体装置
35 出力
39 駆動基板
40 制御信号生成基板
43 平滑コンデンサ
45 直流電源
50 主面
51 副面
52 底面
53 放熱領域
104、108a、108b ワイヤー
200 熱拡散領域
201 トランジスタ
202 ダイオード
DESCRIPTION OF SYMBOLS 1 Power semiconductor element 4,204 Lead 5 Conductive wiring pattern 6a Gate terminal 6b Gate pattern 6c Gate pad 7a Source terminal 7b Source pattern 7c Source pad 7d Source electrode 8a Gate wiring 8b, 9b, 105, 106a, 106b, 107b Wiring 9a Source wiring 15 Power terminal 16 Ground terminal 17 Output terminal 20 Base plate 22, 122, 222 Heat spreader 23 Insulating layer 24, 42 Snubber capacitor 26 Cross section 30 Power semiconductor device 35 Output 39 Drive substrate 40 Control signal generation substrate 43 Smoothing capacitor 45 DC power supply 50 Main surface 51 Sub surface 52 Bottom surface 53 Heat dissipation region 104, 108a, 108b Wire 200 Thermal diffusion region 201 Transistor 202 Diode

Claims (7)

ベースプレートと、
前記ベースプレート上に形成される絶縁層と、
前記絶縁層上に形成された導電性パターンと、
前記導電性パターン上に設けられたヒートスプレッダと、
前記ヒートスプレッダ上に搭載された半導体素子とを備え、
前記ヒートスプレッダは、前記ベースプレートの前記絶縁層が形成される面に対して傾斜する主面を有し、
前記半導体素子は、前記主面に搭載される、
半導体装置。
A base plate;
An insulating layer formed on the base plate;
A conductive pattern formed on the insulating layer;
A heat spreader provided on the conductive pattern;
A semiconductor element mounted on the heat spreader,
The heat spreader has a main surface inclined with respect to a surface on which the insulating layer of the base plate is formed,
The semiconductor element is mounted on the main surface.
Semiconductor device.
前記導電性パターンと前記半導体素子のパッドとを電気的に接続するワイヤーをさらに備え、
前記半導体素子のパッドは、前記ヒートスプレッダの斜面下方に配置された、
請求項1に記載の半導体装置。
A wire that electrically connects the conductive pattern and the pad of the semiconductor element;
The pad of the semiconductor element is disposed below the slope of the heat spreader,
The semiconductor device according to claim 1.
前記半導体素子が電力用半導体素子であり、前記パッドの1つであるソース電極と、前記導電性パターンの1つが、板状のリードにより接続されている、
請求項1または2に記載の半導体装置。
The semiconductor element is a power semiconductor element, and a source electrode that is one of the pads and one of the conductive patterns are connected by a plate-like lead.
The semiconductor device according to claim 1.
前記ベースプレートに遠い側で前記主面と連続する副面と前記主面との成す角度をθとした場合、角度θが、105°<θ<140°の関係を満たす、
請求項1から3のいずれか1項に記載の半導体装置。
When the angle formed between the main surface and the sub surface continuous with the main surface on the side far from the base plate is θ, the angle θ satisfies the relationship of 105 ° <θ <140 °.
The semiconductor device according to claim 1.
前記ベースプレートに近い側で前記主面と連続する底面と前記主面との成す角度をαとした場合、角度αが、20°<α≦32°の関係を満たす、
請求項1から4のいずれか1項に記載の半導体装置。
When the angle formed between the main surface and the bottom surface continuous with the main surface on the side close to the base plate is α, the angle α satisfies a relationship of 20 ° <α ≦ 32 °.
The semiconductor device according to claim 1.
前記主面は、第1主面および第2主面から構成され、
前記第1主面に前記半導体素子としてトランジスタが配置され、前記第2主面に前記半導体素子としてダイオードが配置された、
請求項1から5のいずれか1項に記載の半導体装置。
The main surface is composed of a first main surface and a second main surface,
A transistor is disposed as the semiconductor element on the first main surface, and a diode is disposed as the semiconductor element on the second main surface.
The semiconductor device according to claim 1.
前記トランジスタと前記ダイオードとは、平面視で千鳥配置された、
請求項6に記載の半導体装置。
The transistors and the diodes are staggered in a plan view.
The semiconductor device according to claim 6.
JP2014118244A 2014-06-09 2014-06-09 Semiconductor device Pending JP2015231042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014118244A JP2015231042A (en) 2014-06-09 2014-06-09 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014118244A JP2015231042A (en) 2014-06-09 2014-06-09 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2015231042A true JP2015231042A (en) 2015-12-21

Family

ID=54887658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014118244A Pending JP2015231042A (en) 2014-06-09 2014-06-09 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2015231042A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3340292A1 (en) * 2016-12-21 2018-06-27 Valeo GmbH Heat sink, power electronics unit comprising the heat sink and method for assembling the power electronics unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3340292A1 (en) * 2016-12-21 2018-06-27 Valeo GmbH Heat sink, power electronics unit comprising the heat sink and method for assembling the power electronics unit

Similar Documents

Publication Publication Date Title
US10638633B2 (en) Power module, power converter and manufacturing method of power module
JP6245365B2 (en) Half-bridge power semiconductor module and manufacturing method thereof
US20120018741A1 (en) Semiconductor apparatus
WO2016027557A1 (en) Power conversion device
US7148562B2 (en) Power semiconductor device and power semiconductor module
US9721875B2 (en) Power module and fabrication method for the same
CN111261598B (en) Packaging structure and power module applicable to same
JP6834841B2 (en) Semiconductor device
JP2012175070A (en) Semiconductor package
JP2022062235A (en) Package structure for power devices
JP2007243018A (en) Cell arrangement method of semiconductor device
JP4146888B2 (en) Semiconductor module and method for manufacturing semiconductor module
JP2011176974A (en) Inverter device, compressor, and refrigerant cycle device
JP2012248700A (en) Semiconductor device
JP6213562B2 (en) Semiconductor device
JP6818873B2 (en) Switching element drive unit
JP2015231042A (en) Semiconductor device
JPWO2017017901A1 (en) Semiconductor device
JP2012084915A (en) Field-effect transistor
US10950522B2 (en) Electronic device
US10199347B2 (en) Semiconductor device
JP5851666B1 (en) Power converter
JP2018014522A (en) Semiconductor device
TW202406444A (en) Power block based on top-side cool surface-mount discrete devices with double-sided heat sinking
JP4943373B2 (en) Device mounting method