JP2015230855A - Solid oxide type cell and method for manufacturing the same - Google Patents

Solid oxide type cell and method for manufacturing the same Download PDF

Info

Publication number
JP2015230855A
JP2015230855A JP2014117164A JP2014117164A JP2015230855A JP 2015230855 A JP2015230855 A JP 2015230855A JP 2014117164 A JP2014117164 A JP 2014117164A JP 2014117164 A JP2014117164 A JP 2014117164A JP 2015230855 A JP2015230855 A JP 2015230855A
Authority
JP
Japan
Prior art keywords
solid oxide
solution
intermediate layer
layer
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014117164A
Other languages
Japanese (ja)
Other versions
JP6372742B2 (en
Inventor
内田 裕之
Hiroyuki Uchida
裕之 内田
克良 柿沼
Katsuyoshi Kakinuma
克良 柿沼
華子 西野
Hanako Nishino
華子 西野
渡辺 政廣
Masahiro Watanabe
政廣 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Yamanashi NUC
Original Assignee
University of Yamanashi NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Yamanashi NUC filed Critical University of Yamanashi NUC
Priority to JP2014117164A priority Critical patent/JP6372742B2/en
Publication of JP2015230855A publication Critical patent/JP2015230855A/en
Application granted granted Critical
Publication of JP6372742B2 publication Critical patent/JP6372742B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a solid oxide type cell superior in performance in its initial state and in the state of being activated for a long period; and a method for manufacturing such a solid oxide type cell.SOLUTION: A method for manufacturing a solid oxide type cell according to the present invention, in which the solid oxide type cell includes a solid oxide electrolytic layer, an air electrode layer and an intermediate layer disposed therebetween, comprises: a liquid solution-coating step for coating the solid oxide electrolytic layer with an organic metal acid salt solution including a first metal and a second metal serving as a dopant; a thermal decomposition step for fixing the solution thus coated on the solid oxide electrolytic layer; and a sintering step for solidifying the fixed solution into the intermediate layer.

Description

本発明は、電解質層と電極層の間に中間層を備えた固体酸化物形セル及び、その製造方法に関する。   The present invention relates to a solid oxide cell having an intermediate layer between an electrolyte layer and an electrode layer, and a method for producing the same.

固体酸化物セラミックスの電解質層と燃料極層と空気極層を備える固体酸化物形セルは他の方式のセルに比較して高い発電能力を有するため、特に分散電源としての開発が進められている。ここで電解質層において高いイオン導電性を得るために700℃〜1000℃の高温で運転される。また、固体電解質層の調製時においても高温で焼成される。   Solid oxide cells with electrolyte layers, fuel electrode layers, and air electrode layers of solid oxide ceramics have a higher power generation capacity than other types of cells, and are therefore being developed especially as distributed power sources. . Here, in order to obtain high ionic conductivity in the electrolyte layer, it is operated at a high temperature of 700 ° C. to 1000 ° C. In addition, the solid electrolyte layer is fired at a high temperature.

このように固体電解質層の高温での調製や長期間にわたる高温でのセルの運転を行うと、電解質層と、空気極層あるいは燃料極層である電極層の界面での相互拡散や固相反応によって不純物や高抵抗層が形成され、それによって界面での接触抵抗が増大し、セルの性能が低下する。   When the solid electrolyte layer is prepared at a high temperature or the cell is operated at a high temperature for a long period of time, mutual diffusion or solid-phase reaction at the interface between the electrolyte layer and the electrode layer that is the air electrode layer or the fuel electrode layer is performed. As a result, impurities and a high resistance layer are formed, thereby increasing the contact resistance at the interface and lowering the cell performance.

そのため、相互拡散や固体反応を抑止するために、固体電解質層と電極層の間にセラミックス膜からなる中間層を設けることが提案されている。
セラミックス膜の作製方法としては、例えば真空蒸着法やスパッタリング法が挙げられるが、高温真空下であったり目的組成のターゲットを用いる必要が有り、製造コストが高かった。
Therefore, in order to suppress mutual diffusion and solid reaction, it has been proposed to provide an intermediate layer made of a ceramic film between the solid electrolyte layer and the electrode layer.
Examples of the method for producing the ceramic film include a vacuum deposition method and a sputtering method. However, it is necessary to use a target having a target composition under a high temperature vacuum or a high production cost.

このため、真空装置を使用せず中間層を作製する方法も検討されている。
特許文献1では、電解質層が空気極層と燃料極層との間に配置された固体酸化物形燃料電池において、電解質層をランタンガレート系酸化物で、空気極層をランタンコバルト系酸化物で形成し、それら電解質層と空気極層との間にセリア系酸化物からなる厚さ3μm以上20μm以下の中間層をスピンコート法あるいはディッピング法により形成している。
For this reason, a method for producing an intermediate layer without using a vacuum apparatus has been studied.
In Patent Document 1, in a solid oxide fuel cell in which an electrolyte layer is disposed between an air electrode layer and a fuel electrode layer, the electrolyte layer is a lanthanum gallate oxide and the air electrode layer is a lanthanum cobalt oxide. An intermediate layer made of ceria-based oxide having a thickness of 3 μm to 20 μm is formed between the electrolyte layer and the air electrode layer by a spin coating method or a dipping method.

また特許文献2では、緻密薄膜用原料として、固体電解質、中間層、空気層がこの順に積層された積層構造を有する固体酸化物形燃料電池セルの中間層に用いられる原料と、それを用いた固体酸化物燃料電池単セルを開示している。ここでは、安定化ジルコニアなどの固体電解質上にセリア系セラミック微粉末を含む薄膜前駆体がスクリーン印刷法によって成膜され、これが焼結されて中間層が形成されている。   Moreover, in patent document 2, the raw material used for the intermediate | middle layer of the solid oxide fuel cell which has a laminated structure in which the solid electrolyte, the intermediate | middle layer, and the air layer were laminated | stacked in this order was used as a raw material for dense thin films, and it was used. A solid oxide fuel cell single cell is disclosed. Here, a thin film precursor containing ceria-based ceramic fine powder is formed on a solid electrolyte such as stabilized zirconia by a screen printing method, and this is sintered to form an intermediate layer.

特開2003−331866号公報JP 2003-331866 A 特開2008−222511号公報JP 2008-222511 A

特許文献1で示された中間層は、金属硝酸塩ポリマー前駆体溶液の塗布、熱分解によって形成され、厚さが3μm以上、20μm以下である。金属硝酸塩水溶液系スラリーの塗布、熱分解の手法では比較的荒い粒子の層が形成されることから、3μm以下の緻密な中間層の作製は困難である。このように比較的厚い中間層は、運転中の性能劣化に対しては抑止効果が期待でできるものの、中間層自身が電気抵抗成分となるため初期特性が劣るという課題が有る。   The intermediate layer disclosed in Patent Document 1 is formed by applying a metal nitrate polymer precursor solution and thermal decomposition, and has a thickness of 3 μm or more and 20 μm or less. Since a layer of relatively rough particles is formed by applying metal nitrate aqueous slurry and thermal decomposition, it is difficult to produce a dense intermediate layer of 3 μm or less. Although a relatively thick intermediate layer can be expected to have a deterrent effect on performance degradation during operation, the intermediate layer itself has an electrical resistance component, which causes a problem that initial characteristics are inferior.

また、特許文献1の電解質層はランタンガレート系酸化物からなり、運転温度は800℃であり、一般的な固体酸化物形電解質層の材料であるイットリア安定化ジルコニアを用いた場合やより高温の900℃における運転に関しては記載されていない。   In addition, the electrolyte layer of Patent Document 1 is made of a lanthanum gallate oxide, the operation temperature is 800 ° C., and when yttria-stabilized zirconia, which is a general solid oxide electrolyte layer material, is used or at a higher temperature. There is no description regarding operation at 900 ° C.

特許文献2では、固体酸化物電解質層は安定化ジルコニアであり、その上にセリア系セラミックスの粉末をバインダーを用いてスクリーン印刷法によって成膜して中間層を形成しており、その結果得られた中間層の厚さは10ミクロン以上である。
すなわち特許文献2においても、中間層の厚さにより初期性能が劣るという課題が有る。
In Patent Document 2, the solid oxide electrolyte layer is stabilized zirconia, and an intermediate layer is formed thereon by forming a ceria-based ceramic powder by a screen printing method using a binder. The intermediate layer has a thickness of 10 microns or more.
That is, even in Patent Document 2, there is a problem that initial performance is inferior due to the thickness of the intermediate layer.

以上の課題を解決するため、本発明による固体酸化物形セルの製造方法は、
固体酸化物電解質層と空気極層の間に配置される中間層を備えた固体酸化物形セルの製造方法であって、
第一の金属とドーパントである第二の金属を含む有機金属酸塩溶液を前記固体酸化物電解質層に塗布する溶液塗布工程と、
塗布された前記溶液を前記固体酸化物電解質層に固定するための熱分解工程と、
前記固定された溶液を固体化して中間層とするための焼成工程を備えることを特徴とする。
In order to solve the above problems, a method for producing a solid oxide cell according to the present invention includes:
A method for producing a solid oxide cell comprising an intermediate layer disposed between a solid oxide electrolyte layer and an air electrode layer,
A solution application step of applying an organometallic acid salt solution containing a first metal and a second metal as a dopant to the solid oxide electrolyte layer;
A thermal decomposition step for fixing the applied solution to the solid oxide electrolyte layer;
It is characterized by comprising a firing step for solidifying the fixed solution into an intermediate layer.

また、本発明による固体酸化物形燃料電池は、固体酸化物電解質層と空気極層とその間に配置された中間層からなる固体酸化物形セルであって、
前記中間層は、第一の金属とドーパントである第二の金属含む有機金属酸塩溶液を前記固体酸化物電解質層に塗布する溶液塗布工程と、
塗布された前記溶液を前記固体酸化物電解質層に固定するための熱分解工程と、
前記固定された溶液を固体化するための焼成工程によって製造されることを特徴としている。
The solid oxide fuel cell according to the present invention is a solid oxide fuel cell comprising a solid oxide electrolyte layer, an air electrode layer, and an intermediate layer disposed therebetween,
The intermediate layer is a solution coating step of coating an organic metal salt solution containing a first metal and a second metal that is a dopant on the solid oxide electrolyte layer;
A thermal decomposition step for fixing the applied solution to the solid oxide electrolyte layer;
It is manufactured by a baking process for solidifying the fixed solution.

本発明による中間層の作製方法によれば、十分に緻密であるため電解質層と空気極層の間の相互拡散や固体反応を抑止でき、また厚さが十分に薄いためにイオン導電を妨げない中間層を作成できる。
また本発明の固体酸化物セルによれば、中間層が十分に緻密であるために電解質層と空気極層の間の相互拡散や固体反応が抑止されると共に、厚さが十分に薄いためにイオン導電を妨げないので、初期の発電特性が優れるとともに、長時間運転時にも特性が劣化し難いという優れた特性のセルを提供できる。
According to the method for producing the intermediate layer according to the present invention, it is sufficiently dense so that interdiffusion and solid reaction between the electrolyte layer and the air electrode layer can be suppressed, and since the thickness is sufficiently thin, ion conduction is not hindered. An intermediate layer can be created.
Further, according to the solid oxide cell of the present invention, since the intermediate layer is sufficiently dense, interdiffusion and solid reaction between the electrolyte layer and the air electrode layer are suppressed, and the thickness is sufficiently thin. Since ion conduction is not hindered, it is possible to provide a cell having excellent characteristics that the initial power generation characteristics are excellent and the characteristics are hardly deteriorated even during long-time operation.

は、本発明の固体酸化物形セルの基本構成を示す図である。These are figures which show the basic composition of the solid oxide type cell of the present invention. は、本発明の固体酸化物形セルの中間層の製造方法を示す図である。These are figures which show the manufacturing method of the intermediate | middle layer of the solid oxide cell of this invention. は、実施例で作製した中間層の表面の顕微鏡写真である。These are the microscope pictures of the surface of the intermediate | middle layer produced in the Example. は、実施例で作製した中間層の断面の顕微鏡写真である。These are the microscope pictures of the cross section of the intermediate | middle layer produced in the Example. は、比較例で作製した中間層の表面の顕微鏡写真である。These are the microscope pictures of the surface of the intermediate | middle layer produced in the comparative example. は、比較例で作製した中間層の断面の顕微鏡写真である。These are the microscope pictures of the cross section of the intermediate | middle layer produced in the comparative example. は、実施例で使用したオクチル酸溶液のTG-DTA測定結果を示す図である。These are figures which show the TG-DTA measurement result of the octylic acid solution used in the Example. は、実施例と比較例で作製した中間層の初期および耐久特性を示す図である。These are figures which show the initial stage and durability characteristic of the intermediate | middle layer produced by the Example and the comparative example.

以下に、本発明の実施の形態について図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明の固体酸化物形セルの単セルの基本構成を示している。
固体酸化物形セルの単セル10には、固体酸化物電解質層1と、その固体酸化物電解質層1を挟んで配置される空気極層2及び燃料極層3を備えており、固体酸化物電解質層1と空気極層2の間に中間層4が設けられている。実際のセルは固体酸化物形セルの単セル10が、必要な電圧及び電流を得るために複数個直列あるいは並列に接続されている。
FIG. 1 shows the basic structure of a single cell of the solid oxide cell of the present invention.
A unit cell 10 of a solid oxide cell includes a solid oxide electrolyte layer 1, an air electrode layer 2 and a fuel electrode layer 3 disposed so as to sandwich the solid oxide electrolyte layer 1. An intermediate layer 4 is provided between the electrolyte layer 1 and the air electrode layer 2. In actual cells, a plurality of solid oxide cells 10 are connected in series or in parallel in order to obtain the required voltage and current.

固体酸化物電解質層1は、酸素イオン導電性物質であり、かつ高温で安定な金属酸化物セラミックスからなり、ジルコニア系電解質酸化物、特にはイットリア安定化ジルコニア(YSZ)が好適である。空気極層2にはランタンマンガナイト(LaMnO3)系、ランタンコバルタイト(LaCoO3)系、ランタンフェライト(LaFeO3)系などを用いることが可能であるが、高いイオン−電子混合導電性を示す、例えばランタンコバルトフェライト系物質が好適である。燃料極層3は金属と酸化物の混合電極などを用いることができ、例えばNiサーメットなどが良い。 The solid oxide electrolyte layer 1 is an oxygen ion conductive material and is made of a metal oxide ceramic that is stable at a high temperature, and zirconia-based electrolyte oxide, particularly yttria-stabilized zirconia (YSZ) is preferable. Lanthanum manganite (LaMnO 3 ) system, lanthanum cobaltite (LaCoO 3 ) system, lanthanum ferrite (LaFeO 3 ) system, etc. can be used for the air electrode layer 2, but show high ion-electron mixed conductivity. For example, a lanthanum cobalt ferrite material is suitable. As the fuel electrode layer 3, a mixed electrode of metal and oxide can be used. For example, Ni cermet is preferable.

中間層4は、ドーパントであるガドリニウム、サマリウム、イットリウム、ランタン、ストロンチウム、カルシウムのいずれかあるいは複数種類の酸化物が固溶したセリウム酸化物(セリア)からなり、特にイオン導電性が高いサマリアドープセリア(SDC)が望ましい。この中間層の厚さは1〜3μmと十分に薄いために酸素イオン導電を妨げず、かつ十分に緻密であるために固体酸化物電解質層1と空気極層2の間の相互拡散や固体反応を防止することが可能である。固体酸化物電解質層1と燃料極層3との間の相互拡散や固体反応を防止するために、固体酸化物電解質層1と燃料極層3との間に中間層を設けても良い。   The intermediate layer 4 is made of cerium oxide (ceria) in which any one of the dopants gadolinium, samarium, yttrium, lanthanum, strontium, calcium, or a plurality of types of oxides is solid-solved. (SDC) is desirable. Since the thickness of this intermediate layer is as thin as 1 to 3 μm, it does not hinder oxygen ion conduction and is sufficiently dense so that it can be diffused between the solid oxide electrolyte layer 1 and the air electrode layer 2 or a solid reaction. Can be prevented. In order to prevent mutual diffusion and solid reaction between the solid oxide electrolyte layer 1 and the fuel electrode layer 3, an intermediate layer may be provided between the solid oxide electrolyte layer 1 and the fuel electrode layer 3.

次に図2を参照して本発明の中間層の製造方法を説明する。
まず図1の固体酸化物電解質層1となるYSZなどの固体酸化物電解質からなる基板を準備する。続いて、有機金属酸セリウム溶液とドーパントの有機金属酸塩溶液を混合して中間層前駆体溶液を作製する。
Next, the method for producing the intermediate layer of the present invention will be described with reference to FIG.
First, a substrate made of a solid oxide electrolyte such as YSZ to be the solid oxide electrolyte layer 1 of FIG. 1 is prepared. Subsequently, the cerium organometallic acid solution and the organometallic acid salt solution of the dopant are mixed to prepare an intermediate layer precursor solution.

ここで、有機金属酸塩溶液は、脂肪酸塩のいずれかあるいは混合物の有機溶液が望ましい。例として、オクチル酸塩、ナフテン酸塩、ネオデカン酸塩、エチルヘキサン酸塩、プロピオン酸塩、ステアリン酸塩のいずれかあるいは混合物が挙げられる。特にオクチル酸塩が好適である。
より望ましくはオクチル酸セリウム溶液とオクチル酸サマリウム溶液を、セリウム:サマリウムのカチオン比がおよそ8:2になるように混合して中間層前駆体溶液を調整する。これはサマリア(酸化サマリウム)を固溶した酸化セリウムのイオン導電性が最も高くなる組成比であるためである。
Here, the organic metal salt solution is preferably an organic solution of either a fatty acid salt or a mixture. Examples include octylate, naphthenate, neodecanoate, ethylhexanoate, propionate, stearate, or a mixture. Octylate is particularly preferred.
More preferably, the intermediate layer precursor solution is prepared by mixing the cerium octylate solution and the samarium octylate solution so that the cation ratio of cerium: samarium is about 8: 2. This is because cerium oxide having samarium (samarium oxide) as a solid solution has the highest composition ratio of ionic conductivity.

このような有機金属酸塩溶液は単独種類の脂肪酸と有機溶媒のみで構成されている。
このため有機・酸化物被覆膜を形成する過程で、分解物が脂肪酸のみであり、他の添加物からの分解物が生じない。また、イオンレベルで均一分散した溶液を基板上に塗布されているため、熱分解の際に微細な酸化物粒子の形成と焼結による緻密化が容易であると考えられる。
Such an organometallic acid salt solution is composed of only one kind of fatty acid and an organic solvent.
Therefore, in the process of forming the organic / oxide coating film, the decomposition product is only fatty acid, and no decomposition product from other additives is generated. Further, since a solution uniformly dispersed at the ion level is applied on the substrate, it is considered that formation of fine oxide particles and densification by sintering are easy during thermal decomposition.

これに対して硝酸塩水溶液系スラリーの場合は、金属硝酸塩のほかに、溶液粘度や分散性を調整するための水溶性セルロースなど添加剤を混合して用いる場合が多く、これらイオン対以外の添加物の分解物の影響により形成する酸化物粒子が粗大化しやすいと考えられる。また、熱分解の過程において溶媒の揮発の際に硝酸塩として再析出してから熱分解の工程を経ると考えられるため、析出物の形状が形成する酸化物の特徴となると考えられる。   On the other hand, in the case of aqueous nitrate solution slurry, in addition to metal nitrate, additives such as water-soluble cellulose for adjusting solution viscosity and dispersibility are often used, and additives other than these ion pairs. It is considered that the oxide particles formed due to the decomposition product are easily coarsened. Further, in the process of thermal decomposition, it is considered that the precipitate is reprecipitated as a nitrate upon volatilization of the solvent and then undergoes a thermal decomposition step, so that the shape of the precipitate is considered to be a characteristic of the oxide formed.

次に、溶液塗布工程において、固体酸化物電解質からなる基板の上に、中間層前駆体を塗布する。塗布方法は、溶液を薄膜として塗布することが可能な方法で有ればよいが、薄膜化、平坦化、緻密化が可能なスピンコート法が特に望ましい。すなわちスピンコータの試料台にYSZなどの薄板を設置し、ポンプなどで減圧吸引し固定した状態で回転させ、その上に中間層前駆体溶液を滴下して、基板の上に中間層前駆体溶液を薄く引き伸ばすように塗布する。   Next, in the solution application step, the intermediate layer precursor is applied onto the substrate made of the solid oxide electrolyte. The application method may be any method that can apply the solution as a thin film, but a spin coating method capable of thinning, flattening, and densification is particularly desirable. That is, a thin plate such as YSZ is installed on the sample table of the spin coater, rotated under reduced pressure by a pump or the like and fixed, and the intermediate layer precursor solution is dropped on the substrate, and the intermediate layer precursor solution is placed on the substrate. Apply thinly.

次に熱分解工程では、この基板を電気オーブンなどによって加熱し、基板の上の中間層前駆体溶液を乾燥させて固定する。加熱温度は、図7に示すオクチル酸の熱重量測定 TGと示差熱分析 DTAの結果から200〜400℃、特には300℃前後が望ましい。乾燥時間は10〜30分が望ましい。   Next, in the pyrolysis step, the substrate is heated by an electric oven or the like, and the intermediate layer precursor solution on the substrate is dried and fixed. The heating temperature is preferably 200 to 400 ° C., particularly around 300 ° C., based on the results of thermogravimetric measurement TG and differential thermal analysis DTA shown in FIG. The drying time is desirably 10 to 30 minutes.

加熱温度が200℃以下あるいは乾燥時間が10分以内の場合は乾燥が不十分で、中間層前駆体溶液が流動してしまう恐れがある。加熱温度が400℃以上あるいは乾燥時間が30分以上の場合は、中間層前駆体溶液が完全に固化し、次に述べる溶液塗布工程の繰り返しを行ったときに、1回目と2回目の塗布面に不連続な界面や空隙ができるため緻密な中間層を得ることが出来ない。   When the heating temperature is 200 ° C. or lower or the drying time is within 10 minutes, the drying is insufficient and the intermediate layer precursor solution may flow. When the heating temperature is 400 ° C. or higher or the drying time is 30 minutes or longer, the intermediate layer precursor solution is completely solidified, and the first and second coated surfaces are obtained when the solution coating process described below is repeated. Since a discontinuous interface and voids are formed, a dense intermediate layer cannot be obtained.

最終的に緻密な中間層を得るためには、溶液塗布工程と熱分解工程を2〜10回繰り返すことが望ましい。繰り返しを行わないと中間層の表面や断面が粗くなり、繰り返し回数が11回以上の場合は、中間層の厚さが厚くなって高抵抗になったり、中間層の表面が平滑でなくなり電極との接合が不完全になりイオンの導電を妨げて、電池の発電特性が不十分になる。   In order to finally obtain a dense intermediate layer, it is desirable to repeat the solution coating step and the thermal decomposition step 2 to 10 times. If the repetition is not performed, the surface and cross section of the intermediate layer become rough. If the number of repetitions is 11 times or more, the intermediate layer becomes thick and high resistance is obtained, or the surface of the intermediate layer is not smooth and the electrode Incomplete bonding of the metal impedes ion conduction, resulting in insufficient power generation characteristics of the battery.

次に焼結工程について説明する。焼結工程では基板に溶液塗布工程と熱分解工程を複数回繰り返したのち、基板を電気炉などによって800〜1000℃の温度で1〜3時間の間加熱する。焼結工程を終えた基板に対して再び溶液塗布工程、熱定着工程、焼結工程を複数回繰り返しても良い。繰り返すことにより、所望の膜厚の中間層を得ることが可能である。   Next, the sintering process will be described. In the sintering step, the solution coating step and the thermal decomposition step are repeated a plurality of times on the substrate, and then the substrate is heated by an electric furnace or the like at a temperature of 800 to 1000 ° C. for 1 to 3 hours. You may repeat a solution application process, a heat fixing process, and a sintering process in multiple times with respect to the board | substrate which finished the sintering process. By repeating, it is possible to obtain an intermediate layer having a desired film thickness.

以下に、本発明の実施例について詳細に説明する。   Hereinafter, examples of the present invention will be described in detail.

ディスク状の8mol%イットリア安定化ジルコニア(YSZ)電解質基板(直径13mm、厚さ1mm)を用意した。オクチル酸セリウムとオクチル酸サマリウムの溶液を、セリウム:サマリウムの比が8:2になるように混合して中間層前駆体溶液を得る。YSZ電解質基板に中間層前駆体溶液をスピンコート法、回転数2800rpm、4secの条件で塗布し、300℃で20分間の熱分解処理を行う。この塗布と熱分解処理を3回繰り返したのち、1000℃で2時間の焼成を行う。さらに3回の塗布と熱分解、焼成までのプロセスを3回繰り返すことによりセラミックス中間層を作製する。   A disk-shaped 8 mol% yttria stabilized zirconia (YSZ) electrolyte substrate (diameter 13 mm, thickness 1 mm) was prepared. An intermediate layer precursor solution is obtained by mixing a solution of cerium octylate and samarium octylate so that the ratio of cerium: samarium is 8: 2. The intermediate layer precursor solution is applied to the YSZ electrolyte substrate under the conditions of spin coating, rotation speed of 2800 rpm, 4 seconds, and subjected to thermal decomposition treatment at 300 ° C. for 20 minutes. After repeating this coating and thermal decomposition treatment three times, baking is performed at 1000 ° C. for 2 hours. Further, the ceramic intermediate layer is prepared by repeating the process up to three times of application, pyrolysis and firing three times.

<比較例>
硝酸セリウムと硝酸サマリウムを純水に溶解し、複合金属硝酸塩水溶液を調整する。さらに分散剤、消泡剤、増粘剤などの添加物を加え、室温で一定時間撹拌して中間層前駆体溶液を得る。実施例と同様にYSZ電解質基板を用意し、スクリーン印刷機に設置し、中間層前駆体溶液を塗工する。中間層前駆体溶液を塗工した基板を小型電気炉で400℃に加熱し、30分、熱分解を行う。塗工と熱分解を繰り返すことで任意の膜厚に調整した後、最終的に1150℃に加熱し4時間焼成して、中間層を作製する。
<Comparative example>
Dissolve cerium nitrate and samarium nitrate in pure water to prepare a complex metal nitrate aqueous solution. Furthermore, additives such as a dispersant, an antifoaming agent, and a thickener are added and stirred at room temperature for a certain time to obtain an intermediate layer precursor solution. A YSZ electrolyte substrate is prepared in the same manner as in the example, and the substrate is placed on a screen printer, and the intermediate layer precursor solution is applied. The substrate coated with the intermediate layer precursor solution is heated to 400 ° C. in a small electric furnace and thermally decomposed for 30 minutes. After adjusting to an arbitrary film thickness by repeating coating and thermal decomposition, it is finally heated to 1150 ° C. and baked for 4 hours to produce an intermediate layer.

実施例及び比較例で作製した中間層の表面の顕微鏡写真を、それぞれ図3、図5に示す。本実施例の中間層は比較例の中間層に比べて、表面にクラックや凹凸が少なく平滑な膜状になっていることがわかる。   The micrographs of the surface of the intermediate layer produced in the examples and comparative examples are shown in FIGS. 3 and 5, respectively. It can be seen that the intermediate layer of this example is a smooth film with fewer cracks and irregularities on the surface than the intermediate layer of the comparative example.

さらに、実施例及び比較例で作製した中間層の断面の顕微鏡写真を、それぞれ図4、図6に示す。比較例の中間層の厚さは3μm程度のものを示すが、粒子状の凹凸が多数存在し緻密とは言えない。一方、実施例の中間層では3回の繰り返し塗布焼成によって膜厚が約1.5μmの緻密で平坦な薄膜が得られた。   Furthermore, micrographs of cross-sections of the intermediate layers produced in Examples and Comparative Examples are shown in FIGS. 4 and 6, respectively. Although the thickness of the intermediate layer of the comparative example is about 3 μm, there are many particulate irregularities and it cannot be said to be dense. On the other hand, in the intermediate layer of the example, a dense and flat thin film having a thickness of about 1.5 μm was obtained by repeated coating and baking three times.

次に本実施例による中間層薄膜を用いた固体酸化物形燃料電池セルの評価結果の一例として、温度900℃における連続耐久性評価でのセル抵抗の変化について図8を用いて説明する。実施例及び比較例で作製した中間層に対して酸化物電極を積層した評価用セルを作製した。このセルに0.5A/cmの定電流を通電したときに発生する電圧を測定し、その電圧を電流値で除してセル面積抵抗値(図8の縦軸)を算出した。温度は900℃で、酸素の流速を30mL/minで一定とした。
太い実線で示す本実施例の中間層では、初期のセル面積抵抗値が十分に低く、さらに2000時間という長時間にわたって運転しても、セル面積抵抗値の上昇は10%以下であり、性能の大幅な劣化は認められなかった。
Next, as an example of the evaluation result of the solid oxide fuel cell using the intermediate layer thin film according to this example, a change in cell resistance in continuous durability evaluation at a temperature of 900 ° C. will be described with reference to FIG. An evaluation cell in which an oxide electrode was stacked on the intermediate layer prepared in Examples and Comparative Examples was manufactured. A voltage generated when a constant current of 0.5 A / cm 2 was applied to the cell was measured, and the cell area resistance value (vertical axis in FIG. 8) was calculated by dividing the voltage by the current value. The temperature was 900 ° C., and the flow rate of oxygen was constant at 30 mL / min.
In the intermediate layer of the present embodiment indicated by a thick solid line, the initial cell area resistance value is sufficiently low, and even when operated for a long time of 2000 hours, the increase in cell area resistance value is 10% or less. No significant deterioration was observed.

他方、比較例の金属硝酸塩スラリー塗布で作製した中間層の場合、膜厚を1μm程度で作製した中間層では、初期のセル面積抵抗値は今回の発明と同等の性能を示しているが、開始直後から運転時間の経過に伴い大幅な抵抗の増大が観察されている(破線)。さらに界面での相互拡散や固相反応を抑制できる厚さ3μm程度の中間層では、長時間の安定性は得られるものの、平滑さや緻密性が不十分であるために初期のセル面積抵抗値が約1.6倍程度高い結果となった(実線)。
これらの結果から、固体酸化物セル中に本発明の中間層を用いると、高い初期性能を維持したまま、長時間の駆動においても高い安定性を示すことが確かめられた。
On the other hand, in the case of the intermediate layer produced by applying the metal nitrate slurry of the comparative example, in the intermediate layer produced with a film thickness of about 1 μm, the initial cell area resistance value shows the same performance as the present invention, but the start Immediately after that, a significant increase in resistance is observed as the operating time elapses (broken line). Furthermore, an intermediate layer with a thickness of about 3 μm that can suppress interdiffusion and solid-phase reaction at the interface can provide long-term stability, but the initial cell area resistance value is low due to insufficient smoothness and denseness. The result was about 1.6 times higher (solid line).
From these results, it was confirmed that when the intermediate layer of the present invention was used in a solid oxide cell, high stability was exhibited even during long-time driving while maintaining high initial performance.

本発明の固体酸化物形燃料セルの製造方法によれば、初期特性と長時間駆動時の耐久性の両方に優れた固体酸化物形セルを製造することが可能となり、この製造方法によって製造された固体酸化物形セルは、商用電源が供給されない場所で長時間にわたって発電機として使用することが可能である。また余剰電力を利用した水素製造機としての使用も可能であり、電力の平準化が期待できる。   According to the method for producing a solid oxide fuel cell of the present invention, it is possible to produce a solid oxide cell excellent in both initial characteristics and durability during long-time driving. The solid oxide cell can be used as a generator for a long time in a place where commercial power is not supplied. In addition, it can be used as a hydrogen production machine using surplus power, and electric power leveling can be expected.

Claims (7)

固体酸化物電解質層と空気極層の間に配置される中間層を備えた固体酸化物形セルの製造方法であって、
第一の金属とドーパントである第二の金属を含む有機金属酸塩溶液を前記固体酸化物電解質層に塗布する溶液塗布工程と、塗布された前記溶液を前記固体酸化物電解質層に固定するための熱分解工程と、前記固定された溶液を固体化して中間層とするための焼成工程を備えることを特徴とする固体酸化物形セルの製造方法。
A method for producing a solid oxide cell comprising an intermediate layer disposed between a solid oxide electrolyte layer and an air electrode layer,
A solution application step of applying an organometallic acid salt solution containing a first metal and a second metal as a dopant to the solid oxide electrolyte layer, and fixing the applied solution to the solid oxide electrolyte layer And a firing step for solidifying the fixed solution into an intermediate layer. A method for producing a solid oxide cell, comprising:
前記第一の金属はセリウムであり、第二の金属はガドリニウム、サマリウム、イットリウム、ランタン、ストロンチウム、カルシウムのいずれかあるいはそれらの組み合わせであることを特徴とする請求項1に記載の固体酸化物形セルの製造方法。   The solid oxide form according to claim 1, wherein the first metal is cerium, and the second metal is gadolinium, samarium, yttrium, lanthanum, strontium, calcium, or a combination thereof. Cell manufacturing method. 前記有機金属酸塩溶液はオクチル酸溶液であることを特徴とする請求項1あるいは2のいずれかに記載の固体酸化物形セルの製造方法。   3. The method for producing a solid oxide cell according to claim 1, wherein the organometallic acid salt solution is an octylic acid solution. 前記溶液塗布工程はスピンコート法を用いることを特徴とする請求項1から3のいずれかに記載の固体酸化物形セルの製造方法。   The method for producing a solid oxide cell according to any one of claims 1 to 3, wherein the solution coating step uses a spin coating method. 前記溶液塗布工程と前記熱分解工程を複数回繰り返すことを特徴とする請求項1から4のいずれかに記載の固体酸化物形セルの製造方法。   The method for producing a solid oxide cell according to any one of claims 1 to 4, wherein the solution coating step and the thermal decomposition step are repeated a plurality of times. 前記溶液塗布工程と、前記熱分解工程と、前記焼成工程を複数回繰り返すことを特徴とする請求項3から5のいずれかに記載の固体酸化物形セルの製造方法。   6. The method for producing a solid oxide cell according to claim 3, wherein the solution application step, the thermal decomposition step, and the firing step are repeated a plurality of times. 固体酸化物電解質層と空気極層とその間に配置された中間層を備えた固体酸化物形セルであって、
前記中間層は、第一の金属とドーパントである第二の金属含む有機金属酸塩溶液を前記固体酸化物電解質層に塗布する溶液塗布工程と、塗布された前記溶液を前記固体酸化物電解質層に固定するための熱分解工程と、前記固定された溶液を固体化するための焼成工程によって製造されることを特徴とする固体酸化物形セル。
A solid oxide cell comprising a solid oxide electrolyte layer, an air electrode layer, and an intermediate layer disposed therebetween,
The intermediate layer includes a solution application step of applying an organic metal salt solution containing a first metal and a second metal as a dopant to the solid oxide electrolyte layer, and applying the applied solution to the solid oxide electrolyte layer. A solid oxide cell produced by a pyrolysis step for fixing to a cell and a firing step for solidifying the fixed solution.
JP2014117164A 2014-06-06 2014-06-06 Solid oxide cell and manufacturing method thereof Active JP6372742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014117164A JP6372742B2 (en) 2014-06-06 2014-06-06 Solid oxide cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014117164A JP6372742B2 (en) 2014-06-06 2014-06-06 Solid oxide cell and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2015230855A true JP2015230855A (en) 2015-12-21
JP6372742B2 JP6372742B2 (en) 2018-08-15

Family

ID=54887527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014117164A Active JP6372742B2 (en) 2014-06-06 2014-06-06 Solid oxide cell and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6372742B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307750A (en) * 2000-04-25 2001-11-02 Tokyo Gas Co Ltd Solid electrolyte fuel battery and its manufacturing method
JP2005531885A (en) * 2002-04-23 2005-10-20 フラウンホフェル−ゲゼルシャフト ツ−ル フォルダルング デル アンゲバンドテン フォルシュング エー.ファウ. High temperature solid electrolyte fuel cell comprising a composite of nanoporous thin layer electrode and structured electrolyte
JP2006236844A (en) * 2005-02-25 2006-09-07 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell and manufacturing method of solid oxide fuel cell
JP2015201311A (en) * 2014-04-07 2015-11-12 一般財団法人電力中央研究所 Composite layer structure and manufacturing method therefor and method of manufacturing cathode of solid oxide fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307750A (en) * 2000-04-25 2001-11-02 Tokyo Gas Co Ltd Solid electrolyte fuel battery and its manufacturing method
JP2005531885A (en) * 2002-04-23 2005-10-20 フラウンホフェル−ゲゼルシャフト ツ−ル フォルダルング デル アンゲバンドテン フォルシュング エー.ファウ. High temperature solid electrolyte fuel cell comprising a composite of nanoporous thin layer electrode and structured electrolyte
JP2006236844A (en) * 2005-02-25 2006-09-07 Nippon Telegr & Teleph Corp <Ntt> Solid oxide fuel cell and manufacturing method of solid oxide fuel cell
JP2015201311A (en) * 2014-04-07 2015-11-12 一般財団法人電力中央研究所 Composite layer structure and manufacturing method therefor and method of manufacturing cathode of solid oxide fuel cell

Also Published As

Publication number Publication date
JP6372742B2 (en) 2018-08-15

Similar Documents

Publication Publication Date Title
JP2012505820A (en) Method for preparing metal oxide sol, method for preparing metal oxide thin film using the sol, and solid oxide fuel cell including the thin film
JP3981418B2 (en) Electrode structure for solid state electrochemical devices
JP2016031933A (en) Proton-conducting laminate structure
KR101186929B1 (en) Method of non-shrinkage fabrication of metal oxide thin film for solid oxide fuel cell by low temperature
JP2017076520A (en) Electrode material for solid oxide type fuel cell, and solid oxide type fuel cell arranged by use thereof
Kim et al. Tailoring ceramic membrane structures of solid oxide fuel cells via polymer-assisted electrospray deposition
JP2016207300A (en) Manufacturing method of solid oxide fuel cell, half cell green sheet for solid oxide fuel cell, and solid oxide fuel cell
JP2007335193A (en) Ceria layer for air electrode of solid oxide fuel cell, and its manufacturing method
JP6664132B2 (en) Porous structure, method of manufacturing the same, and electrochemical cell using the same and method of manufacturing the same
EP2166602A1 (en) The formulation of nano-scale electrolyte suspensions and its application process for fabrication of solid oxide fuel cell-membrane electrode assembly (SOFC-MEA)
JP6315581B2 (en) Cathode for solid oxide fuel cell, method for producing the same, and solid oxide fuel cell including the cathode
JP6372742B2 (en) Solid oxide cell and manufacturing method thereof
KR101657242B1 (en) high temperature solid oxide cell comprising barrier layer, manufacturing method thereof
Abarzua et al. A feasible strategy for tailoring stable spray‐coated electrolyte layer in micro‐tubular solid oxide fuel cells
JP6433168B2 (en) SOLID ELECTROLYTE FUEL CELL AND MATERIAL FOR RESULTING INHIBITION LAYER FORM
US20140113213A1 (en) Porous oxide electrode layer and method for manufacturing the same
JP2008257943A (en) Electrode for solid oxide fuel cell and solid oxide fuel cell having same
JP6366054B2 (en) Method for producing composite layer structure and method for producing cathode of solid oxide fuel cell
Choudhary et al. Fabrication of fuel electrode supported proton conducting SOFC via EPD of La2Ce2O7 electrolyte and its performance evaluation
JP2002373675A (en) Electrode assembly for solid electrolyte fuel cell, and manufacturing method of the same
JP6433948B2 (en) Gas sensor electrode forming material
JP2008234927A (en) Manufacturing method of solid oxide fuel cell
JP2003346818A (en) Electrode of fine structure with three-phase interface by porous ion-conductive ceria film coating, and method for manufacturing the same
JP2015002035A (en) Method for manufacturing solid oxide fuel battery cell
JP2007200663A (en) Manufacturing method of cerium based solid electrolyte fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180705

R150 Certificate of patent or registration of utility model

Ref document number: 6372742

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250