JP6366054B2 - Method for producing composite layer structure and method for producing cathode of solid oxide fuel cell - Google Patents
Method for producing composite layer structure and method for producing cathode of solid oxide fuel cell Download PDFInfo
- Publication number
- JP6366054B2 JP6366054B2 JP2014078869A JP2014078869A JP6366054B2 JP 6366054 B2 JP6366054 B2 JP 6366054B2 JP 2014078869 A JP2014078869 A JP 2014078869A JP 2014078869 A JP2014078869 A JP 2014078869A JP 6366054 B2 JP6366054 B2 JP 6366054B2
- Authority
- JP
- Japan
- Prior art keywords
- cathode
- bscf
- layer
- temperature
- ceo
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002131 composite material Substances 0.000 title claims description 19
- 239000000446 fuel Substances 0.000 title claims description 17
- 239000007787 solid Substances 0.000 title claims description 16
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 239000000758 substrate Substances 0.000 claims description 39
- 239000010409 thin film Substances 0.000 claims description 26
- 238000000137 annealing Methods 0.000 claims description 24
- AHKZTVQIVOEVFO-UHFFFAOYSA-N oxide(2-) Chemical compound [O-2] AHKZTVQIVOEVFO-UHFFFAOYSA-N 0.000 claims description 17
- 125000002524 organometallic group Chemical group 0.000 claims description 14
- 239000011533 mixed conductor Substances 0.000 claims description 12
- 239000002253 acid Substances 0.000 claims description 11
- 239000007784 solid electrolyte Substances 0.000 claims description 10
- 150000002500 ions Chemical class 0.000 claims description 8
- 239000004020 conductor Substances 0.000 claims description 7
- 239000002243 precursor Substances 0.000 claims description 7
- 239000012266 salt solution Substances 0.000 claims description 7
- 238000000034 method Methods 0.000 description 33
- 238000005259 measurement Methods 0.000 description 18
- 230000015572 biosynthetic process Effects 0.000 description 14
- 239000000843 powder Substances 0.000 description 12
- 239000010406 cathode material Substances 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 238000004528 spin coating Methods 0.000 description 10
- 239000010408 film Substances 0.000 description 9
- 230000007423 decrease Effects 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 239000003792 electrolyte Substances 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 6
- 239000002105 nanoparticle Substances 0.000 description 6
- 230000010287 polarization Effects 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 238000002411 thermogravimetry Methods 0.000 description 6
- 239000002245 particle Substances 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 206010021143 Hypoxia Diseases 0.000 description 4
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 4
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000001453 impedance spectrum Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000007935 neutral effect Effects 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 238000005979 thermal decomposition reaction Methods 0.000 description 4
- 229910002741 Ba0.5Sr0.5Co0.8Fe0.2O3-δ Inorganic materials 0.000 description 3
- 229910002742 Ba0.5Sr0.5Co0.8Fe0.2O3−δ Inorganic materials 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- 229910002484 Ce0.9Gd0.1O1.95 Inorganic materials 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 229910052688 Gadolinium Inorganic materials 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000011532 electronic conductor Substances 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000000197 pyrolysis Methods 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- 229910018921 CoO 3 Inorganic materials 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 1
- QIGYHBZPYMHYBE-UHFFFAOYSA-N [Co](=O)(=O)=O.[La] Chemical compound [Co](=O)(=O)=O.[La] QIGYHBZPYMHYBE-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000000840 electrochemical analysis Methods 0.000 description 1
- 238000000157 electrochemical-induced impedance spectroscopy Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000010416 ion conductor Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Description
本発明は、複合層構造体及びその製造方法並びに固体酸化物形燃料電池のカソード製造方法に関し、特に固体酸化物形燃料電池(SOFC:Solid Oxide Fuel Cell)の薄膜カソード等として用いることができる、酸化物イオンと電子との混合導電体(以下、「酸化物イオン・電子混合導電体」と称する)を有する複合層構造体及びその製造方法並びに固体酸化物形燃料電池のカソード製造方法に関する。 The present invention relates to a composite layer structure, a method for producing the same, and a method for producing a cathode of a solid oxide fuel cell, and can be used particularly as a thin film cathode of a solid oxide fuel cell (SOFC). The present invention relates to a composite layer structure having a mixed conductor of oxide ions and electrons (hereinafter referred to as “oxide oxide / electron mixed conductor”), a manufacturing method thereof, and a cathode manufacturing method of a solid oxide fuel cell.
固体酸化物形燃料電池は、種々のタイプの燃料電池の中でも、発電効率が高く、環境への負荷が低く、また、多様な燃料の使用が可能であるというメリットを有している。固体酸化物形燃料電池の構造には種々あるが、例えば、多孔質構造を有するアノード(燃料極)、酸化物イオン伝導体からなる緻密な固体電解質(例えば、緻密膜層)、多孔質構造を有するカソード(空気極)の順に積層されてなる構造の固体酸化物形燃料電池を挙げることができる。このような構造の固体酸化物形燃料電池は、アノードに燃料ガス(例えば、水素ガス、メタンガス等)を供給し、カソードに酸素含有ガスを供給して動作させる。 The solid oxide fuel cell has advantages in that, among various types of fuel cells, the power generation efficiency is high, the load on the environment is low, and various fuels can be used. There are various solid oxide fuel cell structures. For example, an anode (fuel electrode) having a porous structure, a dense solid electrolyte (eg, a dense membrane layer) made of an oxide ion conductor, and a porous structure. Examples thereof include a solid oxide fuel cell having a structure in which cathodes (air electrodes) are sequentially stacked. The solid oxide fuel cell having such a structure is operated by supplying a fuel gas (for example, hydrogen gas, methane gas, etc.) to the anode and supplying an oxygen-containing gas to the cathode.
また、現在、上記固体酸化物形燃料電池では、ジルコニウム二酸化物(ZrO2)系固体電解質とランタンコバルト三酸化物(LaCoO3)系ペロブスカイト酸化物がカソードとして用いられており、それらの界面における反応生成物抑制のために、セリウム二酸化物(CeO2)系カソード薄膜中間層が用いられている(例えば、非特許文献1参照)。 Currently, in the solid oxide fuel cell, a zirconium dioxide (ZrO 2 ) -based solid electrolyte and a lanthanum cobalt trioxide (LaCoO 3 ) -based perovskite oxide are used as cathodes, and reactions at their interfaces In order to suppress the product, a cerium dioxide (CeO 2 ) -based cathode thin film intermediate layer is used (for example, see Non-Patent Document 1).
しかし、CeO2系薄膜中間層上に、有機金属酸塩溶液から得られた酸化物イオン・電子混合導電体を700℃〜950℃での低温アニールにより設けてなる複合層構造体は知られていない。 However, a composite layer structure in which an oxide ion / electron mixed conductor obtained from an organometalate solution is provided on a CeO 2 thin film intermediate layer by low-temperature annealing at 700 ° C. to 950 ° C. is known. Absent.
カソード材料の焼付けに伴う反応活性に関し、低温活性に優れた比表面積の大きい粉末を電解質に焼付けする際に、比表面積の低下を伴う。カソード材料の電解質への密着性と焼付け後の比表面積とには、トレードオフの関係がある。CeO2系薄膜中間層の上にカソード材料を直接焼き付ける1,000〜1,150℃程度の高温焼成の場合は、密着性は良いが、カソード粒子の粗大化に伴い、比表面積が低下する。一方、低温焼き付けの場合は、粒径は変化しないが、カソード材料と固体電解質との密着性が悪いという相反する問題がある。 Regarding the reaction activity associated with the baking of the cathode material, when a powder having a large specific surface area excellent in low-temperature activity is baked on the electrolyte, the specific surface area is decreased. There is a trade-off relationship between the adhesion of the cathode material to the electrolyte and the specific surface area after baking. In the case of high-temperature firing at about 1,000 to 1,150 ° C. in which the cathode material is directly baked on the CeO 2 -based thin film intermediate layer, the adhesion is good, but the specific surface area decreases as the cathode particles become coarse. On the other hand, in the case of low temperature baking, the particle size does not change, but there is a conflicting problem that the adhesion between the cathode material and the solid electrolyte is poor.
本発明の課題は、従来技術の問題点を解決することにあり、SOFCのCeO2系固体電解質基板またはCeO2系薄膜中間層上へ有機金属酸塩熱分解(MOD)法によってカソードと同じ材料による酸化物イオン・電子混合導電体(カソードナノコート)を設けてなる複合層構造体を構築することで、カソードの低温焼付けを可能とし、それによって、カソード粒子の表面積を低下させず、そして原料粉に近い活性を維持することができるため、高性能なカソード性能を提供することができる複合層構造体及びその製造方法並びに固体酸化物形燃料電池のカソード製造方法を提供することにある。更に、カソードナノコート自体にもカソード機能を持たせた複合層構造体を提供することにある。 The object of the present invention is to solve the problems of the prior art, and the same material as the cathode by the organometallic salt pyrolysis (MOD) method on the SOFC CeO 2 solid electrolyte substrate or CeO 2 thin film intermediate layer By constructing a composite layer structure comprising a mixed oxide ion / electron conductor (cathode nanocoat), low temperature baking of the cathode is possible, thereby reducing the surface area of the cathode particles and reducing the raw material powder It is an object of the present invention to provide a composite layer structure that can provide high-performance cathode performance and a method for manufacturing the same, and a method for manufacturing a cathode of a solid oxide fuel cell. Furthermore, another object is to provide a composite layer structure in which the cathode nanocoat itself has a cathode function.
本発明の複合層構造体は、SOFCのCeO2系固体電解質基板またはCeO2系薄膜中間層上に、有機金属酸塩熱分解(MOD)法によるカソードと同じ材料系からなる酸化物イオン・電子混合導電体層(カソードナノコート)を設けてなることを特徴とする。 The composite layer structure of the present invention comprises oxide ions / electrons made of the same material system as the cathode by the organometallic acid salt thermal decomposition (MOD) method on the SOFC CeO 2 solid electrolyte substrate or CeO 2 thin film intermediate layer. A mixed conductor layer (cathode nanocoat) is provided.
本発明の複合層構造体の製造方法は、CeO2系固体電解質基板またはCeO2系薄膜中間層を基板として用い、この基板上に、有機金属酸塩溶液を塗布して酸化物イオン・電子混合導電体層前駆体を形成し、空気中で所定の温度で乾燥し、次いで700℃〜950℃で熱アニールすることにより所望の酸化物イオン・電子混合導電体層を形成して複合層構造体を製造することを特徴とする。但し、熱アニール処理温度は、酸化物イオン・電子混合導電体のSOFC運転時の経時変化を避けるために、上記熱アニール温度範囲内で、SOFCの運転温度(500℃〜950℃、好ましくは600℃〜900℃、より好ましくは700℃〜900℃の範囲内で決定される温度)と同等か、それ以上の温度とする必要がある。 The method for producing a composite layer structure of the present invention uses a CeO 2 -based solid electrolyte substrate or a CeO 2 -based thin film intermediate layer as a substrate, and an organometallic acid salt solution is applied onto the substrate to mix oxide ions and electrons. A conductor layer precursor is formed, dried in air at a predetermined temperature, and then thermally annealed at 700 ° C. to 950 ° C. to form a desired oxide ion / electron mixed conductor layer, thereby forming a composite layer structure It is characterized by manufacturing. However, the thermal annealing treatment temperature is within the above thermal annealing temperature range (500 ° C. to 950 ° C., preferably 600 ° C.) in order to avoid the change over time of the oxide ion / electron mixed conductor during the SOFC operation. It is necessary to set the temperature to be equal to or higher than the temperature determined within the range of 700C to 900C, more preferably 700C to 900C.
熱アニール温度が700℃未満であると、立方晶BSCFは、形成されない傾向が有り、950℃を超えると、BSCF中のCoの揮発が懸念される傾向がある。 When the thermal annealing temperature is less than 700 ° C., cubic BSCF tends to be not formed, and when it exceeds 950 ° C., Co volatilization in BSCF tends to be concerned.
本発明の固体酸化物形燃料電池のカソード製造方法は、SOFCのCeO2系固体電解質基板またはCeO2系薄膜中間層を用い、その上に、有機金属酸塩溶液を塗布して酸化物イオン・電子混合導電体層前駆体を形成し、空気中で乾燥し、次いで700℃〜950℃で熱アニールすることにより酸化物イオン・電子混合導電体層を形成し、その後、酸化物イオン・電子混合導電体層の熱変質を防ぐために、SOFCの運転温度と熱アニール処理温度との間の温度範囲、またはSOFCの運転温度とそれよりも100℃未満の温度範囲の、どちらか一方の狭い温度範囲において、カソードの低温焼付を行うことを特徴とする。 The cathode manufacturing method for a solid oxide fuel cell according to the present invention uses a SOFC CeO 2 -based solid electrolyte substrate or CeO 2 -based thin film intermediate layer, on which an organometallic acid salt solution is applied to form an oxide ion. An electron mixed conductor layer precursor is formed, dried in air, and then thermally annealed at 700 ° C. to 950 ° C. to form an oxide ion / electron mixed conductor layer. In order to prevent thermal deterioration of the conductor layer, either the temperature range between the operating temperature of the SOFC and the thermal annealing temperature, or the operating temperature range of the SOFC and a temperature range lower than 100 ° C., either one of the narrow temperature ranges The method is characterized in that the cathode is baked at a low temperature.
本発明によれば、CeO2系固体電解質基板またはCeO2系薄膜中間層上に、有機金属酸塩溶液を用いて、MOD法により、低温(700〜950℃)での熱アニールで酸化物イオン・電子導電体層を形成することにより、得られた酸化物イオン・電子導電体層(カソードナノコート)自体にも優れたカソード性能を持たせることができるようにし、カソードの電解質への低温焼き付けを可能にするという効果を奏する。 According to the present invention, oxide ions are formed by thermal annealing at a low temperature (700 to 950 ° C.) using a metal salt solution on a CeO 2 solid electrolyte substrate or a CeO 2 thin film intermediate layer by a MOD method.・ By forming the electronic conductor layer, the obtained oxide ion and electronic conductor layer (cathode nanocoat) itself can have excellent cathode performance, and the cathode can be baked on the electrolyte at low temperature. It has the effect of making it possible.
以下、本発明の実施の形態について、図面を参照して説明する。まず、実施の形態の概要を説明し、次いでこの構成要素について詳細に説明する。 Embodiments of the present invention will be described below with reference to the drawings. First, an outline of the embodiment will be described, and then, this component will be described in detail.
本発明に係る複合層構造体の実施の形態によれば、この複合層構造体は、CeO2系層、例えば、希土類元素をドープしたセリア系層(例えば、GdドープしたCe0.9Gd0.1O1.95多結晶層等)を基板(CGO基板)として用い、この基板上に、酸化物イオン・電子混合導電体(例えば、Ba0.5Sr0.5Co0.8Fe0.2O3−δ(δは酸素欠損による変動であり、電気的中性条件を満たすように定まる値である。)等)層を設けてなる。 According to the embodiment of the composite layer structure according to the present invention, the composite layer structure is a CeO 2 -based layer, for example, a ceria-based layer doped with a rare earth element (for example, Gd-doped Ce 0.9 Gd 0 .1 O 1.95 polycrystalline layer) is used as a substrate (CGO substrate), and an oxide ion / electron mixed conductor (for example, Ba 0.5 Sr 0.5 Co 0.8 Fe 0 ) is formed on the substrate. .2 O 3-δ (δ is a variation due to oxygen deficiency and is a value determined to satisfy the electrical neutral condition), etc.).
例えば、図1に示す複合層構造体では、低温成膜されたCeO2系薄膜基板1の上に、MOD法により、有機金属酸塩溶液を用いて低温熱アニール法により酸化物イオン・電子混合導電体層からなるカソードナノコート2を設けてある。このカソードナノコートの上にはカソード材料3を低温焼き付けする。この場合、カソードナノコート自体もナノカソードとして非常に活性があり、カソード性能に優れている。カソード材料の低温焼き付けによっても、密着性は良く、比表面積が低下せず、カソード粒子は原料粉に近い活性を維持しているという特徴がある。 For example, in the composite layer structure shown in FIG. 1, a mixture of oxide ions and electrons is formed on a CeO 2 thin film substrate 1 formed at a low temperature by a MOD method and by a low temperature thermal annealing method using an organometallic acid salt solution. A cathode nanocoat 2 made of a conductor layer is provided. The cathode material 3 is baked at a low temperature on the cathode nanocoat. In this case, the cathode nanocoat itself is very active as a nanocathode and has excellent cathode performance. Even when the cathode material is baked at a low temperature, the adhesion is good, the specific surface area does not decrease, and the cathode particles maintain the activity close to that of the raw material powder.
本発明における酸化物イオン・電子混合導電体層(カソードナノコート)は、カソード材料と同じ材料系からなり、カソード材料としては、例えば、(La1−xSrx)(Co1−yFey)O3−δや(Ba1−xSrx)(Co1−yFey)O3−δ等を挙げることができる。この場合、カソードナノコートは、必ずしもカソード材料と同組成である必要はない。また、CeO2系材料としては、例えば、Ce1−xMxO2−α(M=3価の希土類元素:Y、Gd、Sm、Dy等)等を挙げることができる。 The oxide ion / electron mixed conductor layer (cathode nanocoat) in the present invention is made of the same material system as the cathode material. Examples of the cathode material include (La 1-x Sr x ) (Co 1-y Fe y ). O 3-δ , (Ba 1-x Sr x ) (Co 1-y Fe y ) O 3-δ, and the like can be given. In this case, the cathode nanocoat does not necessarily have the same composition as the cathode material. Examples of the CeO 2 -based material include Ce 1-x M x O 2 -α (M = trivalent rare earth element: Y, Gd, Sm, Dy, etc.).
(実施例1)
MOD法においては、MOD溶液の分解温度を把握することは成膜温度(焼成温度、熱アニール温度)を決める上で重要である。例えば、BSCFには、BaとSrという塩基性の高い元素が含まれていることから、有機金属酸塩が分解した後、直ぐに炭酸塩を形成する可能性が高い。炭酸塩の形成は、その後のBSCF酸化物相形成を最終的に妨害する影響が確認されており、この炭酸塩の影響を排除するためには、昇温時の昇温速度の調整により炭酸塩の生成を抑えることが必要であると考えられる。このため、MOD溶液の分解温度帯と熱アニールの昇温速度との関係を明らかにするため、示差熱測定(DSC404、独 Netzsch社製)及び熱重量測定(TG439、独 Netzsch社製)を行った。図2に、示差熱(DTA)及び熱重量(TG)の測定結果を示す。図2の横軸は測定温度(℃)であり、縦軸は相対質量(Δm/%)、DTA(μVmg−1)である。この測定では、昇温速度を、1℃/min及び15℃/minに設定して行った。図2から明らかなように、どちらの昇温速度においても、領域Iでは、有機溶剤の揮発に伴う大幅な重量減や揮発に伴う吸熱が生じている。その後、領域IIにおいて、有機金属酸塩の熱分解に伴う、発熱と重量減少が確認された。この結果から、450℃程度までには有機金属酸塩の熱分解は終了していると考えられた。熱分解の後、領域IIIにおいて、何らかの水酸化物、炭酸塩、酸化物の形成が始まっていると考えられるが、測定原理上、重量と熱量との測定からは、複数の生成物の形成過程は定性的にも分析できない。領域IVにおいて、最終的に700℃以上において、重量減少が終わっている。このことから、700℃以上において、重量の増減を伴う生成物の形成が終了し、最終生成物に近い酸化物が形成されているものと推察された。以上より、成膜(アニール)における昇温温度については、450℃までに終了する有機金属酸塩分解後、速やかに酸化物形成領域に持ち込みたいこと、また、成膜における昇温速度が早いほうが緻密化される結果が得られることが知られていることから、昇温速度15℃/minを採用して本発明を説明する。また、膜生成物の相同定は、少なくとも700℃以上を目安に行うことが望ましいことも分かった。
Example 1
In the MOD method, grasping the decomposition temperature of the MOD solution is important in determining the film forming temperature (firing temperature, thermal annealing temperature). For example, since BSCF contains elements with high basicity of Ba and Sr, there is a high possibility that a carbonate is formed immediately after the organometallic acid salt is decomposed. The formation of carbonate has been confirmed to affect the subsequent BSCF oxide phase formation in the end, and in order to eliminate the influence of this carbonate, the carbonate is adjusted by adjusting the heating rate at the time of temperature increase. It is considered necessary to suppress the generation of. Therefore, in order to clarify the relationship between the decomposition temperature zone of the MOD solution and the heating rate of thermal annealing, differential thermal measurement (DSC404, manufactured by Netzsch, Germany) and thermogravimetry (TG439, manufactured by Netzsch, Germany) were performed. It was. FIG. 2 shows the measurement results of differential heat (DTA) and thermogravimetry (TG). The horizontal axis in FIG. 2 is the measurement temperature (° C.), and the vertical axis is the relative mass (Δm /%) and DTA (μVmg −1 ). In this measurement, the heating rate was set to 1 ° C./min and 15 ° C./min. As is apparent from FIG. 2, at any rate of temperature increase, in region I, significant weight loss accompanying the volatilization of the organic solvent and endotherm accompanying volatilization occur. Thereafter, in region II, heat generation and weight reduction accompanying thermal decomposition of the organometallic acid salt were confirmed. From this result, it was considered that the thermal decomposition of the organometallic acid salt was completed by about 450 ° C. After pyrolysis, formation of some hydroxides, carbonates, and oxides is considered to have started in region III. However, from the measurement principle, the formation process of multiple products is determined from the measurement of weight and heat quantity. Cannot be analyzed qualitatively. In the region IV, the weight reduction is finally over at 700 ° C. or higher. From this, it was speculated that at 700 ° C. or higher, the formation of the product accompanied by an increase or decrease in weight was completed, and an oxide close to the final product was formed. From the above, regarding the temperature rise in the film formation (annealing), it is desirable to bring it into the oxide formation region immediately after the decomposition of the organometallic acid salt which is completed by 450 ° C., and that the temperature rise rate in the film formation is faster. Since it is known that a densified result can be obtained, the present invention will be described by employing a heating rate of 15 ° C./min. It was also found that the phase identification of the film product is desirably performed at a temperature of 700 ° C. or higher.
(実施例2)
支持基板として、厚さ400μm、直径25mmのセリア系酸化物イオン導電性酸化物(CeO2系層として、10mol%GdをドープしたCeO2系基板(CGO:Ce0.9Gd0.1O1.95多結晶基板、第一希元素化学工業(株)製))を用いた。この基板上に、Ba、Sr、Co、及びFeの各有機金属酸塩が、Ba、Sr、Co、及びFeのモル比が、それぞれ、0.5、0.5、0.8、及び0.2になるように調整されたエステル系有機溶剤に溶解したコーティング溶液(MOD溶液)を1回のスピンコーティングで塗布して前駆体均一層を作成し、次いで、空気中、5分間、200℃で乾燥した後、5分間、600℃〜950℃(600℃、700℃、800℃、850℃、900℃、950℃)で熱アニールすることにより、Ba0.5Sr0.5Co0.8Fe0.2O3−δ(δは酸素欠損による変動であり、電気的中性条件を満たすように定まる値である。)(BSCF)層からなるカソードナノコート層(薄膜カソード層)(従来技術では、1050〜1100℃で焼結して作製している)からなる複合層構造体を作製した。熱アニールの昇温速度は、15℃/minで行った。なお、スピンコーティンの回数は、適宜、変更可能である。
(Example 2)
As a supporting substrate, a ceria-based oxide ion conductive oxide having a thickness of 400 μm and a diameter of 25 mm (CeO 2 -based substrate doped with 10 mol% Gd as a CeO 2 -based layer (CGO: Ce 0.9 Gd 0.1 O 1 .95 polycrystalline substrate, manufactured by Daiichi Elemental Chemical Co., Ltd.)). On this substrate, each of the organometallic salts of Ba, Sr, Co, and Fe has a molar ratio of Ba, Sr, Co, and Fe of 0.5, 0.5, 0.8, and 0, respectively. A coating solution (MOD solution) dissolved in an ester organic solvent adjusted to be 2 is applied by one spin coating to form a uniform precursor layer, and then in air for 5 minutes at 200 ° C. After being dried at 600 ° C. to 950 ° C. (600 ° C., 700 ° C., 800 ° C., 850 ° C., 900 ° C., 950 ° C.) for 5 minutes, Ba 0.5 Sr 0.5 Co 0. 8 Fe 0.2 O 3-δ (δ is a variation due to oxygen deficiency and is a value determined so as to satisfy the electrical neutral condition.) Cathode nanocoat layer (thin film cathode layer) composed of (BSCF) layer (conventional In technology, 1050-110 To prepare a composite layer structure composed of a sintered to have produced) at ° C.. The heating rate of thermal annealing was 15 ° C./min. The number of spin coatings can be changed as appropriate.
(実施例3)
実施例2に記載のように、MOD法により、CGO基板上にBSCF層を形成し、BSCF相の形成温度を確認した。すなわち、CGO基板上に、BSCF層用の有機金属酸塩溶液を1回のスピンコーティングで塗布し、乾燥後、5分間、600℃〜950℃(600℃、700℃、800℃、850℃、900℃、950℃)で熱アニール(昇温速度:15℃/min)することにより、Ba0.5Sr0.5Co0.8Fe0.2O3−δ(δは酸素欠損による変動であり、電気的中性条件を満たすように定まる値である。)層からなるカソードナノコート(薄膜カソード層)層を形成し、これをXRD回折により解析した。かくして得られたX線回折結果を図3に示す。
(Example 3)
As described in Example 2, a BSCF layer was formed on the CGO substrate by the MOD method, and the BSCF phase formation temperature was confirmed. That is, the organometallic acid salt solution for the BSCF layer is applied on the CGO substrate by one spin coating, and after drying, 600 ° C. to 950 ° C. (600 ° C., 700 ° C., 800 ° C., 850 ° C., Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3-δ (δ is a variation due to oxygen deficiency) by performing thermal annealing at 900 ° C. and 950 ° C. (temperature increase rate: 15 ° C./min). It is a value determined so as to satisfy the electrical neutral condition.) A cathode nanocoat (thin film cathode layer) layer composed of layers was formed and analyzed by XRD diffraction. The X-ray diffraction results thus obtained are shown in FIG.
このBSCF層に対するXRD測定には、Siemens D5000(現在の独 Bruker−AXS社製)を用い、X線入射角度を1°として斜入射XRD法により測定を行った。 For XRD measurement on this BSCF layer, Siemens D5000 (manufactured by Bruker-AXS, Germany) was used, and the X-ray incident angle was set to 1 °, and measurement was performed by the oblique incidence XRD method.
上記したTG測定とDTA測定とでは、700℃以上で重量の増減を伴う生成物の形成が終了し、最終生成物に近い酸化物が形成されているものと推察されたように、このX線回折結果からも、700℃未満では、BSCFが形成される前の六方晶Ba0.75Sr0.25CoO3−δと六方晶BSCFとの生成が確認された。800℃では六方晶Ba0.5Sr0.5CoO3の生成は無くなり、六方晶BSCFと立方晶BSCFが生成されていることが確認された。さらに温度を上げると、900℃で立方晶BSCF単相が生成されることが確認された。かくして、CGO多結晶基板において、ペロブスカイト型酸化物であるBSCFが、MOD法の特徴である低温でも簡便に形成できることが判明した。 In the above-described TG measurement and DTA measurement, the formation of the product accompanied by increase / decrease in weight was completed at 700 ° C. or higher, and it was assumed that an oxide close to the final product was formed. From the diffraction results, at temperatures lower than 700 ° C., it was confirmed that hexagonal Ba 0.75 Sr 0.25 CoO 3-δ and hexagonal BSCF were formed before BSCF was formed. At 800 ° C., no hexagonal Ba 0.5 Sr 0.5 CoO 3 was produced, and it was confirmed that hexagonal BSCF and cubic BSCF were produced. When the temperature was further increased, it was confirmed that a cubic BSCF single phase was produced at 900 ° C. Thus, it has been found that BSCF, which is a perovskite oxide, can be easily formed at a low temperature, which is a feature of the MOD method, in a CGO polycrystalline substrate.
(実施例4)
上記のようにして形成したBSCF層の物性値(導電率)を測定した。但し、基板としてセリア系基板の代わりにNdGaO3層基板(NGO(110)単結晶基板)を用いた。これは、物性値測定に影響が及ばないようにするためである。この物性値測定は、微量の第二相の影響が一番小さいと考えられる成膜温度(熱アニール温度)の一番高い950℃で行うため、実施例1の記載に準じて、950℃で形成したBSCF層の相同定を行った。
Example 4
The physical property value (conductivity) of the BSCF layer formed as described above was measured. However, an NdGaO three- layer substrate (NGO (110) single crystal substrate) was used instead of the ceria-based substrate. This is to prevent the measurement of physical property values from being affected. This physical property value measurement is performed at 950 ° C., which is the highest film formation temperature (thermal annealing temperature) that is considered to have the smallest influence of a small amount of the second phase. The phase of the formed BSCF layer was identified.
形成されたBSCF層に対する斜入射法によるXRD測定結果からバックグラウンドピークの削除を行った結果を、図4に示す。立方晶BSCF文献値(Powder Diffr., 18,(2003)56))とピーク位置がほぼ一致したことから、得られた層は立方晶BSCF多結晶層であることが同定できた。 FIG. 4 shows a result obtained by deleting the background peak from the XRD measurement result by the oblique incidence method with respect to the formed BSCF layer. The cubic BSCF literature value (Powder Diffr., 18, (2003) 56)) and the peak position almost coincided, so that the obtained layer could be identified as a cubic BSCF polycrystalline layer.
また、平滑な表面を有するNGO単結晶基板上に、950℃で形成したBSCF層の表面をSEM観察した結果を図5に示す。視認では、膜表面は完全な鏡面のようであったが、SEM観察では、CGO基板上と比較して、NGO基板上の表面にはBSCF層がほぼ平滑に形成されている。 Further, FIG. 5 shows the result of SEM observation of the surface of the BSCF layer formed at 950 ° C. on the NGO single crystal substrate having a smooth surface. In visual observation, the film surface appeared to be a perfect mirror surface, but in SEM observation, the BSCF layer was formed almost smoothly on the surface of the NGO substrate as compared with the surface of the CGO substrate.
上記したようにして得られたBSCF層の破断面をSEM観察して、その結果を図6に示す。成膜条件は、スピンコーティングを5回行い、その後950℃で60分焼成した。得られたBSCF層は、緻密になっており、このSEM観察では厚さ61nmであった。複数の実験の結果、厚さは、50nm〜100nm程度の範囲になることを確認した。非常に均一で平滑なものが得られた。 The fracture surface of the BSCF layer obtained as described above was observed with an SEM, and the result is shown in FIG. As film formation conditions, spin coating was performed five times, and then baked at 950 ° C. for 60 minutes. The obtained BSCF layer was dense, and the thickness was 61 nm in this SEM observation. As a result of a plurality of experiments, it was confirmed that the thickness was in the range of about 50 nm to 100 nm. A very uniform and smooth product was obtained.
次に、形成されたBSCF層の物性値(導電率)を測定した。上記したように、基板としてNdGaO3層基板(NGO(110)単結晶基板)を用い、上記に準じて、その上に焼成温度(熱アニール温度)950℃でBSCF層を形成し、測定に供した。 Next, physical property values (conductivity) of the formed BSCF layer were measured. As described above, an NdGaO three- layer substrate (NGO (110) single crystal substrate) is used as a substrate, and a BSCF layer is formed on the substrate at a firing temperature (thermal annealing temperature) of 950 ° C. according to the above and used for measurement. did.
導電率は次のようにして測定した。BSCF層試料の両端にマグネトロンDCスパッタによって金電極を蒸着し、その後、リード金線を電極部にスポット溶接し、測定用治具の電流・電圧端子のそれぞれに据え付けて測定を行った。抵抗測定は、電気炉中の雰囲気を空気として、15℃/minで昇温しながら、300〜800℃の間において、20秒間隔で2端子法にて、Agilent 34420マイクロオームメータを用いて定電流法(10μA〜1mA)にて実抵抗を計測した。その後、導電率[S/cm](S(ジーメンス)=1/Ω)をセル定数[1/cm]÷測定抵抗[Ω]として計算によって求めた。セル定数=厚さ×試料の幅/電極間の距離=61nm×10mm/6.5mmとして決定した。 The conductivity was measured as follows. Gold electrodes were vapor-deposited on both ends of the BSCF layer sample by magnetron DC sputtering, and then a lead gold wire was spot-welded to the electrode portion and mounted on each of the current and voltage terminals of the measurement jig for measurement. The resistance measurement was performed using an Agilent 34420 micro-ohmmeter with a two-terminal method at intervals of 20 seconds between 300 and 800 ° C. while raising the temperature in an electric furnace at 15 ° C./min. The actual resistance was measured by a current method (10 μA to 1 mA). Thereafter, conductivity [S / cm] (S (Siemens) = 1 / Ω) was obtained by calculation as cell constant [1 / cm] ÷ measured resistance [Ω]. Cell constant = thickness × sample width / distance between electrodes = 61 nm × 10 mm / 6.5 mm.
上記のようにして測定した抵抗値から導電率を算出した結果を図7に示す。図7において、横軸は測定温度(℃)であり、縦軸は導電率(σ/Scm−1)である。図7中には、BSCFバルク体で測定された導電率とパルスレーザーデポジション(PLD)法により物理的に成膜されたBSCF薄膜の導電率を併記する。図7から明らかなように、MOD法で形成されたBSCF層の導電率は、エピタキシャル成長膜よりも値は小さいが、バルク体よりも高い値を示した。そのため、得られたBSCF層は、薄膜カソード等として有用であることが分かる。 FIG. 7 shows the result of calculating the conductivity from the resistance value measured as described above. In FIG. 7, the horizontal axis is the measurement temperature (° C.), and the vertical axis is the conductivity (σ / Scm −1 ). In FIG. 7, the conductivity measured by the BSCF bulk body and the conductivity of the BSCF thin film physically formed by the pulse laser deposition (PLD) method are shown. As is apparent from FIG. 7, the conductivity of the BSCF layer formed by the MOD method is smaller than that of the epitaxially grown film, but higher than that of the bulk body. Therefore, it can be seen that the obtained BSCF layer is useful as a thin film cathode or the like.
図7から明らかなように、導電率の温度依存性に関しては、バルク体では、500℃以上において温度上昇に伴う値の変化はなく、むしろ450℃付近を最大値として減少している。しかし、MOD法により形成したBSCF層やPLD法により成膜した薄膜の導電率は、温度の上昇と共に増大している。これは、BSCFが酸化物イオンと電子との混合導電体であることに起因していると考えられる。BSCF層は空気雰囲気中では、温度の上昇に伴い酸化物イオン導電の寄与が増大し、電子導電の寄与が減少することにより、トータルとしての全導電率が減少されることが知られている。図7の結果は、温度上昇に伴う酸化物イオン導電と電子導電の寄与に違いが生じていることが考えられる。つまり、PLD法で成膜したBSCF薄膜では、酸化物イオンで導電の寄与が小さく、電気導電の寄与の減少が小さいため、全導電率の低下が抑えられている。つまり、バルク体よりも電子導電率が高く、酸化物イオン導電率が低いことを意味している。本発明において、MOD法により低温で形成したBSCF層は、XRD解析の結果、配向性もなく、多結晶BSCF層であるため、NGO単結晶基板からそれ程強く影響を受けず、その導電率の温度依存性は、バルク体の温度依存性に近いものと考えられる。 As is apparent from FIG. 7, regarding the temperature dependence of the conductivity, the bulk body has no change in the value accompanying the temperature rise at 500 ° C. or higher, but rather decreases around 450 ° C. as the maximum value. However, the electrical conductivity of the BSCF layer formed by the MOD method or the thin film formed by the PLD method increases as the temperature increases. This is considered to be due to the fact that BSCF is a mixed conductor of oxide ions and electrons. In an air atmosphere, it is known that the contribution of oxide ion conduction increases with increasing temperature and the contribution of electronic conduction decreases in the air atmosphere, thereby reducing the total total conductivity. It can be considered that the result of FIG. 7 has a difference in the contributions of oxide ion conduction and electronic conduction accompanying the temperature rise. That is, in the BSCF thin film formed by the PLD method, the contribution of conductivity is small due to oxide ions, and the decrease in the contribution of electrical conduction is small, so that the decrease in total conductivity is suppressed. That is, it means that the electronic conductivity is higher than the bulk body and the oxide ion conductivity is low. In the present invention, the BSCF layer formed at a low temperature by the MOD method has no orientation and is a polycrystalline BSCF layer as a result of XRD analysis. The dependence is considered to be close to the temperature dependence of the bulk body.
(実施例5)
実施例2の記載に準じて、CGO基板上に熱アニール温度700℃、950℃で形成したBSCF層の表面状態をSEM観察し、その結果を図8(a)及び(b)に示す。図8(a)は熱アニール温度700℃の場合であり、図8(b)は熱アニール温度950℃の場合である。熱アニール温度700℃の場合は、MOD溶液を1回スピンコーティングすることによりBSCF層を形成し、また、熱アニール温度950℃の場合は、MOD溶液を5回スピンコーティングすることによりBSCF層を形成した。
(Example 5)
According to the description in Example 2, the surface state of the BSCF layer formed on the CGO substrate at the thermal annealing temperatures of 700 ° C. and 950 ° C. was observed by SEM, and the results are shown in FIGS. FIG. 8A shows the case where the thermal annealing temperature is 700 ° C., and FIG. 8B shows the case where the thermal annealing temperature is 950 ° C. When the thermal annealing temperature is 700 ° C., a BSCF layer is formed by spin coating the MOD solution once, and when the thermal annealing temperature is 950 ° C., the BSCF layer is formed by spin coating the MOD solution five times. did.
図8(a)及び(b)から明らかなように、700℃未満の場合、XRD回折の結果から、まだBSCF層の形成は起こっておらず、表面はナノサイズのポアが無数空いている状態であったが、950℃の場合、ナノサイズのポアがなくなっていた。5回のスピンコーティングの影響もあるとは思われるが、950℃で熱アニールすることにより、充分緻密化したBSCF層をCGO基板上に複合化できることが分かった。このBSCF層はCGO基板と密着性良く形成されており、形成時の熱処理による剥離等は一切観察されなかった。 As is clear from FIGS. 8A and 8B, when the temperature is lower than 700 ° C., from the results of XRD diffraction, the formation of BSCF layer has not yet occurred, and the surface has innumerable nano-sized pores. However, in the case of 950 ° C., nano-sized pores were lost. Although it seems that there is an influence of five times of spin coating, it has been found that a sufficiently densified BSCF layer can be formed on the CGO substrate by thermal annealing at 950 ° C. This BSCF layer was formed with good adhesion to the CGO substrate, and no peeling or the like due to heat treatment during the formation was observed.
次いで、実施例2の記載に準じて、Ce0.9Gd0.1O1.95電解質基体の上に、MOD溶液のスピンコーティング、続いてMOD法に従って、有機金属前駆体の熱分解により、100nm以下の膜厚で堆積せしめたナノ寸法のBa0.5Sr0.5Co0.8Fe0.2O3−δ層からなる薄膜カソード(カソードナノコート)について、カソード反応プロセスについて説明する。電気化学インピーダンス分光法を、温度(T=500−625℃)及び酸素分圧(pO2=0.01atm〜0.5atm)の範囲で体系立てて変動させて実施した。次いで、インピーダンスデータを、緩和時間(DRT)の分布を計算し、そして複合/複素非線形最小二乗(CNLS)フィッティングを行うことにより分析した。カソード反応において、5種のプロセスを同定した。600℃でASRpol=39mΩcm2程の低い比面積分極抵抗が見出された。 Then, according to the description of Example 2, on the Ce 0.9 Gd 0.1 O 1.95 electrolyte substrate, by spin coating of the MOD solution, followed by thermal decomposition of the organometallic precursor according to the MOD method, The cathode reaction process will be described for a thin film cathode (cathode nanocoat) composed of a nano-sized Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3-δ layer deposited with a film thickness of 100 nm or less. Electrochemical impedance spectroscopy was performed with systematic variation in the temperature (T = 500-625 ° C.) and oxygen partial pressure (pO 2 = 0.01 atm to 0.5 atm) ranges. The impedance data was then analyzed by calculating the relaxation time (DRT) distribution and performing a composite / complex nonlinear least squares (CNLS) fitting. Five processes were identified in the cathode reaction. A specific area polarization resistance as low as ASR pol = 39 mΩcm 2 was found at 600 ° C.
実施例2の記載に準じて、25mm直径、厚さ0.4mmのCeO2系基板の両面にMOD溶液をスピンコーティングした後、空気中、5分間、200℃で乾燥し、次いで500℃まで、15℃/minで昇温し、その後、700℃まで3℃/minで昇温し、BSCFのナノカソードコートを得た(この場合、実施例3で示すようにナノカソードコートは、立方晶BSCF単相である必要はない)。その後、市販のBSCFカソード粉末を1cm2面積で両面に焼き付けた。これを対称セルとして、試験に供した(試料1)。試料2は、ナノカソードをコートせず、直接、BSCFカソード粉末を1cm2面積で、CeO2基板両面に焼き付けた。それぞれ、カソード粉末の焼付けは、従来の焼付温度1,000〜1,150℃よりもかなり低い700℃で行った。 In accordance with the description in Example 2, after spin coating the MOD solution on both sides of a CeO 2 based substrate having a diameter of 25 mm and a thickness of 0.4 mm, it was dried in air at 200 ° C. for 5 minutes, and then to 500 ° C. The temperature was raised at 15 ° C./min, and then raised to 700 ° C. at 3 ° C./min to obtain a BSCF nanocathode coat (in this case, the nanocathode coat was a cubic BSCF as shown in Example 3). Need not be single phase). Thereafter, a commercially available BSCF cathode powder was baked on both sides with a 1 cm 2 area. This was used as a symmetrical cell for the test (Sample 1). Sample 2 was not coated with a nano-cathode, but was directly baked with BSCF cathode powder at 1 cm 2 area on both sides of the CeO 2 substrate. In each case, the cathode powder was baked at 700 ° C., which is considerably lower than the conventional baking temperature of 1,000 to 1,150 ° C.
試料1において、pO2=0.01〜0.5atmの範囲の種々の酸素分圧で、575℃で行われたインピーダンススペクトルのナイキストプロットが図9に示されている。さらに良く比較するために、抵抗損の値をデータの実数部から引いた。図10にASRpolが示される。分極損が、600℃及びpO2=0.2atmにおけるASRpol=0.039Ωcm2まで減少した。この値は極めて低い値である。 FIG. 9 shows a Nyquist plot of the impedance spectrum of Sample 1 performed at 575 ° C. with various oxygen partial pressures ranging from pO 2 = 0.01 to 0.5 atm. For better comparison, the resistance loss value was subtracted from the real part of the data. FIG. 10 shows ASR pol . The polarization loss was reduced to ASR pol = 0.039 Ωcm 2 at 600 ° C. and pO 2 = 0.2 atm. This value is extremely low.
上記MOD法によるカソードナノコート上にカソード粉末を低温カソード焼き付けした場合について、pO2=0.05atm及び575℃において、試料1(カソードナノコートあり)及び試料2(カソードナノコートなし)に関して得られたDRTスペクトルの比較を図11に示す。試料1は、実施例2の記載に準じて、CGO基板に対してMOD溶液をスピンコーティングした後、空気中、5分間、200℃で乾燥し、次いで15℃/minの昇温速度で500℃において、その後3℃/minの昇温速度で700℃において熱アニールして製造したものである。 DRT spectra obtained for sample 1 (with cathode nanocoat) and sample 2 (without cathode nanocoat) at a low temperature cathode baking of the cathode powder on the cathode nanocoat by the MOD method at pO 2 = 0.05 atm and 575 ° C. A comparison of these is shown in FIG. Sample 1 was spin-coated with a MOD solution on a CGO substrate according to the description in Example 2, then dried in air for 5 minutes at 200 ° C., and then heated at 500 ° C. at a rate of 15 ° C./min. Then, thermal annealing was performed at 700 ° C. at a rate of temperature increase of 3 ° C./min.
図11のDRT解析とACインピーダンス解析の結果、界面抵抗に相当する素プロセスP4、P5がカソードナノコートによる低温カソード焼き付けによりほぼ無くなっていることが分かる(図中のA点)。また、図12(pO2=0.01atm〜0.5atmの範囲の種々の酸素分圧で行われたインピーダンススペクトルのナイキストプロット)から、BSCFカソードに、MOD法によるBSCFカソードナノコートを挿入することにより、界面抵抗(素プロセスP4+P5)がなくなっている(図中のA点)と共に、カソード性能(素プロセスP2+P3)が明らかに向上している(図中のB点)ことが分かる。 As a result of the DRT analysis and the AC impedance analysis in FIG. 11, it can be seen that the elementary processes P4 and P5 corresponding to the interface resistance are almost eliminated by low-temperature cathode baking with the cathode nanocoat (point A in the figure). Further, from FIG. 12 (Nyquist plot of impedance spectra performed at various oxygen partial pressures in the range of pO 2 = 0.01 atm to 0.5 atm), by inserting BSCF cathode nanocoat by MOD method into the BSCF cathode. It can be seen that the interfacial resistance (elementary process P4 + P5) disappears (point A in the figure) and the cathode performance (elementary process P2 + P3) clearly improves (point B in the figure).
また、上記MOD法により、カソードナノコート上にカソード粉末を低温カソード焼き付けした場合について、BSCF薄膜カソードナノコートを設けた場合と設けなかった場合について、断面のSEM像を比較した(図13(a)及び(b))。BSCFカソードナノコートを設けた場合の図13(a)から明らかなように、試験後のBSCFカソード表面にはナノ構造がはっきり残り、活性を保持していること(図中のA点)、また、電解質界面の連続性があること(図中のB点)が分かる。BSCFカソードナノコートを設けなかった場合の図13(b)からは、試験後のBSCFカソード表面にはナノ構造は残っている(図中のA’点)が、電解質界面の活性の連続性は損なわれていること(図中のB’点)が分かる。 Further, when the cathode powder was baked at a low temperature on the cathode nanocoat by the MOD method, SEM images of the cross section were compared between the case where the BSCF thin film cathode nanocoat was provided and the case where it was not provided (FIG. 13 (a) and (B)). As is apparent from FIG. 13 (a) when the BSCF cathode nanocoat is provided, the nanostructure remains clearly on the BSCF cathode surface after the test and retains the activity (point A in the figure). It can be seen that there is continuity at the electrolyte interface (point B in the figure). From FIG. 13B when the BSCF cathode nanocoat is not provided, the nanostructure remains on the BSCF cathode surface after the test (point A ′ in the figure), but the continuity of the activity at the electrolyte interface is impaired. (B 'point in the figure).
上記したように、MOD法を用い、スピンコーティングして前駆体を形成した後、低温で熱アニールして、CGO電解質上に調製されたナノ寸法のBa0.5Sr0.5Co0.8Fe0.2O3−δ−ベースの薄膜カソード(カソードナノコート)は、上記したように、600℃及びpO2=0.2atmでASRpol=0.039Ωcm2という低い分極抵抗を達成できた。DRT計算及びCNLSフィッティングを用いるナノ寸法のBSCFベースの薄膜カソードの電気化学分析は、カソード分極と関係付けられる最大5種までの異なる素プロセスの存在を明白に実証した。従って、ナノ寸法の薄膜カソード複合層構造体(カソードナノコート)を設けることによって、その上に、カソード粉末を従来の高温焼き付けを行わずに、より低温(試験運転温度)での焼き付けを行うことで、低い分極抵抗の高性能カソードを提供できる。 As described above, the precursor is formed by spin coating using the MOD method, and then thermally annealed at a low temperature to prepare nano-sized Ba 0.5 Sr 0.5 Co 0.8 prepared on the CGO electrolyte. As described above, the Fe 0.2 O 3-δ -based thin film cathode (cathode nanocoat) was able to achieve a low polarization resistance of ASR pol = 0.039 Ωcm 2 at 600 ° C. and pO 2 = 0.2 atm. Electrochemical analysis of nano-sized BSCF-based thin film cathodes using DRT calculations and CNLS fitting clearly demonstrated the existence of up to five different elementary processes related to cathode polarization. Therefore, by providing a nano-sized thin-film cathode composite layer structure (cathode nanocoat), the cathode powder is baked at a lower temperature (test operating temperature) without being subjected to conventional high-temperature baking. It can provide a high performance cathode with low polarization resistance.
本発明によれば、MOD法により作製したカソードナノコート上にカソード粉末の低温焼付けが可能となり、カソード粒子の表面積が低下せず、原料粉に近い活性を維持することができるようになった複合層構造体及びその製造方法を提供することができるので、得られるカソード薄膜(カソードナノコート層)は、固体酸化物形燃料電池、固体酸化物形電解セル(Solid Oxide Electrolyser Cell)及びその産業分野で利用可能である。 According to the present invention, the cathode powder can be baked at a low temperature on the cathode nanocoat prepared by the MOD method, and the surface area of the cathode particles is not decreased, and the activity close to that of the raw material powder can be maintained. Since the structure and the manufacturing method thereof can be provided, the obtained cathode thin film (cathode nanocoat layer) is used in a solid oxide fuel cell, a solid oxide electrolysis cell (Solid Oxide Electrolyzer Cell), and its industrial field. Is possible.
1 CeO2系薄膜基板 2 カソードナノコート
3 カソード材料
1 CeO 2 -based thin film substrate 2 Cathode nanocoat 3 Cathode material
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014078869A JP6366054B2 (en) | 2014-04-07 | 2014-04-07 | Method for producing composite layer structure and method for producing cathode of solid oxide fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014078869A JP6366054B2 (en) | 2014-04-07 | 2014-04-07 | Method for producing composite layer structure and method for producing cathode of solid oxide fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015201311A JP2015201311A (en) | 2015-11-12 |
JP6366054B2 true JP6366054B2 (en) | 2018-08-01 |
Family
ID=54552401
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014078869A Active JP6366054B2 (en) | 2014-04-07 | 2014-04-07 | Method for producing composite layer structure and method for producing cathode of solid oxide fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6366054B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6372742B2 (en) * | 2014-06-06 | 2018-08-15 | 国立大学法人山梨大学 | Solid oxide cell and manufacturing method thereof |
KR102087475B1 (en) | 2016-09-30 | 2020-03-10 | 주식회사 엘지화학 | Solid oxide fuel cell |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7381492B2 (en) * | 2000-03-24 | 2008-06-03 | University Of Houston | Thin film solid oxide fuel cell and method for forming |
AU2003229677B2 (en) * | 2002-04-23 | 2008-10-09 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | High-temperature solid electrolyte fuel cell comprising a composite of nanoporous thin-film electrodes and a structured electrolyte |
JP5527664B2 (en) * | 2011-02-18 | 2014-06-18 | トヨタ自動車株式会社 | Manufacturing method of fuel cell |
-
2014
- 2014-04-07 JP JP2014078869A patent/JP6366054B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015201311A (en) | 2015-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | Improving the performance of the Ba0. 5Sr0. 5Co0. 8Fe0. 2O3-δ cathode for proton-conducting SOFCs by microwave sintering | |
JP5762295B2 (en) | New materials and structures for low temperature SOFC | |
Chen et al. | Cobalt-free polycrystalline Ba0. 95La0. 05FeO3− δ thin films as cathodes for intermediate-temperature solid oxide fuel cells | |
Ju et al. | Preparation of Ni–Fe bimetallic porous anode support for solid oxide fuel cells using LaGaO3 based electrolyte film with high power density | |
Chourashiya et al. | Synthesis and characterization of 10% Gd doped ceria (GDC) deposited on NiO-GDC anode-grade-ceramic substrate as half cell for IT-SOFC | |
Huang et al. | Evaluation of Ba0. 6Sr0. 4Co0. 9Nb0. 1O3− δ mixed conductor as a cathode for intermediate-temperature oxygen-ionic solid-oxide fuel cells | |
Pang et al. | A comparative study of electrochemical performance of La0. 5Ba0. 5CoO3− δ and La0. 5Ba0. 5CoO3− δ–Gd0. 1Ce0. 9O1. 95 cathodes | |
Benamira et al. | Enhancing oxygen reduction reaction of YSZ/La2NiO4+ δ using an ultrathin La2NiO4+ δ interfacial layer | |
Yang et al. | Electrochemical properties of BaZr0. 1Ce0. 7Y0. 1Yb0. 1O3− δ-Nd1. 95NiO4+ δ composite cathode for protonic ceramic fuel cells | |
Li et al. | Electrode properties of Co-doped Ca2Fe2O5 as new cathode materials for intermediate-temperature SOFCs | |
US10059584B2 (en) | Cathode material for low temperature solid oxide fuel cells | |
US20170062799A1 (en) | Nanoscale sofc electrode architecture engineered using atomic layer deposition | |
Lalanne et al. | Intermediate temperature SOFC single cell test using Nd1. 95NiO4+ δ as cathode | |
Kim et al. | Cathodic electrochemical deposition: A new strategy to enhance the activity and stability of silver cathodes for thin-film solid oxide fuel cells | |
Jo et al. | Enhancement of electrochemical performance and thermal compatibility of GdBaCo2/3Fe2/3Cu2/3O5+ δ cathode on Ce1. 9Gd0. 1O1. 95 electrolyte for IT-SOFCs | |
Kim et al. | A highly active and long-term stable La-doped BaxSr1− xCo1− yFeyO3− δ cathode for solid-oxide fuel cells | |
Fu et al. | Performance of Pd-impregnated Sr1. 9FeNb0. 9Mo0. 1O6-δ double perovskites as symmetrical electrodes for direct hydrocarbon solid oxide fuel cells | |
Kamecki et al. | Improvement of oxygen electrode performance of intermediate temperature solid oxide cells by spray pyrolysis deposited active layers | |
Solovyev et al. | Effect of magnetron sputtered anode functional layer on the anode-supported solid oxide fuel cell performance | |
Seo et al. | Nanoscale interface engineering for solid oxide fuel cells using atomic layer deposition | |
Jiang et al. | Compositionally continuously graded cathode layers of (Ba0. 5Sr0. 5)(Fe0. 91Al0. 09) O3− δ–Gd0. 1Ce0. 9O2 by wet powder spraying technique for solid oxide fuel cells | |
Cho et al. | Microstructure and electrochemical properties of PrBaCo2O5+ δ/Ce0. 9Gd0. 1O1. 95 vertically aligned nanocomposite thin film as interlayer for thin film solid oxide fuel cells | |
Liang et al. | Fabrication of Gd2O3-doped CeO2 thin films through DC reactive sputtering and their application in solid oxide fuel cells | |
Li et al. | Evaluation of a brownmillerite oxide as cathode for solid oxide fuel cells | |
Nikonov et al. | Investigation of thermal, electrical, and electrochemical properties of Pr1− xSrxFe1− yCoyO3 (0< x< 0.4; y= 0.2, 0.5) cathode materials for SOFC |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170327 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180131 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180214 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20180416 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180614 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180627 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180627 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6366054 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |