JP2015230782A - Method of inspecting fuel battery film/electrode assembly - Google Patents

Method of inspecting fuel battery film/electrode assembly Download PDF

Info

Publication number
JP2015230782A
JP2015230782A JP2014115555A JP2014115555A JP2015230782A JP 2015230782 A JP2015230782 A JP 2015230782A JP 2014115555 A JP2014115555 A JP 2014115555A JP 2014115555 A JP2014115555 A JP 2014115555A JP 2015230782 A JP2015230782 A JP 2015230782A
Authority
JP
Japan
Prior art keywords
point
electrode assembly
current value
membrane
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014115555A
Other languages
Japanese (ja)
Inventor
一樹 雨宮
Kazuki Amamiya
一樹 雨宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014115555A priority Critical patent/JP2015230782A/en
Publication of JP2015230782A publication Critical patent/JP2015230782A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a method of inspecting a fuel battery film/electrode assembly in which a cathode electrode contains catalytic fine particles having palladium-contained fine particles and a platinum-contained outermost layer covering at least some of the palladium-contained fine particles.SOLUTION: According to a method of inspecting a fuel battery film/electrode assembly, in a cyclic voltammogram curved line obtained by sweeping potential on a film/electrode assembly in which applying potential is set on the abscissa axis while a response current value is represented on the ordinate axis, the cyclic voltammogram curve being expressed so that a reduction current value in the response current value being located at the lower side of an oxidation current value on the ordinate axis, when a point A represents a point corresponding to the reduction current value under applied potential of 0.4 V(vs.RHE) and a point B represents a point corresponding to the reduction current value under applied potential of 0.6 V (vs.RHE), a fuel battery film/electrode assembly in which the curved line between the point A and the point B appears at the upper side of a line connecting the point A and the point B on the ordinate axis is determined as a non-defective article, and a fuel battery film/electrode assembly in which the curved line between the point A and the point B appears at the lower side of the line on the ordinate axis is determined as a defective article.

Description

本発明は、燃料電池用膜・電極接合体の検査方法に関する。   The present invention relates to a method for inspecting a fuel cell membrane / electrode assembly.

燃料電池のアノード及びカソードの電極触媒として、中心粒子及び当該中心粒子を被覆する最外層を備える構造(いわゆるコアシェル構造)を有する触媒微粒子に関する技術が知られている。特許文献1には、パラジウム含有粒子が担持されたカーボン担体を準備する工程、パラジウム含有粒子が担持されたカーボン担体を微細化する工程、及び、前記微細化工程後、前記パラジウム含有粒子に、白金を含む前記最外層を被覆する工程を有することを特徴とする、燃料電池用触媒の製造方法が開示されている。   As an electrode catalyst for an anode and a cathode of a fuel cell, a technology related to catalyst fine particles having a structure (so-called core-shell structure) having a center particle and an outermost layer covering the center particle is known. Patent Document 1 includes a step of preparing a carbon support carrying palladium-containing particles, a step of refining a carbon support carrying palladium-containing particles, and after the refining step, platinum is added to the palladium-containing particles. There is disclosed a method for producing a fuel cell catalyst, comprising the step of coating the outermost layer including:

特開2013−239331号公報JP 2013-239331 A

本発明者が検討した結果、上記特許文献1に開示された燃料電池用触媒は、触媒の状態では高い活性を示すものの、当該触媒を膜・電極接合体に用いた場合に活性が高いか否かは定かではなかった。また、当該触媒を膜・電極接合体に用いた場合の触媒活性を容易に評価する方法も未だ確立してはいない。
本発明は、上記実状を鑑みて成し遂げられたものであり、燃料電池用膜・電極接合体の検査方法を提供することを目的とする。
As a result of the study by the present inventor, the fuel cell catalyst disclosed in Patent Document 1 shows high activity in the catalyst state, but whether the catalyst is used in a membrane / electrode assembly is high. I wasn't sure. In addition, a method for easily evaluating the catalytic activity when the catalyst is used in a membrane / electrode assembly has not yet been established.
The present invention has been accomplished in view of the above circumstances, and an object thereof is to provide a method for inspecting a fuel cell membrane / electrode assembly.

本発明の燃料電池用膜・電極接合体の検査方法は、電解質膜の一面側にアノード電極を備え、他面側にカソード電極を備え、かつ当該カソード電極が、パラジウム含有微粒子、及び当該パラジウム含有微粒子の少なくとも一部を被覆する白金含有最外層を備える触媒微粒子を含む燃料電池用膜・電極接合体の検査方法であって、前記膜・電極接合体について電位を掃引することにより得られ、かつ、付与電位を横軸としかつ応答電流値を縦軸とし、さらに応答電流値の内の還元電流値が酸化電流値よりも縦軸の下方向となるように表したサイクリックボルタモグラム曲線において、付与電位が0.4V(vs.RHE)のときの還元電流値に対応する点を点Aとし、付与電位が0.6V(vs.RHE)のときの還元電流値に対応する点を点Bとしたとき、点Aと点Bとの間の前記曲線が、点Aと点Bとを結んだ直線よりも縦軸の上方向に現れる燃料電池用膜・電極接合体を良品と判定し、点Aと点Bとの間の前記曲線が前記直線よりも縦軸の下方向に現れる燃料電池用膜・電極接合体を不良品と判定することを特徴とする。   The method for inspecting a fuel cell membrane / electrode assembly of the present invention comprises an anode electrode on one side of an electrolyte membrane, a cathode electrode on the other side, and the cathode electrode comprising palladium-containing fine particles and the palladium-containing particle. A method for inspecting a membrane / electrode assembly for a fuel cell comprising catalyst fine particles having a platinum-containing outermost layer covering at least a part of the fine particles, obtained by sweeping the potential of the membrane / electrode assembly, and In the cyclic voltammogram curve in which the applied potential is on the horizontal axis, the response current value is on the vertical axis, and the reduction current value of the response current value is below the oxidation current value on the vertical axis. The point corresponding to the reduction current value when the potential is 0.4 V (vs. RHE) is designated as point A, and the point corresponding to the reduction current value when the applied potential is 0.6 V (vs. RHE) is designated as the point. When the above-mentioned curve between point A and point B is determined to be a non-defective fuel cell membrane / electrode assembly that appears above the straight line from the straight line connecting point A and point B, The fuel cell membrane / electrode assembly in which the curve between point A and point B appears below the straight line in the downward direction of the vertical axis is determined as a defective product.

本発明によれば、サイクリックボルタモグラム曲線において前記点A及び点Bをそれぞれ特定し、直線ABと、AB間のサイクリックボルタモグラム曲線との位置関係を調べることにより、燃料電池用膜・電極接合体を評価する方法と同様の正確さで、当該膜・電極接合体に用いられる触媒微粒子の性能をそのまま簡便に評価することができる。   According to the present invention, the point A and the point B are respectively identified in the cyclic voltammogram curve, and the positional relationship between the straight line AB and the cyclic voltammogram curve between AB is examined, whereby the membrane / electrode assembly for a fuel cell is obtained. The performance of the catalyst fine particles used in the membrane-electrode assembly can be simply evaluated as it is with the same accuracy as the method for evaluating the above.

実施例1及び比較例1の膜・電極接合体のサイクリックボルタモグラムを重ねて示したグラフである。4 is a graph in which cyclic voltammograms of the membrane / electrode assembly of Example 1 and Comparative Example 1 are superimposed. 実施例1の膜・電極接合体のサイクリックボルタモグラムの拡大図である。2 is an enlarged view of a cyclic voltammogram of the membrane-electrode assembly in Example 1. FIG. 実施例1及び比較例1の膜・電極接合体のI−V曲線を並べて示したグラフである。4 is a graph showing IV curves of the membrane / electrode assemblies of Example 1 and Comparative Example 1 side by side. 比較例1の膜・電極接合体のサイクリックボルタモグラムの拡大図である。3 is an enlarged view of a cyclic voltammogram of the membrane / electrode assembly of Comparative Example 1. FIG.

本発明の燃料電池用膜・電極接合体の検査方法は、電解質膜の一面側にアノード電極を備え、他面側にカソード電極を備え、かつ当該カソード電極が、パラジウム含有微粒子、及び当該パラジウム含有微粒子の少なくとも一部を被覆する白金含有最外層を備える触媒微粒子を含む燃料電池用膜・電極接合体の検査方法であって、前記膜・電極接合体について電位を掃引することにより得られ、かつ、付与電位を横軸としかつ応答電流値を縦軸とし、さらに応答電流値の内の還元電流値が酸化電流値よりも縦軸の下方向となるように表したサイクリックボルタモグラム曲線において、付与電位が0.4V(vs.RHE)のときの還元電流値に対応する点を点Aとし、付与電位が0.6V(vs.RHE)のときの還元電流値に対応する点を点Bとしたとき、点Aと点Bとの間の前記曲線が、点Aと点Bとを結んだ直線よりも縦軸の上方向に現れる燃料電池用膜・電極接合体を良品と判定し、点Aと点Bとの間の前記曲線が前記直線よりも縦軸の下方向に現れる燃料電池用膜・電極接合体を不良品と判定することを特徴とする。   The method for inspecting a fuel cell membrane / electrode assembly of the present invention comprises an anode electrode on one side of an electrolyte membrane, a cathode electrode on the other side, and the cathode electrode comprising palladium-containing fine particles and the palladium-containing particle. A method for inspecting a membrane / electrode assembly for a fuel cell comprising catalyst fine particles having a platinum-containing outermost layer covering at least a part of the fine particles, obtained by sweeping the potential of the membrane / electrode assembly, and In the cyclic voltammogram curve in which the applied potential is on the horizontal axis, the response current value is on the vertical axis, and the reduction current value of the response current value is below the oxidation current value on the vertical axis. The point corresponding to the reduction current value when the potential is 0.4 V (vs. RHE) is designated as point A, and the point corresponding to the reduction current value when the applied potential is 0.6 V (vs. RHE) is designated as the point. When the above-mentioned curve between point A and point B is determined to be a non-defective fuel cell membrane / electrode assembly that appears above the straight line from the straight line connecting point A and point B, The fuel cell membrane / electrode assembly in which the curve between point A and point B appears below the straight line in the downward direction of the vertical axis is determined as a defective product.

本発明に使用される燃料電池用膜・電極接合体(以下、膜・電極接合体と称する場合がある。)は、電解質膜の一面側にアノード電極を備え、他面側にカソード電極を備える。膜・電極接合体に用いられる電解質膜、アノード電極、及びカソード電極は、燃料電池を構成する膜・電極接合体に通常使用されるものをそれぞれ用いることができる。アノード電極及びカソード電極は、それぞれガス拡散層を備えていてもよい。
また、膜・電極接合体のカソード電極は、パラジウム含有微粒子、及び当該パラジウム含有微粒子の少なくとも一部を被覆する白金含有最外層を備える触媒微粒子を含む。当該触媒微粒子は、パラジウム及び白金の他にも、銅、コバルト、ニッケル、タングステン、ルテニウム、金、モリブデン、イリジウム、鉄、ロジウム、亜鉛、スズ、及びニオブからなる群より選ばれる少なくとも1つの金属を含んでいてもよい。
The fuel cell membrane / electrode assembly (hereinafter sometimes referred to as a membrane / electrode assembly) used in the present invention includes an anode electrode on one side of an electrolyte membrane and a cathode electrode on the other side. . As the electrolyte membrane, anode electrode, and cathode electrode used in the membrane / electrode assembly, those usually used for the membrane / electrode assembly constituting the fuel cell can be used. Each of the anode electrode and the cathode electrode may include a gas diffusion layer.
The cathode electrode of the membrane / electrode assembly includes palladium-containing fine particles and catalyst fine particles including a platinum-containing outermost layer that covers at least a part of the palladium-containing fine particles. In addition to palladium and platinum, the catalyst fine particles include at least one metal selected from the group consisting of copper, cobalt, nickel, tungsten, ruthenium, gold, molybdenum, iridium, iron, rhodium, zinc, tin, and niobium. May be included.

触媒微粒子の幾何表面積全体を白金単原子層で覆うときの白金量を化学量論比で1とした場合、上記触媒微粒子の白金含有量の化学量論比は1.0〜3.0であることが好ましく、1.5〜2.5であることがより好ましい。当該化学量論比が1よりも小さいとすると、後述する電気量Qが正の方向に大きくなる結果、触媒微粒子が失活するおそれがある。一方、触媒微粒子の白金含有量の化学量論比が3.0よりも大きいとすると、活性を有する最外層の表面積が減少する結果、所望の活性が得られないおそれがある。触媒微粒子の白金含有量の上記化学量論比は1.5〜2.5が好ましい。   When the platinum amount when the entire geometric surface area of the catalyst fine particles is covered with a platinum monoatomic layer is set to 1 in the stoichiometric ratio, the stoichiometric ratio of the platinum content of the catalyst fine particles is 1.0 to 3.0. It is preferable that it is 1.5 to 2.5. If the stoichiometric ratio is smaller than 1, the amount of electricity Q, which will be described later, increases in the positive direction, and as a result, the catalyst fine particles may be deactivated. On the other hand, if the stoichiometric ratio of the platinum content of the catalyst fine particles is greater than 3.0, the surface area of the outermost layer having activity may decrease, and as a result, the desired activity may not be obtained. The stoichiometric ratio of the platinum content of the catalyst fine particles is preferably 1.5 to 2.5.

本発明においては、サイクリックボルタモグラム曲線(以下、CV曲線と称する場合がある。)によって膜・電極接合体の良否判定を行う。当該CV曲線は、膜・電極接合体について電位を掃引することにより得られ、かつ、付与電位を横軸としかつ応答電流値を縦軸とし、さらに応答電流値の内の還元電流値が酸化電流値よりも縦軸の下方向となるように表したものである。
CV曲線を得るためのサイクリックボルタンメトリーの条件の一例を以下に示す。
・測定温度:80℃
・電位掃引速度:50mV/sec
アノード側
・アノードガス:水素ガス
・アノードガス流速:0.5L/min
・アノードガス相対湿度:RH100%
・アノードガス出口圧:101.3kPa−abs.
カソード側
・カソードガス:窒素封入(ガス流速:0L/min)
・カソードガス相対湿度:RH100%
・カソードガス出口圧:101.3kPa−abs.
In the present invention, the quality of the membrane / electrode assembly is determined by a cyclic voltammogram curve (hereinafter sometimes referred to as a CV curve). The CV curve is obtained by sweeping the potential of the membrane / electrode assembly, the applied potential is on the horizontal axis, the response current value is on the vertical axis, and the reduction current value of the response current value is the oxidation current. It is expressed so that the vertical axis is below the value.
An example of cyclic voltammetry conditions for obtaining a CV curve is shown below.
・ Measurement temperature: 80 ℃
-Potential sweep speed: 50 mV / sec
Anode side ・ Anode gas: Hydrogen gas ・ Anode gas flow rate: 0.5 L / min
・ Anode gas relative humidity: RH100%
Anode gas outlet pressure: 101.3 kPa-abs.
Cathode side ・ Cathode gas: filled with nitrogen (gas flow rate: 0 L / min)
・ Cathode gas relative humidity: RH100%
Cathode gas outlet pressure: 101.3 kPa-abs.

膜・電極接合体の評価においては、まず、CV曲線において、基準となる2点を以下の通り決定する。すなわち、当該CV曲線において、付与電位が0.4V(vs.RHE)のときの還元電流値に対応する点を点Aとし、付与電位が0.6V(vs.RHE)のときの還元電流値に対応する点を点Bとする。
ここで、付与電位が0.4V(vs.RHE)のときの還元電流値とは、膜・電極接合体の通常の運転において、一般に触媒担体カーボンの電気二重層容量を示す電流値である。
また、一般に白金表面における酸素還元電流値は、0.8V(vs.RHE)付近で最大となるため、0.6V(vs.RHE)付近では殆ど酸素還元電流は流れないと考えられる。通常、白金表面の場合は0.6V(vs.RHE)から0.4V(vs.RHE)に向かって還元電流がさらに減少していくことになるが、仮にこれらの電位の間に副反応が生じた場合には、酸素還元電流とは異なる還元電流に起因するピークが出現することになる。
In the evaluation of the membrane / electrode assembly, first, two reference points in the CV curve are determined as follows. That is, in the CV curve, a point corresponding to a reduction current value when the applied potential is 0.4 V (vs. RHE) is set as a point A, and a reduction current value when the applied potential is 0.6 V (vs. RHE). Let the point corresponding to be point B.
Here, the reduction current value when the applied potential is 0.4 V (vs. RHE) is a current value that generally indicates the electric double layer capacity of the catalyst-supporting carbon in the normal operation of the membrane-electrode assembly.
In general, the oxygen reduction current value on the platinum surface is maximum near 0.8 V (vs. RHE), so that it is considered that almost no oxygen reduction current flows near 0.6 V (vs. RHE). Normally, in the case of the platinum surface, the reduction current further decreases from 0.6 V (vs. RHE) to 0.4 V (vs. RHE), but there is a side reaction between these potentials. When it occurs, a peak due to a reduction current different from the oxygen reduction current appears.

次に、点Aと点Bとを結んだ直線(以下、直線ABと称する場合がある。)と、点Aと点Bとの間の前記曲線(以下、曲線ABと称する場合がある。)との位置関係を調べ、以下の通り良否を判定する。すなわち、曲線ABが直線ABよりも縦軸の上方向に現れる燃料電池用膜・電極接合体については、良品と判定する。一方、曲線ABが直線ABよりも縦軸の下方向に現れる燃料電池用膜・電極接合体については、不良品と判定する。
このように判定できる根拠は以下の通りである。すなわち、後述する図2及び図4から明らかなように、点Aと点Bとを直線で結ぶことにより、直線ABとCV曲線とに挟まれた、所定の面積を有する1又は2以上の図形が得られる。当該各図形の面積は、それぞれ電気量Qに相当する。ここで、直線ABを基準として、CV曲線が直線ABよりも縦軸に沿って上方向に現れている図形(すなわち上に凸の図形)の面積を負の電気量であると換算し、CV曲線が直線ABよりも縦軸に沿って下方向に現れている図形(すなわち下に凸の図形)の面積を正の電気量であると換算する。1又は2以上の図形に係る電気量の総和が負の場合は、後述する実施例1に示すように電極活性が高くなる結果、良品であると判定できる。曲線ABが直線ABよりも縦軸の上方向に現れる場合は、良品の典型例である。一方、1又は2以上の図形に係る電気量の総和が正の場合は、後述する比較例1に示すように電極活性が低くなる結果、不良品であると判定できる。曲線ABが直線ABよりも縦軸の下方向に現れる場合は、不良品の典型例である。
Next, a straight line connecting point A and point B (hereinafter sometimes referred to as straight line AB) and the curve between point A and point B (hereinafter sometimes referred to as curve AB). And the quality is determined as follows. That is, a fuel cell membrane / electrode assembly in which the curve AB appears above the straight line AB in the vertical axis direction is determined to be a non-defective product. On the other hand, a fuel cell membrane / electrode assembly in which the curve AB appears below the straight line AB in the vertical axis is determined to be defective.
The basis for this determination is as follows. That is, as will be apparent from FIGS. 2 and 4 to be described later, one or more figures having a predetermined area sandwiched between the straight line AB and the CV curve by connecting the point A and the point B with a straight line. Is obtained. The area of each figure corresponds to the amount of electricity Q. Here, using the straight line AB as a reference, the area of the figure in which the CV curve appears upward along the vertical axis with respect to the straight line AB (that is, the figure convex upward) is converted to a negative electric quantity, and the CV The area of the figure in which the curve appears downward along the vertical axis from the straight line AB (that is, the figure convex downward) is converted to a positive quantity of electricity. When the total amount of electricity related to one or two or more figures is negative, it can be determined that the electrode is non-defective as a result of the increased electrode activity as shown in Example 1 described later. The case where the curve AB appears above the straight line AB is a typical example of a good product. On the other hand, when the total amount of electricity related to one or more figures is positive, it can be determined that the product is defective as a result of lower electrode activity as shown in Comparative Example 1 described later. When the curve AB appears below the straight line AB, it is a typical example of a defective product.

以上の通り、本発明においては、CV曲線において、上記点A及び点Bを特定し、直線ABと曲線ABとのいずれが縦軸の上方向に現れるかを調べることにより、燃料電池用膜・電極接合体を評価する方法と同様の正確さで、当該膜・電極接合体に用いられる触媒微粒子の性能をそのまま簡便に評価することができる。   As described above, in the present invention, in the CV curve, the point A and the point B are specified, and by examining which of the straight line AB and the curve AB appears in the upward direction of the vertical axis, With the same accuracy as the method of evaluating the electrode assembly, the performance of the catalyst fine particles used in the membrane / electrode assembly can be simply evaluated as it is.

以下に、実施例及び比較例を挙げて、本発明を更に具体的に説明するが、本発明は、この実施例のみに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to only these examples.

1.燃料電池電極用インクの製造
[製造例1]
まず、触媒微粒子担持カーボン、アイオノマ(Nafion(商品名))、及び分散媒を準備した。ここで、触媒微粒子とは、パラジウム微粒子、及び当該パラジウム微粒子の全表面を覆う白金層を備える触媒微粒子である。
次に、以下の条件(1)及び(2)をいずれも満たすように、触媒微粒子担持カーボン、アイオノマ、及び分散媒を混合した。
(1)触媒微粒子担持カーボンにおけるカーボンとアイオノマとの体積比を1:1とする。
(2)触媒微粒子担持カーボン及びアイオノマの合計の質量を、混合物(インク)の総質量の3.0質量%とする。
1. Production of ink for fuel cell electrode [Production Example 1]
First, catalyst fine particle carrying carbon, ionomer (Nafion (trade name)), and a dispersion medium were prepared. Here, the catalyst fine particles are catalyst fine particles including palladium fine particles and a platinum layer covering the entire surface of the palladium fine particles.
Next, the catalyst fine particle-supporting carbon, the ionomer, and the dispersion medium were mixed so as to satisfy both of the following conditions (1) and (2).
(1) The volume ratio of carbon to ionomer in the catalyst fine particle-supporting carbon is 1: 1.
(2) The total mass of the catalyst fine particle-supporting carbon and ionomer is 3.0 mass% of the total mass of the mixture (ink).

最後に、得られた混合物を遊星ビーズミル(Retsch製、製品番号:PM200)により150rpm/3hrの条件で混合することにより、分散媒中に触媒微粒子担持カーボン及びアイオノマを高分散させ、製造例1の燃料電池電極用インク(以下、製造例1のインクと称する場合がある。)が得られた。   Finally, the obtained mixture was mixed with a planetary bead mill (manufactured by Retsch, product number: PM200) at 150 rpm / 3 hr to highly disperse the catalyst fine particle-supporting carbon and ionomer in the dispersion medium. An ink for a fuel cell electrode (hereinafter sometimes referred to as ink of Production Example 1) was obtained.

[製造例2]
触媒微粒子として、パラジウム微粒子、及び当該パラジウム微粒子の一部を覆う白金層を備えるものを用いたこと以外は、製造例1と同様にして、製造例2の燃料電池電極用インク(以下、製造例2のインクと称する場合がある。)を調製した。
[Production Example 2]
The fuel cell electrode ink of Production Example 2 (hereinafter, Production Example) was prepared in the same manner as Production Example 1 except that the catalyst fine particles used were palladium fine particles and those having a platinum layer covering a part of the palladium fine particles. 2).

2.膜・電極接合体の製造
[実施例1]
製造例1のインクを、単位面積当たりの電極における白金質量が0.1mg/cmとなるように、テフロン(登録商標)基板上にスプレー塗布して乾燥させた。次に、乾燥したインクを電解質膜の一方の面に150℃で熱転写し、カソード電極を形成した。一方、市販の白金担持カーボンを含む燃料電池電極用インクを用いて、上記同様に塗布及び乾燥を行った後、電解質膜の他の一方の面に150℃で熱転写し、アノード電極を形成することにより、実施例1の膜・電極接合体を作製した。
2. Manufacture of membrane / electrode assembly [Example 1]
The ink of Production Example 1 was spray-coated on a Teflon (registered trademark) substrate and dried so that the platinum mass in the electrode per unit area was 0.1 mg / cm 2 . Next, the dried ink was thermally transferred to one surface of the electrolyte membrane at 150 ° C. to form a cathode electrode. On the other hand, after applying and drying in the same manner as described above using commercially available platinum-supported carbon-containing ink, platinum is thermally transferred to the other surface of the electrolyte membrane at 150 ° C. to form an anode electrode. Thus, the membrane / electrode assembly of Example 1 was produced.

[比較例1]
電解質膜の一方の面に対し製造例2のインクを用い、もう一方の面に対し市販の白金担持カーボンを含む燃料電池電極用インクを用いたこと以外は、実施例1と同様に電極の形成を行い、比較例1の膜・電極接合体を作製した。
[Comparative Example 1]
Formation of electrodes as in Example 1 except that the ink of Production Example 2 was used for one side of the electrolyte membrane and the commercially available ink for fuel cell electrodes containing platinum-supported carbon was used for the other side. The membrane / electrode assembly of Comparative Example 1 was produced.

3.膜・電極接合体のサイクリックボルタンメトリー
実施例1及び比較例1の膜・電極接合体をそれぞれ燃料電池セルに組み込み、以下の条件でサイクリックボルタンメトリーを行った。
・測定温度:80℃
・電位掃引速度:50mV/sec
アノード側
・アノードガス:水素ガス
・アノードガス流速:0.5L/min
・アノードガス相対湿度:RH100%
・アノードガス出口圧:101.3kPa−abs.
カソード側
・カソードガス:窒素封入(ガス流速:0L/min)
・カソードガス相対湿度:RH100%
・カソードガス出口圧:101.3kPa−abs.
3. Cyclic Voltammetry of Membrane / Electrode Assembly Each of the membrane / electrode assemblies of Example 1 and Comparative Example 1 was incorporated into a fuel cell, and cyclic voltammetry was performed under the following conditions.
・ Measurement temperature: 80 ℃
-Potential sweep speed: 50 mV / sec
Anode side ・ Anode gas: Hydrogen gas ・ Anode gas flow rate: 0.5 L / min
・ Anode gas relative humidity: RH100%
Anode gas outlet pressure: 101.3 kPa-abs.
Cathode side ・ Cathode gas: filled with nitrogen (gas flow rate: 0 L / min)
・ Cathode gas relative humidity: RH100%
Cathode gas outlet pressure: 101.3 kPa-abs.

図1は、実施例1及び比較例1の膜・電極接合体のCVを重ねて示したグラフである。また、図2は、図1に示した実施例1の膜・電極接合体のCV中、長方形で囲った部分の拡大図である。さらに、図4は、図1に示した比較例1の膜・電極接合体のCV中、長方形で囲った部分の拡大図である。
図4に示すように、比較例1のCVにおいては、付与電位が0.4V(vs.RHE)のときの還元電流値に対応する点を点Aとし、付与電位が0.6V(vs.RHE)のときの還元電流値に対応する点を点Bとしている。図4から分かる通り、AB間のCV曲線は、直線ABよりも電流の縦軸の下方向に現れる。したがって、比較例1の膜・電極接合体は不良品であると判定できる。
一方、図2においても同様に、点A及び点Bをそれぞれ特定する。図2から分かる通り、AB間のCV曲線は、直線ABよりも電流の縦軸の上方向に現れる。したがって、実施例1の膜・電極接合体は良品であると判定できる。
FIG. 1 is a graph in which CVs of the membrane-electrode assemblies of Example 1 and Comparative Example 1 are overlaid. FIG. 2 is an enlarged view of a portion surrounded by a rectangle in the CV of the membrane-electrode assembly of Example 1 shown in FIG. Further, FIG. 4 is an enlarged view of a portion surrounded by a rectangle in the CV of the membrane-electrode assembly of Comparative Example 1 shown in FIG.
As shown in FIG. 4, in the CV of Comparative Example 1, the point corresponding to the reduction current value when the applied potential is 0.4 V (vs. RHE) is point A, and the applied potential is 0.6 V (vs. RHE). A point corresponding to the reduction current value at the time of RHE) is set as a point B. As can be seen from FIG. 4, the CV curve between AB appears below the vertical axis of the current from the straight line AB. Therefore, it can be determined that the membrane / electrode assembly of Comparative Example 1 is a defective product.
On the other hand, also in FIG. 2, the point A and the point B are specified similarly. As can be seen from FIG. 2, the CV curve between AB appears above the vertical axis of the current with respect to the straight line AB. Therefore, it can be determined that the membrane / electrode assembly of Example 1 is a non-defective product.

4.膜・電極接合体の放電試験
実施例1及び比較例1の膜・電極接合体をそれぞれ燃料電池セルに組み込み、以下の条件で放電試験を行った。
・測定温度:80℃
・電極面積:13cm
アノード側
・アノードガス:水素ガス
・アノードガス流速:1.0L/min
・アノードガス相対湿度:RH100%
・アノードガス出口圧:151.3kPa−abs.
カソード側
・カソードガス:空気
・カソードガス流速:2.0L/min
・カソードガス相対湿度:RH100%
・カソードガス出口圧:151.3kPa−abs.
4). Discharge Test of Membrane / Electrode Assembly The membrane / electrode assemblies of Example 1 and Comparative Example 1 were each incorporated in a fuel cell, and a discharge test was performed under the following conditions.
・ Measurement temperature: 80 ℃
-Electrode area: 13 cm 2
Anode side ・ Anode gas: Hydrogen gas ・ Anode gas flow rate: 1.0 L / min
・ Anode gas relative humidity: RH100%
Anode gas outlet pressure: 151.3 kPa-abs.
Cathode side ・ Cathode gas: Air ・ Cathode gas flow rate: 2.0 L / min
・ Cathode gas relative humidity: RH100%
Cathode gas outlet pressure: 151.3 kPa-abs.

図3は、実施例1及び比較例1の膜・電極接合体のI−V曲線を並べて示したグラフである。図3から明らかなように、電流密度条件の全範囲において、実施例1の膜・電極接合体は、比較例1の膜・電極接合体よりも高い電位を示すことが分かる。以上より、実施例1の膜・電極接合体は、比較例1の膜・電極接合体よりも電極活性が高いことが確認できる。   FIG. 3 is a graph showing IV curves of the membrane / electrode assemblies of Example 1 and Comparative Example 1 side by side. As can be seen from FIG. 3, the membrane / electrode assembly of Example 1 shows a higher potential than the membrane / electrode assembly of Comparative Example 1 over the entire range of current density conditions. From the above, it can be confirmed that the membrane / electrode assembly of Example 1 has higher electrode activity than the membrane / electrode assembly of Comparative Example 1.

5.結論
以上より、本発明に係る検査方法を用いた燃料電池用膜・電極接合体の性能評価と、放電試験による燃料電池用膜・電極接合体の性能評価とが一致した。よって、本発明に係る検査方法は、燃料電池用膜・電極接合体を評価する方法と同様の正確さで、当該膜・電極接合体に用いられる触媒微粒子の性能をそのまま簡便に評価できる方法であることが分かる。
5). Conclusion From the above, the performance evaluation of the membrane / electrode assembly for fuel cells using the inspection method according to the present invention coincided with the performance evaluation of the membrane / electrode assembly for fuel cells by the discharge test. Therefore, the inspection method according to the present invention is a method that can simply and simply evaluate the performance of the catalyst fine particles used in the membrane-electrode assembly with the same accuracy as the method of evaluating the membrane-electrode assembly for fuel cells. I understand that there is.

Claims (1)

電解質膜の一面側にアノード電極を備え、他面側にカソード電極を備え、かつ当該カソード電極が、パラジウム含有微粒子、及び当該パラジウム含有微粒子の少なくとも一部を被覆する白金含有最外層を備える触媒微粒子を含む燃料電池用膜・電極接合体の検査方法であって、
前記膜・電極接合体について電位を掃引することにより得られ、かつ、付与電位を横軸としかつ応答電流値を縦軸とし、さらに応答電流値の内の還元電流値が酸化電流値よりも縦軸の下方向となるように表したサイクリックボルタモグラム曲線において、
付与電位が0.4V(vs.RHE)のときの還元電流値に対応する点を点Aとし、付与電位が0.6V(vs.RHE)のときの還元電流値に対応する点を点Bとしたとき、点Aと点Bとの間の前記曲線が、点Aと点Bとを結んだ直線よりも縦軸の上方向に現れる燃料電池用膜・電極接合体を良品と判定し、点Aと点Bとの間の前記曲線が前記直線よりも縦軸の下方向に現れる燃料電池用膜・電極接合体を不良品と判定することを特徴とする、燃料電池用膜・電極接合体の検査方法。
Catalyst fine particles comprising an anode electrode on one side of the electrolyte membrane, a cathode electrode on the other side, and the cathode electrode comprising palladium-containing fine particles and a platinum-containing outermost layer covering at least part of the palladium-containing fine particles A method for inspecting a fuel cell membrane / electrode assembly comprising:
The membrane-electrode assembly is obtained by sweeping the potential, the applied potential is on the horizontal axis, the response current value is on the vertical axis, and the reduction current value of the response current value is higher than the oxidation current value. In the cyclic voltammogram curve expressed so that it is below the axis,
A point corresponding to the reduction current value when the applied potential is 0.4 V (vs. RHE) is a point A, and a point corresponding to the reduction current value when the applied potential is 0.6 V (vs. RHE) is a point B. When the above-mentioned curve between point A and point B is determined to be a non-defective fuel cell membrane / electrode assembly that appears above the straight line from the straight line connecting point A and point B, A fuel cell membrane / electrode assembly, wherein the fuel cell membrane / electrode assembly in which the curve between point A and point B appears in the downward direction of the vertical axis from the straight line is determined as a defective product. Body inspection method.
JP2014115555A 2014-06-04 2014-06-04 Method of inspecting fuel battery film/electrode assembly Pending JP2015230782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014115555A JP2015230782A (en) 2014-06-04 2014-06-04 Method of inspecting fuel battery film/electrode assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014115555A JP2015230782A (en) 2014-06-04 2014-06-04 Method of inspecting fuel battery film/electrode assembly

Publications (1)

Publication Number Publication Date
JP2015230782A true JP2015230782A (en) 2015-12-21

Family

ID=54887468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014115555A Pending JP2015230782A (en) 2014-06-04 2014-06-04 Method of inspecting fuel battery film/electrode assembly

Country Status (1)

Country Link
JP (1) JP2015230782A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016225251A (en) * 2015-06-03 2016-12-28 日産自動車株式会社 Manufacturing method of membrane electrode assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016225251A (en) * 2015-06-03 2016-12-28 日産自動車株式会社 Manufacturing method of membrane electrode assembly

Similar Documents

Publication Publication Date Title
JP6608753B2 (en) PdRu alloy electrode material and manufacturing method thereof
Tiido et al. Graphene–TiO2 composite supported Pt electrocatalyst for oxygen reduction reaction
Jukk et al. Oxygen reduction on Pd nanoparticle/multi-walled carbon nanotube composites
Hernandez-Pichardo et al. The role of the WO3 nanostructures in the oxygen reduction reaction and PEM fuel cell performance on WO3–Pt/C electrocatalysts
Pizzutilo et al. Palladium electrodissolution from model surfaces and nanoparticles
JP5660879B2 (en) Cathode side catalyst layer, membrane electrode assembly, polymer electrolyte fuel cell and method for producing the same
US20050282061A1 (en) Catalyst support for an electrochemical fuel cell
JPWO2012105107A1 (en) Catalyst fine particles, carbon-supported catalyst fine particles, catalyst mixture, and electrode manufacturing methods
Park et al. Direct fabrication of gas diffusion cathode by pulse electrodeposition for proton exchange membrane water electrolysis
JP2019141792A (en) Hydrogen generation catalyst, hydrogen generation device, hydrogen generation method
JP2008210572A (en) Electrocatalyst and power generation system using it
Liu et al. Electrostatic self-assembly of Pt nanoparticles on hexagonal tungsten oxide as an active CO-tolerant hydrogen oxidation electrocatalyst
WO2020059503A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
Hosseini et al. Electrocatalysis of oxygen reduction on multi-walled carbon nanotube supported Ru-based catalysts in alkaline media
Lagarteira et al. Highly active screen-printed IrTi4O7 anodes for proton exchange membrane electrolyzers
JP5994729B2 (en) A fuel cell catalyst electrode layer, a membrane electrode assembly, a fuel cell, and a method for producing a fuel cell catalyst electrode layer.
Elezović et al. Effect of chemisorbed carbon monoxide on Pt/C electrode on the mechanism of the hydrogen oxidation reaction
Gao et al. Towards reliable assessment of hydrogen oxidation electrocatalysts for anion-exchange membrane fuel cells
JP2016146305A (en) Electrode for fuel cell
JP6727266B2 (en) Anode catalyst layer for fuel cell and fuel cell using the same
US11901565B2 (en) Fuel cell electrode catalyst, method for selecting the same, and fuel cell including the same
JP2015230782A (en) Method of inspecting fuel battery film/electrode assembly
JP2011243315A (en) Diagnostic method for fuel cell
CN109314249A (en) Electrode catalyst and its manufacturing method and the electrode catalyst layer for using the electrode catalyst
JP2010218721A (en) Evaluation method of catalyst layer of solid polymer fuel cell