JP2015230734A - Method for processing glass substrate for magnetic recording medium, method for manufacturing glass substrate for magnetic recording medium, and device for processing glass substrate for magnetic recording medium - Google Patents

Method for processing glass substrate for magnetic recording medium, method for manufacturing glass substrate for magnetic recording medium, and device for processing glass substrate for magnetic recording medium Download PDF

Info

Publication number
JP2015230734A
JP2015230734A JP2014115193A JP2014115193A JP2015230734A JP 2015230734 A JP2015230734 A JP 2015230734A JP 2014115193 A JP2014115193 A JP 2014115193A JP 2014115193 A JP2014115193 A JP 2014115193A JP 2015230734 A JP2015230734 A JP 2015230734A
Authority
JP
Japan
Prior art keywords
glass substrate
magnetic recording
recording medium
rotating member
supports
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2014115193A
Other languages
Japanese (ja)
Inventor
毅 宮脇
Takeshi Miyawaki
毅 宮脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2014115193A priority Critical patent/JP2015230734A/en
Publication of JP2015230734A publication Critical patent/JP2015230734A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for processing a glass substrate for a magnetic recording medium capable of improving processing accuracy.SOLUTION: A method for processing a glass substrate for a magnetic recording medium includes a chamfering process of chamfering the end surface of a glass substrate for a magnetic recording medium. The chamfering process includes: a first grinding process of rotating the glass substrate by sandwiching it between a first rotary member for supporting a first main surface of the glass substrate and a second rotary member for supporting a second main surface of the glass substrate, and grinding the end surface of the glass substrate with a first chamfering grindstone; and a second grinding process of rotating the glass substrate by supporting it by either the first rotary member or the second rotary member after the first grinding process, and grinding the end surface of the glass substrate by a second chamfering grindstone the average grain diameter of whose abrasive grains is smaller than that of the first chamfering grindstone. In the second grinding process, the holding force of the glass substrate by the first rotary member and the second rotary member is smaller than that in the first grinding process.

Description

本発明は、磁気記録媒体用のガラス基板の加工方法、磁気記録媒体用のガラス基板の製造方法、および磁気記録媒体用のガラス基板の加工装置に関する。   The present invention relates to a method for processing a glass substrate for a magnetic recording medium, a method for manufacturing a glass substrate for a magnetic recording medium, and a processing apparatus for a glass substrate for a magnetic recording medium.

磁気記録媒体用のガラス基板の製造方法は、ガラス基板の端面の面取を行う面取工程を有する。面取工程において、ガラス基板は、回転保持台とワーククランパとの間に挟み込まれ、回転しながら研削される(例えば特許文献1参照)。   The manufacturing method of the glass substrate for magnetic recording media has a chamfering process which chamfers the end surface of a glass substrate. In the chamfering step, the glass substrate is sandwiched between the rotation holding table and the work clamper and is ground while rotating (for example, see Patent Document 1).

特開2012−143852号公報JP 2012-143852 A

従来、回転保持台の回転中心と、ワーククランパの回転中心との位置誤差のため、ガラス基板の回転が不安定であり、ガラス基板の加工精度が低かった。   Conventionally, because of the positional error between the rotation center of the rotation holding table and the rotation center of the work clamper, the rotation of the glass substrate is unstable, and the processing accuracy of the glass substrate is low.

本発明は、上記課題に鑑みてなされたものであって、加工精度を向上できる、磁気記録媒体用のガラス基板の加工方法などの提供を主な目的とする。   The present invention has been made in view of the above problems, and mainly aims to provide a method for processing a glass substrate for a magnetic recording medium, which can improve processing accuracy.

上記課題を解決するため、本発明の一態様によれば、
磁気記録媒体用のガラス基板の端面の面取を行う面取工程を有し、
該面取工程は、
前記ガラス基板の第1主面を支持する第1回転部材と、前記ガラス基板の第2主面を支持する第2回転部材とで前記ガラス基板を挟んで回転させると共に、前記ガラス基板の前記端面を第1面取砥石で研削する第1研削工程と、
前記第1研削工程の後に、前記第1回転部材および前記第2回転部材の少なくとも一方で前記ガラス基板を支持して回転させると共に、前記第1面取砥石よりも砥粒の平均粒径が小さい第2面取砥石で前記ガラス基板の前記端面を研削する第2研削工程とを有し、
前記第2研削工程では、前記第1研削工程よりも、前記第1回転部材と前記第2回転部材とによる前記ガラス基板の挟持力が小さい、磁気記録媒体用のガラス基板の加工方法が提供される。
In order to solve the above problems, according to one aspect of the present invention,
A chamfering step for chamfering the end face of the glass substrate for the magnetic recording medium;
The chamfering process is
The first rotating member that supports the first main surface of the glass substrate and the second rotating member that supports the second main surface of the glass substrate are rotated while sandwiching the glass substrate, and the end surface of the glass substrate A first grinding step of grinding with a first chamfering grindstone,
After the first grinding step, the glass substrate is supported and rotated by at least one of the first rotating member and the second rotating member, and the average grain size of the abrasive grains is smaller than that of the first chamfering grindstone. A second grinding step of grinding the end face of the glass substrate with a second chamfering grindstone,
In the second grinding step, there is provided a method for processing a glass substrate for a magnetic recording medium, wherein the holding force of the glass substrate by the first rotating member and the second rotating member is smaller than in the first grinding step. The

本発明の一態様によれば、加工精度を向上できる、磁気記録媒体用のガラス基板の加工方法が提供される。   According to one embodiment of the present invention, a method for processing a glass substrate for a magnetic recording medium that can improve processing accuracy is provided.

第1実施形態による磁気記録媒体用のガラス基板の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the glass substrate for magnetic recording media by 1st Embodiment. 第1実施形態による磁気記録媒体用のガラス基板の加工装置の第1研削工程時の状態を示す部分断面図である。It is a fragmentary sectional view which shows the state at the time of the 1st grinding process of the processing apparatus of the glass substrate for magnetic recording media by 1st Embodiment. 第1実施形態による磁気記録媒体用のガラス基板の加工装置の第2研削工程時の状態を示す部分断面図である。It is a fragmentary sectional view which shows the state at the time of the 2nd grinding process of the processing apparatus of the glass substrate for magnetic recording media by 1st Embodiment. 第1実施形態の変形例による磁気記録媒体用のガラス基板の加工装置の要部を示す断面図である。It is sectional drawing which shows the principal part of the processing apparatus of the glass substrate for magnetic recording media by the modification of 1st Embodiment. 第2実施形態による磁気記録媒体用のガラス基板の加工装置の要部を示す断面図である。It is sectional drawing which shows the principal part of the processing apparatus of the glass substrate for magnetic recording media by 2nd Embodiment. 第2実施形態の変形例による磁気記録媒体用のガラス基板の加工装置の要部を示す断面図である。It is sectional drawing which shows the principal part of the processing apparatus of the glass substrate for magnetic recording media by the modification of 2nd Embodiment. 第2実施形態の別の変形例による磁気記録媒体用のガラス基板の加工装置の要部を示す断面図である。It is sectional drawing which shows the principal part of the processing apparatus of the glass substrate for magnetic recording media by another modification of 2nd Embodiment.

以下、本発明を実施するための形態について図面を参照して説明する。各図面において、同一の又は対応する構成には、同一の又は対応する符号を付して説明を省略する。本明細書において、数値範囲を表す「〜」はその前後の数値を含む範囲を意味する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. In the drawings, the same or corresponding components are denoted by the same or corresponding reference numerals, and description thereof is omitted. In this specification, “to” representing a numerical range means a range including numerical values before and after the numerical range.

[第1実施形態]
図1は、第1実施形態による磁気記録媒体用のガラス基板の製造方法を示すフローチャートである。磁気記録媒体用のガラス基板は、円盤状であって、中央部に円孔を有する。磁気記録媒体用のガラス基板上に磁性層などを形成することにより、磁気記録媒体が得られる。
[First Embodiment]
FIG. 1 is a flowchart showing a method for manufacturing a glass substrate for a magnetic recording medium according to the first embodiment. A glass substrate for a magnetic recording medium is disk-shaped and has a circular hole in the center. A magnetic recording medium can be obtained by forming a magnetic layer or the like on a glass substrate for a magnetic recording medium.

図1に示すように、磁気記録媒体用のガラス基板の製造方法は、素板加工工程S11、面取工程S12、端面研磨工程S14、および主面研磨工程S15などを有する。これらの工程の間や、これらの工程の後に、エッチング工程、洗浄工程、乾燥工程などが行われてもよい。   As shown in FIG. 1, the method for manufacturing a glass substrate for a magnetic recording medium includes a base plate processing step S11, a chamfering step S12, an end surface polishing step S14, a main surface polishing step S15, and the like. An etching process, a cleaning process, a drying process, etc. may be performed between these processes or after these processes.

素板加工工程S11は、ガラス素板を加工することにより、中央部に円孔を有する円盤状のガラス基板を得る。ガラス素板は、例えばフロート法、フュージョン法、プレス成形法、ダウンドロー法、リドロー法などで成形される。   In the base plate processing step S11, a disk-shaped glass substrate having a circular hole in the center is obtained by processing the glass base plate. The glass base plate is formed by, for example, a float method, a fusion method, a press forming method, a down draw method, a redraw method, or the like.

面取工程S12は、面取砥石でガラス基板の端面(内周端面および外周端面)を研削することにより、ガラス基板の端面に面取部および側面部を形成する。面取部はガラス基板の主面に対して斜めとされてよく、側面部はガラス基板の主面に対して垂直とされてよい。尚、面取部は平面でなくてもよく、丸みを帯びた曲面でもよい。   The chamfering step S12 forms a chamfered portion and a side surface portion on the end surface of the glass substrate by grinding the end surfaces (the inner peripheral end surface and the outer peripheral end surface) of the glass substrate with a chamfering grindstone. The chamfered portion may be inclined with respect to the main surface of the glass substrate, and the side surface portion may be perpendicular to the main surface of the glass substrate. Note that the chamfered portion may not be a flat surface, and may be a rounded curved surface.

端面研磨工程S14は、研磨液を供給しながら回転ブラシで面取部および側面部を研磨することにより、面取部や側面部における加工変質層を除去する。回転ブラシによる研磨部位には研磨液が供給される。   The end surface polishing step S14 removes the work-affected layer in the chamfered portion and the side surface portion by polishing the chamfered portion and the side surface portion with a rotating brush while supplying the polishing liquid. A polishing liquid is supplied to the polishing portion by the rotating brush.

尚、複数の端面研磨工程が順次行われてもよく、回転ブラシだけで加工変質層を除去しなくてもよい。回転ブラシによるブラシ研磨の他に、スポンジ研磨、粘性流体研磨、磁性流体研磨などが行われてもよい。複数の端面研磨工程の間には、洗浄工程や乾燥工程が行われてよい。   Note that a plurality of end surface polishing steps may be sequentially performed, and the work-affected layer may not be removed with a rotating brush alone. In addition to brush polishing with a rotating brush, sponge polishing, viscous fluid polishing, magnetic fluid polishing, and the like may be performed. A cleaning process and a drying process may be performed between the plurality of end face polishing processes.

主面研磨工程S15は、ガラス基板の主面(第1主面および第2主面)を研磨する。主面研磨工程では、ガラス基板の第1主面および第2主面を同時に研磨する両面研磨機が用いられてよい。両面研磨機は、複数のガラス基板を同時に研磨してよい。   The main surface polishing step S15 polishes the main surface (first main surface and second main surface) of the glass substrate. In the main surface polishing step, a double-side polishing machine that simultaneously polishes the first main surface and the second main surface of the glass substrate may be used. The double-side polishing machine may polish a plurality of glass substrates simultaneously.

尚、複数の主面研磨工程が順次行われてもよい。複数の主面研磨工程は、研磨パットの種類や研磨液に含まれる砥粒の平均粒径を変えて行われる。複数の主面研磨工程の間には、洗浄工程や乾燥工程が行われてよい。   A plurality of main surface polishing steps may be performed sequentially. The plurality of main surface polishing steps are performed by changing the type of polishing pad and the average particle size of the abrasive grains contained in the polishing liquid. A cleaning process and a drying process may be performed between the plurality of main surface polishing processes.

尚、図1に示す各工程の順序は、特に限定されない。例えば、主面研磨工程S15の後に、端面研磨工程S14が行われてもよい。また、図1に示す工程以外の工程が行われてもよい。例えば、主面研磨工程S15の前に、ガラス基板の主面のラップ(例えば遊離砥粒ラップ、固定砥粒ラップなど)が行われてよい。また、端面研磨工程S14や主面研磨工程S15の後、主面研磨工程S15の間に、化学強化が行われてもよい。化学強化は、ガラス板の表面に含まれる小さなイオン半径のイオン(例えばLiイオンやNaイオン)を大きなイオン半径のイオン(例えばKイオン)に置換し、表面から所定の深さの強化層を形成する。強化層には圧縮応力が残留するため、傷が付きにくい。   In addition, the order of each process shown in FIG. 1 is not specifically limited. For example, the end surface polishing step S14 may be performed after the main surface polishing step S15. Moreover, processes other than the process shown in FIG. 1 may be performed. For example, before the main surface polishing step S15, wrapping of the main surface of the glass substrate (for example, loose abrasive wrap, fixed abrasive wrap, etc.) may be performed. Further, chemical strengthening may be performed between the main surface polishing step S15 after the end surface polishing step S14 and the main surface polishing step S15. Chemical strengthening replaces ions with a small ion radius (for example, Li ions and Na ions) contained on the surface of a glass plate with ions with a large ion radius (for example, K ions) to form a strengthened layer with a predetermined depth from the surface To do. Since the compressive stress remains in the reinforcing layer, it is difficult to be damaged.

次に、図2〜図3を参照して面取工程について説明する。面取工程は、第1研削工程と、第2研削工程とを有する。面取工程では、図2および図3に示す加工装置が用いられる。   Next, the chamfering process will be described with reference to FIGS. The chamfering process includes a first grinding process and a second grinding process. In the chamfering process, the processing apparatus shown in FIGS. 2 and 3 is used.

図2は、第1実施形態による磁気記録媒体用のガラス基板の加工装置の第1研削工程時の状態を示す部分断面図である。図3は、第1実施形態による磁気記録媒体用のガラス基板の加工装置の第2研削工程時の状態を示す部分断面図である。   FIG. 2 is a partial cross-sectional view showing a state during the first grinding process of the glass substrate processing apparatus for a magnetic recording medium according to the first embodiment. FIG. 3 is a partial cross-sectional view showing a state in the second grinding step of the glass substrate processing apparatus for a magnetic recording medium according to the first embodiment.

ガラス基板の加工装置は、磁気記録媒体用のガラス基板10の内周端面および外周端面の面取を行うものである。ガラス基板の加工装置は、例えば図2〜図3に示すように、内周面取砥石20、外周面取砥石30、下回転部材40、上回転部材50、第1駆動源としての回転モータ60、下支持部材70、上支持部材80、および第2駆動源としてのシリンダ90を備える。   The glass substrate processing apparatus chamfers the inner peripheral end surface and the outer peripheral end surface of the glass substrate 10 for a magnetic recording medium. The glass substrate processing apparatus includes an inner peripheral chamfering grindstone 20, an outer peripheral chamfering grindstone 30, a lower rotating member 40, an upper rotating member 50, and a rotary motor 60 as a first drive source, as shown in FIGS. , A lower support member 70, an upper support member 80, and a cylinder 90 as a second drive source.

内周面取砥石20は、水平方向および鉛直方向に移動自在とされる。内周面取砥石20は、内周面取砥石20の中心線を中心に回転しながら、ガラス基板10の内周端面を研削する。内周面取砥石20の中心線と、ガラス基板10の中心線とは平行とされる。   The inner peripheral chamfering grindstone 20 is movable in the horizontal direction and the vertical direction. The inner peripheral chamfering grindstone 20 grinds the inner peripheral end face of the glass substrate 10 while rotating around the center line of the inner peripheral chamfering grindstone 20. The center line of the inner peripheral chamfering grindstone 20 and the center line of the glass substrate 10 are parallel.

内周面取砥石20は、複数の砥粒および該複数の砥粒を結合する金属を有してよい。砥粒としては、ダイヤモンド砥粒、立方晶窒化ホウ素(CBN)砥粒、アルミナ砥粒、炭化珪素砥粒などが用いられる。内周面取砥石20は、砥粒をメッキで固定する電着砥石であってよい。尚、内周面取砥石20は、砥粒や金属粉末などを焼結してなるメタルボンド砥石でもよい。   The inner peripheral chamfering grindstone 20 may include a plurality of abrasive grains and a metal that bonds the plurality of abrasive grains. As the abrasive grains, diamond abrasive grains, cubic boron nitride (CBN) abrasive grains, alumina abrasive grains, silicon carbide abrasive grains and the like are used. The inner peripheral chamfering grindstone 20 may be an electrodeposition grindstone that fixes abrasive grains by plating. The inner peripheral chamfering grindstone 20 may be a metal bond grindstone formed by sintering abrasive grains, metal powder, or the like.

内周面取砥石20は、第1内周面取砥石部21と、第2内周面取砥石部22とを有する。第2内周面取砥石部22の砥粒の平均粒径は、第1内周面取砥石部21の砥粒の平均粒径よりも小さい。尚、内周面取砥石20は、第3内周面取砥石部をさらに有してもよく、内周面取砥石部の数は限定されない。   The inner peripheral chamfering grindstone 20 includes a first inner peripheral chamfering grindstone part 21 and a second inner peripheral chamfering grindstone part 22. The average particle size of the abrasive grains of the second inner peripheral chamfering grindstone portion 22 is smaller than the average particle size of the abrasive grains of the first inner peripheral chamfering grindstone portion 21. The inner peripheral chamfering grindstone 20 may further include a third inner peripheral chamfering grindstone part, and the number of inner peripheral chamfering grindstone parts is not limited.

第1内周面取砥石部21の砥粒の平均粒径は、例えば30〜60μm、好ましくは30〜50μmである。また、第2内周面取砥石部22の砥粒の平均粒径は、例えば15〜40μm、好ましくは15〜30μmである。砥粒の平均粒径は、メジアン径(D50ともいう)であって、レーザ回折散乱法により測定できる。   The average particle diameter of the abrasive grains of the first inner peripheral chamfering grindstone portion 21 is, for example, 30 to 60 μm, preferably 30 to 50 μm. Moreover, the average particle diameter of the abrasive grains of the second inner peripheral chamfering grindstone portion 22 is, for example, 15 to 40 μm, preferably 15 to 30 μm. The average particle diameter of the abrasive grains is a median diameter (also referred to as D50) and can be measured by a laser diffraction scattering method.

第1内周面取砥石部21、および第2内周面取砥石部22は、それぞれの外周に円環状の研削溝を複数有し、いずれかの研削溝の壁面でガラス基板10の内周端面を研削する。研削溝の断面形状は等脚台形状であってよい。   The first inner peripheral chamfering grindstone portion 21 and the second inner peripheral chamfering grindstone portion 22 have a plurality of annular grinding grooves on the outer periphery thereof, and the inner periphery of the glass substrate 10 on the wall surface of one of the grinding grooves. Grind the end face. The cross-sectional shape of the grinding groove may be an isosceles trapezoid.

外周面取砥石30は、水平方向および鉛直方向に移動自在とされる。外周面取砥石30は、外周面取砥石30の中心線を中心に回転しながら、ガラス基板10の外周端面を研削する。外周面取砥石30の中心線と、ガラス基板10の中心線とは平行とされる。   The outer peripheral chamfering grindstone 30 is movable in the horizontal direction and the vertical direction. The outer peripheral chamfering grindstone 30 grinds the outer peripheral end surface of the glass substrate 10 while rotating around the center line of the outer peripheral chamfering grindstone 30. The center line of the outer peripheral chamfering grindstone 30 and the center line of the glass substrate 10 are parallel.

外周面取砥石30は、複数の砥粒および該複数の砥粒を結合する金属を有してよい。砥粒としては、ダイヤモンド砥粒、立方晶窒化ホウ素(CBN)砥粒、アルミナ砥粒、炭化珪素砥粒などが用いられる。外周面取砥石30は、砥粒をメッキで固定する電着砥石であってよい。尚、外周面取砥石30は、砥粒や金属粉末などを焼結してなるメタルボンド砥石でもよい。   The outer peripheral chamfering grindstone 30 may include a plurality of abrasive grains and a metal that combines the plurality of abrasive grains. As the abrasive grains, diamond abrasive grains, cubic boron nitride (CBN) abrasive grains, alumina abrasive grains, silicon carbide abrasive grains and the like are used. The outer peripheral chamfering grindstone 30 may be an electrodeposited grindstone that fixes abrasive grains by plating. The outer peripheral chamfering grindstone 30 may be a metal bond grindstone formed by sintering abrasive grains, metal powder, or the like.

外周面取砥石30は、第1外周面取砥石部31と、第2外周面取砥石部32とを有する。第2外周面取砥石部32の砥粒の平均粒径は、第1外周面取砥石部31の砥粒の平均粒径よりも小さい。尚、外周面取砥石30は、第3外周面取砥石部をさらに有してもよく、外周面取砥石部の数は限定されない。   The outer peripheral chamfering grindstone 30 includes a first outer peripheral chamfering grindstone portion 31 and a second outer peripheral chamfering grindstone portion 32. The average particle size of the abrasive grains of the second outer peripheral chamfering grindstone portion 32 is smaller than the average particle size of the abrasive grains of the first outer peripheral chamfering grindstone portion 31. The outer peripheral chamfering grindstone 30 may further include a third outer peripheral chamfering grindstone part, and the number of outer peripheral chamfering grindstone parts is not limited.

第1外周面取砥石部31の砥粒の平均粒径は、例えば30〜60μm、好ましくは30〜50μmである。また、第2外周面取砥石部32の砥粒の平均粒径は、例えば15〜40μm、好ましくは15〜30μmである。砥粒の平均粒径は、メジアン径(D50ともいう)であって、レーザ回折散乱法により測定できる。   The average particle diameter of the abrasive grains of the first outer peripheral chamfering grindstone portion 31 is, for example, 30 to 60 μm, preferably 30 to 50 μm. Moreover, the average particle diameter of the abrasive grains of the second outer peripheral chamfering grindstone 32 is, for example, 15 to 40 μm, preferably 15 to 30 μm. The average particle diameter of the abrasive grains is a median diameter (also referred to as D50) and can be measured by a laser diffraction scattering method.

第1外周面取砥石部31、および第2外周面取砥石部32は、それぞれの外周に円環状の研削溝を複数有し、いずれかの研削溝の壁面でガラス基板10の外周端面を研削する。研削溝の断面形状は等脚台形状であってよい。   The first outer peripheral chamfering grindstone portion 31 and the second outer peripheral chamfering grindstone portion 32 have a plurality of annular grinding grooves on the outer periphery thereof, and the outer peripheral end surface of the glass substrate 10 is ground by the wall surface of any of the grinding grooves. To do. The cross-sectional shape of the grinding groove may be an isosceles trapezoid.

下回転部材40は、ガラス基板10の下面を支持する。下回転部材40は、ガラス基板10の下面を真空吸着し、ガラス基板10と共に回転する。下回転部材40は、ガラス基板10の下面を支持する下テーブル部41と、下テーブル部41に固定される下回転軸部42とを含む。   The lower rotating member 40 supports the lower surface of the glass substrate 10. The lower rotating member 40 vacuum-sucks the lower surface of the glass substrate 10 and rotates together with the glass substrate 10. The lower rotating member 40 includes a lower table portion 41 that supports the lower surface of the glass substrate 10 and a lower rotating shaft portion 42 that is fixed to the lower table portion 41.

尚、下回転部材40に対するガラス基板10の固定方法は、真空吸着に限定されず、例えば、接着固定、凍結固定などでもよい。   Note that the method of fixing the glass substrate 10 to the lower rotating member 40 is not limited to vacuum suction, and may be, for example, adhesive fixing or freeze fixing.

上回転部材50は、ガラス基板10の上面を支持する。上回転部材50は、ガラス基板10の上面に押し付けられ、ガラス基板10と共に従動的に回転する。上回転部材50は、ガラス基板10の上面を支持する上テーブル部51と、上テーブル部51に固定される上回転軸部52とを含む。   The upper rotating member 50 supports the upper surface of the glass substrate 10. The upper rotating member 50 is pressed against the upper surface of the glass substrate 10 and rotates together with the glass substrate 10. The upper rotating member 50 includes an upper table portion 51 that supports the upper surface of the glass substrate 10, and an upper rotating shaft portion 52 that is fixed to the upper table portion 51.

上回転部材50には、上下方向に平行な貫通穴56が形成される。当該貫通穴56には、内周面取砥石20や内周面取砥石20と共に回転する回転軸部23が挿入される。   A through hole 56 parallel to the vertical direction is formed in the upper rotating member 50. The inner peripheral chamfering grindstone 20 or the rotating shaft portion 23 that rotates together with the inner peripheral chamfering grindstone 20 is inserted into the through hole 56.

回転モータ60は、下回転部材40を、下回転軸部42を中心に回転させる。回転モータ60は、フレームFrに固定され、ベルトやプーリなどを介して下回転軸部42と連結される。尚、回転モータ60は、下回転軸部42と同軸的に連結されてもよい。   The rotation motor 60 rotates the lower rotation member 40 around the lower rotation shaft portion 42. The rotation motor 60 is fixed to the frame Fr, and is connected to the lower rotation shaft portion 42 via a belt, a pulley, or the like. The rotary motor 60 may be connected coaxially with the lower rotary shaft portion 42.

下支持部材70は、下回転部材40の下回転軸部42を回転自在に支持する軸受(図示せず)を保持する。下支持部材70は、フレームFrに固定される。   The lower support member 70 holds a bearing (not shown) that rotatably supports the lower rotation shaft portion 42 of the lower rotation member 40. The lower support member 70 is fixed to the frame Fr.

上支持部材80は、上回転部材50の上回転軸部52を回転自在に支持する軸受57を保持する。上支持部材80は、フレームFrに対して昇降自在な上側昇降部材91に固定され、上側昇降部材91と共に昇降される。上支持部材80の昇降に伴って、上回転部材50が昇降される。   The upper support member 80 holds a bearing 57 that rotatably supports the upper rotation shaft portion 52 of the upper rotation member 50. The upper support member 80 is fixed to an upper elevating member 91 that is movable up and down with respect to the frame Fr, and is moved up and down together with the upper elevating member 91. As the upper support member 80 moves up and down, the upper rotating member 50 is raised and lowered.

シリンダ90は、油圧シリンダやガス圧シリンダなどの流体圧シリンダ、電動シリンダのいずれでもよい。シリンダ90は、下支持部材70に対して上支持部材80を昇降させることにより、下回転部材40に対して上回転部材50を昇降させる。   The cylinder 90 may be either a fluid pressure cylinder such as a hydraulic cylinder or a gas pressure cylinder, or an electric cylinder. The cylinder 90 raises and lowers the upper rotation member 50 relative to the lower rotation member 40 by raising and lowering the upper support member 80 relative to the lower support member 70.

シリンダ90の一端はフレームFrに固定され、シリンダ90の他端はフレームFrに対して昇降自在な下側昇降部材92に固定される。下側昇降部材92と上側昇降部材91とは、複数本のロッド93で連結される。   One end of the cylinder 90 is fixed to the frame Fr, and the other end of the cylinder 90 is fixed to a lower elevating member 92 that can move up and down with respect to the frame Fr. The lower lifting member 92 and the upper lifting member 91 are connected by a plurality of rods 93.

シリンダ90を駆動して上支持部材80を下降させると、上回転部材50が下降され、下回転部材40に支持されるガラス基板10と接触する。そうして、下回転部材40と上回転部材50とがガラス基板10を挟持する。シリンダ90の駆動力に応じた挟持力が生じる。一方、シリンダ90を駆動して上支持部材80を上昇させると、上回転部材50が上昇され、下回転部材40に支持されるガラス基板10から離れる。   When the upper support member 80 is lowered by driving the cylinder 90, the upper rotation member 50 is lowered and comes into contact with the glass substrate 10 supported by the lower rotation member 40. Thus, the lower rotating member 40 and the upper rotating member 50 sandwich the glass substrate 10. A clamping force corresponding to the driving force of the cylinder 90 is generated. On the other hand, when the upper support member 80 is raised by driving the cylinder 90, the upper rotation member 50 is raised and separated from the glass substrate 10 supported by the lower rotation member 40.

尚、本実施形態のシリンダ90は、上支持部材80や上回転部材50を昇降させるが、下支持部材70や下回転部材40を昇降させてもよい。シリンダ90は、下支持部材70に対して上支持部材80を相対的に移動させることにより、下回転部材40に対して上回転部材50を相対的に移動させるものであればよい。   In addition, although the cylinder 90 of this embodiment raises / lowers the upper support member 80 and the upper rotation member 50, you may raise / lower the lower support member 70 and the lower rotation member 40. The cylinder 90 only needs to move the upper rotation member 50 relative to the lower rotation member 40 by moving the upper support member 80 relative to the lower support member 70.

次に、上記構成の加工装置を用いた面取工程について説明する。面取工程は、第1研削工程と、第2研削工程とを有する。   Next, a chamfering process using the processing apparatus having the above configuration will be described. The chamfering process includes a first grinding process and a second grinding process.

第1研削工程では、図2に示すように下回転部材40と上回転部材50とでガラス基板10を挟んで回転させると共に、ガラス基板10の内周端面を第1内周面取砥石部21で研削し、且つ、ガラス基板10の外周端面を第1外周面取砥石部31で研削する。   In the first grinding step, as shown in FIG. 2, the glass substrate 10 is rotated between the lower rotating member 40 and the upper rotating member 50, and the inner peripheral end surface of the glass substrate 10 is rotated to the first inner peripheral chamfering stone portion 21. And the outer peripheral end face of the glass substrate 10 is ground by the first outer peripheral chamfering grindstone 31.

第1研削工程では、ガラス基板10の径方向内方への、第1内周面取砥石部21および第1外周面取砥石部31の送り速度は、それぞれ、例えば0.5〜10.0mm/分、好ましくは0.8〜5.0mm/分である。   In the first grinding step, the feed speeds of the first inner peripheral chamfering grindstone portion 21 and the first outer peripheral chamfering grindstone portion 31 to the radially inner side of the glass substrate 10 are, for example, 0.5 to 10.0 mm, respectively. / Min, preferably 0.8 to 5.0 mm / min.

第1研削工程では、ガラス基板10の内周端面の径方向切り込み量、およびガラス基板10の外周端面の径方向切り込み量は、それぞれ、例えば0.3〜1mmである。   In the first grinding step, the radial cut amount of the inner peripheral end face of the glass substrate 10 and the radial cut amount of the outer peripheral end face of the glass substrate 10 are each 0.3 to 1 mm, for example.

第2研削工程では、図3に示すように下回転部材40でガラス基板10を支持して回転させると共に、ガラス基板10の外周端面を第2外周面取砥石部32で研削し、且つ、ガラス基板10の内周端面を第2内周面取砥石部22で研削する。   In the second grinding step, the glass substrate 10 is supported and rotated by the lower rotating member 40 as shown in FIG. 3, the outer peripheral end surface of the glass substrate 10 is ground by the second outer peripheral chamfering grindstone 32, and the glass The inner peripheral end face of the substrate 10 is ground by the second inner peripheral chamfering grindstone 22.

尚、第2研削工程では、下回転部材40および上回転部材50の少なくとも一方でガラス基板10を支持して回転させればよい。   In the second grinding step, the glass substrate 10 may be supported and rotated at least one of the lower rotating member 40 and the upper rotating member 50.

第2研削工程では、ガラス基板10の径方向内方への、第1内周面取砥石部21および第1外周面取砥石部31の送り速度は、それぞれ、例えば0.1〜2.0mm/分、好ましくは0.3〜1.0mm/分である。   In the second grinding step, the feed speeds of the first inner peripheral chamfering grindstone portion 21 and the first outer peripheral chamfering grindstone portion 31 to the inner side in the radial direction of the glass substrate 10 are, for example, 0.1 to 2.0 mm, respectively. / Min, preferably 0.3 to 1.0 mm / min.

第2研削工程では、ガラス基板10の内周端面の径方向切り込み量、およびガラス基板10の外周端面の径方向切り込み量は、それぞれ、例えば0.1〜0.2mmである。   In the second grinding step, the radial cut amount of the inner peripheral end surface of the glass substrate 10 and the radial cut amount of the outer peripheral end surface of the glass substrate 10 are each 0.1 to 0.2 mm, for example.

ところで、第1研削工程では、第2研削工程よりも、砥粒の平均粒径の大きい砥石が用いられ、ガラス基板10の研削負荷が大きい。研削負荷によってガラス基板10の位置ずれが生じないように、下回転部材40と上回転部材50とがガラス基板10を挟んで固定する。   By the way, in the 1st grinding process, the grindstone with a larger average grain size of an abrasive grain is used than the 2nd grinding process, and the grinding load of glass substrate 10 is large. The lower rotating member 40 and the upper rotating member 50 are fixed with the glass substrate 10 sandwiched therebetween so that the positional displacement of the glass substrate 10 does not occur due to the grinding load.

第1研削工程において、ガラス基板10の挟持力は、ガラス基板10の直径に応じて設定される。ガラス基板10の直径が2.5インチの場合、第1研削工程におけるガラス基板10の挟持力は、例えば600〜1200N、好ましくは600〜800Nである。第1研削工程において、ガラス基板10の挟持力が600N以上であると、研削負荷によるガラス基板10の位置ずれが防止できる。また、ガラス基板10の挟持力が1200N以下であると、挟持力によるガラス基板10の損傷が抑制できる。   In the first grinding step, the clamping force of the glass substrate 10 is set according to the diameter of the glass substrate 10. When the diameter of the glass substrate 10 is 2.5 inches, the clamping force of the glass substrate 10 in the first grinding step is, for example, 600 to 1200 N, preferably 600 to 800 N. In the first grinding step, when the clamping force of the glass substrate 10 is 600 N or more, it is possible to prevent the positional deviation of the glass substrate 10 due to the grinding load. Moreover, the damage of the glass substrate 10 by clamping force can be suppressed as the clamping force of the glass substrate 10 is 1200 N or less.

一方、第2研削工程では、第1研削工程よりも、砥粒の平均粒径の小さい砥石が用いられ、ガラス基板10の研削負荷が小さい。そこで、第2研削工程では、第1研削工程よりも、シリンダ90の駆動力が小さく設定され、ガラス基板10の挟持力が小さく設定される。第2研削工程におけるガラス基板10の挟持力は、第1研削工程におけるガラス基板10の挟持力の80%以下、好ましくは50%以下、さらに好ましくはゼロである。ガラス基板10の挟持力がゼロの場合、図3に示すように、下回転部材40に支持されるガラス基板10から上回転部材50は離れてよい。尚、第2研削工程において、ガラス基板10の挟持力は、研削負荷によるガラス基板10の位置ずれが防止できるように設定される。   On the other hand, in the second grinding step, a grindstone having a smaller average grain size of abrasive grains is used than in the first grinding step, and the grinding load on the glass substrate 10 is small. Therefore, in the second grinding process, the driving force of the cylinder 90 is set smaller than in the first grinding process, and the clamping force of the glass substrate 10 is set smaller. The sandwiching force of the glass substrate 10 in the second grinding step is 80% or less, preferably 50% or less, more preferably zero of the sandwiching force of the glass substrate 10 in the first grinding step. When the clamping force of the glass substrate 10 is zero, the upper rotating member 50 may be separated from the glass substrate 10 supported by the lower rotating member 40 as shown in FIG. In the second grinding step, the holding force of the glass substrate 10 is set so that the position shift of the glass substrate 10 due to the grinding load can be prevented.

以上、説明したように、本実施形態によれば、第2研削工程では、第1研削工程よりも、ガラス基板10の挟持力が小さい。よって、下回転部材40に対する上回転部材50の水平位置が完全には拘束されておらず、下回転部材40の回転中心と上回転部材50の回転中心との位置誤差による影響が小さく、ガラス基板10の回転が安定し、ガラス基板10の加工精度(例えば同心度、真円度など)が向上する。   As described above, according to the present embodiment, the clamping force of the glass substrate 10 is smaller in the second grinding process than in the first grinding process. Therefore, the horizontal position of the upper rotating member 50 with respect to the lower rotating member 40 is not completely constrained, and the influence of the position error between the rotating center of the lower rotating member 40 and the rotating center of the upper rotating member 50 is small. 10 is stabilized, and the processing accuracy (for example, concentricity, roundness, etc.) of the glass substrate 10 is improved.

第2研削工程では、第1研削工程よりも、下回転部材40によるガラス基板10の吸着力が大きくてよい。吸着力が大きくなる分、ガラス基板10の挟持力のさらなる低減が可能である。   In the 2nd grinding process, the adsorption power of glass substrate 10 by lower rotating member 40 may be larger than the 1st grinding process. Since the adsorption force increases, the holding force of the glass substrate 10 can be further reduced.

尚、本実施形態では、ガラス基板10の下面がガラス基板10の第1主面に、ガラス基板10の上面がガラス基板10の第2主面に、下回転部材40が第1回転部材に、上回転部材50が第2回転部材に、下支持部材70が第1支持部材に、上支持部材80が第2支持部材にそれぞれ対応する。但し、本明細書において、「第1」「第2」等の用語は上下関係を限定するものではない。例えば、下回転部材40が第2回転部材に、上回転部材50が第1回転部材にそれぞれ対応してもよい。   In the present embodiment, the lower surface of the glass substrate 10 is the first main surface of the glass substrate 10, the upper surface of the glass substrate 10 is the second main surface of the glass substrate 10, and the lower rotating member 40 is the first rotating member. The upper rotating member 50 corresponds to the second rotating member, the lower supporting member 70 corresponds to the first supporting member, and the upper supporting member 80 corresponds to the second supporting member. However, in this specification, terms such as “first” and “second” do not limit the vertical relationship. For example, the lower rotating member 40 may correspond to the second rotating member, and the upper rotating member 50 may correspond to the first rotating member.

[第1実施形態の変形例]
図4は、第1実施形態の変形例による磁気記録媒体用のガラス基板の加工装置の要部を示す断面図である。図4に示す上回転部材50は、上回転軸部52に、螺旋状のスリット58を有する。これにより、上回転軸部52の撓み変形が可能となり、下回転部材40の回転中心と上回転部材50の回転中心との位置誤差による影響が低減できる。
[Modification of First Embodiment]
FIG. 4 is a cross-sectional view showing a main part of a glass substrate processing apparatus for a magnetic recording medium according to a modification of the first embodiment. The upper rotating member 50 shown in FIG. 4 has a spiral slit 58 in the upper rotating shaft portion 52. Accordingly, the upper rotating shaft portion 52 can be bent and deformed, and the influence of the position error between the rotation center of the lower rotation member 40 and the rotation center of the upper rotation member 50 can be reduced.

尚、スリット58は、上回転軸部52、上テーブル部51のいずれに形成されてもよく、両方に形成されてもよい。また、スリット58は、上回転部材50と下回転部材40のいずれに形成されてもよく、両方に形成されてもよい。   The slit 58 may be formed in either the upper rotating shaft part 52 or the upper table part 51, or may be formed in both. Moreover, the slit 58 may be formed in any of the upper rotating member 50 and the lower rotating member 40, and may be formed in both.

[第2実施形態]
図5は、第2実施形態による磁気記録媒体用のガラス基板の加工装置の要部を示す断面図である。以下、図5を参照して、本実施形態と上記第1実施形態との相違点について主に説明する。
[Second Embodiment]
FIG. 5 is a cross-sectional view showing a main part of a processing apparatus for a glass substrate for a magnetic recording medium according to the second embodiment. The difference between the present embodiment and the first embodiment will be mainly described below with reference to FIG.

上回転部材50Aは、ガラス基板10の上面を支持する。上回転部材50Aは、下回転部材40に固定されたガラス基板10の上面に押し付けられ、下回転部材40の回転に伴い回転される。   The upper rotating member 50 </ b> A supports the upper surface of the glass substrate 10. The upper rotating member 50 </ b> A is pressed against the upper surface of the glass substrate 10 fixed to the lower rotating member 40, and is rotated with the rotation of the lower rotating member 40.

上回転部材50Aは、ガラス基板10の上面を支持する上テーブル部51Aと、上テーブル部51Aに固定される軸部52Aと、軸部52Aの外周面から突出するリング部53Aとを含む。   The upper rotating member 50A includes an upper table portion 51A that supports the upper surface of the glass substrate 10, a shaft portion 52A that is fixed to the upper table portion 51A, and a ring portion 53A that protrudes from the outer peripheral surface of the shaft portion 52A.

上支持部材80Aは、上回転部材50Aを回転自在に支持する。また、上支持部材80Aは、上回転部材50Aを、下回転軸部42に対して垂直な方向に移動自在(図5では水平移動自在)に支持する。   The upper support member 80A rotatably supports the upper rotation member 50A. Further, the upper support member 80A supports the upper rotation member 50A so as to be movable in a direction perpendicular to the lower rotation shaft portion 42 (horizontally movable in FIG. 5).

上支持部材80Aは、軸部52Aが挿入される筒状部82Aと、筒状部82Aの内周面に形成される凹部83Aとを含む。凹部83Aにはリング部53Aが挿入される。   The upper support member 80A includes a cylindrical portion 82A into which the shaft portion 52A is inserted, and a concave portion 83A formed on the inner peripheral surface of the cylindrical portion 82A. The ring portion 53A is inserted into the recess 83A.

上支持部材80Aは、下回転軸部42に対して垂直な方向に移動自在なボール86Aを介して上回転部材50Aを接触支持する。ボール86Aは、リング部53Aの上下両側に配設され、上支持部材80Aに対する上回転部材50Aの昇降を制限する。ボール86Aは、リング部53Aの上下両側に複数ずつ配設されてよい。複数のボール86Aは、不図示のボールリテーナに保持されてよい。   The upper support member 80A contacts and supports the upper rotation member 50A via a ball 86A that is movable in a direction perpendicular to the lower rotation shaft portion. The balls 86A are disposed on both upper and lower sides of the ring portion 53A, and restrict the raising and lowering of the upper rotating member 50A with respect to the upper supporting member 80A. A plurality of balls 86A may be arranged on both the upper and lower sides of the ring portion 53A. The plurality of balls 86A may be held by a ball retainer (not shown).

尚、リング部と凹部との配置は逆でもよい。つまり、リング部は筒状部82Aの内周面から突出し、凹部は軸部52Aの外周面に形成されてもよい。   In addition, arrangement | positioning of a ring part and a recessed part may be reverse. That is, the ring portion may protrude from the inner peripheral surface of the cylindrical portion 82A, and the concave portion may be formed on the outer peripheral surface of the shaft portion 52A.

ところで、本実施形態によれば、上支持部材80Aは、上回転部材50Aを、下回転軸部42に対して垂直な方向に移動自在(図5では水平移動自在)に支持する。上支持部材80Aは上回転部材50Aの回転中心を決めず、下回転軸部42が下回転部材40と上回転部材50Aとの共通の回転軸部として利用できる。よって、ガラス基板10の回転が安定し、ガラス基板10の加工精度(例えば同心度、真円度など)が向上する。   By the way, according to the present embodiment, the upper support member 80A supports the upper rotation member 50A so as to be movable in a direction perpendicular to the lower rotation shaft portion 42 (horizontally movable in FIG. 5). The upper support member 80A does not determine the rotation center of the upper rotation member 50A, and the lower rotation shaft portion 42 can be used as a common rotation shaft portion for the lower rotation member 40 and the upper rotation member 50A. Therefore, the rotation of the glass substrate 10 is stabilized, and the processing accuracy (for example, concentricity, roundness, etc.) of the glass substrate 10 is improved.

また、本実施形態によれば、下回転軸部42が下回転部材40と上回転部材50Aとの共通の回転軸部として利用できるため、上記第1実施形態とは異なり、図2に示す第1研削工程と図3に示す第2研削工程とでガラス基板10の挟持力の調整が不要である。   Further, according to the present embodiment, since the lower rotating shaft portion 42 can be used as a common rotating shaft portion for the lower rotating member 40 and the upper rotating member 50A, unlike the first embodiment, the first rotating shaft portion shown in FIG. It is not necessary to adjust the clamping force of the glass substrate 10 in the first grinding step and the second grinding step shown in FIG.

[第2実施形態の変形例]
図6は、第2実施形態の変形例による磁気記録媒体用のガラス基板の加工装置の要部を示す断面図である。本変形例では、ボール86Aの代わりに、磁気反発力を利用する。
[Modification of Second Embodiment]
FIG. 6 is a cross-sectional view showing a main part of a processing apparatus for a glass substrate for a magnetic recording medium according to a modification of the second embodiment. In this modification, a magnetic repulsive force is used instead of the ball 86A.

上回転部材50Bは、ガラス基板10の上面を支持する。上回転部材50Bは、下回転部材40に固定されたガラス基板10の上面に押し付けられ、下回転部材40の回転に伴い回転される。   The upper rotating member 50 </ b> B supports the upper surface of the glass substrate 10. The upper rotating member 50 </ b> B is pressed against the upper surface of the glass substrate 10 fixed to the lower rotating member 40, and is rotated with the rotation of the lower rotating member 40.

上回転部材50Bは、ガラス基板10の上面を支持する上テーブル部51Bと、上テーブル部51Bに固定される軸部52Bと、軸部52Bの外周面から突出するリング部53Bと、リング部53Bの上下面に固定される磁石部54Bとを含む。磁石部54Bは、永久磁石、電磁石のいずれでもよい。   The upper rotating member 50B includes an upper table portion 51B that supports the upper surface of the glass substrate 10, a shaft portion 52B that is fixed to the upper table portion 51B, a ring portion 53B that protrudes from the outer peripheral surface of the shaft portion 52B, and a ring portion 53B. And a magnet portion 54B fixed to the upper and lower surfaces. The magnet portion 54B may be a permanent magnet or an electromagnet.

上支持部材80Bは、上回転部材50Bを回転自在に支持する。また、上支持部材80Bは、上回転部材50Bを、下回転軸部42に対して垂直な方向に移動自在(図6では水平移動自在)に支持する。   The upper support member 80B rotatably supports the upper rotation member 50B. Further, the upper support member 80B supports the upper rotation member 50B so as to be movable in a direction perpendicular to the lower rotation shaft portion 42 (horizontally movable in FIG. 6).

上支持部材80Bは、軸部52Bが挿入される筒状部82Bと、筒状部82Bの内周面に形成される凹部83Bと、凹部83Bの上下面に固定される磁石部84Bとを含む。磁石部84Bは、永久磁石、電磁石のいずれでもよい。凹部83Bにはリング部53Bが挿入され、磁石部54Bと磁石部84Bとが対向配置される。磁石部54Bと磁石部84Bとは、磁気反発力を生じさせる。   The upper support member 80B includes a cylindrical portion 82B into which the shaft portion 52B is inserted, a concave portion 83B formed on the inner peripheral surface of the cylindrical portion 82B, and a magnet portion 84B fixed to the upper and lower surfaces of the concave portion 83B. . The magnet portion 84B may be a permanent magnet or an electromagnet. The ring portion 53B is inserted into the recess 83B, and the magnet portion 54B and the magnet portion 84B are disposed to face each other. The magnet part 54B and the magnet part 84B generate a magnetic repulsive force.

上支持部材80Bは、上支持部材80Bと上回転部材50Bとの間に作用する磁気反発力によって上回転部材50Bを非接触支持する。磁石部54Bと磁石部84Bとで構成される磁石ユニットは、上下方向に並べられ、上支持部材80Aに対する上回転部材50Aの昇降を制限する。   The upper support member 80B supports the upper rotation member 50B in a non-contact manner by a magnetic repulsive force acting between the upper support member 80B and the upper rotation member 50B. The magnet units composed of the magnet part 54B and the magnet part 84B are arranged in the vertical direction, and restrict the raising and lowering of the upper rotating member 50A with respect to the upper support member 80A.

尚、リング部と凹部との配置は逆でもよい。つまり、リング部は筒状部82Bの内周面から突出し、凹部は軸部52Bの外周面に形成されてもよい。   In addition, arrangement | positioning of a ring part and a recessed part may be reverse. That is, the ring portion may protrude from the inner peripheral surface of the cylindrical portion 82B, and the concave portion may be formed on the outer peripheral surface of the shaft portion 52B.

ところで、本変形例によれば、上支持部材80Bは、上回転部材50Bを、下回転軸部42に対して垂直な方向に移動自在(図6では水平移動自在)に支持する。上支持部材80Bは上回転部材50Bの回転中心を決めず、下回転軸部42が下回転部材40と上回転部材50Bとの共通の回転軸部として利用できる。よって、ガラス基板10の回転が安定し、ガラス基板10の加工精度(例えば同心度、真円度など)が向上する。   By the way, according to the present modification, the upper support member 80B supports the upper rotation member 50B so as to be movable in the direction perpendicular to the lower rotation shaft portion 42 (in FIG. 6, it can be moved horizontally). The upper support member 80B does not determine the rotation center of the upper rotation member 50B, and the lower rotation shaft portion 42 can be used as a common rotation shaft portion for the lower rotation member 40 and the upper rotation member 50B. Therefore, the rotation of the glass substrate 10 is stabilized, and the processing accuracy (for example, concentricity, roundness, etc.) of the glass substrate 10 is improved.

また、本変形例によれば、下回転軸部42が下回転部材40と上回転部材50Bとの共通の回転軸部として利用できるため、上記第1実施形態とは異なり、図2に示す第1研削工程と図3に示す第2研削工程とでガラス基板10の挟持力の調整が不要である。   Further, according to the present modification, the lower rotating shaft portion 42 can be used as a common rotating shaft portion for the lower rotating member 40 and the upper rotating member 50B. Therefore, unlike the first embodiment, the first rotating shaft portion shown in FIG. It is not necessary to adjust the clamping force of the glass substrate 10 in the first grinding step and the second grinding step shown in FIG.

さらに、本変形例によれば、上支持部材80Bは、磁気反発力によって上回転部材50Bを非接触支持する。よって、上回転部材50Bの回転抵抗が小さい。   Furthermore, according to this modification, the upper support member 80B supports the upper rotation member 50B in a non-contact manner by a magnetic repulsive force. Therefore, the rotational resistance of the upper rotating member 50B is small.

[第2実施形態の別の変形例]
図7は、第2実施形態の別の変形例による磁気記録媒体用のガラス基板の加工装置の要部を示す断面図である。本変形例では、ボール86Aの代わりに、空気などのガスの圧力を利用する。
[Another Modification of Second Embodiment]
FIG. 7 is a cross-sectional view showing a main part of a processing apparatus for a glass substrate for a magnetic recording medium according to another modification of the second embodiment. In this modification, the pressure of a gas such as air is used instead of the ball 86A.

上回転部材50Cは、ガラス基板10の上面を支持する。上回転部材50Cは、下回転部材40に固定されたガラス基板10の上面に押し付けられ、下回転部材40の回転に伴い回転される。   The upper rotating member 50 </ b> C supports the upper surface of the glass substrate 10. The upper rotating member 50 </ b> C is pressed against the upper surface of the glass substrate 10 fixed to the lower rotating member 40, and is rotated with the rotation of the lower rotating member 40.

上回転部材50Cは、ガラス基板10の上面を支持する上テーブル部51Cと、上テーブル部51Cに固定される軸部52Cと、軸部52Cの外周面から突出するリング部53Cとを含む。   The upper rotating member 50C includes an upper table portion 51C that supports the upper surface of the glass substrate 10, a shaft portion 52C that is fixed to the upper table portion 51C, and a ring portion 53C that protrudes from the outer peripheral surface of the shaft portion 52C.

上支持部材80Cは、上回転部材50Cを回転自在に支持する。また、上支持部材80Cは、上回転部材50Cを、下回転軸部42に対して垂直な方向に移動自在(図7では水平移動自在)に支持する。   The upper support member 80C rotatably supports the upper rotation member 50C. The upper support member 80C supports the upper rotation member 50C so as to be movable in a direction perpendicular to the lower rotation shaft portion 42 (in FIG. 7, it can be moved horizontally).

上支持部材80Cは、軸部52Cが挿入される筒状部82Cと、筒状部82Cの内周面に形成される凹部83Cと、凹部83Cの上下面に形成されるガス穴85Cとを含む。凹部83Cにはリング部53Cが挿入され、リング部53Cに向けてガス穴85Cからガスが吹き付けられる。   The upper support member 80C includes a cylindrical portion 82C into which the shaft portion 52C is inserted, a recess 83C formed on the inner peripheral surface of the cylindrical portion 82C, and a gas hole 85C formed on the upper and lower surfaces of the recess 83C. . The ring portion 53C is inserted into the recess 83C, and gas is blown from the gas hole 85C toward the ring portion 53C.

例えば、上支持部材80Cは、上支持部材80Cと上回転部材50Cとの間に流れるガスの圧力によって上回転部材50Cを非接触支持する。ガス穴85Cは、リング部53Cに対して上下両側からガスを吹き付け、上支持部材80Cに対する上回転部材50Cの昇降を制限する。   For example, the upper support member 80C supports the upper rotation member 50C in a non-contact manner by the pressure of a gas flowing between the upper support member 80C and the upper rotation member 50C. The gas hole 85C blows gas from the upper and lower sides to the ring portion 53C and restricts the raising and lowering of the upper rotating member 50C with respect to the upper supporting member 80C.

尚、リング部と凹部との配置は逆でもよい。つまり、リング部は筒状部82Cの内周面から突出し、凹部は軸部52Cの外周面に形成されてもよい。また、ガス穴85Cは、凹部の上下面ではなく、リング部の上下面に形成されてもよいが、フレームFrに対して固定される部材に形成されてよい。ガスの配管が容易である。   In addition, arrangement | positioning of a ring part and a recessed part may be reverse. That is, the ring portion may protrude from the inner peripheral surface of the cylindrical portion 82C, and the concave portion may be formed on the outer peripheral surface of the shaft portion 52C. Further, the gas hole 85C may be formed not on the upper and lower surfaces of the concave portion but on the upper and lower surfaces of the ring portion, but may be formed on a member fixed to the frame Fr. Gas piping is easy.

ところで、本変形例によれば、上支持部材80Cは、上回転部材50Cを、下回転軸部42に対して垂直な方向に移動自在(図7では水平移動自在)に支持する。上支持部材80Cは上回転部材50Cの回転中心を決めず、下回転軸部42が下回転部材40と上回転部材50Cとの共通の回転軸部として利用できる。よって、ガラス基板10の回転が安定し、ガラス基板10の加工精度(例えば同心度、真円度など)が向上する。   By the way, according to the present modification, the upper support member 80C supports the upper rotation member 50C so as to be movable in a direction perpendicular to the lower rotation shaft portion 42 (in FIG. 7, it can be moved horizontally). The upper support member 80C does not determine the rotation center of the upper rotation member 50C, and the lower rotation shaft portion 42 can be used as a common rotation shaft portion for the lower rotation member 40 and the upper rotation member 50C. Therefore, the rotation of the glass substrate 10 is stabilized, and the processing accuracy (for example, concentricity, roundness, etc.) of the glass substrate 10 is improved.

また、本変形例によれば、下回転軸部42が下回転部材40と上回転部材50Cとの共通の回転軸部として利用できるため、上記第1実施形態とは異なり、図2に示す第1研削工程と図3に示す第2研削工程とでガラス基板10の挟持力の調整が不要である。   In addition, according to the present modification, the lower rotating shaft portion 42 can be used as a common rotating shaft portion for the lower rotating member 40 and the upper rotating member 50C. Therefore, unlike the first embodiment, the first rotating shaft portion shown in FIG. It is not necessary to adjust the clamping force of the glass substrate 10 in the first grinding step and the second grinding step shown in FIG.

さらに、本変形例によれば、上支持部材80Cは、ガスの圧力によって上回転部材50Cを非接触支持する。よって、上回転部材50Cの回転抵抗が小さい。   Furthermore, according to this modification, the upper support member 80C supports the upper rotation member 50C in a non-contact manner by the pressure of the gas. Therefore, the rotational resistance of the upper rotating member 50C is small.

尚、上支持部材は、ガスの圧力と、磁気反発力との両方によって、上回転部材を支持してもよい。   The upper support member may support the upper rotation member by both the gas pressure and the magnetic repulsion force.

以上、磁気記録媒体用のガラス基板の加工方法、磁気記録媒体用のガラス基板の製造方法、磁気記録媒体用のガラス基板の加工装置などの実施形態などを説明したが、本発明は上記実施形態などに限定されず、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、改良が可能である。   The embodiments of the glass substrate processing method for the magnetic recording medium, the method for manufacturing the glass substrate for the magnetic recording medium, the processing apparatus for the glass substrate for the magnetic recording medium, and the like have been described above. However, various modifications and improvements are possible within the scope of the gist of the present invention described in the claims.

例えば、上記実施形態などでは、第1研削工程において、ガラス基板10の内周端面とガラス基板10の外周端面とを同時に研削するが、別々に研削してもよい。第2研削工程において同様である。   For example, in the above-described embodiment and the like, in the first grinding step, the inner peripheral end surface of the glass substrate 10 and the outer peripheral end surface of the glass substrate 10 are ground simultaneously, but may be ground separately. The same applies to the second grinding step.

Fr 加工装置のフレーム
10 ガラス基板
20 内周面取砥石
21 第1内周面取砥石部
22 第2内周面取砥石部
23 内周面取砥石の回転軸部
30 外周面取砥石
31 第1外周面取砥石部
32 第2外周面取砥石部
40 下回転部材
41 下テーブル部
42 下回転軸部
50 上回転部材
51 上テーブル部
52 上回転軸部
57 軸受
58 スリット
60 回転モータ
70 下支持部材
80 上支持部材
86A ボール
90 シリンダ
91 上側昇降部材
92 下側昇降部材
Fr processing apparatus frame 10 glass substrate 20 inner circumferential chamfering grindstone 21 first inner circumferential chamfering grindstone 22 second inner circumferential chamfering grindstone 23 rotating shaft 30 of inner circumferential chamfering grindstone 31 outer circumferential chamfering grindstone 31 first Outer peripheral chamfering grindstone portion 32 Second outer peripheral chamfering grindstone portion 40 Lower rotating member 41 Lower table portion 42 Lower rotating shaft portion 50 Upper rotating member 51 Upper table portion 52 Upper rotating shaft portion 57 Bearing 58 Slit 60 Rotating motor 70 Lower support member 80 Upper support member 86A Ball 90 Cylinder 91 Upper elevating member 92 Lower elevating member

Claims (15)

磁気記録媒体用のガラス基板の端面の面取を行う面取工程を有し、
該面取工程は、
前記ガラス基板の第1主面を支持する第1回転部材と、前記ガラス基板の第2主面を支持する第2回転部材とで前記ガラス基板を挟んで回転させると共に、前記ガラス基板の前記端面を第1面取砥石で研削する第1研削工程と、
前記第1研削工程の後に、前記第1回転部材および前記第2回転部材の少なくとも一方で前記ガラス基板を支持して回転させると共に、前記第1面取砥石よりも砥粒の平均粒径が小さい第2面取砥石で前記ガラス基板の前記端面を研削する第2研削工程とを有し、
前記第2研削工程では、前記第1研削工程よりも、前記第1回転部材と前記第2回転部材とによる前記ガラス基板の挟持力が小さい、磁気記録媒体用のガラス基板の加工方法。
A chamfering step for chamfering the end face of the glass substrate for the magnetic recording medium;
The chamfering process is
The first rotating member that supports the first main surface of the glass substrate and the second rotating member that supports the second main surface of the glass substrate are rotated while sandwiching the glass substrate, and the end surface of the glass substrate A first grinding step of grinding with a first chamfering grindstone,
After the first grinding step, the glass substrate is supported and rotated by at least one of the first rotating member and the second rotating member, and the average grain size of the abrasive grains is smaller than that of the first chamfering grindstone. A second grinding step of grinding the end face of the glass substrate with a second chamfering grindstone,
In the second grinding step, a glass substrate processing method for a magnetic recording medium, wherein the holding force of the glass substrate by the first rotating member and the second rotating member is smaller than in the first grinding step.
前記第2研削工程における前記挟持力は、前記第1研削工程における前記挟持力の80%以下である、請求項1に記載の磁気記録媒体用のガラス基板の加工方法。   The method for processing a glass substrate for a magnetic recording medium according to claim 1, wherein the clamping force in the second grinding step is 80% or less of the clamping force in the first grinding step. 前記第2研削工程における前記挟持力は、ゼロである、請求項1または2に記載の磁気記録媒体用のガラス基板の加工方法。   The method for processing a glass substrate for a magnetic recording medium according to claim 1, wherein the clamping force in the second grinding step is zero. 前記第1研削工程における前記挟持力は、600〜1200Nである、請求項1〜3のいずれか1項に記載の磁気記録媒体用のガラス基板の加工方法。   The said clamping force in a said 1st grinding process is a processing method of the glass substrate for magnetic recording media of any one of Claims 1-3 which is 600-1200N. 前記第1回転部材および前記第2回転部材の少なくとも一方は、スリットを有する、請求項1〜4のいずれか1項に記載の磁気記録媒体用のガラス基板の加工方法。   The method for processing a glass substrate for a magnetic recording medium according to claim 1, wherein at least one of the first rotating member and the second rotating member has a slit. 請求項1〜5のいずれか1項に記載の磁気記録媒体用のガラス基板の加工方法を用いた、磁気記録媒体用のガラス基板の製造方法。   The manufacturing method of the glass substrate for magnetic recording media using the processing method of the glass substrate for magnetic recording media of any one of Claims 1-5. 磁気記録媒体用のガラス基板の端面の面取を行う面取工程を有し、
該面取工程は、前記ガラス基板の第1主面を支持する第1回転部材と、前記ガラス基板の第2主面を支持する第2回転部材とで前記ガラス基板を挟んで回転させると共に、前記ガラス基板の前記端面を面取砥石で研削する研削工程を有し、
該研削工程では、前記第1回転部材を前記第1回転部材の回転軸部を中心に回転駆動させると共に、前記第2回転部材を回転自在に且つ前記回転軸部に対して垂直な方向に移動自在に支持する、磁気記録媒体用のガラス基板の加工方法。
A chamfering step for chamfering the end face of the glass substrate for the magnetic recording medium;
The chamfering step rotates the glass substrate between the first rotating member that supports the first main surface of the glass substrate and the second rotating member that supports the second main surface of the glass substrate, A grinding step of grinding the end face of the glass substrate with a chamfering grindstone;
In the grinding step, the first rotary member is driven to rotate about the rotary shaft portion of the first rotary member, and the second rotary member is rotatable and moved in a direction perpendicular to the rotary shaft portion. A method of processing a glass substrate for a magnetic recording medium that is freely supported.
前記第2回転部材を回転自在に支持する支持部材が用いられ、
前記支持部材は、前記回転軸部に対して垂直な方向に移動自在なボールを介して前記第2回転部材を接触支持する、請求項7に記載の磁気記録媒体用のガラス基板の加工方法。
A support member that rotatably supports the second rotating member is used,
The method for processing a glass substrate for a magnetic recording medium according to claim 7, wherein the support member contacts and supports the second rotation member via a ball movable in a direction perpendicular to the rotation shaft portion.
前記第2回転部材を回転自在に支持する支持部材が用いられ、
前記支持部材は、前記支持部材と前記第2回転部材との間に作用する磁気反発力によって前記第2回転部材を非接触支持する、請求項7に記載の磁気記録媒体用のガラス基板の加工方法。
A support member that rotatably supports the second rotating member is used,
The processing of the glass substrate for a magnetic recording medium according to claim 7, wherein the support member supports the second rotating member in a non-contact manner by a magnetic repulsive force acting between the supporting member and the second rotating member. Method.
前記第2回転部材を回転自在に支持する支持部材が用いられ、
前記支持部材は、前記支持部材と前記第2回転部材との間に流れるガスの圧力によっては前記第2回転部材を非接触支持する、請求項7または9に記載の磁気記録媒体用のガラス基板の加工方法。
A support member that rotatably supports the second rotating member is used,
10. The glass substrate for a magnetic recording medium according to claim 7, wherein the support member supports the second rotation member in a non-contact manner depending on a pressure of a gas flowing between the support member and the second rotation member. Processing method.
請求項7〜10のいずれか1項に記載の磁気記録媒体用のガラス基板の加工方法を用いた、磁気記録媒体用のガラス基板の製造方法。   The manufacturing method of the glass substrate for magnetic recording media using the processing method of the glass substrate for magnetic recording media of any one of Claims 7-10. 磁気記録媒体用のガラス基板の端面の面取を行う、磁気記録媒体用のガラス基板の加工装置であって、
前記ガラス基板の第1主面を支持する第1回転部材と、
前記ガラス基板の第2主面を支持する第2回転部材と、
前記第1回転部材を、前記第1回転部材の回転軸部を中心に回転させる第1駆動源と、
前記第1回転部材の前記回転軸部を回転自在に支持する軸受を保持する第1支持部材と、
前記第2回転部材を回転自在に支持する第2支持部材と、
前記第1支持部材に対して前記第2支持部材を相対的に移動させることで前記第1回転部材に対して前記第2回転部材を相対的に移動させ、前記第1回転部材と前記第2回転部材とで前記ガラス基板を挟む第2駆動源とを備え、
前記第2支持部材は、前記第2回転部材を回転自在に且つ前記回転軸部に対して垂直な方向に移動自在に支持する、磁気記録媒体用のガラス基板の加工装置。
An apparatus for processing a glass substrate for a magnetic recording medium, which chamfers the end surface of the glass substrate for the magnetic recording medium,
A first rotating member that supports the first main surface of the glass substrate;
A second rotating member that supports the second main surface of the glass substrate;
A first drive source for rotating the first rotating member around a rotation shaft portion of the first rotating member;
A first support member that holds a bearing that rotatably supports the rotary shaft portion of the first rotary member;
A second support member for rotatably supporting the second rotation member;
The second rotating member is moved relative to the first rotating member by moving the second supporting member relative to the first supporting member, and the first rotating member and the second rotating member are moved relative to the first rotating member. A second drive source sandwiching the glass substrate with a rotating member,
The glass substrate processing apparatus for a magnetic recording medium, wherein the second support member supports the second rotation member so as to be rotatable and movable in a direction perpendicular to the rotation shaft portion.
前記第2支持部材は、前記回転軸部に対して垂直な方向に移動自在なボールを介して前記第2回転部材を接触支持する、請求項12に記載の磁気記録媒体用のガラス基板の加工装置。   The processing of the glass substrate for a magnetic recording medium according to claim 12, wherein the second support member contacts and supports the second rotation member via a ball movable in a direction perpendicular to the rotation shaft portion. apparatus. 前記第2支持部材は、前記第2支持部材と前記第2回転部材との間に作用する磁気反発力によって前記第2回転部材を非接触支持する、請求項12に記載の磁気記録媒体用のガラス基板の加工装置。   13. The magnetic recording medium for a magnetic recording medium according to claim 12, wherein the second support member supports the second rotation member in a non-contact manner by a magnetic repulsive force acting between the second support member and the second rotation member. Glass substrate processing equipment. 前記第2支持部材は、前記第2支持部材と前記第2回転部材との間に流れるガスの圧力によって前記第2回転部材を非接触支持する、請求項12または14に記載の磁気記録媒体用のガラス基板の加工装置。   The magnetic recording medium according to claim 12 or 14, wherein the second support member supports the second rotation member in a non-contact manner by a pressure of a gas flowing between the second support member and the second rotation member. Glass substrate processing equipment.
JP2014115193A 2014-06-03 2014-06-03 Method for processing glass substrate for magnetic recording medium, method for manufacturing glass substrate for magnetic recording medium, and device for processing glass substrate for magnetic recording medium Withdrawn JP2015230734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014115193A JP2015230734A (en) 2014-06-03 2014-06-03 Method for processing glass substrate for magnetic recording medium, method for manufacturing glass substrate for magnetic recording medium, and device for processing glass substrate for magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014115193A JP2015230734A (en) 2014-06-03 2014-06-03 Method for processing glass substrate for magnetic recording medium, method for manufacturing glass substrate for magnetic recording medium, and device for processing glass substrate for magnetic recording medium

Publications (1)

Publication Number Publication Date
JP2015230734A true JP2015230734A (en) 2015-12-21

Family

ID=54887432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014115193A Withdrawn JP2015230734A (en) 2014-06-03 2014-06-03 Method for processing glass substrate for magnetic recording medium, method for manufacturing glass substrate for magnetic recording medium, and device for processing glass substrate for magnetic recording medium

Country Status (1)

Country Link
JP (1) JP2015230734A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200052929A (en) * 2017-09-13 2020-05-15 캐논 세미컨덕터 이큅먼트 가부시키가이샤 Processing equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200052929A (en) * 2017-09-13 2020-05-15 캐논 세미컨덕터 이큅먼트 가부시키가이샤 Processing equipment
KR102352534B1 (en) 2017-09-13 2022-01-19 캐논 세미컨덕터 이큅먼트 가부시키가이샤 processing equipment

Similar Documents

Publication Publication Date Title
WO2010038646A1 (en) Apparatus for polishing spherical body, method for polishing spherical body and method for manufacturing spherical member
JP4780142B2 (en) Wafer manufacturing method
JP7136953B2 (en) processing equipment
TW201008705A (en) Polishing apparatus, polishing auxiliary apparatus and polishing method
CN108349058B (en) Bearing ring, grinding device and grinding method
JP6725831B2 (en) Work processing device
WO2008059930A1 (en) Method of manufacturing disk substrate
JP2015230734A (en) Method for processing glass substrate for magnetic recording medium, method for manufacturing glass substrate for magnetic recording medium, and device for processing glass substrate for magnetic recording medium
JP2014104522A (en) Single-side processing method of wafer and production method of wafer
WO2016047543A1 (en) Chamfering device and chamfering method
JP6151529B2 (en) Grinding method of sapphire wafer
JP2005028542A (en) Visco-elastic polisher and polishing method using this polisher
CN213439058U (en) Plane grinding device for semiconductor material
JP5076583B2 (en) Chamfering device, chamfering method and sintered magnet
JP2015054362A (en) Foreign matter removal tool and method
JP2001191238A (en) Chamfering method for disc-like work, grinding wheel for chamfering and chamfering device
JP2015129056A (en) Method of cutting glass substrate and method of manufacturing glass substrate for magnetic recording medium
JP2016159384A (en) Polishing device and polishing method
JP6105689B2 (en) Semiconductor wafer holder, semiconductor wafer grinding apparatus, and semiconductor wafer grinding method
CN212095894U (en) Improved apparatus for disc grinding of semiconductor wafers
JP2010205405A (en) Method of manufacturing glass disk for information recording medium and manufacturing equipment used for the method
KR20170087300A (en) Edge grinding apparatus
JP2008307641A (en) Chamfering device, polishing member and chamfering method
CN207724098U (en) Snap ring structure part and chemical mechanical polishing device
JP5944581B2 (en) Semiconductor wafer grinding apparatus, semiconductor wafer manufacturing method, and semiconductor wafer grinding method

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20170110