JP2015228638A - Variable frequency acoustic wave converter and electronic apparatus using the same - Google Patents

Variable frequency acoustic wave converter and electronic apparatus using the same Download PDF

Info

Publication number
JP2015228638A
JP2015228638A JP2014232144A JP2014232144A JP2015228638A JP 2015228638 A JP2015228638 A JP 2015228638A JP 2014232144 A JP2014232144 A JP 2014232144A JP 2014232144 A JP2014232144 A JP 2014232144A JP 2015228638 A JP2015228638 A JP 2015228638A
Authority
JP
Japan
Prior art keywords
thin film
electrode
resonator
piezoelectric
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2014232144A
Other languages
Japanese (ja)
Inventor
山之内 和彦
Kazuhiko Yamanouchi
和彦 山之内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Danseiha Device Labo Co Ltd
Original Assignee
Danseiha Device Labo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Danseiha Device Labo Co Ltd filed Critical Danseiha Device Labo Co Ltd
Priority to JP2014232144A priority Critical patent/JP2015228638A/en
Priority to PCT/JP2015/078428 priority patent/WO2016067858A1/en
Publication of JP2015228638A publication Critical patent/JP2015228638A/en
Ceased legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a variable frequency resonator, a filter, and a variable frequency device, whose applications are not limited.SOLUTION: A piezoelectric thin film vibrator is formed on a piezoelectric substrate vibrator and one vibrator is connected to variable impedance 8. A travel speed of the vibrator is changed by a change of the impedance 8.

Description

発明の詳細な説明Detailed Description of the Invention

本発明は弾性波変換器及びこれを用いた電子装置に関するもので、弾性波変換器を2個以上コリニヤ配置した構造の弾性波変換器であり、一方を入出力電極、他方に可変インピーダンスを接続し、そのインピーダンスを変化させて、その弾性波の伝搬速度を変化させることにより、中心周波数を変化させた弾性波変換器、及び厚さを変化させた傾斜型弾性波振動子の励振位置を変化させたことにより共振周波数を変化させた可変周波数共振器及びこの可変共振器を用いた電子装置に関するものである。    The present invention relates to an elastic wave converter and an electronic device using the same, and is an elastic wave converter having a structure in which two or more elastic wave converters are arranged in a collier, with one input / output electrode connected to the other and a variable impedance connected to the other. Then, by changing the impedance and changing the propagation speed of the elastic wave, the excitation position of the elastic wave transducer with the center frequency changed and the inclined elastic wave vibrator with the thickness changed is changed. The present invention relates to a variable frequency resonator in which the resonance frequency is changed by the operation and an electronic device using the variable resonator.

通常の弾性波変換器の励振強度、及び受信強度が最大となる中心周波数fは、変換器の圧電振動子の厚さをHとしたとき、励振中心周波数は、f=2v/H(V:速度)となるので、送受に変換器を用いた場合の中心周波数は変化しない。また、この振動子を共振器として用いる場合は、共振周波数はf=2v/Hとなり、共振周波数は変化しない。従って、この変換器を用いたフィルター、この共振器を用いた共振器型のフィルタ、センサーデバイスでは、これらのデバイスの動作中心周波数は、振動子の膜厚と伝搬速度で決まるので、応用が制限される。The center frequency f 0 at which the excitation intensity and the reception intensity of the normal acoustic wave transducer are maximized is represented by f 0 = 2v / H (where the thickness of the piezoelectric vibrator of the transducer is H. V: speed), the center frequency when a converter is used for transmission and reception does not change. When this vibrator is used as a resonator, the resonance frequency is f 0 = 2v / H, and the resonance frequency does not change. Therefore, in the filter using this transducer, the resonator type filter using this resonator, and the sensor device, the operating center frequency of these devices is determined by the film thickness and propagation speed of the vibrator, so the application is limited. Is done.

一方、動作中心周波数を変える方法として、送受弾性波変換器全体に可変容量を付加する方法が提案されている。    On the other hand, as a method of changing the operation center frequency, a method of adding a variable capacitance to the entire transmitting / receiving elastic wave transducer has been proposed.

この方法は、可変周波数範囲が狭いこと、変換器の特性が大きく劣化すること、振動子のQが低下すること、中心周波数はほとんど変化しないことなど難点がある。  This method has drawbacks such that the variable frequency range is narrow, the characteristics of the converter are greatly deteriorated, the Q of the vibrator is lowered, and the center frequency hardly changes.

発明が解決しようとする課題Problems to be solved by the invention

上記に示した如く、これまでの可変周波数弾性波変換器は、送受電極に直列或いは並列にインピーダンスを接続し、そのインピーダンスを変化させることにより動作中心周波数を変化させる方法を用いているため、圧電基板の電気機械結合係数の低下、Q特性の劣化、中心周波数がほとんど変化しないことなどの欠陥がある。    As described above, the conventional variable frequency acoustic wave transducers use a method of changing the operating center frequency by connecting impedance in series or parallel to the transmitting and receiving electrodes and changing the impedance. There are defects such as a decrease in the electromechanical coupling coefficient of the substrate, deterioration of the Q characteristic, and the center frequency hardly changing.

また、所望の中心動作周波数の変化を得るため、大きなインピーダンスの変化が必要である、などの欠陥がある。    In addition, there is a defect that a large change in impedance is necessary to obtain a desired change in the center operating frequency.

発明が解決するための手段Means for Solving the Invention

本発明は上述したごとき従来の可変周波数変換器の欠陥を除去すべくなされたものであって、デバイスの製造工程が簡易、かつ簡易な外部回路を用いることにより、大きな可変周波数範囲を得るものである。    The present invention has been made to eliminate the defects of the conventional variable frequency converter as described above, and the device manufacturing process is simple and a large variable frequency range is obtained by using a simple external circuit. is there.

発明の効果Effect of the invention

本発明の弾性波変換器は、弾性波変換器を2個以上コリニヤに配置した構造の変換器において、一方を入出力電極、他方をインピーダンス素子を接続し、そのインピーダンスを変化させることにより、弾性波変換器中を伝搬する弾性波の速度を変化させることにより、中心周波数を変化させた弾性波変換器、及び励振電界と並列に可変インピーダンスを挿入し、厚さ方向に伝搬する面内の平均の伝搬速度を変化させることにより、共振中心周波数を変化させる方法、及び厚さを変化させた傾斜型弾性波共振の励振位置を変化させることにより共振周波数を変化させた可変周波数共振器を得ることができる。このような可変周波数変換器を用いることにより、、可変周波数共振器、フィルタ、可変周波数発振器、センサーなどが得られる。
図11は、付加したインピーダンスの変化により弾性波の速度が変化することを示す図である。挿入したインピーダンスに可変電圧を印加し、その電圧の変化によりインピーダンスが変化することにより、その伝搬速度を変化させる方法であり、この場合は、容量が零付近では、伝搬速度は、ほぼオープンの速度、4000m/s,容量が大きくなるにつれて、速度が低下し、無限大に近い値では、その速度は、短絡の速度、3900m/sまで低下することを示している。この容量の変化を用いて、弾性波変換器中を伝搬する速度を変化させることができる。
また、図1、図2、図3、図4の構造では、共振状態では、励振電極下では、その振動速度は、短絡の速度(Vs)であり、一方可変インピーダンス下の速度は、インピーダンス短絡の条件では、その振動速度は、短絡の速度(Vs)となるので、全体の共振速度は、(Vs+Vs)/2=Vsとなる。一方、インピーダンス開放の条件では、その振動速度は、開放の速度(Vf)となるので、全体の共振速度は(Vs+Vf)/2となる。したがって、インピーダンス短絡の条件では、共振周波数は、f0s=(Vs/λ)、一方、インピーダンス開放の条件では、共振周波数は、f0f=(Vs+Vf)/2λ(H=λ/2)となる。
また、インピーダンスが、開放と短絡の中間の値ではf0sとf0fの中間の値が得られる。
また、図5、図6の構造では、共振状態では励振直下の伝搬速度は、短絡速度であるが、インピーダンスに接続された電極直下の速度はインピーダンス開放状態では、開放状態の速度となるので、共振状態で全体の共振速度は(Vs+Vf)/2となるので、インピーダンスの変化により、共振周波数が変化する。
また、図7、図8の構造では、共振状態では、励振電極を可変インピーダンスに接続した電極とすることにより、インピーダンスの変化により傾斜型共振器の最大励振電界の中心が、傾斜型電極上を移動し、共振状態は、最大電界の位置を中心に共振するので、可変インピーダンスの変化により、共振周波数が変化する弾性波共振器が得られる。また、図9、図10の構造では、インピーダンスの変化により、基板中の速度が変化するので、共振周波数を変化させた共振器が得られる
図12は、図2の構造の板波共振器のインピーダンスの変化に対する共振周波数のシフトを示す計算結果であり、電気機械結合係数k2=0.3の場合、約15%の周波数変化が得られていることが判る。
The elastic wave transducer of the present invention is a transducer having a structure in which two or more elastic wave transducers are arranged in a collier. One is connected to an input / output electrode, the other is connected to an impedance element, and the impedance is changed. By changing the velocity of the elastic wave propagating in the wave converter, the elastic wave converter with the center frequency changed and the variable impedance inserted in parallel with the excitation electric field, the average in the plane propagating in the thickness direction To change the resonance center frequency by changing the propagation speed of the laser, and to obtain a variable frequency resonator in which the resonance frequency is changed by changing the excitation position of the inclined elastic wave resonance whose thickness is changed Can do. By using such a variable frequency converter, a variable frequency resonator, a filter, a variable frequency oscillator, a sensor, and the like can be obtained.
FIG. 11 is a diagram showing that the velocity of the elastic wave changes due to the change of the added impedance. This is a method of changing the propagation speed by applying a variable voltage to the inserted impedance and changing the impedance by changing the voltage. In this case, when the capacitance is near zero, the propagation speed is almost an open speed. 4000 m / s, the speed decreases as the capacity increases. At a value close to infinity, the speed decreases to a short-circuit speed of 3900 m / s. The change in capacitance can be used to change the speed of propagation through the acoustic wave converter.
1, 2, 3, and 4, in the resonance state, under the excitation electrode, the vibration speed is the short-circuit speed (Vs), while the speed under the variable impedance is the impedance short-circuit. Under this condition, the vibration speed is the short-circuit speed (Vs), and the overall resonance speed is (Vs + Vs) / 2 = Vs. On the other hand, under the condition of open impedance, the vibration speed is the open speed (Vf), and the overall resonance speed is (Vs + Vf) / 2. Therefore, the resonance frequency is f 0s = (Vs / λ 0 ) under the impedance short-circuit condition, while the resonance frequency is f 0f = (Vs + Vf) / 2λ (H = λ / 2) under the impedance release condition. Become.
Further, when the impedance is an intermediate value between open and short, an intermediate value between f0s and f0f is obtained.
In the structure of FIGS. 5 and 6, the propagation speed immediately under the excitation is the short-circuit speed in the resonance state, but the speed immediately below the electrode connected to the impedance is the speed in the open state in the impedance open state. Since the overall resonance speed is (Vs + Vf) / 2 in the resonance state, the resonance frequency changes due to a change in impedance.
7 and 8, in the resonance state, the excitation electrode is an electrode connected to a variable impedance, so that the center of the maximum excitation electric field of the gradient resonator is changed over the gradient electrode due to a change in impedance. Since the resonance state moves and resonates around the position of the maximum electric field, an elastic wave resonator whose resonance frequency changes due to a change in variable impedance is obtained. Further, in the structures of FIGS. 9 and 10, since the speed in the substrate changes due to the change of impedance, a resonator having a changed resonance frequency can be obtained. FIG. 12 shows the plate wave resonator having the structure of FIG. This is a calculation result showing the shift of the resonance frequency with respect to the change in impedance. It can be seen that when the electromechanical coupling coefficient k2 = 0.3, a frequency change of about 15% is obtained.

圧電振動子基板上に圧電薄膜振動子を付着させた構造の弾性波共振器の図である。(A)断面図、(B)平面図FIG. 4 is a diagram of an acoustic wave resonator having a structure in which a piezoelectric thin film vibrator is attached on a piezoelectric vibrator substrate. (A) Sectional view, (B) Plan view 圧電振動子基板上に圧電基板振動子を付着させた構造の弾性波共振器の図である。(A)断面図、(B)平面図FIG. 4 is a diagram of an acoustic wave resonator having a structure in which a piezoelectric substrate vibrator is attached on a piezoelectric vibrator substrate. (A) Sectional view, (B) Plan view ギャップ構造の圧電薄膜共振器において、圧電薄膜振動子上に圧電薄膜振動子を付着させた構造の弾性波薄膜共振器の図である。g (A)断面図、(B)平面図FIG. 4 is a diagram of an acoustic wave thin film resonator having a structure in which a piezoelectric thin film resonator is attached on a piezoelectric thin film resonator in a gap structure piezoelectric thin film resonator. g (A) Sectional view, (B) Plan view 反射器型圧電薄膜共振器において、圧電薄膜振動子上に圧電薄膜振動子を付着させた構造の弾性波薄膜共振器の図である。g (A)断面図、(B)平面図FIG. 2 is a diagram of an acoustic wave thin film resonator having a structure in which a piezoelectric thin film resonator is attached on a piezoelectric thin film resonator in a reflector type piezoelectric thin film resonator. g (A) Sectional view, (B) Plan view 圧電基板或いは圧電薄膜基板を用いた振動子において、基板面に2種類の電極を配置した構造の圧電基板共振器、薄膜共振器の図である。(A)断面図、(B)平面図FIG. 4 is a diagram of a piezoelectric substrate resonator and a thin film resonator having a structure in which two types of electrodes are arranged on a substrate surface in a vibrator using a piezoelectric substrate or a piezoelectric thin film substrate. (A) Sectional view, (B) Plan view 圧電基板或いは圧電薄膜基板を用いた振動子において、基板面に円筒状の2種類の電極を配置した構造の圧電基板共振器、薄膜共振器の図である。(A)断面図、(B)平面図FIG. 3 is a diagram of a piezoelectric substrate resonator and a thin film resonator having a structure in which two types of cylindrical electrodes are arranged on a substrate surface in a vibrator using a piezoelectric substrate or a piezoelectric thin film substrate. (A) Sectional view, (B) Plan view 傾斜型圧電基板或いは圧電薄膜基板を用いた振動子において、基板面に2種類の電極を配置した構造の圧電基板共振器、薄膜共振器の図である。(A)断面図、(B)平面図FIG. 2 is a diagram of a piezoelectric substrate resonator and a thin film resonator having a structure in which two types of electrodes are arranged on a substrate surface in a vibrator using an inclined piezoelectric substrate or a piezoelectric thin film substrate. (A) Sectional view, (B) Plan view 傾斜型圧電基板或いは圧電薄膜基板を用いた振動子において、基板面に2種類の電極を配置した構造の圧電基板共振器、薄膜共振器の図である。(A)断面図、(B)平面図FIG. 2 is a diagram of a piezoelectric substrate resonator and a thin film resonator having a structure in which two types of electrodes are arranged on a substrate surface in a vibrator using an inclined piezoelectric substrate or a piezoelectric thin film substrate. (A) Sectional view, (B) Plan view ラム波、SH型の圧電基板、薄膜振動子において、基板面に2種類の電極を交互に配置した構造の圧電基板共振器、薄膜共振器の図である。(A)断面図、(B)平面図FIG. 2 is a diagram of a piezoelectric substrate resonator and a thin film resonator having a structure in which two types of electrodes are alternately arranged on a substrate surface in a Lamb wave, SH type piezoelectric substrate, and a thin film vibrator. (A) Sectional view, (B) Plan view ラム波、SH型の圧電基板、薄膜振動子において、基板面の中央に励振電極、両側に反射器を配置した構造の圧電基板共振器、薄膜共振器の図である。(A)断面図、(B)平面図FIG. 2 is a diagram of a piezoelectric substrate resonator and a thin film resonator having a structure in which an excitation electrode is arranged at the center of the substrate surface and reflectors are arranged on both sides in a Lamb wave, SH type piezoelectric substrate and thin film resonator. (A) Sectional view, (B) Plan view 電極間に接続した容量の変化に対する伝搬速度の変化を示す図である。It is a figure which shows the change of the propagation speed with respect to the change of the capacity | capacitance connected between electrodes. 図2の構造の板波可変共振器の電気機械結合係数k=0.3の場合の容量の変化に対する共振中心周波数の変化を示す図である。Is a diagram illustrating a change in the resonance center frequency to changes in capacitance when the electromechanical coupling coefficient k 2 = 0.3 plate wave variable resonator of the structure of FIG.

1…圧電基板或いは圧電薄膜、1−1…圧電基板、1−2…圧電薄膜、2…接地電極及びアース取り出し電極、2−1…アースすだれ電極,3…接地電極、4…送受電極に接続した電極、5…インピーダンスに接続した電極、6…電源、7…負荷インピーダンス、8…可変負荷インピーダンス、10…固定付加インピーダンス、11…傾斜型圧電基板或いは圧電薄膜基板、12…円筒型圧電基板或るいは圧電薄膜基板、13…基板、14…空隙、15…基板、16…反射器、17…反射器、18…全体の反射器、19…弾性波伝搬速度、20…開放の速度、21…短絡の速度、22…容量の変化、23…容量の減少方向DESCRIPTION OF SYMBOLS 1 ... Piezoelectric substrate or piezoelectric thin film, 1-1 ... Piezoelectric substrate, 1-2 ... Piezoelectric thin film, 2 ... Ground electrode and earth extraction electrode, 2-1 ... Grounding electrode, 3 ... Ground electrode, 4 ... Connection to transmission / reception electrode 5 ... electrodes connected to impedance, 6 ... power source, 7 ... load impedance, 8 ... variable load impedance, 10 ... fixed additional impedance, 11 ... inclined piezoelectric substrate or piezoelectric thin film substrate, 12 ... cylindrical piezoelectric substrate, Or piezoelectric thin film substrate, 13 ... substrate, 14 ... air gap, 15 ... substrate, 16 ... reflector, 17 ... reflector, 18 ... overall reflector, 19 ... elastic wave propagation velocity, 20 ... opening velocity, 21 ... Short-circuit speed, 22 ... change in capacity, 23 ... direction of decrease in capacity

以下に、本発明を図面に示した実施例に基づいて説明する。
実施例の1は、図1のように、圧電基板上に圧電薄膜を付着させた弾性波共振器において、圧電基板及び圧電薄膜中を板の厚さ方向に伝搬する縦波、SH波を用いた薄膜共振器であり、圧電薄膜1−2の上下面に送受電極4とアース電極2を接続した弾性波振動子と圧電基板1−1の上下面にアース電極2と可変インピーダンスを接続した電極5からなる弾性波振動子をコリニヤに弾性的に結合した2層構造の弾性波薄膜共振器、及び圧電薄膜をインピーダンスに接続し、圧電基板を送受電極に接続した構造の共振器、及びこれらの共振器を多層に接続した構造の弾性波薄膜共振器、及びこれらの共振器を用いた電子装置が実施例の1である。
実施例の2は、図2のように、圧電基板上に圧電基板を付着させた弾性波共振器において、圧電板中を板の厚さ方向に伝搬する縦波、SH波を用いた板波共振器であり、圧電基板1−1の上下面にアース電極2と、圧電送受信電極4を接続した弾性波振動子と圧電基板1−1の上下面にアース電極2と可変インピーダンス8を接続した電極5からなる弾性波振動子をコリニヤに弾性的に結合した、2層構造の弾性波共振器、及びこれらの共振器を多層に接続した構造の弾性波共振器およびこの共振器を用いた電子装置が実施例の2である。
実施例の3は、図3のように、圧電薄膜中を薄膜の厚さ方向に伝搬する縦波、SH波を用いた薄膜共振器において、基板13の表面にギャップ14を介して、圧電薄膜1−2の上下面にアース電極2と、圧電送受信電極4を接続した弾性波薄膜振動子と圧電薄膜1−2の上下面にアース電極2と可変インピーダンス8を接続した電極5からなる弾性波振動子をコリニヤに弾性的に結合した2層構造の弾性波薄膜共振器、及びこれらの共振器を多層に接続した構造の弾性波薄膜共振器およびこの共振器を用いた電子装置が実施例の3である。
実施例の4は、図4のように、圧電薄膜中を薄膜の厚さ方向に伝搬する縦波、SH波を用いた薄膜共振器において、基板15の表面に付着した弾性波反射器表面上に送受電極電極に接続した圧電薄膜振動子と圧電薄膜1−2の上下面にアース電極2と可変インピーダンス8を接続した電極5からなる弾性波振動子をコリニヤに弾性的に結合した、2層構造の弾性波薄膜共振器、及びこれらの共振器を多層に接続した構造の弾性波薄膜共振器およびこの共振器を用いた電子装置が実施例の4である。
実施例の5は、図5,6のように、圧電板或いは圧電薄膜中を板の厚さ方向に伝搬するSH波、縦波を用いた板波共振器或いは薄膜共振器において、圧電基板或いは圧電薄膜1の上下面にアース電極2、及び送受信電極4を接続した電極とアース電極2と可変インピーダンスを接続した電極5を配置した構造の可変周波数弾性波共振器及びこれらの共振器を用いた電子装置が、実施例の5である。
実施例の6は、図7、8のように、圧電板或いは圧電薄膜中を板の厚さ方向に伝搬するSH波、縦波を用いた傾斜型圧電基板或いは傾斜型圧電薄膜を用いた板波共振器或いは薄膜共振器において、圧電基板或いは圧電薄膜11の上下面にアース電極2、及び送受信電極4を接続した電極とアース電極2と可変インピーダンスを接続した電極5を配置した構造の傾斜型板波共振器或いは傾斜型薄膜共振器とこれらの共振器を用いた電子装置が実施例の6である。
実施例の7は、図9のように、圧電板或いは圧電薄膜中を板の平行方向に伝搬するラム波、SH波を用いた板波共振器或いは薄膜共振器において、基板或いは薄膜の上下面に、正電極5と負電極2−1との間隔がλ/2,その電極幅がλ/4のすだれ状電極を2個コリニヤに配置し、取り出し電極2、4を入出力端子に接続し、一方の取り出し電極2,4を可変インピーダンス素子に接続した構造の弾性波共振器変換器及び共振器とこれらの変換器を用いた電子装置が実施例の7である。
実施例の8は、図10のように、圧電板或いは圧電薄膜中を板の平行方向に伝搬するラム波、SH波を板波共振器或いは薄膜共振器において、基板或いは薄膜の上下面に、正電極5と負電極2−1との間隔がλ/2,その電極幅がλ/4のすだれ状電極を取り出し電極2、4に接続したすだれ状電極とその両側に間隔がλ/2,その電極幅がλ/4のすだれ状電極2,5を可変インピーダンス素子に接続した反射器をコリニヤに配置した構造の弾性波共振器変換器及び共振器とこれらの変換器を用いた電子装置が、実施例の8である。
実施例の9は、許請求の範囲、第1項、第2項、第3項、第4項,第5項、第6項,第7項、第8項の共振器を振動子として用い、弾性体の両側にこれらの振動子を付着させた弾性波送受デバイスおよびこの出さ椅子を用いた電子装置が実施例の9である。
実施例の10は、実施例の9は、特許請求の範囲、第1項、第2項、第3項、第4項,第5項、第6項,第7項、第8項において、上記の電極及び金属膜としてAl,Cu,Mo、Au,Ag,W,Ti、或いはこれらの合金、また上記の圧電薄膜として、KNbO3,LiNbO3,LiTaO3,ZnO,SiO2,AlN,AlNSc,Ta2O5,PZT,強誘電体薄膜、電極上に誘電体膜として、SiO2,SiO,ZnO,LiNbO3,Ta2O5,PZT,ガラスの薄膜を付着させた構造の可変周波数変換器及びこれを用いた電子装置が、実施例の10である。
上記の可変周波数共振器は、λ/2共振をを基準としたが、λ/2のn倍の共振器及び(n±1/2)倍の共振器も本特許に含まれる。また、この共振器を振動子として用い、弾性体の両側にこの振動子を用いた遅延線、フィルター、可変周波数発振器、センサー、スペクトル拡散信号処理デバイスーも本特許に含まれる。
In the following, the present invention will be described based on embodiments shown in the drawings.
In Example 1, as shown in FIG. 1, in an acoustic wave resonator in which a piezoelectric thin film is attached on a piezoelectric substrate, longitudinal waves and SH waves propagating in the thickness direction of the plate through the piezoelectric substrate and the piezoelectric thin film are used. The thin-film resonator includes an elastic wave vibrator in which the transmitting / receiving electrode 4 and the earth electrode 2 are connected to the upper and lower surfaces of the piezoelectric thin film 1-2, and an electrode in which the earth electrode 2 and a variable impedance are connected to the upper and lower surfaces of the piezoelectric substrate 1-1. A two-layered acoustic wave thin film resonator in which an elastic wave vibrator comprising 5 is elastically coupled to a coriner, a resonator having a structure in which a piezoelectric thin film is connected to an impedance, and a piezoelectric substrate is connected to a transmission / reception electrode; An elastic wave thin film resonator having a structure in which resonators are connected in multiple layers, and an electronic device using these resonators are the first embodiment.
In Example 2, as shown in FIG. 2, in an acoustic wave resonator in which a piezoelectric substrate is attached to a piezoelectric substrate, a plate wave using longitudinal waves and SH waves propagating in the thickness direction of the plate through the piezoelectric plate. It is a resonator, and the ground electrode 2 and the piezoelectric wave transmitting / receiving electrode 4 are connected to the upper and lower surfaces of the piezoelectric substrate 1-1. The earth electrode 2 and the variable impedance 8 are connected to the upper and lower surfaces of the piezoelectric substrate 1-1. An acoustic wave resonator having an electrode 5 elastically coupled to a collier, an acoustic wave resonator having a two-layer structure, an acoustic wave resonator having a structure in which these resonators are connected in multiple layers, and an electron using the resonator The apparatus is the second embodiment.
In Example 3, as shown in FIG. 3, in a thin film resonator using longitudinal waves and SH waves propagating in the thickness direction of the thin film in the piezoelectric thin film, the piezoelectric thin film is formed through the gap 14 on the surface of the substrate 13. An elastic wave comprising an elastic wave thin film vibrator having an earth electrode 2 and a piezoelectric transmitting / receiving electrode 4 connected to the upper and lower surfaces of 1-2, and an electrode 5 having an earth electrode 2 and a variable impedance 8 connected to the upper and lower surfaces of the piezoelectric thin film 1-2. The two-layered acoustic wave thin film resonator in which the vibrator is elastically coupled to the corinier, the acoustic wave thin film resonator having a structure in which these resonators are connected in multiple layers, and the electronic device using the resonator are examples of the embodiments. 3.
As shown in FIG. 4, the fourth embodiment is a thin film resonator using longitudinal waves and SH waves propagating in the thickness direction of the thin film in the piezoelectric thin film, on the surface of the elastic wave reflector attached to the surface of the substrate 15. A two-layer structure in which an elastic wave vibrator comprising a piezoelectric thin film vibrator connected to a transmission / reception electrode electrode and an electrode 5 having a ground electrode 2 and a variable impedance 8 connected to the upper and lower surfaces of the piezoelectric thin film 1-2 is elastically coupled to a collier. Example 4 includes an acoustic wave thin film resonator having a structure, an acoustic wave thin film resonator having a structure in which these resonators are connected in multiple layers, and an electronic device using the resonator.
5 and 6, a plate wave resonator or thin film resonator using an SH wave or longitudinal wave propagating in the thickness direction of the piezoelectric plate or piezoelectric thin film as shown in FIGS. A variable frequency acoustic wave resonator having a structure in which an electrode connected to the ground electrode 2 and the transmitting / receiving electrode 4 and an electrode 5 connected to the ground electrode 2 and a variable impedance are arranged on the upper and lower surfaces of the piezoelectric thin film 1 and these resonators are used. The electronic device is Example 5.
In Example 6, as shown in FIGS. 7 and 8, a plate using an inclined piezoelectric substrate or an inclined piezoelectric thin film using SH waves and longitudinal waves propagating in the thickness direction of the plate through the piezoelectric plate or piezoelectric thin film. In a wave resonator or a thin film resonator, an inclined type having a structure in which a ground electrode 2, an electrode connected to the transmitting / receiving electrode 4, and an electrode 5 connected to the ground electrode 2 and a variable impedance are arranged on the upper and lower surfaces of the piezoelectric substrate or the piezoelectric thin film 11. A plate wave resonator or an inclined thin film resonator and an electronic device using these resonators are the sixth embodiment.
As shown in FIG. 9, the seventh embodiment is a plate wave resonator or thin film resonator using Lamb waves or SH waves propagating in the direction parallel to the piezoelectric plate or piezoelectric thin film. In addition, two interdigital electrodes having a spacing of λ / 2 between the positive electrode 5 and the negative electrode 2-1 and an electrode width of λ / 4 are arranged in a collier, and the extraction electrodes 2 and 4 are connected to the input / output terminals. An elastic wave resonator transducer having a structure in which one extraction electrode 2 or 4 is connected to a variable impedance element and a resonator and an electronic device using these transducers are the seventh embodiment.
In Example 8, as shown in FIG. 10, Lamb waves and SH waves propagating in the parallel direction of the piezoelectric plate or piezoelectric thin film are applied to the upper and lower surfaces of the substrate or thin film in the plate wave resonator or thin film resonator. The gap between the positive electrode 5 and the negative electrode 2-1 is λ / 2, the interdigital electrode whose electrode width is λ / 4 is taken out and connected to the electrodes 2 and 4, and the distance between both sides is λ / 2. An acoustic wave resonator transducer having a structure in which a reflector in which interdigital electrodes 2 and 5 having an electrode width of λ / 4 are connected to a variable impedance element is arranged in a collier, and an electronic device using these transducers are provided. 8 of the example.
The ninth embodiment uses the resonator according to the claims, the first term, the second term, the third term, the fourth term, the fifth term, the sixth term, the seventh term, and the eighth term as a vibrator. An elastic wave transmitting / receiving device in which these vibrators are attached to both sides of an elastic body and an electronic apparatus using the extended chair are the ninth embodiment.
10 of the embodiment, 9 of the embodiment in the claims, 1st term, 2nd term, 3rd term, 4th term, 5th term, 6th term, 7th term, 8th term, Al, Cu, Mo, Au, Ag, W, Ti or an alloy thereof as the electrode and metal film, and KNbO3, LiNbO3, LiTaO3, ZnO, SiO2, AlN, AlNSc, Ta2O5, PZT as the piezoelectric thin film. , A ferroelectric thin film, a variable frequency converter having a structure in which a thin film of SiO2, SiO, ZnO, LiNbO3, Ta2O5, PZT, or glass is attached as a dielectric film on an electrode, and an electronic device using the same Of 10.
The above-described variable frequency resonator is based on λ / 2 resonance, but n times the resonator of λ / 2 and (n ± 1/2) times the resonator are also included in this patent. Further, a delay line, a filter, a variable frequency oscillator, a sensor, and a spread spectrum signal processing device using this resonator as a vibrator and using the vibrator on both sides of an elastic body are also included in this patent.

Claims (10)

図1のように、圧電基板上に圧電薄膜を付着させた弾性波共振器において、圧電基板及び圧電薄膜中を板の厚さ方向に伝搬する縦波、SH波を用いた薄膜共振器であり、圧電薄膜1−2の上下面に送受電極4とアース電極2を接続した弾性波振動子と圧電基板1−1の上下面にアース電極2と可変インピーダンスを接続した電極5からなる弾性波振動子をコリニヤに弾性的に結合した2層構造の弾性波薄膜共振器、及び圧電薄膜をインピーダンスに接続し、圧電基板を送受電極に接続した構造の共振器、及びこれらの共振器を多層に接続した構造の弾性波薄膜共振器、及びこれらのこの共振器を用いた電子装置。As shown in FIG. 1, in an acoustic wave resonator in which a piezoelectric thin film is attached on a piezoelectric substrate, the thin film resonator uses longitudinal waves and SH waves propagating in the thickness direction of the plate through the piezoelectric substrate and the piezoelectric thin film. An elastic wave vibration comprising an elastic wave vibrator in which the transmitting / receiving electrode 4 and the earth electrode 2 are connected to the upper and lower surfaces of the piezoelectric thin film 1-2, and an electrode 5 in which the earth electrode 2 and the variable impedance are connected to the upper and lower surfaces of the piezoelectric substrate 1-1. A two-layered acoustic wave thin film resonator in which a child is elastically coupled to a corinier, a resonator in which a piezoelectric thin film is connected to an impedance, and a piezoelectric substrate is connected to a transmitting / receiving electrode, and these resonators are connected in multiple layers And an electronic device using these resonators. 図2のように、圧電基板上に圧電基板を付着させた弾性波共振器において、圧電板中を板の厚さ方向に伝搬する縦波、SH波を用いた板波共振器であり、、圧電基板1−1の上下面にアース電極2と、圧電送受信電極4を接続した弾性波振動子と圧電基板1−1の上下面にアース電極2と可変インピーダンス8を接続した電極5からなる弾性波振動子をコリニヤに弾性的に結合した、2層構造の弾性波共振器、及びこれらの共振器を多層に接続した構造の弾性波共振器およびこの共振器を用いた電子装置。As shown in FIG. 2, in an acoustic wave resonator in which a piezoelectric substrate is attached on a piezoelectric substrate, a plate wave resonator using longitudinal waves and SH waves propagating in the thickness direction of the plate in the piezoelectric plate, Elasticity composed of an elastic wave vibrator having a ground electrode 2 and a piezoelectric transmitting / receiving electrode 4 connected to the upper and lower surfaces of the piezoelectric substrate 1-1, and an electrode 5 having a ground electrode 2 and a variable impedance 8 connected to the upper and lower surfaces of the piezoelectric substrate 1-1. An elastic wave resonator having a two-layer structure in which a wave oscillator is elastically coupled to a coriner, an elastic wave resonator having a structure in which these resonators are connected in multiple layers, and an electronic device using the resonator. 図3のように、圧電薄膜中を薄膜の厚さ方向に伝搬する縦波、SH波を用いた薄膜共振器において、基板13の表面にギャップ14を介して、圧電薄膜1−2の上下面にアース電極2と、圧電送受信電極4を接続した弾性波薄膜振動子と圧電薄膜1−2の上下面にアース電極2と可変インピーダンス8を接続した電極5からなる弾性波振動子をコリニヤに弾性的に結合した2層構造の弾性波薄膜共振器、及びこれらの共振器を多層に接続した構造の弾性波薄膜共振器およびこの共振器を用いた電子装置。As shown in FIG. 3, in a thin film resonator using longitudinal waves and SH waves propagating in the thickness direction of the thin film in the piezoelectric thin film, the upper and lower surfaces of the piezoelectric thin film 1-2 are interposed on the surface of the substrate 13 via the gap 14. An elastic wave vibrator composed of an elastic wave thin film vibrator having a ground electrode 2 and a piezoelectric transmitting / receiving electrode 4 connected to each other and an electrode 5 having a ground electrode 2 and a variable impedance 8 connected to the upper and lower surfaces of the piezoelectric thin film 1-2 is elastically elastic. Two-layer structure acoustic wave thin film resonators, and an acoustic wave thin film resonator having a structure in which these resonators are connected in multiple layers, and an electronic device using the resonator. 図4のように、圧電薄膜中を薄膜の厚さ方向に伝搬する縦波、SH波を用いた薄膜共振器において、基板15の表面に付着した弾性波反射器表面上に送受電極電極に接続した圧電薄膜振動子と圧電薄膜1−2の上下面にアース電極2と可変インピーダンス8を接続した電極5からなる弾性波振動子をコリニヤに弾性的に結合した、2層構造の弾性波薄膜共振器、及びこれらの共振器を多層に接続した構造の弾性波薄膜共振器およびこの共振器を用いた電子装置。As shown in FIG. 4, in a thin film resonator using longitudinal waves and SH waves propagating in the thickness direction of the thin film in the piezoelectric thin film, it is connected to the transmission / reception electrode electrodes on the surface of the elastic wave reflector attached to the surface of the substrate 15 An elastic wave thin film resonance having a two-layer structure in which an elastic wave vibrator comprising an electrode 5 having a ground electrode 2 and a variable impedance 8 connected to the upper and lower surfaces of the piezoelectric thin film vibrator 1-2 and the piezoelectric thin film 1-2 is elastically coupled to a corinier. , An acoustic wave thin film resonator having a structure in which these resonators are connected in multiple layers, and an electronic device using the resonator. 、図5,6のように、圧電板或いは圧電薄膜中を板の厚さ方向に伝搬するSH波、縦波を用いた板波共振器或いは薄膜共振器において、圧電基板或いは圧電薄膜1の上下面にアース電極2、及び送受信電極4を接続した電極とアース電極2と可変インピーダンスを接続した電極5を配置した構造の可変周波数弾性波共振器及びこれらの共振器を用いた電子装置。5 and 6, in a plate wave resonator or thin film resonator using an SH wave or longitudinal wave propagating in the thickness direction of the piezoelectric plate or piezoelectric thin film, A variable frequency acoustic wave resonator having a structure in which an electrode connected to a ground electrode 2 and a transmission / reception electrode 4 and an electrode 5 connected to the ground electrode 2 and a variable impedance are arranged on the lower surface, and an electronic device using these resonators. 図7、8のように、圧電板或いは圧電薄膜中を板の厚さ方向に伝搬するSH波、縦波を用いた傾斜型圧電基板或いは傾斜型圧電薄膜を用いた板波共振器或いは薄膜共振器において、圧電基板或いは圧電薄膜11の上下面にアース電極2、及び送受信電極4を接続した電極とアース電極2と可変インピーダンスを接続した電極5を配置した構造の傾斜型板波共振器或いは傾斜型薄膜共振器とこれらの共振器を用いた電子装置。As shown in FIGS. 7 and 8, a plate wave resonator or thin film resonance using a tilted piezoelectric substrate or a tilted piezoelectric thin film using a SH wave or longitudinal wave propagating in the thickness direction of the plate or piezoelectric thin film. The inclined plate wave resonator or the inclined structure having the structure in which the ground electrode 2 and the electrode 5 connected to the transmitting / receiving electrode 4 and the electrode 5 connected to the ground electrode 2 and the variable impedance are arranged on the upper and lower surfaces of the piezoelectric substrate or the piezoelectric thin film 11 Type thin film resonators and electronic devices using these resonators. 図9のように、圧電板或いは圧電薄膜中を板の平行方向に伝搬するラム波、SH波を用いた板波共振器或いは薄膜共振器において、基板或いは薄膜の上下面に、正電極5と負電極2−1との間隔がλ/2,その電極幅がλ/4のすだれ状電極を2個コリニヤに配置し、取り出し電極2、4を入出力端子に接続し、一方の取り出し電極2,4を可変インピーダンス素子に接続した構造の弾性波共振器変換器及び共振器とこれらの変換器を用いた電子装置。As shown in FIG. 9, in a plate wave resonator or thin film resonator using Lamb wave or SH wave propagating in a piezoelectric plate or piezoelectric thin film in the parallel direction of the plate, positive and negative electrodes 5 and Two interdigital electrodes having an interval of λ / 2 from the negative electrode 2-1 and an electrode width of λ / 4 are arranged in a corridor, the extraction electrodes 2 and 4 are connected to an input / output terminal, and one extraction electrode 2 , 4 are connected to a variable impedance element, an acoustic wave resonator transducer and a resonator, and an electronic device using these transducers. 図10のように、圧電板或いは圧電薄膜中を板の平行方向に伝搬するラム波、SH波を板波共振器或いは薄膜共振器において、基板或いは薄膜の上下面に、正電極5と負電極2−1との間隔がλ/2,その電極幅がλ/4のすだれ状電極を取り出し電極2、4に接続したすだれ状電極とその両側に間隔がλ/2,その電極幅がλ/4のすだれ状電極2,5を可変インピーダンス素子に接続した反射器をコリニヤに配置した構造の弾性波共振器変換器及び共振器とこれらの変換器を用いた電子装置。As shown in FIG. 10, a positive electrode 5 and a negative electrode are formed on the upper and lower surfaces of a substrate or thin film in a plate wave resonator or thin film resonator in a Lamb wave or SH wave propagating in the direction parallel to the piezoelectric plate or piezoelectric thin film. 2-1 is the interdigital electrode having an interval of λ / 2 and an electrode width of λ / 4, and the interdigital electrode connected to the electrodes 2 and 4 is spaced on both sides by an interval of λ / 2 and the electrode width is λ / 4. An acoustic wave resonator transducer having a structure in which a reflector having four interdigital electrodes 2 and 5 connected to a variable impedance element is arranged in a collier, and an electronic device using these transducers. 許請求の範囲、第1項、第2項、第3項、第4項,第5項、第6項,第7項、第8項の共振器を振動子として用い、弾性体の両側にこれらの振動子を付着させた弾性波送受デバイスおよびこのデバイスを用いた電子装置。The resonators of claims 1, 2nd, 3rd, 4th, 5th, 6th, 7th and 8th are used as vibrators on both sides of the elastic body. An elastic wave transmitting / receiving device to which these vibrators are attached and an electronic apparatus using the device. 特許請求の範囲、第1項、第2項、第3項、第4項,第5項、第6項,第7項、第8項、第9項において、上記の電極及び金属膜としてAl,Cu,Mo、Au,Ag,W,Ti、或いはこれらの合金、また上記の圧電薄膜として、KNbO3,LiNbO3,LiTaO3,ZnO,SiO2,AlN,AlNSc,Ta2O5,PZT,強誘電体薄膜、電極上に誘電体膜として、SiO2,SiO,ZnO,LiNbO3,Ta2O5,PZT,ガラスの薄膜を付着させた構造の可変周波数変換器及びこれを用いた電子装置。In the claims, the first term, the second term, the third term, the fourth term, the fifth term, the sixth term, the seventh term, the eighth term, and the ninth term, the electrode and the metal film are made of Al. , Cu, Mo, Au, Ag, W, Ti, or alloys thereof, and as the piezoelectric thin film, KNbO3, LiNbO3, LiTaO3, ZnO, SiO2, AlN, AlNSc, Ta2O5, PZT, ferroelectric thin film, on electrode A variable frequency converter having a structure in which a thin film of SiO2, SiO, ZnO, LiNbO3, Ta2O5, PZT, or glass is attached as a dielectric film, and an electronic device using the same.
JP2014232144A 2013-12-28 2014-10-27 Variable frequency acoustic wave converter and electronic apparatus using the same Ceased JP2015228638A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014232144A JP2015228638A (en) 2013-12-28 2014-10-27 Variable frequency acoustic wave converter and electronic apparatus using the same
PCT/JP2015/078428 WO2016067858A1 (en) 2014-10-27 2015-10-07 Variable-frequency elastic wave transducer and electronic device using same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2013273943 2013-12-28
JP2013273943 2013-12-28
JP2014107537 2014-05-07
JP2014107537 2014-05-07
JP2014232144A JP2015228638A (en) 2013-12-28 2014-10-27 Variable frequency acoustic wave converter and electronic apparatus using the same

Publications (1)

Publication Number Publication Date
JP2015228638A true JP2015228638A (en) 2015-12-17

Family

ID=54885868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014232144A Ceased JP2015228638A (en) 2013-12-28 2014-10-27 Variable frequency acoustic wave converter and electronic apparatus using the same

Country Status (1)

Country Link
JP (1) JP2015228638A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019103083A (en) * 2017-12-07 2019-06-24 太陽誘電株式会社 Acoustic wave device and method of manufacturing the same, and multiplexer

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0936700A (en) * 1995-07-20 1997-02-07 Hitachi Ltd Surface acoustic wave delay line, communication device and communication system
JP2003289235A (en) * 2002-03-28 2003-10-10 Toshiba Corp Film piezoelectric resonator
JP2005109573A (en) * 2003-09-26 2005-04-21 Kyocera Corp Resonator and electronic apparatus
JP2007214782A (en) * 2006-02-08 2007-08-23 Asahi Kasei Electronics Co Ltd Thin-film bulk elastic wave oscillator and its manufacturing method
WO2008016075A1 (en) * 2006-08-03 2008-02-07 Panasonic Corporation Frequency-variable acoustic film resonator, filter and communication apparatus using the same
JP2009100367A (en) * 2007-10-18 2009-05-07 Murata Mfg Co Ltd Piezoelectric vibration device
WO2011093449A1 (en) * 2010-01-28 2011-08-04 株式会社村田製作所 Tunable filter
WO2012114930A1 (en) * 2011-02-25 2012-08-30 株式会社村田製作所 Tunable filter and method for manufacturing same
JP2012170040A (en) * 2011-02-15 2012-09-06 Kazuhiko Yamanouchi Surface acoustic wave unidirectional-transducer and electronic equipment

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0936700A (en) * 1995-07-20 1997-02-07 Hitachi Ltd Surface acoustic wave delay line, communication device and communication system
JP2003289235A (en) * 2002-03-28 2003-10-10 Toshiba Corp Film piezoelectric resonator
JP2005109573A (en) * 2003-09-26 2005-04-21 Kyocera Corp Resonator and electronic apparatus
JP2007214782A (en) * 2006-02-08 2007-08-23 Asahi Kasei Electronics Co Ltd Thin-film bulk elastic wave oscillator and its manufacturing method
WO2008016075A1 (en) * 2006-08-03 2008-02-07 Panasonic Corporation Frequency-variable acoustic film resonator, filter and communication apparatus using the same
JP2009100367A (en) * 2007-10-18 2009-05-07 Murata Mfg Co Ltd Piezoelectric vibration device
WO2011093449A1 (en) * 2010-01-28 2011-08-04 株式会社村田製作所 Tunable filter
JP2012170040A (en) * 2011-02-15 2012-09-06 Kazuhiko Yamanouchi Surface acoustic wave unidirectional-transducer and electronic equipment
WO2012114930A1 (en) * 2011-02-25 2012-08-30 株式会社村田製作所 Tunable filter and method for manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019103083A (en) * 2017-12-07 2019-06-24 太陽誘電株式会社 Acoustic wave device and method of manufacturing the same, and multiplexer
JP7027144B2 (en) 2017-12-07 2022-03-01 太陽誘電株式会社 Elastic wave devices and their manufacturing methods and multiplexers

Similar Documents

Publication Publication Date Title
CN111082774B (en) Bulk acoustic wave resonator having electrode with void layer, filter, and electronic device
JP4535067B2 (en) Boundary wave device manufacturing method and boundary acoustic wave device
US9172351B2 (en) Piezoelectric resonator having electrode fingers with electrode patches
US10256793B2 (en) Elastic wave detection
JP5950363B2 (en) Surface acoustic wave transducer
US9843304B2 (en) Transducer with bulk waves surface-guided by synchronous excitation structures
JP2008148338A (en) Surface acoustic wave functional element
WO2021114555A1 (en) Bulk acoustic wave resonator with electrode having void layer, filter and electronic device
US8610518B1 (en) Elastic guided wave coupling resonator filter and associated manufacturing
JP2012530388A (en) Piezoelectric resonator with two piezoelectric layers
WO2021077716A1 (en) Bulk acoustic resonator, filter, and electronic device
JP4836748B2 (en) Bulk acoustic wave resonator, filter device, and communication device
JP2015144418A5 (en) Variable frequency surface acoustic wave transducer and electronic device using the same
CN115276597A (en) Surface acoustic wave device and surface acoustic wave filter
JPS58213519A (en) Elastic surface wave device
US11863155B2 (en) Surface acoustic wave element
JP2003243966A (en) Filter circuit
WO2023071516A1 (en) Xbar filter
JP2015228638A (en) Variable frequency acoustic wave converter and electronic apparatus using the same
Santosh et al. Investigation of properties of surface acoustic waves generated by periodically patterned ZnO on silicon substrate
Ralib et al. Silicon compatible Acoustic wave resonators: Design, fabrication and performance
US11606079B2 (en) Transducer structure for source suppression in saw filter devices
JP5757339B2 (en) Tunable elastic wave device
JP2009188939A (en) Thin film bulk wave acoustic resonator
WO2016067858A1 (en) Variable-frequency elastic wave transducer and electronic device using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150817

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160328

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160531

A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20160927