JPH0936700A - Surface acoustic wave delay line, communication device and communication system - Google Patents

Surface acoustic wave delay line, communication device and communication system

Info

Publication number
JPH0936700A
JPH0936700A JP18382395A JP18382395A JPH0936700A JP H0936700 A JPH0936700 A JP H0936700A JP 18382395 A JP18382395 A JP 18382395A JP 18382395 A JP18382395 A JP 18382395A JP H0936700 A JPH0936700 A JP H0936700A
Authority
JP
Japan
Prior art keywords
acoustic wave
surface acoustic
input
delay line
communication device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18382395A
Other languages
Japanese (ja)
Inventor
Takashi Shiba
芝  隆司
Akitsuna Yuhara
章綱 湯原
Yasuhiro Ota
康博 太田
Yoshihiro Yamada
佳弘 山田
Minoru Mogi
稔 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18382395A priority Critical patent/JPH0936700A/en
Publication of JPH0936700A publication Critical patent/JPH0936700A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Small-Scale Networks (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To lower the impedance of the delay line while suppressing variation in delay time with temperature, and reduce mismatching with an external circuit by making the coefficient of electromechanical coupling of the part of an input and an output interdigital electrode part larger than that of a propagation path part. SOLUTION: For a surface acoustic wave substrate 1, ST-X crystal is used, the input interdigital electrode 3 is connected to an input terminal 2, and power source impedance 4 and a power source 5 are connected to the terminal. The output interdigital electrode 7 and load impedance 8 are connected to an output terminal 6. Then a ZnO thin film 9 which has a larger coefficient of electromechanical coupling than the ST-X crystal substrate is formed only at the parts of the input and output interdigital electrodes 3 and 7 and excellent temperature characteristics and less loss are obtained. Further, a sound absorber 10 for suppressing reflected waves from substrate end surfaces is applied. Consequently, the power consumption of a communication device is reduced highly stably.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は弾性表面波遅延線及び通
信装置及び通信システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface acoustic wave delay line, a communication device and a communication system.

【0002】[0002]

【従来の技術】従来の弾性表面波遅延線は、例えば、エ
レクトロニクスレターズ 1977年13巻19号(E
LECTRONICS LETTERS 1977 V
ol.13 No.19)の第586頁から588頁
(p.586−p.588)に記載されているように、
すだれ状電極部分と表面波伝搬部分は同一の基板をもち
いていた。
2. Description of the Related Art A conventional surface acoustic wave delay line is described in, for example, Electronics Letters, 1977, Vol.
LECTRONICS LETTERS 1977 V
ol. 13 No. 19), pp. 586 to 588 (p.586-p.588),
The interdigital electrode part and the surface wave propagating part used the same substrate.

【0003】[0003]

【発明が解決しようとする課題】通常、遅延線はその入
出力間の信号伝達遅延時間をできる限り一定としなけれ
ばならない。従って、基板材料は温度係数の小さい水晶
等の基板を用いるのが普通である。しかし、一般に、温
度係数の小さい基板材料は電気機械結合係数が小さく
(例えば、ST−X水晶は1次の温度係数が0であるこ
とが知られているが、その電気機械結合系数k2は0.
116%で、通常の表面波基板より1桁程度小さ
い。)、上述のように従来の弾性表面波遅延線では、す
だれ状電極部分と表面波伝搬部分は同一の基板を用いて
いたため、遅延線のインピーダンスが大きくなり、外部
回路とのミスマッチロスが大きくなってしまう。
Normally, the delay line must have a signal transmission delay time between its input and output as constant as possible. Therefore, a substrate such as quartz having a small temperature coefficient is usually used as the substrate material. However, generally, a substrate material having a small temperature coefficient has a small electromechanical coupling coefficient (for example, it is known that the first-order temperature coefficient of ST-X quartz is 0, but its electromechanical coupling coefficient k 2 is 0.
This is 116%, which is about one digit smaller than that of a normal surface acoustic wave substrate. ), As described above, in the conventional surface acoustic wave delay line, since the interdigital electrode part and the surface wave propagating part use the same substrate, the impedance of the delay line increases and the mismatch loss with the external circuit increases. Will end up.

【0004】本発明の目的は、温度による遅延時間の変
動を抑えたまま、遅延線のインピーダンスを下げ、外部
回路とのミスマッチを小さくした新規な弾性表面波遅延
線構造を提供する事にある。
An object of the present invention is to provide a novel surface acoustic wave delay line structure in which the delay line impedance is lowered and the mismatch with the external circuit is reduced while suppressing the variation of the delay time due to temperature.

【0005】[0005]

【課題を解決するための手段】上記の課題は、弾性表面
波遅延線の母材となる弾性表面波基板より電気機械結合
係数の大きい薄膜材料、もしくは弾性表面波モードを入
出力すだれ状電極の部分に適用し、入出力すだれ状電極
の部分の電気機械結合係数が伝搬路部分より大きくする
ことにより達成される。
Means for Solving the Problems The above problems are solved by a thin film material having a larger electromechanical coupling coefficient than that of a surface acoustic wave substrate which is a base material of a surface acoustic wave delay line, or an interdigital transducer for inputting and outputting a surface acoustic wave mode. It is applied to a portion and is achieved by making the electromechanical coupling coefficient of the input / output interdigital transducer portion larger than that of the propagation path portion.

【0006】[0006]

【作用】通常、弾性表面波遅延線では広帯域特性が要求
されるため、入出力すだれ状電極の電極対数は少なく、
すだれ状電極間の伝搬路部分に対して、充分短いため、
すだれ状電極部分の温度変動による遅延時間変動が、遅
延線全体の遅延時間に与える影響は小さい。従って、上
述のように温度特性が悪く、電気機械結合係数が大きい
薄膜材料、もしくは弾性波モードをすだれ状電極部分に
のみ適用しても、遅延線の遅延時間に与える影響は小さ
いため、全体として、遅延時間特性変動が小さく、低イ
ンピーダンス特性(低損失)が得られる。
Since the surface acoustic wave delay line generally requires a wide band characteristic, the number of input / output interdigital interdigital electrodes is small,
Since it is sufficiently short for the propagation path between the interdigital electrodes,
The delay time variation due to the temperature variation of the interdigital transducer has little influence on the delay time of the entire delay line. Therefore, as described above, even if the thin film material having a poor temperature characteristic and a large electromechanical coupling coefficient or the elastic wave mode is applied only to the interdigital electrode portion, the effect on the delay time of the delay line is small. The delay time characteristic variation is small, and the low impedance characteristic (low loss) can be obtained.

【0007】[0007]

【実施例】以下、図1から図10を用いて本発明の実施
例について説明する。
Embodiments of the present invention will be described below with reference to FIGS.

【0008】図1は本発明を用いた弾性表面波遅延線を
模式的に示したものである。弾性表面波基板1としてS
T−X水晶(電気機械結合係数k2=0.116%)を
用いており、入力端子2に入力すだれ状電極3が接続さ
れ、同端子に電源インピーダンス4および電源5が接続
されている。出力端子6には出力すだれ状電極7および
負荷インピーダンス8が接続されている。入出力すだれ
状電極3、7部分にのみST−X水晶基板より電気機械
結合係数k2が大きい(通常1%程度)ZnO薄膜9が
形成され、良好な温度特性と、低損失化が図られてい
る。また、基板端面からの反射波を抑圧するため、吸音
材10が塗布されている。本実施例では弾性表面波基板
1としてST−X水晶基板を用いたが、表面波の励起は
すだれ状電極部分で行われるため、基板は遅延時間温度
特性に優れた非圧電体でも良い。また、本実施例では圧
電薄膜材料として、ZnO薄膜を用いたが、AlN、L
iNbO3等、電機機械結合係数の大きい他の材料を用
いても良い。
FIG. 1 schematically shows a surface acoustic wave delay line using the present invention. S as the surface acoustic wave substrate 1
A T-X crystal (electromechanical coupling coefficient k 2 = 0.116%) is used, the input interdigital transducer 3 is connected to the input terminal 2, and the power source impedance 4 and the power source 5 are connected to the same terminal. An output interdigital electrode 7 and a load impedance 8 are connected to the output terminal 6. A ZnO thin film 9 having a larger electromechanical coupling coefficient k 2 than the ST-X quartz substrate (usually about 1%) is formed only on the input / output interdigital interdigital electrodes 3 and 7, and good temperature characteristics and low loss are achieved. ing. Further, the sound absorbing material 10 is applied to suppress the reflected wave from the end surface of the substrate. In this embodiment, the ST-X crystal substrate is used as the surface acoustic wave substrate 1, but since the surface wave is excited at the interdigital electrode portion, the substrate may be a non-piezoelectric material having excellent delay time temperature characteristics. Further, in this embodiment, a ZnO thin film was used as the piezoelectric thin film material, but AlN, L
Other materials having a large electromechanical coupling coefficient such as iNbO 3 may be used.

【0009】図2は本発明の第1実施例の弾性表面波遅
延線の断面図を示し、圧電薄膜構造の例を示したもので
ある。(a)は基板1上にすだれ状電極の電極部分11
(入力)、11’(出力)が形成され、その上に圧電薄
膜9、9’が形成されている。(b)では(a)と同様
の構造で、圧電薄膜9、9’上に電極12、12’が形
成されている。(c)では基板1上に圧電薄膜9、9’
が形成されその上にすだれ状電極の電極部分11(入
力)、11’(出力)が形成されている。(d)では
(c)と同じ構造で、基板1と圧電薄膜9、9’間に電
極12、12’が設けられている。それぞれ、圧電薄膜
9、9’の厚さと結合係数の間には密接な関係があり、
図のそれぞれの場合で、異なるプロファイルを持つ。第
1実施例では(a)の構造を採用している。この構造は
少し厚めに圧電薄膜を形成しなければならないが、工程
が少なく、容易に形成が可能で、電極間のショート欠陥
が少ない等の利点を有する。
FIG. 2 is a sectional view of a surface acoustic wave delay line according to the first embodiment of the present invention, showing an example of a piezoelectric thin film structure. (A) is an electrode portion 11 of the interdigital transducer on the substrate 1.
(Input) and 11 '(output) are formed, and the piezoelectric thin films 9 and 9'are formed thereon. In (b), electrodes 12 and 12 'are formed on the piezoelectric thin films 9 and 9'with the same structure as in (a). In (c), the piezoelectric thin films 9 and 9 ′ are formed on the substrate 1.
Is formed, and electrode portions 11 (input) and 11 '(output) of the interdigital transducer are formed thereon. In (d), the electrodes 12 and 12 'are provided between the substrate 1 and the piezoelectric thin films 9 and 9'with the same structure as in (c). There is a close relationship between the thickness of the piezoelectric thin films 9 and 9'and the coupling coefficient,
Each case in the figure has a different profile. The structure of (a) is adopted in the first embodiment. This structure requires the piezoelectric thin film to be formed slightly thicker, but has the advantages that the number of steps is small, it can be easily formed, and there are few short-circuit defects between electrodes.

【0010】図3は第1実施例の弾性表面波遅延線の周
波数特性(b)を従来の弾性表面波遅延線(a)と比較
して示している。測定は50Ω系で行った。遅延時間は
1μsで、温度特性は(a)、(b)でほぼ同等であ
り、18dBの損失改善効果が得られている。以上、本
実施例によれば遅延時間温度特性を殆ど劣化させずに、
低損失化が可能となる。
FIG. 3 shows the frequency characteristic (b) of the surface acoustic wave delay line of the first embodiment in comparison with the conventional surface acoustic wave delay line (a). The measurement was performed in a 50Ω system. The delay time is 1 μs, the temperature characteristics are almost the same in (a) and (b), and the loss improving effect of 18 dB is obtained. As described above, according to this embodiment, the delay time temperature characteristic is hardly deteriorated,
Low loss is possible.

【0011】図4は本発明の第2、3実施例の弾性表面
波遅延線の断面図であり、弾性表面波モードを変えて、
すだれ状電極部分の結合係数を増加させる方法を示し
た。図中(a)は電極13、13’としてAu等の密度
の大きい材料を用い、結合係数の大きいラブ波モードの
表面波を励起している。(b)では基板の厚さを薄くし
て、表面と裏面に電極14、14’(表面)、電極1
5、15’(裏面)を配置して、ラム波モードの波を発
生している。基板1の裏面は凹部16、16’が設けら
れ、部分的にラム波モードの弾性波を励起している。以
上、第2実施例では、電極材料を換えるだけで効果が得
られるため、作成が容易である。また、第3実施例を用
いれば、表面波速度を遅くすることができるため、低周
波デバイスを容易に作成することができる。
FIG. 4 is a sectional view of a surface acoustic wave delay line according to the second and third embodiments of the present invention.
A method to increase the coupling coefficient of the interdigital electrode part is presented. In the figure (a), a material having a high density such as Au is used for the electrodes 13 and 13 'to excite a surface wave in a Love wave mode having a large coupling coefficient. In (b), the thickness of the substrate is reduced so that the electrodes 14, 14 '(front surface) and the electrode 1
Lamb wave mode waves are generated by arranging 5, 15 '(rear surface). The back surface of the substrate 1 is provided with recesses 16 and 16 ', and partially excites Lamb wave mode elastic waves. As described above, in the second embodiment, the effect can be obtained only by changing the electrode material, and therefore the production is easy. Moreover, since the surface wave velocity can be slowed down by using the third embodiment, a low frequency device can be easily manufactured.

【0012】図5は第4実施例の本発明を用いたDPS
K(Differential Phase Shif
t Keying)遅延検波回路を示している。本発明
の弾性表面波遅延線17の遅延時間量は1情報ビットの
周期に相当する。1ビット遅れさせた信号と現在の信号
をミキサ18で乗算している。以上、本実施例のように
本発明の弾性表面波遅延線を用いれば、温度による遅延
時間変動が小さく、損失の小さい回路が得られ、増幅器
等の低電流化を果すことができる。
FIG. 5 shows a DPS using the fourth embodiment of the present invention.
K (Differential Phase Shift
(t Keying) differential detection circuit. The amount of delay time of the surface acoustic wave delay line 17 of the present invention corresponds to the cycle of one information bit. The mixer 18 multiplies the signal delayed by one bit and the current signal. As described above, when the surface acoustic wave delay line of the present invention is used as in the present embodiment, a circuit with a small delay time variation due to temperature and a small loss can be obtained, and the current of an amplifier or the like can be reduced.

【0013】図6は本発明を用いたスペクトラム拡散通
信装置のシステムのブロック図である。入力情報信号は
入力端子19より入力され、混合器20により擬似雑音
コード発生器21からの信号と乗算され、さらに混合器
22により発振器23からの搬送波と乗算され、増幅器
24により増幅されアンテナ25より出力される。受信
系ではアンテナ25より取り込まれた受信信号は増幅器
26により増幅され、SAWマッチドフィルタ27によ
り整合信号に変換され、本発明の弾性表面波遅延線28
により遅延させられた1情報ビット前の信号と混合器2
9により乗算することにより検波され、方形波出力回路
30によりデジタル信号に変換され出力端子31から出
力される。本実施例では本発明の弾性表面波遅延線28
を用い遅延検波を行っているため、検波回路をより簡単
に、しかも低電流で、温度変動等に対して安定して、検
波信号が得られるという特長を有する。
FIG. 6 is a block diagram of a system of a spread spectrum communication device using the present invention. The input information signal is input from the input terminal 19, multiplied by the signal from the pseudo noise code generator 21 by the mixer 20, further multiplied by the carrier wave from the oscillator 23 by the mixer 22, amplified by the amplifier 24, and amplified by the antenna 25. Is output. In the receiving system, the received signal taken in by the antenna 25 is amplified by the amplifier 26, converted into a matched signal by the SAW matched filter 27, and then the surface acoustic wave delay line 28 of the present invention.
Signal delayed by 1 information bit and mixer 2
The signal is detected by being multiplied by 9, converted into a digital signal by the square wave output circuit 30, and output from the output terminal 31. In this embodiment, the surface acoustic wave delay line 28 of the present invention is used.
Since the differential detection is performed by using, the characteristic of the detection circuit is that the detection signal can be obtained more easily, with a low current and stably against temperature fluctuations.

【0014】図7は本発明とIF回路を用いたスペクト
ラム拡散通信装置のシステムのブロック図である。本実
施例では、特に受信部において、増幅器26で増幅され
たRF受信信号に発信器33から生じる搬送波をミキサ
32により乗算し、中間周波(IF)信号に変換され
る。RF信号の周波数が高く(例えば2.4GHz
帯)、SAWマッチドフィルタ27、弾性表面波遅延線
28、ミキサ29等の動作が難しい場合に有効である。
FIG. 7 is a block diagram of a system of a spread spectrum communication device using the present invention and an IF circuit. In the present embodiment, in particular, in the receiving section, the RF reception signal amplified by the amplifier 26 is multiplied by the carrier wave generated from the oscillator 33 by the mixer 32 to be converted into an intermediate frequency (IF) signal. The frequency of the RF signal is high (eg 2.4 GHz)
Band), the SAW matched filter 27, the surface acoustic wave delay line 28, the mixer 29, and the like are effective when it is difficult to operate.

【0015】図8は本発明を用いたDPSK通信装置の
システムのブロック図である。入力情報信号は入力端子
34より入力され、混合器35により発振器36からの
搬送波と乗算され、増幅器37により増幅されアンテナ
38より出力される。受信系ではアンテナ38より取り
込まれた受信信号は増幅器39により増幅され、本発明
の弾性表面波遅延線40により遅らされた1情報ビット
前の信号と混合器41により乗算することにより検波さ
れ、波形整形回路42によりデジタル信号に変換され出
力端子43から出力される。本実施例では本発明の弾性
表面波遅延線40を用い遅延検波を行っているため、検
波回路をより簡単に、しかも低電流で、安定した検波信
号が得られる。
FIG. 8 is a block diagram of a system of a DPSK communication device using the present invention. The input information signal is input from the input terminal 34, multiplied by the carrier wave from the oscillator 36 by the mixer 35, amplified by the amplifier 37, and output from the antenna 38. In the receiving system, the received signal taken in by the antenna 38 is amplified by the amplifier 39, and detected by multiplying the signal of one information bit before delayed by the surface acoustic wave delay line 40 of the present invention by the mixer 41. It is converted into a digital signal by the waveform shaping circuit 42 and output from the output terminal 43. In this embodiment, since the surface acoustic wave delay line 40 of the present invention is used for the delay detection, the detection circuit can be made simpler and with a low current, a stable detection signal can be obtained.

【0016】図9はIF回路を用いたDPSK通信装置
のシステムのブロック図である。本実施例では、特に受
信部において、増幅器39で増幅されたRF受信信号に
発振器45から生じる搬送波をミキサ44により乗算
し、中間周波(IF)信号に変換される。RF信号の周
波数が高く(例えば2.4GHz帯)、弾性表面波遅延
線40、ミキサ41等の動作が難しい場合に有効であ
る。
FIG. 9 is a block diagram of a system of a DPSK communication device using an IF circuit. In the present embodiment, in particular, in the receiving section, the RF reception signal amplified by the amplifier 39 is multiplied by the carrier generated from the oscillator 45 by the mixer 44 and converted into an intermediate frequency (IF) signal. This is effective when the frequency of the RF signal is high (for example, 2.4 GHz band) and it is difficult to operate the surface acoustic wave delay line 40, the mixer 41, and the like.

【0017】図10は本発明を用いた通信システムを示
している。本実施例はLANに本方式の通信装置を用い
たものである。LAN用ケーブル46に本通信装置4
9、50が接続され、各端末47、52には本通信装置
48、51が接続されている。また、各端末53、56
に本通信装置54、55を接続し、各端末間で(有線系
を介さず)自由に通信を行うことができる。本実施例を
用いれば、各端末ではLANケーブルに接続する必要が
無いため、端末を自由に動かす事(レイアウト)ができ
る。
FIG. 10 shows a communication system using the present invention. In this embodiment, a communication device of this system is used for LAN. The communication device 4 is connected to the LAN cable 46.
9, 50 are connected, and the terminals 47, 52 are connected to the communication devices 48, 51. In addition, each terminal 53, 56
The communication devices 54 and 55 can be connected to each terminal to freely communicate with each other (without a wired system). According to the present embodiment, each terminal does not need to be connected to the LAN cable, so that the terminals can be freely moved (layout).

【0018】[0018]

【発明の効果】本発明によれば、遅延時間温度特性が良
好で、低損失な弾性表面波遅延線が得られるため、通信
装置の低消費電力化を高安定に達成でき、高性能(安定
で、バッテリ消費量の少ない)な通信システムが実現で
きる。
According to the present invention, since a surface acoustic wave delay line having good delay time temperature characteristics and low loss can be obtained, low power consumption of a communication device can be achieved with high stability and high performance (stable). Thus, a communication system with low battery consumption) can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の弾性表面波遅延線の説明
図。
FIG. 1 is an explanatory diagram of a surface acoustic wave delay line according to a first embodiment of the present invention.

【図2】本発明の第1実施例の弾性表面波遅延線の断面
図。
FIG. 2 is a sectional view of the surface acoustic wave delay line according to the first embodiment of the present invention.

【図3】本発明の弾性表面波遅延線の周波数特性図。FIG. 3 is a frequency characteristic diagram of the surface acoustic wave delay line of the present invention.

【図4】本発明の第2、3実施例の弾性表面波遅延線の
断面図。
FIG. 4 is a sectional view of a surface acoustic wave delay line according to second and third embodiments of the present invention.

【図5】弾性表面波遅延線を用いた遅延検波方式のブロ
ック図。
FIG. 5 is a block diagram of a differential detection system using a surface acoustic wave delay line.

【図6】本発明の弾性表面波遅延線を用いたスペクトラ
ム拡散通信装置のブロック図。
FIG. 6 is a block diagram of a spread spectrum communication device using the surface acoustic wave delay line of the present invention.

【図7】本発明の弾性表面波遅延線とIF回路を用いた
スペクトラム拡散通信装置のブロック図。
FIG. 7 is a block diagram of a spread spectrum communication device using a surface acoustic wave delay line and an IF circuit of the present invention.

【図8】本発明の弾性表面波遅延線を用いたDPSK通
信装置のブロック図。
FIG. 8 is a block diagram of a DPSK communication device using the surface acoustic wave delay line of the present invention.

【図9】本発明の弾性表面波遅延線とIF回路を用いた
DPSK通信装置のブロック図。
FIG. 9 is a block diagram of a DPSK communication device using a surface acoustic wave delay line and an IF circuit of the present invention.

【図10】本発明の通信装置を用いた無線LAN通信シ
ステムのブロック図。
FIG. 10 is a block diagram of a wireless LAN communication system using the communication device of the present invention.

【符号の説明】[Explanation of symbols]

1…弾性表面波基板、 3…入力すだれ状電極、 7…出力すだれ状電極、 9…圧電薄膜。 DESCRIPTION OF SYMBOLS 1 ... Surface acoustic wave substrate, 3 ... Input interdigital electrode, 7 ... Output interdigital electrode, 9 ... Piezoelectric thin film.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 太田 康博 神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所マルチメディアシステム開 発本部内 (72)発明者 山田 佳弘 神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所マルチメディアシステム開 発本部内 (72)発明者 茂木 稔 神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所情報映像事業部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuhiro Ota 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa, Ltd. Multimedia system development headquarters, Hitachi, Ltd. (72) Inventor Yoshihiro Yamada Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Hitachi, Ltd. Multimedia System Development Headquarters 292 (72) Minor Mogi Minoru Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa 292 Hitachi Ltd. Information & Video Division

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】弾性表面波基板上に、電気信号を弾性表面
波に変換する入出力すだれ状電極が1組以上配置され、
上記入出力電極の相互間に表面波伝搬路が配置された弾
性表面波遅延線において、上記入出力すだれ状電極の部
分の表面波に対する電気機械結合係数が伝搬路部分より
大きいことを特徴とする弾性表面波遅延線。
1. One or more pairs of input / output interdigital transducers for converting an electric signal into a surface acoustic wave are arranged on a surface acoustic wave substrate,
In a surface acoustic wave delay line in which a surface wave propagation path is arranged between the input and output electrodes, an electromechanical coupling coefficient for a surface wave of the input / output interdigital electrode part is larger than a propagation path part. Surface acoustic wave delay line.
【請求項2】上記入出力すだれ状電極部分の電気機械結
合係数を増加させるため、母体となる上記弾性表面基板
より表面波に対する電気機械結合係数が大きい圧電薄膜
材料を配置した請求項1に記載の弾性表面波装置。
2. A piezoelectric thin film material having a larger electromechanical coupling coefficient for surface waves than that of the elastic surface substrate, which is a matrix, is arranged to increase the electromechanical coupling coefficient of the input / output interdigital electrode portions. Surface acoustic wave device.
【請求項3】上記入出力すだれ状電極部分の表面波に対
する電気機械結合係数を増加させるため、母体となる弾
性表面基板として水晶、圧電薄膜材料としてZnO薄膜
を配置した請求項2に記載の弾性表面波装置。
3. The elasticity according to claim 2, wherein in order to increase the electromechanical coupling coefficient of the input / output interdigital electrode portion with respect to the surface wave, quartz is used as a base elastic surface substrate and ZnO thin film is used as a piezoelectric thin film material. Surface wave device.
【請求項4】上記入出力すだれ状電極部分の表面波に対
する電気機械結合係数を増加させる手段として、母体と
なる弾性表面基板より電気機械結合係数が大きい弾性波
モードを利用した請求項1に記載の弾性表面波装置。
4. The elastic wave mode having a larger electromechanical coupling coefficient than that of the elastic surface substrate serving as a matrix is used as a means for increasing the electromechanical coupling coefficient of the input / output interdigital electrode portions with respect to the surface wave. Surface acoustic wave device.
【請求項5】請求項1、2、3または4に記載の上記弾
性表面波遅延線を用いた通信装置。
5. A communication device using the surface acoustic wave delay line according to claim 1, 2, 3, or 4.
【請求項6】請求項1、2、3または4に記載の上記弾
性表面波遅延線をDPSK変調された信号の復調用途に
用いた請求項5に記載の通信装置。
6. A communication device according to claim 5, wherein the surface acoustic wave delay line according to claim 1, 2, 3 or 4 is used for demodulation of a DPSK-modulated signal.
【請求項7】上記通信装置が、情報帯域にたいして通信
帯域を拡げて送信する、スペクトラム拡散通信方式を用
いている請求項5に記載の通信装置。
7. The communication device according to claim 5, wherein the communication device uses a spread spectrum communication system in which a communication band is expanded with respect to an information band for transmission.
【請求項8】請求項5、6または7に記載の通信装置を
用いた通信システム。
8. A communication system using the communication device according to claim 5, 6, or 7.
JP18382395A 1995-07-20 1995-07-20 Surface acoustic wave delay line, communication device and communication system Pending JPH0936700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18382395A JPH0936700A (en) 1995-07-20 1995-07-20 Surface acoustic wave delay line, communication device and communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18382395A JPH0936700A (en) 1995-07-20 1995-07-20 Surface acoustic wave delay line, communication device and communication system

Publications (1)

Publication Number Publication Date
JPH0936700A true JPH0936700A (en) 1997-02-07

Family

ID=16142480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18382395A Pending JPH0936700A (en) 1995-07-20 1995-07-20 Surface acoustic wave delay line, communication device and communication system

Country Status (1)

Country Link
JP (1) JPH0936700A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015144418A (en) * 2013-12-28 2015-08-06 山之内 和彦 Variable frequency elastic wave transducer and electronic apparatus using the same
JP2015228638A (en) * 2013-12-28 2015-12-17 株式会社弾性波デバイスラボ Variable frequency acoustic wave converter and electronic apparatus using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015144418A (en) * 2013-12-28 2015-08-06 山之内 和彦 Variable frequency elastic wave transducer and electronic apparatus using the same
JP2015228638A (en) * 2013-12-28 2015-12-17 株式会社弾性波デバイスラボ Variable frequency acoustic wave converter and electronic apparatus using the same

Similar Documents

Publication Publication Date Title
US6218763B1 (en) Surface acoustic wave resonator, filter, duplexer and communication apparatus
EP0545672B1 (en) Low loss wide bandwidth parallel channel acoustic filter
JPH06510173A (en) Integrated circuit including surface acoustic wave transducer and balanced mixer
KR20190140411A (en) Acoustic wave device with spinel layer
JP2847438B2 (en) Surface acoustic wave device
US6424239B1 (en) Differential surface acoustic wave filter
JP4498619B2 (en) Amplifier circuit
JPH0936700A (en) Surface acoustic wave delay line, communication device and communication system
US3846722A (en) Surface wave preselector
JP3208936B2 (en) Surface acoustic wave device, circuit connected thereto, measuring method therefor, and communication device
JP3435830B2 (en) Surface acoustic wave device and communication device using surface acoustic wave device
JP3446752B2 (en) Surface acoustic wave device and communication device
JPH0653772A (en) Variable frequency surface acoustic wave function element and variable frequency filter
JP3255658B2 (en) Surface acoustic wave convolver
JP3733957B2 (en) Surface acoustic wave device and communication device
JP2574828B2 (en) Surface acoustic wave device
JPH1013476A (en) Fsk transmitter receiver
JPH08321740A (en) Surface acoustic wave device
JP2000151337A (en) Surface acoustic wave resonator filter
JPH07273595A (en) Saw matched filter
JPH1056353A (en) Surface acoustic wave filter
JPH0583076A (en) Surface acoustic wave device
JPS6130338Y2 (en)
JP2000315935A (en) Semiconductor type surface acoustic wave convolver and communication equipment
JP4038348B2 (en) Surface acoustic wave device, circuit connected thereto, measuring method thereof, and communication device