WO2016067858A1 - Variable-frequency elastic wave transducer and electronic device using same - Google Patents

Variable-frequency elastic wave transducer and electronic device using same Download PDF

Info

Publication number
WO2016067858A1
WO2016067858A1 PCT/JP2015/078428 JP2015078428W WO2016067858A1 WO 2016067858 A1 WO2016067858 A1 WO 2016067858A1 JP 2015078428 W JP2015078428 W JP 2015078428W WO 2016067858 A1 WO2016067858 A1 WO 2016067858A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
resonator
wave
piezoelectric
electrode
Prior art date
Application number
PCT/JP2015/078428
Other languages
French (fr)
Japanese (ja)
Inventor
山之内 和彦
Original Assignee
株式会社弾性波デバイスラボ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014232144A external-priority patent/JP2015228638A/en
Application filed by 株式会社弾性波デバイスラボ filed Critical 株式会社弾性波デバイスラボ
Publication of WO2016067858A1 publication Critical patent/WO2016067858A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves

Definitions

  • the present invention relates to an acoustic wave resonator and an electronic device using the same, and is an acoustic wave resonator having a structure in which two or more acoustic wave resonators are arranged in a collier, one connected to an input / output electrode and the other to a variable impedance.
  • the present invention also relates to an acoustic wave resonator in which the center frequency is changed by changing the propagation speed of the elastic wave by changing the impedance and an electronic device using the variable resonator.
  • variable frequency range is narrow, the characteristics of the transducer / resonator are greatly deteriorated, the Q of the vibrator is lowered, and the center frequency is hardly changed.
  • variable frequency acoustic wave converters and resonators use a method of changing the operating center frequency by connecting impedance in series or parallel to the transmitting and receiving electrodes and changing the impedance. For this reason, there are defects such as a decrease in the electromechanical coupling coefficient of the piezoelectric substrate, deterioration of the Q characteristic, and almost no change in the center frequency.
  • the present invention has been made to eliminate the defects of the conventional variable frequency converter and resonator as described above.
  • the device manufacturing process is simple, and a large variable frequency range can be obtained by using a simple external circuit. To get.
  • the elastic wave transducer and resonator according to the present invention have a structure in which two or more elastic wave transducers are arranged in a collier, wherein one is connected to an input / output electrode and the other is connected to an impedance element, and the impedance is changed.
  • the elastic wave converter and the elastic wave resonator having the center frequency changed, and the coupling coefficient of the elastic wave vibrator is deteriorated.
  • a variable frequency converter and a resonator having a large variable frequency are obtained while maintaining a large Q value, and a variable frequency resonator, a filter, a variable frequency oscillator, a sensor, and the like are obtained.
  • FIG. 5 is a diagram showing that the velocity of the elastic wave changes due to the change of the added impedance.
  • This is a method of changing the propagation speed by applying a variable voltage to the inserted impedance and changing the impedance by changing the voltage.
  • the capacitance when the capacitance is near zero, the propagation speed is almost an open speed. 4000 m / s, the speed decreases as the capacity increases, and the value close to infinity indicates that the speed decreases to the speed of the short circuit, 3900 m / s.
  • the change in capacitance can be used to change the speed of propagation through the acoustic wave transducer and the resonator. In the structure shown in FIGS.
  • the thickness of the electrode vibrator connected to the transmission / reception electrode or the power source is H1, the speed is V1, the vibrator is connected to the variable impedance.
  • the resonance resonance frequency f0 (2 ⁇ V1 / H1 + 2 ⁇ V2 / H2). Therefore, the speed of the vibrator connected to the variable impedance varies from the impedance opening speed V0 to the short circuit speed Vs, so by changing the impedance of the variable impedance.
  • a variable frequency resonator is obtained.
  • FIG. 4 is a diagram of an acoustic wave resonator having a structure in which a piezoelectric thin film vibrator is attached on a piezoelectric vibrator substrate.
  • A Sectional view
  • B Plan view
  • FIG. 4 is a diagram of an acoustic wave resonator having a structure in which a piezoelectric substrate vibrator is attached on a piezoelectric vibrator substrate.
  • A Sectional view
  • (B) Plan view FIG. 4 is a diagram of an acoustic wave thin film resonator having a structure in which a piezoelectric thin film resonator is attached on a piezoelectric thin film resonator in a gap structure piezoelectric thin film resonator.
  • FIG. 2 is a diagram of an acoustic wave thin film resonator having a structure in which a piezoelectric thin film resonator is attached on a piezoelectric thin film resonator in a reflector type piezoelectric thin film resonator.
  • A) Sectional view, (B) Plan view It is a figure which shows the change of the resonance center frequency with respect to the change of a capacity
  • capacitance in case the electromechanical coupling coefficient k2 0.3 of the plate wave variable resonator of the structure of FIG. It is a figure which shows the change of the propagation speed with respect to the change of the capacity
  • 1-1 Piezoelectric substrate or piezoelectric thin film substrate
  • 1-2 Piezoelectric substrate or piezoelectric thin film substrate
  • 2 Ground electrode and ground extraction electrode, 3 ... Ground electrode, 4 ...
  • Electrode connected to transmission / reception electrode, 5 ... Electrode connected to impedance, 6 ... Power source, 7 ... Load impedance, 8 ... Variable load impedance, 9 ... Air gap, DESCRIPTION OF SYMBOLS 10 ... Support substrate, 11 ... Thin-film resonator, 12 ... Thin-film resonator, 13 ... Whole resonator, 14 ... Elastic wave propagation speed, 15 ... Opening speed, 16 ... Short-circuit speed, 17 ... Change of capacity, 18 ... Capacity decreasing direction
  • Example 1 in an acoustic wave resonator in which a piezoelectric thin film is attached on a piezoelectric substrate, longitudinal waves, transverse waves, and bulk waves propagating in the thickness direction of the plate through the piezoelectric substrate and the piezoelectric thin film.
  • An elastic wave thin film resonator having a structure in which these resonators are connected in multiple layers and an electronic device using these resonators are one of the embodiments.
  • Example 2 as shown in FIG. 2, in an acoustic wave resonator in which a piezoelectric substrate is attached on a piezoelectric substrate, longitudinal waves, transverse waves, and bulk waves propagating in the thickness direction of the plate are used.
  • It is a plate wave resonator, and includes an earth electrode 2 on the upper and lower surfaces of the piezoelectric substrate 1-1, an elastic wave vibrator connected to the piezoelectric transmitting / receiving electrode 4, and an earth electrode 2 and a variable impedance 8 on the upper and lower surfaces of the piezoelectric substrate 1-1.
  • a two-layered acoustic wave resonator in which an acoustic wave vibrator composed of connected electrodes 5 is elastically coupled to a collier, an acoustic wave resonator having a structure in which these resonators are connected in multiple layers, and the resonator are used.
  • the second example is the electronic device. In Example 3, as shown in FIG.
  • the piezoelectric thin film 1-2 includes an earth electrode 2 on the upper and lower surfaces of the piezoelectric thin film 1-2, and an acoustic wave thin film vibrator connected to the piezoelectric transmission / reception electrode 4.
  • Example 3 In Example 4, as shown in FIG. 4, in a thin film resonator using a longitudinal wave, a transverse wave, and a bulk wave propagating in the thickness direction of the thin film in the piezoelectric thin film, an elastic wave reflector attached to the surface of the substrate 15 is used.
  • An elastic wave vibrator comprising a piezoelectric thin film vibrator connected to a transmission / reception electrode on the surface and an electrode 5 having a ground electrode 2 and a variable impedance 8 connected to the upper and lower surfaces of the piezoelectric thin film 1-2 is elastically coupled to the coriner.
  • Example 4 is an elastic wave thin film resonator having a layer structure, an acoustic wave thin film resonator having a structure in which these resonators are connected in multiple layers, and an electronic device using the resonator.
  • the resonator according to claims 1, 2nd, 3rd and 4th terms is used as a vibrator, and the elasticity is obtained by attaching these vibrators to both sides of the elastic body.
  • a wave transmitting / receiving device and an electronic apparatus using this device are the fifth embodiment.
  • the above variable frequency resonator is based on the ⁇ / 2 resonance, but n times the resonator of ⁇ / 2 and the resonator of (n ⁇ 1/2) times are also included in this patent. Further, a delay line, a filter, a variable frequency oscillator, a sensor, and a spread spectrum signal processing device using this resonator as a vibrator and using the vibrator on both sides of an elastic body are also included in this patent.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

In an ordinary resonator, the operating center frequency is determined by the thickness of the substrate or the thickness of the thin film, and therefore applications are limited. Moreover, in a filter, transmitter, or the like that employs an elastic wave resonator, the structure is one in which the central frequency does not change, and therefore applications are limited. As a method for eliminating this drawback, it has been proposed to introduce a variable impedance as a variable element to the input/output as a whole, but a drawback is that the characteristics are degraded by doing so. The present invention provides a variable-frequency resonator, a filter, and a variable-frequency device, by producing a piezoelectric thin film oscillator on a piezoelectric substrate oscillator, connecting a variable impedance to one of the oscillators, and changing the propagation velocity of the oscillator by changing the impedance.

Description

可変周波数弾性波変換器とこれを用いた電子装置Variable frequency acoustic wave transducer and electronic device using the same
本発明は弾性波共振器及びこれを用いた電子装置に関するもので、弾性波共振器を2個以上コリニヤ配置した構造の弾性波共振器であり、一方を入出力電極、他方を可変インピーダンスに接続し、そのインピーダンスを変化させて、その弾性波の伝搬速度を変化させることにより、中心周波数を変化させた弾性波共振器及びこの可変共振器を用いた電子装置に関するものである。 The present invention relates to an acoustic wave resonator and an electronic device using the same, and is an acoustic wave resonator having a structure in which two or more acoustic wave resonators are arranged in a collier, one connected to an input / output electrode and the other to a variable impedance. The present invention also relates to an acoustic wave resonator in which the center frequency is changed by changing the propagation speed of the elastic wave by changing the impedance and an electronic device using the variable resonator.
通常の弾性波変換器の励振強度、及び受信強度が最大となる中心周波数fは、変換器の圧電振動子の厚さをHとしたとき、f=2v/H=v/λ(V:速度、λ:波長)となるので、送受に変換器を用いた場合の中心周波数は変化しない。 また、弾性器共振器の圧電振動子の膜厚をHとした場合、共振周波数は f=2v/Hとなり、共振周波数は変化しない。従って、この変換器・共振器を用いたフィルター、センサーデバイスでは、これらのデバイスの動作中心周波数は、振動子の膜厚と伝搬速度で決まるので、応用が制限される。 The center frequency f 0 at which the excitation intensity and the reception intensity of the normal acoustic wave converter are maximized is f 0 = 2v / H = v / λ (V, where H is the thickness of the piezoelectric vibrator of the converter. : Speed, λ: wavelength), the center frequency when a converter is used for transmission and reception does not change. When the film thickness of the piezoelectric resonator of the elastic resonator is H, the resonance frequency is f 0 = 2v / H, and the resonance frequency does not change. Therefore, in the filter and sensor device using the converter / resonator, the operation center frequency of these devices is determined by the film thickness and the propagation speed of the vibrator, so that the application is limited.
一方、動作中心周波数を変える方法として、送受弾性波変換器或は共振器全体に可変容量を付加する方法が提案されている。 On the other hand, as a method of changing the operation center frequency, a method of adding a variable capacitor to the entire transmitting / receiving acoustic wave converter or the resonator has been proposed.
 この方法は、可変周波数範囲が狭いこと、変換器・共振器の特性が大きく劣化すること、振動子のQが低下すること、中心周波数はほとんど変化しないことなど難点がある。 This method has the disadvantages that the variable frequency range is narrow, the characteristics of the transducer / resonator are greatly deteriorated, the Q of the vibrator is lowered, and the center frequency is hardly changed.
 上記に示した如く、これまでの可変周波数弾性波変換器及び共振器は、送受電極に直列或いは並列にインピーダンスを接続し、そのインピーダンスを変化させることにより動作中心周波数を変化させる方法を用いているため、圧電基板の電気機械結合係数の低下、Q特性の劣化、中心周波数がほとんど変化しないことなどの欠陥がある。 As shown above, conventional variable frequency acoustic wave converters and resonators use a method of changing the operating center frequency by connecting impedance in series or parallel to the transmitting and receiving electrodes and changing the impedance. For this reason, there are defects such as a decrease in the electromechanical coupling coefficient of the piezoelectric substrate, deterioration of the Q characteristic, and almost no change in the center frequency.
 また、所望の中心動作周波数の変化を得るため、大きなインピーダンスの変化が必要である、などの欠陥がある。 Also, there are defects such as a large impedance change required to obtain a desired change in the center operating frequency.
 本発明は上述したごとき従来の可変周波数変換器及び共振器の欠陥を除去すべくなされたものであって、デバイスの製造工程が簡易、かつ簡易な外部回路を用いることにより、大きな可変周波数範囲を得るものである。
 
The present invention has been made to eliminate the defects of the conventional variable frequency converter and resonator as described above. The device manufacturing process is simple, and a large variable frequency range can be obtained by using a simple external circuit. To get.
本発明の弾性波変換器及び共振器は、弾性波変換器を2個以上コリニヤに配置した構造の変換器において、一方を入出力電極、他方をインピーダンス素子に接続し、そのインピーダンスを変化させることにより、弾性波変換器中を伝搬する弾性波の速度を変化させることにより、中心周波数を変化させた弾性波変換器、及び弾性波共振器であり、弾性波振動子の結合係数を劣化させることなく、大きなQ値を保ったまま、大きな可変周波数をもつ
可変周波数変換器及び共振器を得るものであり、可変周波数共振器、フィルター、可変周波数発振器、センサーなどが得られる。
図5は、付加したインピーダンスの変化により弾性波の速度が変化することを示す図である。 挿入したインピーダンスに可変電圧を印加し、その電圧の変化によりインピーダンスが変化することにより、その伝搬速度を変化させる方法であり、この場合は、容量が零付近では、伝搬速度は、ほぼオープンの速度、4000m/s, 容量が大きくなるにつれて、速度が低下し、無限大に近い値では、その速度は、短絡の速度、3900m/sまで低下することを示している。この容量の変化を用いて、弾性波変換器及び共振器中を伝搬する速度を変化させることができる。
また、図1、図2、図3、図4の構造では、送信・受信電極或は電源に接続された電極振動子の厚さをH1, 速度をV1, 可変インピーダンスに接続された振動子の厚さをH2, 速度をV2とすると、共振共振周波数f0=(2xV1/H1+2xV2/H2)となる。従って、可変インピーダンスに接続された振動子の速度は、インピーダンス開放の速度V0から短絡の速度Vs まで変化するので、可変インピーダンスのインピーダンスを変化させることにより。可変周波数共振器が得られる。
図6は、図2の構造の板波共振器のインピーダンスの変化に対する共振周波数のシフトを示す計算結果であり、電気機械結合係数k=0.3の場合、約15%の周波数変化が得られていることが判る。
The elastic wave transducer and resonator according to the present invention have a structure in which two or more elastic wave transducers are arranged in a collier, wherein one is connected to an input / output electrode and the other is connected to an impedance element, and the impedance is changed. By changing the velocity of the elastic wave propagating through the elastic wave converter, the elastic wave converter and the elastic wave resonator having the center frequency changed, and the coupling coefficient of the elastic wave vibrator is deteriorated. In other words, a variable frequency converter and a resonator having a large variable frequency are obtained while maintaining a large Q value, and a variable frequency resonator, a filter, a variable frequency oscillator, a sensor, and the like are obtained.
FIG. 5 is a diagram showing that the velocity of the elastic wave changes due to the change of the added impedance. This is a method of changing the propagation speed by applying a variable voltage to the inserted impedance and changing the impedance by changing the voltage. In this case, when the capacitance is near zero, the propagation speed is almost an open speed. 4000 m / s, the speed decreases as the capacity increases, and the value close to infinity indicates that the speed decreases to the speed of the short circuit, 3900 m / s. The change in capacitance can be used to change the speed of propagation through the acoustic wave transducer and the resonator.
In the structure shown in FIGS. 1, 2, 3 and 4, the thickness of the electrode vibrator connected to the transmission / reception electrode or the power source is H1, the speed is V1, the vibrator is connected to the variable impedance. When the thickness is H2 and the speed is V2, the resonance resonance frequency f0 = (2 × V1 / H1 + 2 × V2 / H2). Therefore, the speed of the vibrator connected to the variable impedance varies from the impedance opening speed V0 to the short circuit speed Vs, so by changing the impedance of the variable impedance. A variable frequency resonator is obtained.
FIG. 6 is a calculation result showing a shift of the resonance frequency with respect to a change in impedance of the plate wave resonator having the structure of FIG. 2, and when the electromechanical coupling coefficient k 2 = 0.3, a frequency change of about 15% is obtained. It can be seen that
圧電振動子基板上に圧電薄膜振動子を付着させた構造の弾性波共振器の図である。(A)断面図、(B)平面図FIG. 4 is a diagram of an acoustic wave resonator having a structure in which a piezoelectric thin film vibrator is attached on a piezoelectric vibrator substrate. (A) Sectional view, (B) Plan view 圧電振動子基板上に圧電基板振動子を付着させた構造の弾性波共振器の図である。(A)断面図、(B)平面図FIG. 4 is a diagram of an acoustic wave resonator having a structure in which a piezoelectric substrate vibrator is attached on a piezoelectric vibrator substrate. (A) Sectional view, (B) Plan view ギャップ構造の圧電薄膜共振器において、圧電薄膜振動子上に圧電薄膜振動子を付着させた構造の弾性波薄膜共振器の図である。(A)断面図、(B)平面図FIG. 4 is a diagram of an acoustic wave thin film resonator having a structure in which a piezoelectric thin film resonator is attached on a piezoelectric thin film resonator in a gap structure piezoelectric thin film resonator. (A) Sectional view, (B) Plan view 反射器型圧電薄膜共振器において、圧電薄膜振動子上に圧電薄膜振動子を付着させた構造の弾性波薄膜共振器の図である。(A)断面図、(B)平面図FIG. 2 is a diagram of an acoustic wave thin film resonator having a structure in which a piezoelectric thin film resonator is attached on a piezoelectric thin film resonator in a reflector type piezoelectric thin film resonator. (A) Sectional view, (B) Plan view 図2の構造の板波可変共振器の電気機械結合係数k2=0.3の場合の容量の変化に対する共振中心周波数の変化を示す図である。It is a figure which shows the change of the resonance center frequency with respect to the change of a capacity | capacitance in case the electromechanical coupling coefficient k2 = 0.3 of the plate wave variable resonator of the structure of FIG. 電極間に接続した容量の変化に対する伝搬速度の変化を示す図である。It is a figure which shows the change of the propagation speed with respect to the change of the capacity | capacitance connected between electrodes.
1-1…圧電基板或いは圧電薄膜基板、1-2…圧電基板或いは圧電薄膜基板、
2…接地電極及びアース取り出し電極、3…接地電極、4…送受電極に接続した電極、5…インピーダンスに接続した電極、6…電源、7…負荷インピーダンス、8…可変負荷インピーダンス、9…空隙、10…支持基板、11…薄膜共振器、12…薄膜共振器、13…全体の共振器、14…弾性波伝搬速度、15…開放の速度、16…短絡の速度、17…容量の変化、18…容量の減少方向
1-1: Piezoelectric substrate or piezoelectric thin film substrate, 1-2: Piezoelectric substrate or piezoelectric thin film substrate,
2 ... Ground electrode and ground extraction electrode, 3 ... Ground electrode, 4 ... Electrode connected to transmission / reception electrode, 5 ... Electrode connected to impedance, 6 ... Power source, 7 ... Load impedance, 8 ... Variable load impedance, 9 ... Air gap, DESCRIPTION OF SYMBOLS 10 ... Support substrate, 11 ... Thin-film resonator, 12 ... Thin-film resonator, 13 ... Whole resonator, 14 ... Elastic wave propagation speed, 15 ... Opening speed, 16 ... Short-circuit speed, 17 ... Change of capacity, 18 ... Capacity decreasing direction
以下に、本発明を図面に示した実施例に基づいて説明する。
実施例の1は、図1のように、圧電基板上に圧電薄膜を付着させた弾性波共振器において、圧電基板及び圧電薄膜中を板の厚さ方向に伝搬する縦波、横波、バルク波を用いた薄膜共振器であり、圧電薄膜1-2の上下面に送受電極4とアース電極2を接続した弾性波振動子と圧電基板1-1の上下面にアース電極2と可変インピーダンスを接続した電極5からなる弾性波振動子をコリニヤに弾性的に結合した2層構造の弾性波薄膜共振器、及び圧電薄膜をインピーダンスに接続し、圧電基板を送受電極に接続した構造の共振器、及びこれらの共振器を多層に接続した構造の弾性波薄膜共振器、及びこれらの共振器を用いた電子装置が実施例の1である。
実施例の2は、図2のように、圧電基板上に圧電基板を付着させた弾性波共振器において、圧電板中を板の厚さ方向に伝搬する縦波、横波、バルク波を用いた板波共振器であり、圧電基板1―1の上下面にアース電極2と、圧電送受信電極4を接続した弾性波振動子と圧電基板1-1の上下面にアース電極2と可変インピーダンス8を接続した電極5からなる弾性波振動子をコリニヤに弾性的に結合した、2層構造の弾性波共振器、及びこれらの共振器を多層に接続した構造の弾性波共振器およびこの共振器を用いた電子装置が実施例の2である。
実施例の3は、図3のように、圧電薄膜中を薄膜の厚さ方向に伝搬する縦波、横波、バルク波を用いた薄膜共振器において、基板13の表面にギャップ14を介して、圧電薄膜1―2の上下面にアース電極2と、圧電送受信電極4を接続した弾性波薄膜振動子と圧電薄膜1-2の上下面にアース電極2と可変インピーダンス8を接続した電極5からなる弾性波振動子をコリニヤに弾性的に結合した2層構造の弾性波薄膜共振器、及びこれらの共振器を多層に接続した構造の弾性波薄膜共振器およびこの共振器を用いた電子装置が実施例の3である。
実施例の4は、図4のように、圧電薄膜中を薄膜の厚さ方向に伝搬する縦波、横波、バルク波を用いた薄膜共振器において、基板15の表面に付着した弾性波反射器表面上に送受電極に接続した圧電薄膜振動子と圧電薄膜1-2の上下面にアース電極2と可変インピーダンス8を接続した電極5からなる弾性波振動子をコリニヤに弾性的に結合した、2層構造の弾性波薄膜共振器、及びこれらの共振器を多層に接続した構造の弾性波薄膜共振器およびこの共振器を用いた電子装置が実施例の4である。
実施例の5は、許請求の範囲、第1項、第2項、第3項、第4項,の共振器を振動子として用い、弾性体の両側にこれらの振動子を付着させた弾性波送受デバイスおよびこのデバイスを用いた電子装置が実施例の5である。
上記の可変周波数共振器は、λ/2共振を基準としたが、λ/2のn倍の共振器及び(n±1/2)倍の共振器も本特許に含まれる。また、この共振器を振動子として用い、弾性体の両側にこの振動子を用いた遅延線、フィルター、可変周波数発振器、センサー、スペクトル拡散信号処理デバイスーも本特許に含まれる。
 
 
 
 
 
 
 

 
In the following, the present invention will be described based on embodiments shown in the drawings.
In Example 1, as shown in FIG. 1, in an acoustic wave resonator in which a piezoelectric thin film is attached on a piezoelectric substrate, longitudinal waves, transverse waves, and bulk waves propagating in the thickness direction of the plate through the piezoelectric substrate and the piezoelectric thin film. A thin-film resonator using a piezoelectric thin film 1-2 with an acoustic wave vibrator having a transmitting / receiving electrode 4 and a ground electrode 2 connected to the upper and lower surfaces of the piezoelectric thin film 1-2, and a ground electrode 2 and a variable impedance connected to the upper and lower surfaces of the piezoelectric substrate 1-1. A two-layered acoustic wave thin film resonator in which an acoustic wave vibrator comprising the electrode 5 is elastically coupled to a corinier, a resonator having a piezoelectric thin film connected to an impedance, and a piezoelectric substrate connected to a transmission / reception electrode; An elastic wave thin film resonator having a structure in which these resonators are connected in multiple layers and an electronic device using these resonators are one of the embodiments.
In Example 2, as shown in FIG. 2, in an acoustic wave resonator in which a piezoelectric substrate is attached on a piezoelectric substrate, longitudinal waves, transverse waves, and bulk waves propagating in the thickness direction of the plate are used. It is a plate wave resonator, and includes an earth electrode 2 on the upper and lower surfaces of the piezoelectric substrate 1-1, an elastic wave vibrator connected to the piezoelectric transmitting / receiving electrode 4, and an earth electrode 2 and a variable impedance 8 on the upper and lower surfaces of the piezoelectric substrate 1-1. A two-layered acoustic wave resonator in which an acoustic wave vibrator composed of connected electrodes 5 is elastically coupled to a collier, an acoustic wave resonator having a structure in which these resonators are connected in multiple layers, and the resonator are used. The second example is the electronic device.
In Example 3, as shown in FIG. 3, in a thin film resonator using a longitudinal wave, a transverse wave, and a bulk wave propagating in the thickness direction of the thin film in the piezoelectric thin film, a gap 14 is formed on the surface of the substrate 13. The piezoelectric thin film 1-2 includes an earth electrode 2 on the upper and lower surfaces of the piezoelectric thin film 1-2, and an acoustic wave thin film vibrator connected to the piezoelectric transmission / reception electrode 4. An acoustic wave thin film resonator having a two-layer structure in which an elastic wave vibrator is elastically coupled to a collier, an acoustic wave thin film resonator having a structure in which these resonators are connected in multiple layers, and an electronic device using the resonator are implemented. Example 3
In Example 4, as shown in FIG. 4, in a thin film resonator using a longitudinal wave, a transverse wave, and a bulk wave propagating in the thickness direction of the thin film in the piezoelectric thin film, an elastic wave reflector attached to the surface of the substrate 15 is used. An elastic wave vibrator comprising a piezoelectric thin film vibrator connected to a transmission / reception electrode on the surface and an electrode 5 having a ground electrode 2 and a variable impedance 8 connected to the upper and lower surfaces of the piezoelectric thin film 1-2 is elastically coupled to the coriner. Example 4 is an elastic wave thin film resonator having a layer structure, an acoustic wave thin film resonator having a structure in which these resonators are connected in multiple layers, and an electronic device using the resonator.
In Example 5, the resonator according to claims 1, 2nd, 3rd and 4th terms is used as a vibrator, and the elasticity is obtained by attaching these vibrators to both sides of the elastic body. A wave transmitting / receiving device and an electronic apparatus using this device are the fifth embodiment.
The above variable frequency resonator is based on the λ / 2 resonance, but n times the resonator of λ / 2 and the resonator of (n ± 1/2) times are also included in this patent. Further, a delay line, a filter, a variable frequency oscillator, a sensor, and a spread spectrum signal processing device using this resonator as a vibrator and using the vibrator on both sides of an elastic body are also included in this patent.








Claims (5)

  1. 圧電基板上に圧電薄膜を付着させた弾性波共振器において、圧電基板及び圧電薄膜中を板の厚さ方向に伝搬する縦波、横波、バルク波を用いた薄膜共振器であり、圧電薄膜1-2の上下面に送受電極4とアース電極2を接続した弾性波振動子と圧電基板1-1の上下面にアース電極2と可変インピーダンスを接続した電極5からなる弾性波振動子をコリニヤに弾性的に結合した2層構造の弾性波薄膜共振器、及び圧電薄膜をインピーダンスに接続し、圧電基板を送受電極に接続した構造の共振器、及びこれらの共振器を多層に接続した構造の弾性波薄膜共振器、及びこれらのこの共振器を用いた電子装置。 In the acoustic wave resonator in which a piezoelectric thin film is attached on a piezoelectric substrate, the piezoelectric thin film 1 is a thin film resonator using longitudinal waves, transverse waves, and bulk waves propagating in the thickness direction of the plate through the piezoelectric substrate and the piezoelectric thin film. An elastic wave vibrator composed of an elastic wave vibrator having a transmission / reception electrode 4 and a ground electrode 2 connected to the upper and lower surfaces of -2 and an electrode 5 having a ground electrode 2 and a variable impedance connected to the upper and lower faces of the piezoelectric substrate 1-1 is used as a coriner. Elastically coupled two-layer acoustic wave thin film resonator, a resonator having a piezoelectric thin film connected to an impedance, and a piezoelectric substrate connected to a transmitting / receiving electrode, and an elastic structure having these resonators connected in multiple layers Wave thin film resonators and electronic devices using these resonators.
  2. 圧電基板上に圧電基板を付着させた弾性波共振器において、圧電板中を板の厚さ方向に伝搬する縦波、横波、バルク波を用いた板波共振器であり、圧電基板1―1の上下面にアース電極2と、圧電送受信電極4を接続した弾性波振動子と圧電基板1-1の上下面にアース電極2と可変インピーダンス8を接続した電極5からなる弾性波振動子をコリニヤに弾性的に結合した、2層構造の弾性波共振器、及びこれらの共振器を多層に接続した構造の弾性波共振器およびこの共振器を用いた電子装置。 An acoustic wave resonator having a piezoelectric substrate attached to a piezoelectric substrate is a plate wave resonator using longitudinal waves, transverse waves, and bulk waves propagating in the thickness direction of the plate through the piezoelectric plate, and the piezoelectric substrate 1-1. An elastic wave vibrator comprising an earth wave electrode 2 and a piezoelectric transmitting / receiving electrode 4 connected to the upper and lower surfaces of the piezoelectric substrate 1-1 and an elastic wave vibrator comprising an electrode 5 connected to the earth electrode 2 and the variable impedance 8 on the upper and lower surfaces of the piezoelectric substrate 1-1 An elastic wave resonator having a two-layer structure elastically coupled to each other, an elastic wave resonator having a structure in which these resonators are connected in multiple layers, and an electronic device using the resonator.
  3. 圧電薄膜中を薄膜の厚さ方向に伝搬する縦波、横波、バルク波を用いた薄膜共振器において、基板13の表面にギャップ14を介して、圧電薄膜1―2の上下面にアース電極2と、圧電送受信電極4を接続した弾性波薄膜振動子と圧電薄膜1-2の上下面にアース電極2と可変インピーダンス8を接続した電極5からなる弾性波振動子をコリニヤに弾性的に結合した2層構造の弾性波薄膜共振器、及びこれらの共振器を多層に接続した構造の弾性波薄膜共振器およびこの共振器を用いた電子装置。 In a thin film resonator using a longitudinal wave, a transverse wave, and a bulk wave propagating in the thickness direction of the thin film through the piezoelectric thin film, a ground electrode 2 is formed on the upper and lower surfaces of the piezoelectric thin film 1-2 via a gap 14 on the surface of the substrate 13. And an elastic wave thin film vibrator connected to the piezoelectric transmitting / receiving electrode 4 and an elastic wave vibrator consisting of an electrode 5 connected to the ground electrode 2 and the variable impedance 8 on the upper and lower surfaces of the piezoelectric thin film 1-2 are elastically coupled to the coriner. An acoustic wave thin film resonator having a two-layer structure, an acoustic wave thin film resonator having a structure in which these resonators are connected in multiple layers, and an electronic device using the resonator.
  4. 圧電薄膜中を薄膜の厚さ方向に伝搬する縦波、横波、バルク波を用いた薄膜共振器において、基板15の表面に付着した弾性波反射器表面上に送受電極に接続した圧電薄膜振動子と圧電薄膜1-2の上下面にアース電極2と可変インピーダンス8を接続した電極5からなる弾性波振動子をコリニヤに弾性的に結合した、2層構造の弾性波薄膜共振器、及びこれらの共振器を多層に接続した構造の弾性波薄膜共振器およびこの共振器を用いた電子装置。 In a thin film resonator using a longitudinal wave, a transverse wave, and a bulk wave propagating in the thickness direction of the thin film in the piezoelectric thin film, the piezoelectric thin film vibrator connected to the transmitting and receiving electrodes on the surface of the elastic wave reflector attached to the surface of the substrate 15 And an acoustic wave thin film resonator having a two-layer structure in which an elastic wave vibrator comprising an electrode 5 having a ground electrode 2 and a variable impedance 8 connected to the upper and lower surfaces of the piezoelectric thin film 1-2 is elastically coupled to the coriner, and these An acoustic wave thin film resonator having a structure in which resonators are connected in multiple layers, and an electronic device using the resonator.
  5. 許請求の範囲、第1項、第2項、第3項、第4項の共振器を振動子として用い、弾性体の両側にこれらの振動子を付着させた弾性波送受デバイスおよびこのデバイスを用いた電子装置。
     
     

     
    An elastic wave transmitting / receiving device using the resonator according to the first, second, third, and fourth claims as a vibrator and having these vibrators attached to both sides of an elastic body, and the device The electronic device used.



PCT/JP2015/078428 2014-10-27 2015-10-07 Variable-frequency elastic wave transducer and electronic device using same WO2016067858A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-232144 2014-10-27
JP2014232144A JP2015228638A (en) 2013-12-28 2014-10-27 Variable frequency acoustic wave converter and electronic apparatus using the same

Publications (1)

Publication Number Publication Date
WO2016067858A1 true WO2016067858A1 (en) 2016-05-06

Family

ID=55859228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078428 WO2016067858A1 (en) 2014-10-27 2015-10-07 Variable-frequency elastic wave transducer and electronic device using same

Country Status (1)

Country Link
WO (1) WO2016067858A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005109573A (en) * 2003-09-26 2005-04-21 Kyocera Corp Resonator and electronic apparatus
WO2008016075A1 (en) * 2006-08-03 2008-02-07 Panasonic Corporation Frequency-variable acoustic film resonator, filter and communication apparatus using the same
WO2010079614A1 (en) * 2009-01-09 2010-07-15 太陽誘電株式会社 Filter element, branching filter, and electronic apparatus
WO2011016332A1 (en) * 2009-08-06 2011-02-10 太陽誘電株式会社 Duplexer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005109573A (en) * 2003-09-26 2005-04-21 Kyocera Corp Resonator and electronic apparatus
WO2008016075A1 (en) * 2006-08-03 2008-02-07 Panasonic Corporation Frequency-variable acoustic film resonator, filter and communication apparatus using the same
WO2010079614A1 (en) * 2009-01-09 2010-07-15 太陽誘電株式会社 Filter element, branching filter, and electronic apparatus
WO2011016332A1 (en) * 2009-08-06 2011-02-10 太陽誘電株式会社 Duplexer

Similar Documents

Publication Publication Date Title
US10476469B2 (en) Spurious-mode-free, laterally-vibrating microelectromechanical system resonators
US7365619B2 (en) BAW apparatus
US10469052B2 (en) Elastic wave device, high-frequency front-end circuit, and communication device
WO2021120499A1 (en) Bulk acoustic resonator having electrode having gap layer and temperature compensation layer, filter, and electronic apparatus
JP5950363B2 (en) Surface acoustic wave transducer
US8179209B2 (en) Complex resonance circuit
JP2004147246A (en) Piezoelectric vibrator, filter using the same and method of adjusting piezoelectric vibrator
JPWO2008016075A1 (en) Frequency variable acoustic thin film resonator, filter, and communication device using the same
JPS6135716B2 (en)
US9386388B2 (en) Method of manufacturing stacked thin film piezoelectric filter
US8610518B1 (en) Elastic guided wave coupling resonator filter and associated manufacturing
JP2015144418A5 (en) Variable frequency surface acoustic wave transducer and electronic device using the same
US10009002B1 (en) Methods for suppressing spurious modes in microresonators
WO2000013316A1 (en) Multi-longitudinal mode saw filter
WO2016067858A1 (en) Variable-frequency elastic wave transducer and electronic device using same
Santosh et al. Investigation of properties of surface acoustic waves generated by periodically patterned ZnO on silicon substrate
Ralib et al. Silicon compatible Acoustic wave resonators: Design, fabrication and performance
JP2015228638A (en) Variable frequency acoustic wave converter and electronic apparatus using the same
JP2008005443A (en) Acoustic wave resonator, filter, and communications apparatus
Ponge et al. Optimization of a tunable piezoelectric resonator using phononic crystals with periodic electrical boundary conditions
JP5757339B2 (en) Tunable elastic wave device
Lu et al. Lamb wave resonator loaded non-reciprocal RF devices
Lin Temperature-compensated and high-q piezoelectric aluminum nitride lamb wave resonators for timing and frequency control applications
Ji et al. Enlarged phase velocities of ultra-wideband surface acoustic wave devices with relaxor based ferroelectric single crystal/diamond layered structure
JP2004235886A (en) Piezoelectric thin film element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15854514

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15854514

Country of ref document: EP

Kind code of ref document: A1