JP2015226357A - Ground fault current detector and installation method for ground fault current detector - Google Patents

Ground fault current detector and installation method for ground fault current detector Download PDF

Info

Publication number
JP2015226357A
JP2015226357A JP2014108800A JP2014108800A JP2015226357A JP 2015226357 A JP2015226357 A JP 2015226357A JP 2014108800 A JP2014108800 A JP 2014108800A JP 2014108800 A JP2014108800 A JP 2014108800A JP 2015226357 A JP2015226357 A JP 2015226357A
Authority
JP
Japan
Prior art keywords
ground
current
cubicle
wires
fault current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014108800A
Other languages
Japanese (ja)
Other versions
JP6312246B2 (en
Inventor
光一 七海
Koichi Nanaumi
光一 七海
正次 植松
Shoji Uematsu
正次 植松
古屋 一彦
Kazuhiko Furuya
一彦 古屋
洋治 大浦
Yoji Oura
洋治 大浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kandenko Co Ltd
East Japan Railway Co
Original Assignee
Kandenko Co Ltd
East Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kandenko Co Ltd, East Japan Railway Co filed Critical Kandenko Co Ltd
Priority to JP2014108800A priority Critical patent/JP6312246B2/en
Publication of JP2015226357A publication Critical patent/JP2015226357A/en
Application granted granted Critical
Publication of JP6312246B2 publication Critical patent/JP6312246B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a ground fault current detector capable of detecting minute current for capturing a sign of a failure in a DC cubicle even when two ground wires are provided to the DC cubicle for security reasons.SOLUTION: A ground fault current detector includes: an insulation material 2 laid at a lower part of a DC cubicle 1 that receives a DC apparatus and insulating between the DC cubicle 1 and the earth ET11; two ground wires 3 connecting an earth bus EB11 of the DC cubicle 1 to the earth ET11; and a current detection means 4 for detecting ground current flowing through the two ground wires 3 at one point.

Description

本発明は、直流変電所における地絡電流検出装置及び地絡電流検出装置の施工方法に関する。   The present invention relates to a ground fault current detection device and a construction method of the ground fault current detection device in a DC substation.

電鉄用直流変電所等では、直流機器が収納された直流キュービクルにおいて、収納された整流器によって三相交流電圧を直流電圧に変換し、直流高速度遮断器により電車線に送電している。このような直流キュービクルで地絡が発生した場合には、当該地絡時に発生する電圧を、直流高圧接地継電器により検出して、直流高速度遮断器で直流電圧及び電流を遮断することにより、地絡事故から直流変電所を保護している。   In a DC substation for electric railways, etc., in a DC cubicle in which DC equipment is stored, a three-phase AC voltage is converted into a DC voltage by a stored rectifier and is transmitted to a train line by a DC high-speed circuit breaker. When a ground fault occurs in such a DC cubicle, the voltage generated at the time of the ground fault is detected by a DC high-voltage grounding relay, and the DC voltage and current are interrupted by a DC high-speed circuit breaker. It protects the DC substation from a cable accident.

但し、従来の直流高圧接地継電器による直流変電所の保護において、高抵抗地絡等の不完全な地絡では、直流高圧接地継電器側の電圧上昇が小さく、直流高圧接地継電器は動作しない。このため、電圧検出以外の地絡電流を検出することにより、冗長性を持たせることが求められる。   However, in the protection of the DC substation by the conventional DC high-voltage grounding relay, the voltage rise on the DC high-voltage grounding relay side is small and the DC high-voltage grounding relay does not operate in the case of incomplete grounding such as high resistance grounding. For this reason, it is required to provide redundancy by detecting a ground fault current other than voltage detection.

このような地絡電流の検出に関して、整流器や直流高速度遮断器の筐体である直流キュービクル等に設けられた接地線に流れる地絡電流を直流変流器で検出して地絡事故を検出し、直流高速度遮断器で直流電圧及び電流を遮断することにより、地絡事故から直流変電所を保護する装置が開示されている(特許文献1及び2参照)。   Regarding detection of such ground fault current, a ground fault is detected by detecting the ground fault current flowing in the ground wire provided in the DC cubicle etc. that is the housing of the rectifier and DC high speed circuit breaker with a DC current transformer. And the apparatus which protects a DC substation from a ground fault accident by interrupting | blocking DC voltage and an electric current with a DC high-speed circuit breaker is disclosed (refer patent documents 1 and 2).

一般に、直流キュービクルに設けられる接地線は、1本ではなく、2本の接地線を設け、それぞれの地絡線に流れる地絡電流を2つの直流変流器で監視することにより、直流キュービクル内の接地母線の断線や、接地線自体の断線等が発生した場合であっても、一方の接地線に流れる地絡電流を直流変流器で検出することができ、地絡事故から直流変電所を保護することが保安上求められる。   In general, the ground line provided in the DC cubicle is not one, but two ground lines are provided, and the ground fault current flowing through each ground fault line is monitored by two DC current transformers. Even if the ground bus is disconnected or the ground wire itself is disconnected, the ground fault current that flows through one of the ground lines can be detected by a DC current transformer. It is required for security to protect.

特開2004−194471号公報JP 2004-194471 A 特開2010−041892号公報JP 2010-041892 A

しかしながら、直流キュービクルに設けられる接地線を2本にすると、直流変電所における迷走電流、整流時の脈流成分である交流電流、近接する交流ケーブルにより誘導される誘導電流等が、一つの接地線を介して直流キュービクルに流れ込み、また他の接地線を介して、直流キュービクルと鉄筋などの躯体との電気的なつながりによって大地に流れ出す場合があり、当該接地線を流れる地絡電流を検出する際の非対称な電流やノイズとなってしまう。   However, if two ground wires are provided in the DC cubicle, the stray current in the DC substation, the AC current that is the pulsating current component during rectification, the induced current induced by the adjacent AC cable, etc. When the ground fault current flowing through the grounding wire is detected, it may flow into the ground due to the electrical connection between the DC cubicle and the steel frame such as a reinforcing bar. Asymmetrical current and noise.

このようなネット状回路の電流の中の2本の配線は、理想的には、2つの直流変流器で検出された地絡電流を相殺することにより除去できるはずであるが、実際には、2つの直流変流器間のネット状回路の電流の非対称性や変流器の特性のばらつき等により、真の漏洩電流と地絡電流を検出することができない。   Two wires in the current of such a net-like circuit should ideally be removed by canceling the ground fault current detected by the two DC current transformers. The true leakage current and ground fault current cannot be detected due to the asymmetry of the current in the net-like circuit between the two DC current transformers and the variation in the characteristics of the current transformers.

このため、直流キュービクル内の故障の予兆を捉えるために、2本の接地線に流れる数mA程度の微小電流を検出しようとした場合、当該微小電流は迷走電流等に起因するノイズに埋もれて検出できず、直流キュービクル内の故障の予兆を捉えることができないといった問題点があった。   For this reason, when trying to detect a minute current of about several mA flowing through two ground lines in order to detect a sign of a failure in the DC cubicle, the minute current is detected by being buried in noise caused by a stray current or the like. There was a problem that it was not possible to catch a sign of a failure in the DC cubicle.

本発明の課題は、直流キュービクルに、保安上、2本の接地線を設けた場合であっても、直流キュービクル内の故障の予兆を捉えるための微小電流を検出することができる地絡電流検出装置及び地絡電流検出装置の施工方法を提供することにある。   An object of the present invention is to detect a ground fault current that can detect a minute current for detecting a sign of a failure in a DC cubicle even when two ground lines are provided in the DC cubicle for safety reasons. It is providing the construction method of an apparatus and a ground-fault current detection apparatus.

上記課題を達成するため、この発明は、
直流機器が収納された直流キュービクルの下部に敷設され、当該直流キュービクルと大地との間を絶縁する絶縁材と、
前記直流キュービクルの接地母線を大地に接続する2本の接地線と、
前記2本の接地線にそれぞれ流れる地絡電流を一箇所で検出する電流検出手段と、
を備えるようにしたものである。
In order to achieve the above object, the present invention provides:
An insulating material that is laid at the bottom of the DC cubicle containing the DC device and insulates between the DC cubicle and the ground;
Two ground wires connecting the ground bus of the DC cubicle to the ground;
Current detecting means for detecting a ground fault current flowing through each of the two ground wires in one place;
Is provided.

直流機器が収納された直流キュービクルの下部に当該直流キュービクルと大地との間を絶縁する絶縁材を敷設し、2本の接地線で直流キュービクルの接地母線を大地に接続し、1つの電流検出手段で2本の接地線にそれぞれ流れる地絡電流を一箇所で検出することにより、直流キュービクルに、保安上、2本の接地線を設けた場合であっても、流れ込む迷走電流と、流れ出す迷走電流とは打ち消されて相殺されるので、ノイズを低減することができ、直流キュービクル内の故障の予兆を捉えるための微小電流を検出することができる。   Insulating material that insulates the DC cubicle from the ground is installed under the DC cubicle containing the DC equipment, and the ground bus of the DC cubicle is connected to the ground by two ground wires. By detecting the ground fault current that flows through each of the two ground wires at one location, even if two ground wires are provided in the DC cubicle for safety reasons, the stray current that flows in and the stray current that flows out Is canceled and canceled out, noise can be reduced, and a minute current for detecting a sign of a failure in the DC cubicle can be detected.

また、望ましくは、前記2本の接地線は、前記絶縁材を貫通して大地に接続するようにしたものである。
絶縁材を貫通させて大地に接地することにより、接地線を絶縁材上に敷設する必要がなくなるので、2本の接地線をできるだけ短い経路で施工することができる。
Preferably, the two ground lines are connected to the ground through the insulating material.
By grounding the insulating material through the ground, it is not necessary to lay the grounding wire on the insulating material, so that the two grounding wires can be constructed with the shortest possible path.

また、望ましくは、前記接地母線は、前記直流キュービクルの長手方向に敷設され、前記2本の接地線は、前記接地母線の両端に接続されるようにしたものである。
2本の接地線により接地母線を接地する場合、2本の接地線の一端は、接地母線の両端にそれぞれ接続することにより、直流キュービクル内の接地母線が断線した場合であっても、直流キュービクルで発生した地絡電流は、どちらか一方の接地線を介して大地に流れるので、確実に直流変電所を保護することができる。
Preferably, the ground bus is laid in the longitudinal direction of the DC cubicle, and the two ground wires are connected to both ends of the ground bus.
When the ground bus is grounded by two ground wires, one end of each of the two ground wires is connected to both ends of the ground bus so that even if the ground bus in the DC cubicle is disconnected, the DC cubicle Since the ground fault current generated in the current flows to the ground via one of the ground lines, the DC substation can be reliably protected.

また、望ましくは、前記電流検出手段は、貫通型の直流変流器であり、当該直流変流器の貫通孔の中心に前記2本の接地線を配線することで地絡電流を一箇所で検出するようにしたものである。
2本の接地線を、直流変流器の貫通孔の中心に配線するほどノイズを低減することができ、直流キュービクル内の故障の予兆を捉えるための微小電流を検出することができる。
Preferably, the current detection means is a through-type DC current transformer, and the two ground wires are wired at the center of the through-hole of the DC current transformer so that a ground fault current can be obtained at one location. It is intended to be detected.
As the two ground wires are wired to the center of the through hole of the DC current transformer, noise can be reduced, and a minute current for detecting a sign of a failure in the DC cubicle can be detected.

また、望ましくは、2つの部材により前記貫通孔に配線された前記2本の接地線を挟持すると共に、前記貫通孔に嵌合されることにより、前記2本の接地線を前記貫通孔の中心に固定する固定部材を有するようにしたものである。
地絡電流検出装置の施工の際に、2つの部材から構成される固定部材を用い、直流変流器の貫通孔に配線された2本の接地線を、両側から挟み込み、貫通孔に挿入することにより、2本の接地線を直流変流器の貫通孔の中心に確実に固定することができるので、ノイズを低減することができ、直流キュービクル内の故障の予兆を捉えるための微小電流を検出することができる。
Desirably, the two grounding wires wired to the through-hole by two members are sandwiched and fitted into the through-hole so that the two grounding wires are connected to the center of the through-hole. It has a fixing member fixed to it.
At the time of construction of the ground fault current detection device, two grounding wires wired to the through hole of the DC current transformer are sandwiched from both sides using a fixing member composed of two members and inserted into the through hole. As a result, the two ground wires can be securely fixed to the center of the through hole of the DC current transformer, so that noise can be reduced and a small current for capturing a sign of failure in the DC cubicle can be obtained. Can be detected.

また、望ましくは、前記固定部材は、前記貫通孔に嵌合した時に前記貫通孔の縁に掛止する突起部を備えるようにしたものである。
地絡電流検出装置の施工の際に、固定部材を用い、直流変流器の貫通孔に配線された2本の接地線を、両側から挟み込み、貫通孔に挿入する際に、突起部によって、直流変流器の貫通孔に確実に固定することができるので、ノイズを低減することができ、直流キュービクル内の故障の予兆を捉えるための微小電流を検出することができる。
Desirably, the fixing member includes a protrusion that is engaged with an edge of the through hole when the fixing member is fitted into the through hole.
At the time of construction of the ground fault current detection device, the fixing member is used, the two ground wires wired to the through hole of the DC current transformer are sandwiched from both sides, and when inserted into the through hole, Since it can be reliably fixed to the through hole of the DC current transformer, noise can be reduced, and a minute current for detecting a sign of a failure in the DC cubicle can be detected.

また、本出願の他の発明は、
直流機器が収納された直流キュービクルの下部に、当該直流キュービクルと大地との間を絶縁する絶縁材を敷設する絶縁工程と、
前記直流キュービクルの接地母線を2本の接地線で大地に接続する接地工程と、
前記2本の接地線を、前記2本の接地線にそれぞれ流れる地絡電流を一箇所で検出する電流検出手段に配線する配線工程と、
を含むようにしたものである。
In addition, other inventions of the present application are:
An insulating step of laying an insulating material that insulates the DC cubicle from the ground at the bottom of the DC cubicle in which the DC device is stored;
A grounding step of connecting the ground bus of the DC cubicle to the ground with two ground wires;
A wiring step of wiring the two ground wires to a current detecting means for detecting a ground fault current flowing in each of the two ground wires in one place;
Is included.

直流機器が収納された直流キュービクルの下部に当該直流キュービクルと大地との間を絶縁する絶縁材を敷設する絶縁工程と、2本の接地線で直流キュービクルの接地母線を大地に接続する接地工程と、前記2本の接地線を、前記2本の接地線にそれぞれ流れる地絡電流を一箇所で検出する電流検出手段に配線する配線工程と、を含むことにより、直流キュービクルに、保安上、2本の接地線を設けた場合であっても、流れ込む迷走電流と、流れ出す迷走電流とは打ち消されて相殺されるので、ノイズを低減することができ、直流キュービクル内の故障の予兆を捉えるための微小電流を検出することができる地絡電流検出装置の施工をすることができる。   An insulation process for laying an insulating material for insulation between the DC cubicle and the ground at a lower part of the DC cubicle in which the DC equipment is housed, and a grounding process for connecting the ground bus of the DC cubicle to the ground with two ground wires; Wiring the two ground wires to a current detecting means for detecting a ground fault current flowing through each of the two ground wires at a single location, thereby providing a DC cubicle with a safety Even when a grounding wire is provided, the stray current that flows in and the stray current that flows out are canceled out and canceled out, so noise can be reduced and a sign of failure in the DC cubicle can be captured. Construction of a ground fault current detection device capable of detecting a minute current can be performed.

本発明によれば、直流機器が収納された直流キュービクルの下部に当該直流キュービクルと大地との間を絶縁する絶縁材を敷設し、2本の接地線で直流キュービクルの接地母線を大地に接続し、1つの電流検出手段で2本の接地線にそれぞれ流れる地絡電流を一箇所で検出することにより、直流キュービクルに、保安上、2本の接地線を設けた場合であっても、流れ込む迷走電流と、流れ出す迷走電流とは打ち消されて相殺されるので、ノイズを低減することができ、直流キュービクル内の故障の予兆を捉えるための微小電流を検出することができる。   According to the present invention, an insulating material that insulates the DC cubicle from the ground is laid under the DC cubicle in which the DC equipment is housed, and the ground bus of the DC cubicle is connected to the ground by two ground wires. By detecting the ground fault current flowing in each of the two ground lines at one location with one current detection means, even if two ground lines are provided on the DC cubicle for security reasons, Since the current and the stray current that flows out are canceled and cancelled, noise can be reduced, and a minute current for detecting a sign of a failure in the DC cubicle can be detected.

本実施の形態に係る地絡電流検出装置の構成の一例を示す概略構成図である。It is a schematic block diagram which shows an example of a structure of the ground-fault current detection apparatus which concerns on this Embodiment. 本実施の形態に係る地絡電流検出装置の動作を説明する説明図である。It is explanatory drawing explaining operation | movement of the ground-fault current detection apparatus which concerns on this Embodiment. 比較例である地絡電流検出装置の動作を説明する説明図である。It is explanatory drawing explaining operation | movement of the ground-fault current detection apparatus which is a comparative example. 比較例の検出波形の一例を示す説明図である。It is explanatory drawing which shows an example of the detection waveform of a comparative example. 比較例の検出波形の他の一例を示す説明図である。It is explanatory drawing which shows another example of the detection waveform of a comparative example. 本実施の形態に係る地絡電流検出装置の検出波形の一例を示す説明図である。It is explanatory drawing which shows an example of the detection waveform of the ground-fault current detection apparatus which concerns on this Embodiment. 本実施の形態に係る地絡電流検出装置の接地母線の詳細を説明する説明図である。It is explanatory drawing explaining the detail of the ground bus of the ground-fault current detection apparatus which concerns on this Embodiment. 本実施の形態に係る地絡電流検出装置の接地線の配線位置による誤差の一例を示す説明図である。It is explanatory drawing which shows an example of the error by the wiring position of the ground wire of the ground-fault current detection apparatus which concerns on this Embodiment. 本実施の形態に係る地絡電流検出装置の接地線を固定する固定部材の一例を示す説明図である。It is explanatory drawing which shows an example of the fixing member which fixes the ground wire of the ground-fault current detection apparatus which concerns on this Embodiment.

[1.構成の説明]
以下、図面を参照しつつ、本発明の実施形態である地絡電流検出装置を詳細に説明する。但し、発明の範囲は、図示例に限定されない。
[1. Description of configuration]
Hereinafter, a ground fault current detection apparatus according to an embodiment of the present invention will be described in detail with reference to the drawings. However, the scope of the invention is not limited to the illustrated examples.

(実施形態)
本発明の実施形態の地絡電流検出装置の構成について図1を参照して説明する。図1は、地絡電流検出装置の構成の一例を示す概略構成図である。
図1に示すように、地絡電流検出装置100(以下、単に装置100と呼ぶ。)は、直流キュービクル1、絶縁材2、2本の接地線3、電流検出手段である直流変流器4を有する。
(Embodiment)
The structure of the ground fault current detection apparatus of embodiment of this invention is demonstrated with reference to FIG. FIG. 1 is a schematic configuration diagram illustrating an example of a configuration of a ground fault current detection device.
As shown in FIG. 1, a ground fault current detection device 100 (hereinafter simply referred to as device 100) includes a DC cubicle 1, an insulating material 2, two ground wires 3, and a DC current transformer 4 as current detection means. Have

直流キュービクル1は、母線BS11に並列接続された断路器DC11、直流高速度遮断器CB11及びCB12、避雷器(図示せず)等の直流機器を、箱型の金属容器に収納したものであり、例えば、電鉄用直流変電所等であっては直流1500Vの電圧を送出し、地絡事故や過負荷時には、直流高速度遮断器CB11及びCB12等によって直流1500Vの電圧及び電流を遮断することにより、直流変電所を保護する。
ちなみに、図1においては、3個の箱型の金属容器から直流キュービクル1が構成されているが、直流変電所の規模によっては数十個の箱型の金属容器から直流キュービクル1が構成される。
The DC cubicle 1 is a box-shaped metal container in which DC devices such as a disconnector DC11, DC high-speed circuit breakers CB11 and CB12, and a lightning arrester (not shown) connected in parallel to the bus BS11 are stored. In DC substations for railways, etc., a DC voltage of 1500V is sent, and in the event of a ground fault or overload, the DC high-speed circuit breakers CB11 and CB12 etc. cut off the DC 1500V voltage and current. Protect substations.
Incidentally, in FIG. 1, the DC cubicle 1 is composed of three box-shaped metal containers, but depending on the scale of the DC substation, the DC cubicle 1 is composed of several tens of box-shaped metal containers. .

絶縁材2は、このような直流機器が収納された直流キュービクル1の下部に敷設され、直流キュービクル1と大地ET11との間を絶縁することにより、直流キュービクル1と大地ET11との間に流れる地絡電流の流れるルートを2本の接地線3に制限させる。   The insulating material 2 is laid under the DC cubicle 1 in which such DC equipment is housed, and insulates between the DC cubicle 1 and the ground ET11, thereby flowing between the DC cubicle 1 and the ground ET11. The route through which the fault current flows is limited to two ground lines 3.

接地線3は、直流キュービクル1の長手方向に敷設された接地母線EB11を大地ET11に接続するケーブル等であり、例えば、直流キュービクル1内で地絡により発生する地絡電流や、直流機器の絶縁劣化に起因する地絡電流(漏洩電流)が、接地母線EB11に流れ込んだ場合に、当該地絡電流を大地ET11に流す。
具体的には、2本の接地線3の一端は、接地母線EB11の両端にそれぞれ接続され、2本の接地線3の他端が、大地ET11に接続(接地)される。また、2本の接地線3の中間部分はそれぞれ、1つの直流変流器4の貫通孔の中心に通される。
ちなみに、接地線3は、接地線3を絶縁材2上に敷設するのではなく、接地母線EB11の両端部分で絶縁材2を貫通させて、1つの直流変流器4の貫通孔を通して大地ET11に接地することにより、2本の接地線3を、できるだけ短い経路で施工することができる。
The ground wire 3 is a cable or the like for connecting the ground bus EB11 laid in the longitudinal direction of the DC cubicle 1 to the ground ET11. For example, a ground fault current generated by a ground fault in the DC cubicle 1 or insulation of a DC device When a ground fault current (leakage current) due to deterioration flows into the ground bus EB11, the ground fault current is passed through the ground ET11.
Specifically, one end of the two ground wires 3 is connected to both ends of the ground bus EB11, and the other end of the two ground wires 3 is connected (grounded) to the ground ET11. Further, the intermediate portions of the two ground wires 3 are respectively passed through the centers of the through holes of one DC current transformer 4.
Incidentally, the grounding wire 3 does not lay the grounding wire 3 on the insulating material 2 but penetrates the insulating material 2 at both ends of the grounding bus EB11 and passes through the through hole of one DC current transformer 4 to the ground ET11. It is possible to construct the two ground wires 3 through the shortest path possible by grounding them.

直流変流器4は、2本の接地線3に流れる直流電流を一箇所で高精度に検出する機器である。
具体的には、リングコアを励磁回路により常時励磁状態に保ち、検出回路とフィードバック回路を、バランス回路によりバランスさせておく。そして、リングコア内を通した2本の接地線3に直流電流(地絡電流)を流がれると、フィードバック回路のバランスが崩れるが、バランス回路が、検出回路とフィードバック回路とがバランスするように制御する。この制御の際に必要な信号の大きさが当該直流電流(地絡電流)の大きさに比例することを利用して、リングコア内を通した2本の接地線3に流れる直流電流(地絡電流)の値を検出する。
また、直流変流器4には、極性があり、直流電流(地絡電流)の流れる方向に応じて、正の電流値、或いは、負の電流値として検出される。例えば、当該極性と同じ方向に直流電流(地絡電流)が流れる場合は、正の電流値として検出され、一方、当該極性と逆方向に直流電流(地絡電流)が流れる場合は、負の電流値として検出される。
The DC current transformer 4 is a device that detects the DC current flowing through the two ground wires 3 with high accuracy at one location.
Specifically, the ring core is always kept in an excited state by an excitation circuit, and the detection circuit and the feedback circuit are balanced by a balance circuit. And if a direct current (ground fault current) flows through the two ground wires 3 that pass through the ring core, the balance of the feedback circuit will be lost, but the balance circuit will balance the detection circuit and the feedback circuit. Control. Using the fact that the magnitude of the signal required for this control is proportional to the magnitude of the direct current (ground fault current), the direct current (ground fault) flowing through the two ground wires 3 that pass through the ring core. Detect current value.
The DC current transformer 4 has polarity and is detected as a positive current value or a negative current value according to the direction in which the DC current (ground fault current) flows. For example, when a direct current (ground fault current) flows in the same direction as the polarity, it is detected as a positive current value. On the other hand, when a direct current (ground fault current) flows in the opposite direction to the polarity, a negative current value is detected. It is detected as a current value.

このような、直流変流器4の出力である電流検出信号は、制御手段である検出器DT11に入力され、検出器DT11は、例えば、入力された電流検出信号の値が、予め設定された閾値を超過した場合、地絡が発生したと判断し、直流高速度遮断器CB11及びCB12等によって直流1500Vの電圧及び電流を遮断させるように制御する。   Such a current detection signal that is the output of the DC current transformer 4 is input to a detector DT11 that is a control means, and the detector DT11 has a preset value of the input current detection signal, for example. When the threshold value is exceeded, it is determined that a ground fault has occurred, and control is performed so that the DC high-voltage circuit breakers CB11 and CB12 and the like block the DC 1500V voltage and current.

[2.地絡電流検出装置の動作の説明]
地絡電流検出装置100の動作を図2及び図3を参照して説明する。
図2は、地絡電流検出装置100の動作を説明する説明図であり、図2(a)は、接地線3に地絡電流以外の迷走電流等が流れた場合を示す説明図、図2(b)は、接地線3に地絡電流が流れた場合を示す説明図である。
[2. Explanation of operation of ground fault current detection device]
The operation of the ground fault current detection apparatus 100 will be described with reference to FIGS.
FIG. 2 is an explanatory diagram for explaining the operation of the ground fault current detecting device 100, and FIG. 2 (a) is an explanatory diagram showing a case where a stray current other than the ground fault current flows through the ground wire 3. FIG. (B) is an explanatory view showing a case where a ground fault current flows through the grounding wire 3.

また、図3は、比較例である地絡電流検出装置の動作を説明する説明図である。図3に示す比較例である地絡電流検出装置101の基本的な構成は、装置100と同じであり、異なる点は、2本の接地線3に流れる直流電流を1つの直流変流器4で検出するのではなく、2本の接地線3に流れる直流電流の電流値を、2つの直流変流器4でそれぞれ別個に検出する点である。   Moreover, FIG. 3 is explanatory drawing explaining operation | movement of the ground-fault current detection apparatus which is a comparative example. The basic configuration of the ground fault current detection device 101 which is a comparative example shown in FIG. 3 is the same as that of the device 100. The difference is that a direct current flowing through the two ground lines 3 is converted into one direct current transformer 4. In other words, the current values of the DC currents flowing through the two ground lines 3 are detected separately by the two DC current transformers 4.

図3の比較例に示すように、例えば、地絡電流以外の迷走電流CT31が、大地ET11から一方の接地線3を介して直流キュービクル1に流れ込み、接地母線EB11を流れ、他方の接地線3を介して再び大地ET11に流れ出す場合が想定される。
そして、上述の通り、2つの直流変流器4で検出された迷走電流CT31の電流値を相殺したとしても、2つの直流変流器4間の特性のばらつき等により、当該迷走電流CT31の影響を除去することはできずバックグラウンドのノイズとして残ってしまう。
As shown in the comparative example of FIG. 3, for example, a stray current CT31 other than the ground fault current flows from the ground ET11 into the DC cubicle 1 through one grounding wire 3, flows through the grounding bus EB11, and flows through the other grounding wire 3 It is assumed that it flows out to the ground ET11 again via
As described above, even if the current value of the stray current CT31 detected by the two DC current transformers 4 is offset, the influence of the stray current CT31 due to the variation in characteristics between the two DC current transformers 4 or the like. It cannot be removed and remains as background noise.

例えば、図4は、装置101の2つの直流変流器4における検出波形の一例を示す説明図であり、図5は、装置101の2つの直流変流器4における検出波形の他の一例を示す説明図である。   For example, FIG. 4 is an explanatory diagram illustrating an example of detection waveforms in the two DC current transformers 4 of the device 101, and FIG. 5 is another example of detection waveforms in the two DC current transformers 4 of the device 101. It is explanatory drawing shown.

図4は、直流キュービクル1と大地ET11との間に絶縁材2を敷設しない場合であり、検出波形CT41及び検出波形CT42は、装置101の2つの直流変流器4におけるそれぞれの検出波形であり、検出波形CT43は、検出波形CT41と検出波形CT42とが示す電流値を加算した波形である。
図4における波形CT43から分かるように、直流キュービクル1と大地ET11との間に絶縁材2を敷設しない場合、±200mA以上のノイズとして残ってしまう。
これは、2つの直流変流器4間の特性のばらつき等のみならず、絶縁材2を敷設しないことにより、迷走電流CT31が流れるルートを2本の接地線3に制限させることができないためである。
FIG. 4 shows a case where the insulating material 2 is not laid between the DC cubicle 1 and the ground ET11. The detection waveform CT41 and the detection waveform CT42 are detection waveforms in the two DC current transformers 4 of the device 101, respectively. The detection waveform CT43 is a waveform obtained by adding the current values indicated by the detection waveform CT41 and the detection waveform CT42.
As can be seen from the waveform CT43 in FIG. 4, when the insulating material 2 is not laid between the DC cubicle 1 and the ground ET11, noise of ± 200 mA or more remains.
This is because not only the variation in characteristics between the two DC current transformers 4 and the like, but also the route through which the stray current CT31 flows cannot be limited to the two ground wires 3 by not laying the insulating material 2. is there.

また、図5は、直流キュービクル1と大地ET11との間に絶縁材2を敷設した場合であり、検出波形CT51及び検出波形CT52は、装置101の2つの直流変流器4におけるそれぞれの検出波形であり、検出波形CT53は、検出波形CT51と検出波形CT52とが示す電流値を加算した波形である。
図5における波形CT53から分かるように、直流キュービクル1と大地ET11との間に絶縁材2を敷設した場合、図4と比較して改善されているものの、8mA程度のノイズとして残ってしまう。
FIG. 5 shows a case where the insulating material 2 is laid between the DC cubicle 1 and the ground ET11. The detection waveform CT51 and the detection waveform CT52 are detected waveforms of the two DC current transformers 4 of the apparatus 101, respectively. The detection waveform CT53 is a waveform obtained by adding the current values indicated by the detection waveform CT51 and the detection waveform CT52.
As can be seen from the waveform CT53 in FIG. 5, when the insulating material 2 is laid between the DC cubicle 1 and the ground ET11, although it is improved as compared with FIG. 4, it remains as noise of about 8 mA.

これに対して、図2(a)に示すように、装置100では、1つの直流変流器4により2本の接地線3に流れる直流電流を検出する構成のため、比較例と同様に、地絡電流以外の迷走電流CT21が、大地ET11から一方の接地線3を介して直流キュービクル1に流れ込み、接地母線EB11を流れ、他方の接地線3を介して再び大地ET11に流れ出す場合、流れ込む迷走電流CT21と、流れ出す迷走電流CT21とは打ち消されて相殺されてしまいノイズにならない。また、1つの直流変流器4で電流値を検出するため、比較例のような特性のばらつき等の問題は発生しない。   On the other hand, as shown in FIG. 2 (a), the apparatus 100 is configured to detect the direct current flowing through the two ground lines 3 by one direct current transformer 4, and therefore, as in the comparative example, When the stray current CT21 other than the ground fault current flows from the ground ET11 to the DC cubicle 1 through one ground wire 3, flows through the ground bus EB11, and flows again to the ground ET11 through the other ground wire 3, the stray current that flows in The current CT21 and the stray current CT21 that flows out are canceled out and cancelled, and no noise is generated. In addition, since the current value is detected by one DC current transformer 4, problems such as characteristic variations as in the comparative example do not occur.

例えば、図6は、本実施の形態に係る地絡電流検出装置の検出波形の一例を示す説明図である。   For example, FIG. 6 is an explanatory diagram illustrating an example of a detection waveform of the ground fault current detection device according to the present embodiment.

図6において、検出波形CT61は、装置100の1つの直流変流器4における検出波形であり、波形CT62は、検出器DT11において、検出波形CT61に対して、1秒間に1mAの変化が継続した場合に、1mAとして出力するマスク処理を施した波形である。
図6における検出波形CT61から分かるように、1つの直流変流器4により2本の接地線3に流れる直流電流を検出することにより、±3〜4mA程度のノイズまで低減され、検出器DT11において上述のマスク処理を施すことにより、殆ど1mA以下のノイズに低減することができる。
In FIG. 6, a detection waveform CT61 is a detection waveform in one DC current transformer 4 of the apparatus 100, and the waveform CT62 has a change of 1 mA per second in the detector DT11 with respect to the detection waveform CT61. In this case, the waveform is subjected to mask processing for output as 1 mA.
As can be seen from the detected waveform CT61 in FIG. 6, by detecting the direct current flowing through the two ground lines 3 by one DC current transformer 4, the noise is reduced to about ± 3 to 4 mA, and the detector DT11 By performing the mask processing described above, it is possible to reduce the noise to almost 1 mA or less.

一方、図2(b)に示すように、地絡ST21が発生した場合には、地絡電流CT22及びCT23は、それぞれ2本の接地線3を介して大地ET11に流れ出す。この際、装置100では、1つの直流変流器4により2本の接地線3に流れる直流電流を検出する構成のため、流れ出す地絡電流CT22及びCT23は、打ち消されることなく確実に検出される。   On the other hand, as shown in FIG. 2B, when the ground fault ST21 occurs, the ground fault currents CT22 and CT23 flow out to the ground ET11 through the two ground lines 3, respectively. At this time, since the apparatus 100 is configured to detect the direct current flowing through the two ground lines 3 by the single direct current transformer 4, the ground fault currents CT22 and CT23 that flow out are reliably detected without being canceled. .

すなわち、装置100では、1つの直流変流器4により2本の接地線3に流れる直流電流を検出する構成のため、流れ込む迷走電流CT21と、流れ出す迷走電流CT21とは打ち消されて相殺されてしまい、1mA以下のノイズに低減することができるので、直流機器の絶縁劣化に起因する電流値の小さな地絡電流(例えば、数mA程度)であっても検出可能である。   That is, in the apparatus 100, since the direct current flowing through the two ground lines 3 is detected by the single direct current transformer 4, the flowing stray current CT21 and the flowing stray current CT21 are canceled and offset. Since noise can be reduced to 1 mA or less, even a ground fault current having a small current value (for example, about several mA) due to insulation deterioration of a DC device can be detected.

以上のように、直流機器が収納された直流キュービクル1の下部に当該直流キュービクル1と大地ET11との間を絶縁する絶縁材2を敷設し、2本の接地線3で直流キュービクル1の接地母線EB11を大地ET11に接続し、1つの直流変流器4で2本の接地線3にそれぞれ流れる地絡電流を一箇所で検出することにより、直流キュービクル1に、保安上、2本の接地線3を設けた場合であっても、流れ込む迷走電流と、流れ出す迷走電流とは打ち消されて相殺されるので、ノイズを低減することができ、直流キュービクル1内の故障の予兆を捉えるための微小電流を検出することができる。   As described above, the insulating material 2 that insulates between the DC cubicle 1 and the ground ET 11 is laid under the DC cubicle 1 in which the DC equipment is accommodated, and the ground bus of the DC cubicle 1 is formed by the two ground wires 3. By connecting the EB 11 to the ground ET11 and detecting a ground fault current flowing through each of the two ground wires 3 with one DC current transformer 4 at one location, the DC cubicle 1 has two ground wires for security purposes. 3, the flowing stray current and the flowing stray current are canceled out and canceled out, so that noise can be reduced and a minute current for capturing a sign of a failure in the DC cubicle 1. Can be detected.

なお、本発明の実施形態等の説明に際しては、2本の接地線3の一端は、接地母線EB11の両端にそれぞれ接続され、2本の接地線3の他端が、大地ET11に接続(接地)されているが、これは、直流キュービクル1内の接地母線EB11の断線に対応するためである。
例えば、図7は、直流キュービクル1内の接地母線EB11の詳細を説明する説明図であり、3個の箱型の金属容器CB71、CB72及びCB73内には、それぞれの金属容器の接地母線EB71、EB72及びEB73が、金属容器の長手方向に設けられている。
そして、直流キュービクル1の施工時に、接地母線EB71と接地母線EB72とを、ボンド線BN71によって電気的に接続し、接地母線EB72と接地母線EB73とを、ボンド線BN72によって電気的に接続することにより、直流キュービクル1の全体としての接地母線EB11が直流キュービクルの長手方向に敷設される。
In the description of the embodiment of the present invention, one end of the two ground wires 3 is connected to both ends of the ground bus EB11, and the other end of the two ground wires 3 is connected to the ground ET11 (ground). This is to cope with the disconnection of the ground bus EB11 in the DC cubicle 1.
For example, FIG. 7 is an explanatory view for explaining the details of the ground bus EB11 in the DC cubicle 1. In the three box-shaped metal containers CB71, CB72, and CB73, the ground bus EB71 of each metal container, EB72 and EB73 are provided in the longitudinal direction of the metal container.
When the DC cubicle 1 is constructed, the ground bus EB71 and the ground bus EB72 are electrically connected by the bond line BN71, and the ground bus EB72 and the ground bus EB73 are electrically connected by the bond line BN72. The ground bus EB11 as a whole of the DC cubicle 1 is laid in the longitudinal direction of the DC cubicle.

このため、2本の接地線3により接地母線EB11を接地する場合、2本の接地線3の一端を接地母線EB11の両端にそれぞれ接続することにより、ボンド線BN71若しくはボンド線BN72が断線した場合であっても、直流キュービクル1で発生した地絡電流は、どちらか一方の接地線3を介して大地ET11に流れるため、確実に直流変電所を保護することができる。   Therefore, when the ground bus EB11 is grounded by the two ground wires 3, the bond line BN71 or the bond line BN72 is disconnected by connecting one end of each of the two ground wires 3 to both ends of the ground bus EB11. Even so, the ground fault current generated in the DC cubicle 1 flows to the ground ET11 via one of the ground wires 3, so that the DC substation can be reliably protected.

また、2本の接地線3を直流変流器4の貫通孔に配線する際には、ノイズを低減するために、貫通孔の中心に配線することが望ましい。
例えば、図8は、本実施の形態に係る地絡電流検出装置の接地線の配線位置による誤差の一例を示す説明図である。
図8中の楕円形は、直流変流器4の貫通孔の形状を示しており、縦軸及び横軸は、2本の接地線3を配線した貫通孔の位置を示している。
また、図8中、「丸の中に×印」は、接地線3を流れる電流が、図面手前から図面裏面に向けて流れることを示し、一方、「丸の中に点」は、接地線3を流れる電流が、図面裏面から図面手前に向けて流れることを示している。
さらに、「丸の中に×印」及び「丸の中に点」の近傍の数値は、2本の接地線3を当該位置に配線した場合のノイズの電流値(mA)を示している。
Further, when wiring the two ground wires 3 to the through hole of the DC current transformer 4, it is desirable to wire at the center of the through hole in order to reduce noise.
For example, FIG. 8 is an explanatory diagram illustrating an example of an error due to the wiring position of the ground wire of the ground fault current detection device according to the present embodiment.
The ellipse in FIG. 8 shows the shape of the through hole of the DC current transformer 4, and the vertical axis and the horizontal axis show the position of the through hole in which the two ground wires 3 are wired.
In FIG. 8, “X in a circle” indicates that the current flowing through the grounding wire 3 flows from the front of the drawing toward the back of the drawing, while “the dot in the circle” indicates the grounding wire. It is shown that the current flowing through 3 flows from the back of the drawing toward the front of the drawing.
Furthermore, the numerical values in the vicinity of “X in circle” and “dot in circle” indicate the noise current value (mA) when two ground wires 3 are wired at the corresponding positions.

図8から分かるように、例えば、PS81の位置に2本の接地線3を配線した場合、ノイズは、0.2mA程度であり、同様にPS82の位置に2本の接地線3を配線した場合、ノイズは、1.4mA程度である。このため、貫通孔の中心ほどノイズが小さくなっており、2本の接地線3を直流変流器4の貫通孔に配線する際には、ノイズを低減するために、貫通孔の中心に配線することが望ましいことが分かる。   As can be seen from FIG. 8, for example, when two ground lines 3 are wired at the position of PS81, the noise is about 0.2 mA, and similarly when two ground lines 3 are wired at the position of PS82. The noise is about 1.4 mA. For this reason, noise becomes smaller toward the center of the through hole, and when wiring the two ground wires 3 to the through hole of the DC current transformer 4, wiring is performed at the center of the through hole in order to reduce noise. It turns out to be desirable.

また、2本の接地線3を直流変流器4の貫通孔の中心に確実に配線するため、施工時等において固定部材を用いることが望ましい。
例えば、図9は、本実施の形態に係る地絡電流検出装置の接地線を固定する固定部材の一例を示す説明図である。
図9に示すように、固定部材PTは2つの部材PT91及びPT92から構成され、直流変流器4の貫通孔HL91に配線された2本の接地線3を、部材PT91及びPT92でSD91及びSD92に示すように両側から挟み込み、IN91に示すように貫通孔HL91に挿入する。
ちなみに、部材PT91及びPT92で、2本の接地線3を両側から挟み込んだ状態で、2本の接地線3が固定部材PTの中心に固定されると共に、当該状態における2本の接地線に対する垂直面の形状が、貫通孔HL91と略同じ形状であるので、容易に貫通孔HL91に挿入することができ、2本の接地線3を直流変流器4の貫通孔の中心に確実に固定することができる。
すなわち、装置100の施工の際に、2つの部材PT91及びPT92から構成される固定部材PTを用い、直流変流器4の貫通孔HL91に配線された2本の接地線3を、両側から挟み込み、貫通孔HL91に挿入することにより、2本の接地線3を直流変流器4の貫通孔の中心に確実に固定することができるので、ノイズを低減することができる。
Further, in order to reliably wire the two ground wires 3 to the center of the through hole of the DC current transformer 4, it is desirable to use a fixing member during construction.
For example, FIG. 9 is an explanatory diagram illustrating an example of a fixing member that fixes the ground wire of the ground fault current detection device according to the present embodiment.
As shown in FIG. 9, the fixing member PT is composed of two members PT91 and PT92, and the two ground wires 3 wired to the through hole HL91 of the DC current transformer 4 are connected to the members PT91 and PT92 by SD91 and SD92. And is inserted into the through hole HL91 as indicated by IN91.
Incidentally, with the members PT91 and PT92 sandwiching the two grounding wires 3 from both sides, the two grounding wires 3 are fixed to the center of the fixing member PT and are perpendicular to the two grounding wires in this state. Since the shape of the surface is substantially the same as the through hole HL91, it can be easily inserted into the through hole HL91, and the two ground wires 3 are securely fixed to the center of the through hole of the DC current transformer 4. be able to.
That is, at the time of construction of the apparatus 100, two grounding wires 3 wired to the through hole HL91 of the DC current transformer 4 are sandwiched from both sides using a fixing member PT composed of two members PT91 and PT92. Since the two ground wires 3 can be reliably fixed to the center of the through hole of the DC current transformer 4 by being inserted into the through hole HL91, noise can be reduced.

また、2本の接地線3を直流変流器4の貫通孔の中心に確実に固定するための固定部材は、当該貫通孔に挿入した時に貫通孔の縁に引っかかって、それ以上挿入できない突起部を備えることが望ましい。
例えば、図9に示すように、固定部材PTを構成する部材PT91及びPT92に突起GD91及びGD92を設けて、直流変流器4の貫通孔HL91に配線された2本の接地線3を、両側から挟み込み、貫通孔HL91に挿入した時に、突起GD91及びGD92で形成される突起部GDが、貫通孔HL91の縁に引っかかって、それ以上挿入できなくなるようにする。
すなわち、装置100の施工の際に、固定部材PTを用い、直流変流器4の貫通孔HL91に配線された2本の接地線3を、両側から挟み込み、貫通孔HL91に挿入する際に、突起GD91及びGD92で形成される突起部GDによって、必要以上に貫通孔HL91に入り込むことなく、直流変流器4の貫通孔に2本の接地線3を確実に固定することがきる。
ちなみに、図9に示す突起部GDは、貫通孔HL91の縁に沿って連続して形成されているが、貫通孔HL91の縁に引っかかって、それ以上挿入できなくなる機能を実現できれば、突起部GDは、部分的に形成されるものであっても良い。
Further, the fixing member for securely fixing the two grounding wires 3 to the center of the through hole of the DC current transformer 4 is a protrusion that is caught by the edge of the through hole when inserted into the through hole and cannot be inserted any more. It is desirable to provide a section.
For example, as shown in FIG. 9, protrusions GD91 and GD92 are provided on members PT91 and PT92 constituting the fixing member PT, and two ground wires 3 wired to the through hole HL91 of the DC current transformer 4 are connected to both sides. The protrusion GD formed by the protrusions GD91 and GD92 is caught by the edge of the through-hole HL91 and cannot be inserted any more when inserted into the through-hole HL91.
That is, when the apparatus 100 is constructed, the two grounding wires 3 wired to the through hole HL91 of the DC current transformer 4 are sandwiched from both sides using the fixing member PT, and inserted into the through hole HL91. The protrusions GD formed by the protrusions GD91 and GD92 can reliably fix the two ground wires 3 to the through holes of the DC current transformer 4 without entering the through holes HL91 more than necessary.
Incidentally, the protrusion GD shown in FIG. 9 is formed continuously along the edge of the through hole HL91. However, if the function of being caught by the edge of the through hole HL91 and being unable to be inserted further can be realized, the protrusion GD May be partially formed.

1 直流キュービクル
2 絶縁材
3 接地線
4 直流変流器(電流検出手段)
DT11 検出器
BS11 母線
EB11 接地母線
ET11 大地
PT 固定部材
GD 突起部
1 DC cubicle 2 Insulating material 3 Grounding wire 4 DC current transformer (current detection means)
DT11 Detector BS11 Bus EB11 Ground bus ET11 Ground PT Fixed member GD Protrusion

Claims (7)

直流機器が収納された直流キュービクルの下部に敷設され、当該直流キュービクルと大地との間を絶縁する絶縁材と、
前記直流キュービクルの接地母線を大地に接続する2本の接地線と、
前記2本の接地線にそれぞれ流れる地絡電流を一箇所で検出する電流検出手段と、
を備えたことを特徴とする地絡電流検出装置。
An insulating material that is laid at the bottom of the DC cubicle in which the DC device is housed and insulates the DC cubicle from the ground;
Two ground wires connecting the ground bus of the DC cubicle to the ground;
Current detecting means for detecting a ground fault current flowing through each of the two ground wires in one place;
A ground fault current detection device comprising:
前記2本の接地線は、前記絶縁材を貫通して大地に接続することを特徴とする請求項1に記載の地絡電流検出装置。   2. The ground fault current detection apparatus according to claim 1, wherein the two ground wires are connected to the ground through the insulating material. 前記接地母線は、前記直流キュービクルの長手方向に敷設され、
前記2本の接地線は、前記接地母線の両端に接続されることを特徴とする請求項1又は2に記載の地絡電流検出装置。
The ground bus is laid in the longitudinal direction of the DC cubicle;
The ground fault current detection device according to claim 1 or 2, wherein the two ground wires are connected to both ends of the ground bus.
前記電流検出手段は、貫通型の直流変流器であり、当該直流変流器の貫通孔の中心に前記2本の接地線を配線することで地絡電流を一箇所で検出することを特徴とする請求項1から3のいずれか一項に記載の地絡電流検出装置。   The current detection means is a through-type DC current transformer, and the grounding current is detected at one place by wiring the two ground wires at the center of the through hole of the DC current transformer. The ground fault current detection apparatus according to any one of claims 1 to 3. 2つの部材により前記貫通孔に配線された前記2本の接地線を挟持すると共に、前記貫通孔に嵌合されることにより、前記2本の接地線を前記貫通孔の中心に固定する固定部材を有することを特徴とする請求項4に記載の地絡電流検出装置。   A fixing member that clamps the two grounding wires wired to the through hole by two members and fixes the two grounding wires to the center of the through hole by being fitted into the through hole. The ground fault current detection device according to claim 4, wherein 前記固定部材は、前記貫通孔に嵌合した時に前記貫通孔の縁に掛止する突起部を備えたことを特徴とする請求項5に記載の地絡電流検出装置。   The ground fault current detection device according to claim 5, wherein the fixing member includes a protrusion that is hooked to an edge of the through hole when the fixing member is fitted into the through hole. 直流機器が収納された直流キュービクルの下部に、当該直流キュービクルと大地との間を絶縁する絶縁材を敷設する絶縁工程と、
前記直流キュービクルの接地母線を2本の接地線で大地に接続する接地工程と、
前記2本の接地線を、前記2本の接地線にそれぞれ流れる地絡電流を一箇所で検出する電流検出手段に配線する配線工程と、
を含むことを特徴とする地絡電流検出装置の施工方法。
An insulating step of laying an insulating material that insulates between the DC cubicle and the ground at the bottom of the DC cubicle in which the DC device is stored;
A grounding step of connecting the ground bus of the DC cubicle to the ground with two ground wires;
A wiring step of wiring the two ground wires to a current detecting means for detecting a ground fault current flowing in each of the two ground wires in one place;
The construction method of the ground fault current detection apparatus characterized by including.
JP2014108800A 2014-05-27 2014-05-27 Ground fault current detection device and construction method of ground fault current detection device Active JP6312246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014108800A JP6312246B2 (en) 2014-05-27 2014-05-27 Ground fault current detection device and construction method of ground fault current detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014108800A JP6312246B2 (en) 2014-05-27 2014-05-27 Ground fault current detection device and construction method of ground fault current detection device

Publications (2)

Publication Number Publication Date
JP2015226357A true JP2015226357A (en) 2015-12-14
JP6312246B2 JP6312246B2 (en) 2018-04-18

Family

ID=54842806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014108800A Active JP6312246B2 (en) 2014-05-27 2014-05-27 Ground fault current detection device and construction method of ground fault current detection device

Country Status (1)

Country Link
JP (1) JP6312246B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53160724U (en) * 1977-05-25 1978-12-16
JPH0522811A (en) * 1991-07-05 1993-01-29 Toshiba Corp Partial discharge detector
JPH09152456A (en) * 1995-11-30 1997-06-10 Fuji Electric Co Ltd Device and method for detecting ground fault
JP2006129591A (en) * 2004-10-28 2006-05-18 Toshiba Mitsubishi-Electric Industrial System Corp Power supply device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53160724U (en) * 1977-05-25 1978-12-16
JPH0522811A (en) * 1991-07-05 1993-01-29 Toshiba Corp Partial discharge detector
JPH09152456A (en) * 1995-11-30 1997-06-10 Fuji Electric Co Ltd Device and method for detecting ground fault
JP2006129591A (en) * 2004-10-28 2006-05-18 Toshiba Mitsubishi-Electric Industrial System Corp Power supply device

Also Published As

Publication number Publication date
JP6312246B2 (en) 2018-04-18

Similar Documents

Publication Publication Date Title
US8891211B2 (en) Potential arc fault detection and suppression
JP6599802B2 (en) Ground fault detection method for AC side connection line of DC feeding rectifier
ES2556433T3 (en) Electrical monitoring device and procedure to ensure the protection function of a residual current protection device (RCD) of type A
JP2018072320A (en) Arc fault detection arrangement for dc electric bus
JP6573571B2 (en) Electric leakage relay, electric leakage breaker and control method thereof
JP6543587B2 (en) High voltage earthing relay for DC railway substation
KR100602914B1 (en) Ground overcurrent protective relaying schemes for ungrounded DC power supply system and the controlling method for the system
JP2018036054A (en) Earth detector, ground fault protection device, and method for detecting ground fault
JP5341954B2 (en) Digital protective relay device
JP6312246B2 (en) Ground fault current detection device and construction method of ground fault current detection device
JP4974300B2 (en) High resistance ground fault detection method and apparatus
JP5665560B2 (en) Protection system for feeding equipment, detection device, and protection method
JP5121585B2 (en) Sheath earth circuit monitoring device
Bapat et al. Advanced concepts in high resistance grounding
JP6461698B2 (en) Electric leakage detection device and electric leakage detection method
US11919550B2 (en) Rail breakage detection device and rail breakage result management system
KR101993558B1 (en) Bidirectional selective ground fault protection relay and test device capable of detecting faulty wiring
JP5320897B2 (en) Detection device of ground fault in DC equipment
JP2711192B2 (en) Locating the accident section of the transmission line
KR101626140B1 (en) Distributing board for monitoring surge and diagnosing ground performance
KR101307939B1 (en) Incoming panel for protecting current transformer
JP5171399B2 (en) Power cable protection relay malfunction prevention device
JP7076998B2 (en) Ground fault protection device
JP2013113632A (en) Ground fault detecting method
JP2005341770A (en) Protective relay system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180316

R150 Certificate of patent or registration of utility model

Ref document number: 6312246

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250