KR100602914B1 - Ground overcurrent protective relaying schemes for ungrounded DC power supply system and the controlling method for the system - Google Patents
Ground overcurrent protective relaying schemes for ungrounded DC power supply system and the controlling method for the system Download PDFInfo
- Publication number
- KR100602914B1 KR100602914B1 KR1020040048672A KR20040048672A KR100602914B1 KR 100602914 B1 KR100602914 B1 KR 100602914B1 KR 1020040048672 A KR1020040048672 A KR 1020040048672A KR 20040048672 A KR20040048672 A KR 20040048672A KR 100602914 B1 KR100602914 B1 KR 100602914B1
- Authority
- KR
- South Korea
- Prior art keywords
- current
- ground fault
- ground
- control means
- protection relay
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0023—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H7/00—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
- H02H7/26—Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0023—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
- B60L3/0069—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2200/00—Type of vehicles
- B60L2200/26—Rail vehicles
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H7/00—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
- H02H7/26—Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
- H02H7/268—Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured for dc systems
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Emergency Protection Circuit Devices (AREA)
Abstract
본 발명은 열차의 비접지 디씨(DC) 급전시스템에 있어서, 지락사고 발생여부(지락사고구간 검출) 및 지락 사고 선로를 검출하기 위한 지락보호 계전시스템에 관한 것이다. The present invention relates to a ground fault protection relay system for detecting a ground fault occurrence (ground fault zone detection) and a ground fault line in a non-grounded DC power supply system of a train.
본 발명은 양단의 전압차에 따라 그 저항 특성을 달리하는 전류제어수단을 지락보호 계전기에 구성하되, 정류기의 네가티브 버스와 대지사이에 지락보호 계전기의 전류제어수단을 설치하여 정상운전시 고 저항의 특성을 나타내어 누설전류를 기준치 이하로 제한시키고 지락 사고시에는 매우 작은 저항의 특성을 나타내어 검출에 필요한 충분한 크기의 지락전류가 흐를 수 있도록 하는 지락보호 계전장치를 제공하고자 한 것이며, 또한 본 발명에서는 상기의 전류제어수단에 흐르는 지락전류의 크기를 판별하여 지락사고여부(사고구간)를 판단하고, 급전선에 흐르는 전류의 변화(증가량)와 동일시간의 지락전류의 변화량을 비교하여 사고 급전선을 판별할 수 있도록 하는 지락보호 계전 시스템과 그 제어방법을 제공하고자 한다.The present invention comprises a current control means for varying the resistance characteristics according to the voltage difference between the both ends of the ground fault protection relay, the current control means of the ground fault protection relay is installed between the negative bus of the rectifier and the ground of high resistance during normal operation It is intended to provide a ground fault protection relay which exhibits characteristics to limit the leakage current to a reference value or less and exhibit a characteristic of very small resistance in case of a ground fault so that a ground fault current of sufficient magnitude is required for detection. Determining the ground fault current through the current control means to determine whether there is a ground fault (accident section), and comparing the change (increase amount) of the current flowing in the feed line with the change amount of the ground fault current at the same time so that the accident feeder can be identified. To provide a ground fault protection relay system and its control method.
지락, 비접지, 급전시스템, 전기열차, 지락보호계전기, 전식Ground, Ungrounded, Power Supply System, Electric Train, Ground Protection Relay, Electric
Description
도 1은 지락전류의 흐름과 종래 지락보호 계전기의 문제점을 나타낸 도면.1 is a view showing the problem of the ground current flow and the conventional ground fault protection relay.
도 2는 종래 지락보호 계전기의 설치 구성을 나타낸 도면. 2 is a diagram showing an installation configuration of a conventional ground fault protection relay.
도 3은 변전소로 흘러들어가는 지락전류의 변화량을 보이기 위한 개략적인 급전 계통을 나타낸 도면.3 is a schematic diagram of a power supply system for showing a change amount of ground current flowing into a substation;
도 4는 본 발명 시스템에 있어서, 계전장치의 시간지연요소를 나타낸 그래프.Figure 4 is a graph showing the time delay element of the relay device in the system of the present invention.
도 5는 본 발명 시스템에 있어서, 사고전류 계산을 위한 등가회로를 나타낸 도면. 5 is a diagram showing an equivalent circuit for calculating a fault current in the system of the present invention.
도 6은 본 발명 시스템에 있어서, 사고 전차선 판별방법을 설명하기 위한 전류제어수단의 통전전류 변화량과 급전선 전류의 변화량 그래프.6 is a graph of the amount of change in the energized current and the amount of change in the feeder current of the current control means for explaining an accident catenary discrimination method in the system of the present invention;
도 7은 본 발명 시스템에 있어서, 지락보호 계전장치의 전류제어수단접지 구성을 나타낸 도면.Fig. 7 is a diagram showing the current control means grounding configuration of the ground fault protection relay in the system of the present invention.
도 8은 본 발명 지락보호 계전시스템에 있어서, 전류센서의 위치를 나타내기 위한 급전 선로를 나타낸 도면.8 is a diagram showing a feed line for indicating the position of a current sensor in the ground fault protection relay system of the present invention.
도 9는 본 발명 지락보호 계전시스템의 구성을 나타낸 블록도.9 is a block diagram showing the configuration of the ground fault protection relay system of the present invention.
도 10은 본 발명 시스템의 동작플로우를 나타낸 플로우챠트. 10 is a flow chart showing the operational flow of the system of the present invention.
도 11은 본 발명 시스템에 있어서, 전류제어수단의 일반적인 전류-전압 특성을 나타낸 도면.Fig. 11 is a diagram showing general current-voltage characteristics of the current control means in the system of the present invention.
본 발명은 열차의 비접지 디씨(DC) 급전시스템에 있어서, 지락사고 발생여부(지락사고구간 검출) 및 지락 사고 선로를 검출하기 위한 지락보호 계전시스템에 관한 것이다. The present invention relates to a ground fault protection relay system for detecting a ground fault occurrence (ground fault zone detection) and a ground fault line in a non-grounded DC power supply system of a train.
일반적으로 전기철도용 급전계통은 열차에 전력을 공급하기 위하여 철도선로에 따라 설치되는 것으로, 연장이 긴 전차선로의 말단까지 규정된 전압을 안정적으로 공급하기 위해서는 적정한 구간마다 변전설비를 갖추고 있으며 상기 변전소에서 AC전원을 DC로 정류하여 DC 배전반과 급전선을 통하여 DC전원을 열차에 공급한다.In general, the electric power feeding system is installed along railroad lines to supply electric power to trains. In order to stably supply the prescribed voltage to the end of a long tramway, electric substations are equipped with substation facilities at appropriate sections. AC power is rectified to DC and DC power is supplied to trains through DC switchboards and feeders.
이와 같은 전기철도용 급전시스템에 있어서, 정상 운전중 예기치 못한 사고 등으로 인하여 지락사고가 발생할 경우 각종 설비를 보호하고 공공의 안전을 확보하기 위하여 지락보호계전기를 설치하여, 지락사고를 방지하고 신속하게 전력공급을 차단하고 있다. In the electric power supply system for electric railways, a ground fault protection relay is installed to protect various equipments and secure public safety in case of ground faults due to unexpected accidents during normal operation. The supply is shut off.
도시철도의 DC 급전시스템은 전식을 방지하기 위하여 비접지식으로 운영된다. The urban railway DC power supply system is operated ungrounded to prevent electrical breakdown.
그러므로 지락사고가 발생하더라도 지락전류가 흐르지 않기 때문에 DC 급전시스템의 지락보호계전기는 전류형이 아니라 전압형 계전기가 사용된다. Therefore, ground fault protection relay of DC feeding system uses voltage type relay rather than current type because ground current does not flow even if ground fault occurs.
전압형 계전기의 문제점은 계전기가 사고유무는 판단하지만 사고구간을 판단하지 못한다는 것이다. The problem with the voltage relay is that the relay determines whether there is an accident but cannot determine the accident section.
따라서 사고구간은 물론 건전구간도 전력공급이 중단되어 상황에 따라서는 열차 승객의 안전에 문제를 야기 시킬 수 있다. Therefore, the power supply is interrupted in the accident section as well as in the health section, which may cause a problem for the safety of the train passengers.
도 1에서와 같은 경우 1번 열차의 위치에서 지락사고가 발생하면, 모든 변전소(A,B,C,D)의 급전차단기(B1,B2,B3,B4)가 트립되어 건전구간을 운행하는 2 번 열차에도 전원공급이 중단되어 승객의 안전에 위험을 초래할 수 있다. As in FIG. 1, when a ground fault occurs at the location of the first train, the power supply breakers B 1 , B 2 , B 3 , and B 4 of all substations A, B, C, and D are tripped to provide a sound zone. The power supply is also interrupted by train No. 2, which can cause a risk to passenger safety.
설명되지 않은 부호 RL1~RL4는 종래의 지락보호 계전기이며 도 2와 같이 설치된다.Reference numerals RL1 to RL4, which are not explained, are conventional ground fault protection relays and are installed as shown in FIG.
상기한 지락보호 계전장치는 대지와 정류기의 네가티브 버스 사이에 저항기를 설치하여 저항기를 통해 지락전류가 흐르도록 하여, 저항기의 양단의 전압을 측정하여 이를 소정의 설정된 값과 비교하여 지락사고 유무를 판단하고, 그 판단결과에 따라 변전소에 설치된 전력공급용 피더(feeder) 차단기(B1,B2,B3,B4 )를 동작시켜 전력공급을 차단하고 있다. The ground fault protection relay is provided with a resistor between the earth and the negative bus of the rectifier so that the ground current flows through the resistor, and measures the voltage across the resistor and compares it with a predetermined value to determine whether there is a ground fault. And, according to the determination result, the power supply feeder circuit breaker (B 1 , B 2 , B 3 , B 4 ) installed in the substation is operated to cut off the power supply.
그러나 이와 같은 종래의 지락보호 계전장치에서는 지락전류가 사고 구간의 변전소뿐만 아니라 그 밖의 모든 변전소에도 유입되므로 사고구간의 판단이 어려운 문제점이 있었다. However, in the conventional ground fault protection relay device, since the ground current flows into not only the substation of the accident section but also all other substations, it is difficult to determine the accident section.
본 발명에서는 이와 같은 점을 고려하여 안출된 것으로, 양단의 전압차에 따라 그 저항 특성을 달리하는 전류제어수단을 지락보호 계전기에 구성하되, 정류기의 네가티브 버스와 대지사이에 지락보호 계전기의 전류제어수단을 설치하여 정상운전시 고 저항의 특성을 나타내어 누설전류를 기준치 이하로 제한시키고 지락 사고시에는 매우 작은 저항의 특성을 나타내어 검출에 필요한 충분한 크기의 지락전류가 흐를 수 있도록 하는 지락보호 계전장치를 제공하고자 한 것이다.The present invention has been made in consideration of such a point, and the current control means for varying the resistance characteristics according to the voltage difference between both ends is configured in the ground fault protection relay, the current control of the ground fault protection relay between the negative bus and the ground of the rectifier Provides ground fault protection relay that provides means of high resistance in normal operation by limiting the leakage current to below standard value, and in case of ground fault, it shows very small resistance so that ground fault current of sufficient size for detection can flow. It would be.
그리고 본 발명에서는 상기의 전류제어수단에 흐르는 지락전류의 크기를 판별하여 지락사고여부(사고구간)를 판단하고, 급전선에 흐르는 전류의 변화(증가량)와 동일시간의 지락전류의 변화량을 비교하여 사고 급전선을 판별할 수 있도록 하는 지락보호 계전시스템과 그 제어방법을 제공하고자 한 것이다. In the present invention, the magnitude of the ground fault current flowing through the current control means is determined to determine whether there is a ground fault (accident section), and the change of the ground fault current at the same time is compared with the change (increase amount) of the current flowing in the feed line. The purpose of the present invention is to provide a ground fault protection relay system and a control method for identifying a feeder line.
본 발명은 지락전류 검출을 위하여 정류기의 네가티브 버스에 지락보호 계전기의 전류제어수단을 구성하고, 전류제어수단을 대지에 접지시킨 구성을 갖는 지락보호 계전장치를 특징으로 한다. The present invention is characterized by a ground fault protection relay having a configuration in which the current control means of the ground fault protection relay is configured on the negative bus of the rectifier for ground fault current detection, and the current control means is grounded to the ground.
상기 전류제어수단은 양단 전압차에 따라 그 저항특성을 달리하는 장치로 구성되며, 전류제어수단은 양단 전압이 낮을 시(정상운전상태) 높은 저항의 특성을 나타내어 누설전류를 기준 값 이하로 제한시키고, 전류제어수단은 양단 전압이 높을 시(지락사고 발생 시) 낮은 저항의 특성을 나타내도록 하여 지락전류의 양이 전류제어수단에 의해 제한되지 않도록 구성되는 것을 특징으로 한다.The current control means is composed of a device that varies the resistance characteristics according to the voltage difference between the two ends, the current control means exhibits a high resistance characteristics when the voltage at both ends is low (normal operation state) to limit the leakage current to the reference value or less The current control means is characterized in that it is configured so that the voltage of both ends is high (when a ground fault occurs) so as to exhibit a characteristic of low resistance so that the amount of the ground current is not limited by the current control means.
이와 같은 지락보호 계전장치를 이용한 본 발명 계전 시스템은,The relay system of the present invention using the ground fault protection relay device,
정류기의 네가티브 버스와 대지 사이에 구성된 전류제어수단에 흐르는 전류를 측정하기 위한 전류 계측수단과, 변전소로부터 나가는 상행,하행, 좌,우의 모든 급전선 전류를 계측하기 위한 급전선 전류 계측수단과, 상기 전류계측수단으로부터 계측된 전류제어수단에 흐르는 전류값에 따라 지락사고 발생여부를 판단하고, 전류제어수단 및 급전선의 전류계측수단으로부터 계측된 전류값을 비교하여 사고 선로를 판단하여 해당하는 차단기의 트립제어신호를 출력제어하는 제어수단을 포함하여 구성된다.Current measuring means for measuring the current flowing through the current control means configured between the negative bus and the ground of the rectifier, feeder current measuring means for measuring all feeder currents going up, down, left and right from the substation, and the current measurement It judges whether a ground fault has occurred according to the current value flowing through the current control means measured from the means, compares the current value measured from the current control means and the current measurement means of the feeder line, determines the fault line, and trips the control signal of the circuit breaker. It comprises a control means for controlling the output.
상기 제어수단은 전류계측수단으로부터 계측된 지락전류를 소정의 설정된 전류값과 비교하여 지락사고 발생여부를 판별하고, 전류계측수단으로부터 계측된 지락전류와 급전선 계측수단으로부터 계측된 급전선 전류의 변화량 혹은 파형을 소정의 설정된 시간동안 비교하여 사고 선로를 판단하여, 소정의 지연시간후 해당 사고선로 차단기의 트립제어신호를 출력제어하도록 하는 것을 특징으로 한다. The control means compares the ground fault current measured by the current measuring means with a predetermined set current value to determine whether a ground fault has occurred, and the change amount or waveform of the ground fault current measured by the current measuring means and the feeder current measured by the feed line measuring means. It is characterized in that the fault line is judged by comparing for a predetermined time, and output control of the trip control signal of the fault line breaker after a predetermined delay time.
이와 같은 본 발명은 The present invention as such
* 사고구간의 판별 (지락사고 발생여부 판단) * Determination of accident section (Judged whether ground fault occurred)
사고구간의 판별은 변전소의 전류제어수단을 통해 흘러들어 오는 전류의 크기로서 판단된다. The discrimination of the accident section is judged as the magnitude of the current flowing through the current control means of the substation.
즉 사고구간의 변전소에는 사고구간 밖의 변전소 보다 항상 큰 지락사고전류가 흐른다. In other words, in the substation of the accident section, a large ground fault current always flows than the substation outside the accident section.
도 3은 개략적인 급전 계통을 나타낸 것이며, 회로 해석의 간략화를 위하여 사고 지점으로부터 왼쪽 방향의 계통만 표시하였다.Figure 3 shows a schematic feed system, only the system in the left direction from the accident point is shown for simplicity of circuit analysis.
도 3은 사고지점으로부터 가까운 변전소(B)로 흘러 들어가는 지락전류(Ib)가 사고지점으로부터 상대적으로 먼 변전소(A)로 흘러들어가는 지락전류(Ia)보다 항상 크다는 것을 보여주기 위한 것이다.FIG. 3 is to show that the ground current I b flowing into the substation B from the accident point is always greater than the ground current I a flowing into the substation A which is relatively far from the accident point.
여기서 부하전류는 전류제어수단을 통해 흐르지 않으므로, 생략하였다.Since the load current does not flow through the current control means, it is omitted.
도 3에서 보여지는 바와 같이, 급전계통의 루프 방정식을 세우면 다음의 수학식 1 및 수학식 2와 같이 나타낼 수 있다.As shown in FIG. 3, when the loop equation of the feed system is established, the following equations (1) and (2) may be represented.
여기서 Rs 는 소스 저항, Ra,Rb 는 급전선로의 저항성분이고, Ia,Ib는 루프전류이다. 부하전류는 전류제어수단을 통해 흐르지 않으므로 생략되었다.Where R s is the source resistance, R a , R b are the resistance components of the feed line, and I a , I b are the loop current. The load current is omitted because it does not flow through the current control means.
수학식 1에서 수학식 2를 연산(-)하면 다음의 수학식 3과 같이 정리되고, 이를 다시 정리하면 다음의 수학식 4와 같이 나타난다.When
이와 같이, 지락전류(Ib)는 지락전류(Ia)보다 항상 크며 이것은 사고지점으로부터 가까운 변전소(B)로 흘러 들어가는 지락전류(Ib)가 사고지점으로부터 상대적으로 먼 변전소(A)로 흘러 들어가는 지락전류(Ia)보다 항상 크다는 것을 보여주는 것이다.As such, the ground fault current I b is always greater than the ground fault current I a , which means that the ground fault current I b flowing into the substation B close to the accident point flows to the substation A relatively far from the accident point. It shows that it is always larger than the incoming ground current I a .
또한 도 4는 계전기의 시간지연요소 특성을 보여준다.Figure 4 also shows the time delay element characteristics of the relay.
변전소(B)의 오른쪽방향에서 지락사고가 발생되었을 경우에 변전소(A)는 변전소(B)보다 항상 작은 지락전류를 보므로 즉 , 변전소(B)의 계전기가 변전소(A) 계전기 보다 항상 먼저 동작하여 사고전류를 차단한다. When a ground fault occurs in the right direction of the substation B, the substation A always sees a smaller ground current than that of the substation B. , Relay of substation (B) always operates before substation (A) relay to cut off the fault current.
도 4에서 보면, 이고 이다. In Figure 4, ego to be.
또한 변전소(B)의 계전기가 고장으로 동작하지 못할 경우 변전소(A) 계전기가 시간 지연 후 동작하므로 자연적으로 후비보호의 기능을 수행할 수 있다. In addition, when the relay of the substation B fails to operate due to a failure, the substation A relay operates after a time delay, thereby naturally performing the post-protection function.
이에 따라 사고구간(지락사고발생여부)은 전류제어수단에 흐르는 전류량을 이용하여 판단하게 된다. Accordingly, the accident section (ground fault occurrence) is determined using the amount of current flowing through the current control means.
* 사고선로의 판별 * Discrimination of accident track
사고구간의 변전소에서 사고 전차선이 좌, 우 혹은 상 하행선 중 어는 급전선에서 지락사고가 발생했는지의 판별은 지락전류의 변화량 혹은 파형을 각 급전 선 전류의 변화량 혹은 파형과 비교함으로써 이루어진다. In the substation of the accident zone, whether the accident tramline is left, right or up and down is determined by a ground fault in the feeder line by comparing the change amount or waveform of the ground current with the change amount or waveform of each feeder line current.
도 5는 지락사고전류를 계산하기 위한 등가회로를 나타낸 것으로, 간략화된 급전계통을 보여준다. 5 shows an equivalent circuit for calculating the ground fault current, showing a simplified power supply system.
여기서, Rs는 소스의 저항성분, Rl { R}_{l } 은 급전선의 저항성분을 나타낸 것이고, Ls 는 소스의 인덕턴스 성분, Ll은 급전선의 인덕턴스 성분을 나타낸 것이다. Here, R s represents the resistance component of the source, R l {R} _ {l} represents the resistance component of the feeder, L s represents the inductance component of the source, L 1 represents the inductance component of the feeder.
도 5에서 지락전류는 다음의 수학식 5와 같이 나타낼 수 있다. In FIG. 5, the ground fault current may be represented by Equation 5 below.
수학식 5에서의 지락전류는 사고 전차선으로부터 대지로 흘러들어가는 지락전류 값이다. Ground fault current in Equation 5 is a ground fault current flowing from the accident line to the ground.
변전소의 전류제어수단을 통해 흘러 들어오는 지락전류 값은 이 값 보다 작을 수 있다 그것은 지락전류가 각 변전소의 전류제어수단으로 분배되어 흘러 들어가기 때문이다. The ground fault current flowing through the substation's current control means may be less than this value because the ground fault current flows into the current control means of each substation.
사고 급전선에서는 수학식 5의 사고전류 값이 부하전류에 추가하여 증가할 것이므로 전류제어수단의 전류 량과 급전선의 전류 양을 비교함으로써 사고 급전선을 판별할 수 있다. In the fault feeder, since the fault current value of Equation 5 will increase in addition to the load current, the fault feeder may be determined by comparing the current amount of the current control means with the current amount of the feeder.
도 6은 도 3에서 사고급전선의 전류변화와 전류제어수단의 전류변화를 동일 시간 축으로 보여준다. FIG. 6 shows the current change of the accident feeder and the current change of the current control means in FIG. 3 on the same time axis.
여기서 전류변화량의 비교를 위한 윈도우의 크기 tw 에 대하여 유의하여야 할 필요가 있다. Here, it is necessary to pay attention to the size t w of the window for comparing the amount of current change.
비교 윈도우의 크기란 수학식 5에서 나타낸 t 이다. The size of the comparison window is t shown in Equation 5.
즉 전류 변화량의 크기는 t의 함수이다. 비교에 충분한 크기의 전류변화량을 얻기 위해서는 충분한 크기의 t가 필요하고 이 값이 최소 비교윈도우의 크기가 될 것이다. In other words, the magnitude of the current variation is a function of t. In order to obtain a sufficient amount of current change for comparison, a sufficient magnitude of t is required, and this value will be the size of the minimum comparison window.
예를 들어 시정수가 20ms인 계통에서 비교 윈도우 tw를 5ms로 하면 전류변화량은 수학식 5에 의하여 'Steady State' 지락전류 값( )의 22% 정도가 된다. For example, if the comparison window t w is 5ms in a system with a time constant of 20ms, the amount of current change is represented by the equation of 'Steady State' ground current ( 22% of).
이 값이 지락사고로 인한 전류증가량의 계측에 충분히 큰 양인가는 계전기 셋팅 시 검토되어야 한다. Whether this value is large enough to measure the current increase due to a ground fault should be considered when setting the relay.
이와 같은 점을 고려한 본 발명 시스템은 다음과 같은 실시 예로 구성될 수 있다. In consideration of the above, the present invention system may be configured as follows.
도 7은 본 발명 지락보호 계전장치의 접지 구성을 나타낸 도면이고, 도 8은 지락보호 계전 시스템의 전류센서의 위치를 나타내기 위한 열차의 급전선을 나타낸 도면이고, 도 9는 본 발명 지락보호 계전시스템의 구성을 나타낸 블록도이다.7 is a view showing the grounding configuration of the ground fault protection relay device of the present invention, Figure 8 is a view showing a feed line of the train for indicating the position of the current sensor of the ground fault protection relay system, Figure 9 is a ground fault protection relay system of the present invention Is a block diagram showing the configuration of a.
정류기의 네가티브 버스와 대지 사이에 구성된 전류제어수단(10)과, 전류제어수단(10)의 전류를 계측하기 위한 전류센서(Ig)와, 급전선의 전류를 계측하기 위하여 변전소로부터 나가는 좌우, 상하행선에 설치된 전류센서(I1~I4)와, 전류센서(Ig)로부터 계측된 전류제어수단(10)에 흐르는 전류값에 따라 지락사고 발생여부를 판단하고, 전류센서(Ig) 및 급전선 전류센서(I1~I4)로부터 계측된 전류 변화량 혹은 파형을 비교하여 사고 선로를 판단하여 해당하는 차단기(B1~B4)의 트립제어신호를 출력제어하는 제어부(20)를 포함하여 구성된다.The current control means 10 configured between the negative bus and the ground of the rectifier, the current sensor I g for measuring the current of the current control means 10, and the left and right, phase out of the substation for measuring the current of the feed line. It is determined whether a ground fault has occurred according to the current value flowing through the current sensors I 1 to I 4 and the current control means 10 measured by the current sensor I g installed in the downward line, and the current sensor I g and Including a
상기 제어수단은 전류센서(Ig)으로부터 계측된 지락전류를 소정의 설정된 전류값과 비교하여 지락사고 발생여부를 판별하는 지락사고 발생판단부(21)와, 전류센서(Ig)로부터 계측된 지락전류와 급전선 전류센서(I1~I4)로 부터 계측된 급전선에 흐르는 전류의 변화량 혹은 파형을 소정의 설정된 시간동안 비교하여 사고 선로를 판단하는 사고선로판단부(22)와, 지락사고가 발생된 사고선로의 해당 차단기(B1~B4)의 트립 제어신호를 출력 제어하는 차단기 제어부(23)를 포함하여 구성된다.And said control means is a current sensor (I g) by a ground current measured from the comparison with the predetermined current value set in the ground fault occurs to determine whether an earth fault occurrence determining unit 21, a measurement from the current sensor (I g) An accident line judgment unit 22 and a ground fault accident that compare an amount or waveform of a current flowing through the feed line measured by the ground current and the feed line current sensors I 1 to I 4 for a predetermined time period to determine an accident line. It is configured to include a
이러한 본 발명 지락보호 계전시스템에서는In the ground fault protection relay system of the present invention
변전소로부터 나가는 상행, 하행, 좌, 우의 모든 급전선 전류를 상시 계측하는 전류센서(I1~I4)가 구성된다.Current sensors I 1 to I 4 that measure all the feeder line currents going up, down, left and right from the substation at all times are configured.
또한 변전소 DC 배전반의 네가티브 버스를 전류제어수단(10)을 통해 접지시키고, 전류제어수단(10)에 흐르는 전류를 계측하기 위한 센서(Ig)가 구성된다.In addition, the negative bus of the substation DC switchboard is grounded through the current control means 10, and a sensor I g for measuring the current flowing through the current control means 10 is configured.
상기 전류제어수단(10)의 특성은 앞서 설명한 바와 같이, 정상 운전상태에서는 높은 저항의 특성을 보여 네가티브 전차선의 누설전류를 기준 값 이하로 제한시키고 지락사고 시 즉, 전류제어수단(10)의 단자 전압이 높을 시 낮은 저항의 특성을 나타내어 지락전류의 양이 전류제어수단(10)에 의해 제한되지 않아야 한다. As described above, the characteristics of the current control means 10 show high resistance characteristics in the normal operation state, thereby limiting the leakage current of the negative train line to a reference value or less and in case of a ground fault, that is, the terminal of the current control means 10. When the voltage is high, the characteristics of low resistance should be exhibited so that the amount of ground current should not be limited by the current control means 10.
이러한 전류제한 수단(10)의 전형적인 전압-전류 특성은 도 11과 같다.Typical voltage-current characteristics of this current limiting means 10 are shown in FIG.
상기 전류제어수단(10)은 이와 같이 양단 전압차에 따라 그 저항특성을 달리하는 장치로 어레스터(arrestor)일 수도 있고, 전력용 반도체를 응용하여 만들 수도 있다. As described above, the current control means 10 may be an arrestor as an apparatus for varying the resistance characteristics according to the voltage difference between both ends, or may be made by applying a power semiconductor.
이와 같은 본 발명 지락보호 계전 시스템은 다음과 같은 동작 제어과정을 갖는다. The ground fault protection relay system of the present invention has the following operation control process.
전류센서(Ig)로부터 계측된 지락전류를 소정의 설정된 전류값(Iset)과 비교하여 지락사고 발생여부를 판별하는 과정과, Comparing the ground current measured from the current sensor I g with a predetermined current value Iset to determine whether a ground fault has occurred;
전류센서(Ig)로부터 계측된 지락전류와 급전선 전류센서(I1~I4)로부터 계측된 급전선 전류변화량 혹은 파형을 소정의 설정된 시간동안 비교하여 사고 선로를 판단하는 과정과, Comparing the ground current measured from the current sensor I g with the feeder current change amount or waveform measured from the feeder current sensors I 1 to I 4 for a predetermined time, and determining an accident line;
지락사고의 발생여부를 판단한 후, 소정의 지연시간후 해당 사고선로 차단기의 트립제어신호를 출력제어하는 과정으로 이루어진다. After determining whether a ground fault has occurred, a process of outputting the trip control signal of the corresponding accident line breaker after a predetermined delay time is performed.
이와 같은 본 발명 시스템에서 사고구간 판별 및 사고 선로 판단을 통해 차단기를 제어하는 동작과정을 설명하면 다음과 같다.Referring to the operation process of controlling the breaker through the determination of the accident section and the determination of the accident line in the present invention as follows.
도 10은 지락보호 계전기의 동작플로우를 나타낸 플로우챠트이다. 10 is a flowchart showing the operation flow of the ground fault protection relay.
각 변전소 급전선의 전류(I1~I4)와 전류제어수단(10)에 흐르는 전류(Ig)를 항시 측정한다.The current I 1 to I 4 of each substation feed line and the current I g flowing through the current control means 10 are always measured.
이와 같이 측정된 전류제어수단(10)의 전류(Ig)는 소정의 설정된 셋팅 값(Iset)과 비교한다.The current I g of the current control means 10 measured as described above is compared with a predetermined set value Iset.
비교결과 전류제어수단(10)의 전류(Ig)가 셋팅 값(Iset)보다 크면 지락사고로 판단된다.As a result of the comparison, when the current I g of the current control means 10 is greater than the setting value Iset, it is determined that a ground fault has occurred.
이와 같이 지락사고로 판단되면, 이때부터 소정의 설정된 시간(△T)이 누적되기 시작된다. In this way, if it is determined that the ground fault has occurred, the predetermined time DELTA T begins to accumulate from this time.
이와 같이 누적된 시간 (Td)은 계전기에 내장된 도 4에서와 같이 나타나는 시간지연특성의 설정시간(Tset)과 비교된다.The accumulated time T d is compared with the set time T set of the time delay characteristic shown in FIG. 4 incorporated in the relay.
상기 설정시간(Tset)은 시간지연특성곡선 상에서 지락전류 값에 대응하여 정해진 지연시간을 의미한다. The set time T set means a delay time determined in response to a ground current value on a time delay characteristic curve.
누적된 시간(Td)이 설정시간(Tset)보다 커지면 차단기(B1~B4)의 트립 신호를 내 보내게 되는 바, When the accumulated time T d is greater than the set time T set , the trip signal of the breakers B 1 to B 4 is emitted.
트립 신호를 내보내기 전에 사고전차선 즉 변전소로부터 나가는 상, 하, 좌, 우 4개의 전차선 중 사고 전차선을 선택하여 해당 차단기(B1~B4중 어느 하나)로 트립 신호를 내보낸다. The outgoing from the incident catenary i.e. substation before exporting the trip signal, down, left, and select the catenary of the incident right four catenary and sends out a signal to the trip (either the B 1 ~ B 4) the circuit breaker.
사고전차선의 판별은 앞서 설명한 바와 같이, 지락전류의 변화량(Ig) 혹은 그 파형과 각 급전선 전류(I1~I4)의 변화량 혹은 그 파형을 도 6에서와 같이, 동일 시간내의 변화량 곡선을 비교하여 사고 전차선을 판별하게 된다. As described above, the identification of the accident tank line is a change amount of ground fault current (I g ) or a change amount of the waveform and each feed line current (I 1 to I 4 ), or the waveform thereof, as shown in FIG. Compared to the accident tank line.
이와 같은 본 발명 시스템은 재폐로를 수행하지 않아도 되며, 재폐로 재폐로 제어부(20)내에 재폐로 회로제어부를 더 포함하여 선택적으로 그 수행여부를 결정할 수 있다.Such a system of the present invention does not have to perform reclosing, and further includes a reclosing circuit control unit in the reclosing
이와 같은 본 발명은 사고구간 및 사고선로의 판별을 위하여 귀환회로의 전류를 측정하는 센서가 불필요하고, 또한 인접변전소와의 사고감지신호를 주고 받기 위한 장치가 필요 없게 된다. The present invention does not require a sensor for measuring the current of the feedback circuit for discriminating the accident section and the accident line, and also eliminates the need for a device for transmitting and receiving an accident detection signal with an adjacent substation.
또한 사고 전차선의 판별이 종래에서는 재폐로 과정에서 이루어지나 본 발명 계전시스템에서는 지락사고 감지와 함께 사고전차선 판별이 함께 이루어져 사고전차선의 차단기만 트립시키므로써, 전력공급시스템의 신뢰성을 높일 수 있다. In addition, the determination of the accident tank line is conventionally made in the re-closing process, but in the relay system of the present invention, the fault is detected along with the ground fault detection, so that only the breaker of the accident tank line is tripped, thereby increasing the reliability of the power supply system.
Claims (7)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040048672A KR100602914B1 (en) | 2004-06-26 | 2004-06-26 | Ground overcurrent protective relaying schemes for ungrounded DC power supply system and the controlling method for the system |
PCT/KR2004/003370 WO2006001566A1 (en) | 2004-06-26 | 2004-12-21 | Ground overcurrent protection relay system for ungrounded dc power feed system and method of controlling the same |
JP2007517939A JP2008504795A (en) | 2004-06-26 | 2004-12-21 | Ground fault protection relay system for ungrounded DC power supply system and control method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040048672A KR100602914B1 (en) | 2004-06-26 | 2004-06-26 | Ground overcurrent protective relaying schemes for ungrounded DC power supply system and the controlling method for the system |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20050122978A KR20050122978A (en) | 2005-12-29 |
KR100602914B1 true KR100602914B1 (en) | 2006-07-19 |
Family
ID=35781955
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020040048672A KR100602914B1 (en) | 2004-06-26 | 2004-06-26 | Ground overcurrent protective relaying schemes for ungrounded DC power supply system and the controlling method for the system |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2008504795A (en) |
KR (1) | KR100602914B1 (en) |
WO (1) | WO2006001566A1 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100696984B1 (en) * | 2005-06-18 | 2007-03-20 | 한국철도기술연구원 | Pilot ground fault protective relaying scheme in traction power supply system |
JP2007282337A (en) * | 2006-04-04 | 2007-10-25 | Eiraku Denki Kk | Device for determining line wire grounded circuit in direct-current electric railroad |
KR100766365B1 (en) * | 2006-07-06 | 2007-10-12 | 한국철도기술연구원 | delta;I GROUND FAULT PROTECTIVE RELAYING SYSTEM AND CONTROL METHOD IN DC TRACTION POWER SUPPLY SYSTEM |
KR100821702B1 (en) * | 2006-09-21 | 2008-04-14 | 전명수 | Trolley line impedance detector and Method for locating fault distance using the same |
CN106992503B (en) * | 2017-05-26 | 2018-03-13 | 湘潭市恒创电气设备有限公司 | The earth-leakage protection system of power supply system of train |
CN106970261A (en) * | 2017-05-26 | 2017-07-21 | 湘潭市恒创电气设备有限公司 | Earth leakage detecting system for train |
CN109245038B (en) * | 2017-07-10 | 2020-03-31 | 比亚迪股份有限公司 | Train and train power supply system and earth leakage protection device thereof |
CN109245039B (en) * | 2017-07-10 | 2020-03-31 | 比亚迪股份有限公司 | Train, train power supply system and earth leakage protection device thereof |
EP3713029A1 (en) * | 2019-03-18 | 2020-09-23 | Siemens Aktiengesellschaft | Locating an earth fault in a dc network with multiple load zones |
CN110632452B (en) * | 2019-08-30 | 2021-05-28 | 深圳供电局有限公司 | Flexible direct-current power grid ground insulation fault detection method and computer equipment |
CN110646704B (en) * | 2019-08-30 | 2021-05-11 | 深圳供电局有限公司 | Flexible direct-current power grid ground insulation fault detection method and computer equipment |
CN110596529B (en) * | 2019-08-30 | 2021-05-11 | 深圳供电局有限公司 | Flexible direct current power grid ground insulation fault detection device and system |
CN113224727B (en) * | 2021-03-22 | 2022-10-11 | 昆明理工大学 | Inverse time-lag protection adaptive level difference coordination protection method for small-resistance grounding distribution network |
JP7537343B2 (en) | 2021-03-31 | 2024-08-21 | 株式会社明電舎 | Apparatus and method for detecting earth fault in DC power feeding system |
CN114465236B (en) * | 2022-04-11 | 2022-07-08 | 赫兹曼电力(广东)有限公司 | Self-healing method for power distribution network to cope with ground fault and power distribution network |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02311123A (en) * | 1989-05-26 | 1990-12-26 | Toshiba Corp | Dc ground-fault detector |
KR20050096566A (en) * | 2004-03-31 | 2005-10-06 | 엘지.필립스 엘시디 주식회사 | Liquid crystal display of in-plane-switching mode and method of driving the same |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5917601B2 (en) * | 1980-06-21 | 1984-04-23 | 日本国有鉄道 | DC feeding circuit high resistance ground fault detection device |
JPS60160328A (en) * | 1984-01-31 | 1985-08-21 | 株式会社東芝 | Dc ground-fault detector |
JPH07227036A (en) * | 1994-02-10 | 1995-08-22 | Meidensha Corp | Ground relay device for dc electric railway |
JP3157691B2 (en) * | 1994-11-25 | 2001-04-16 | 東海旅客鉄道株式会社 | Feeding equipment protection device |
JP3848854B2 (en) * | 2001-07-17 | 2006-11-22 | 財団法人鉄道総合技術研究所 | Circuit to prevent the expansion of obstacles caused by high-voltage ground faults on DC electric railways |
JP3895148B2 (en) * | 2001-10-29 | 2007-03-22 | 財団法人鉄道総合技術研究所 | Unnecessary operation prevention device for substation circuit breaker due to ground fault of DC feeding circuit |
KR100582214B1 (en) * | 2004-06-03 | 2006-05-23 | 한국철도기술연구원 | The directional and differential ground fault protective relaying scheme in ungrounded DC traction power supply system and the current limiting device for the ground fault current detection |
-
2004
- 2004-06-26 KR KR1020040048672A patent/KR100602914B1/en not_active IP Right Cessation
- 2004-12-21 JP JP2007517939A patent/JP2008504795A/en active Pending
- 2004-12-21 WO PCT/KR2004/003370 patent/WO2006001566A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02311123A (en) * | 1989-05-26 | 1990-12-26 | Toshiba Corp | Dc ground-fault detector |
KR20050096566A (en) * | 2004-03-31 | 2005-10-06 | 엘지.필립스 엘시디 주식회사 | Liquid crystal display of in-plane-switching mode and method of driving the same |
Also Published As
Publication number | Publication date |
---|---|
WO2006001566A1 (en) | 2006-01-05 |
JP2008504795A (en) | 2008-02-14 |
KR20050122978A (en) | 2005-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100602914B1 (en) | Ground overcurrent protective relaying schemes for ungrounded DC power supply system and the controlling method for the system | |
KR100766365B1 (en) | delta;I GROUND FAULT PROTECTIVE RELAYING SYSTEM AND CONTROL METHOD IN DC TRACTION POWER SUPPLY SYSTEM | |
EP3614513B1 (en) | Dc ground fault detection system and dc ground fault detection method for dc electric railway | |
US7205772B2 (en) | Arc fault detector and method | |
RU2491690C2 (en) | Automatic circuit-breaker with improved function of reclosure | |
EP3072198B1 (en) | Method for detecting electrical faults in a circuit | |
KR101844468B1 (en) | Apparatus and method for high speed fault distinction and fault location estimation using the database based on inductive analysis in high speed ac railway feeding system | |
JP2008504795A5 (en) | ||
KR100696984B1 (en) | Pilot ground fault protective relaying scheme in traction power supply system | |
AU2014204920B2 (en) | Measurement arrangement and method for detecting an AC voltage as a rail potential in DC railway systems and use of the measurement arrangement | |
KR100694279B1 (en) | Ground fault protective relaying method using distance relay in traction power supply system | |
KR100755452B1 (en) | Bus differential protective relaying system in ungrounded DC traction power supply system and control method thereof | |
JP2010042784A (en) | Direct current high-voltage grounding relay and circuit for preventing malfunction of relay | |
KR100582214B1 (en) | The directional and differential ground fault protective relaying scheme in ungrounded DC traction power supply system and the current limiting device for the ground fault current detection | |
KR20040028684A (en) | Detection of arcing in dc electrical systems | |
KR100539051B1 (en) | A directiona and differential protective relay system for the traction power supply system to the DC operated electric rail car and the method thereof | |
KR101054386B1 (en) | Integrated DC Protection Relay System for Electric Railways | |
JP3895148B2 (en) | Unnecessary operation prevention device for substation circuit breaker due to ground fault of DC feeding circuit | |
JP7285639B2 (en) | Ground fault current interrupter | |
JP7245127B2 (en) | earth fault protector | |
JP7537343B2 (en) | Apparatus and method for detecting earth fault in DC power feeding system | |
JP2607215Y2 (en) | Accident detection device for DC railway substation | |
JP2002159133A (en) | Protection system for feeder system | |
KR20110128690A (en) | Method for detecting high resistance grounding fault | |
KR20220138657A (en) | Protective relay system for detecting ground fault in electric vehicle feed line and control method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20110610 Year of fee payment: 6 |
|
LAPS | Lapse due to unpaid annual fee |