JP2015226042A - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
JP2015226042A
JP2015226042A JP2014112150A JP2014112150A JP2015226042A JP 2015226042 A JP2015226042 A JP 2015226042A JP 2014112150 A JP2014112150 A JP 2014112150A JP 2014112150 A JP2014112150 A JP 2014112150A JP 2015226042 A JP2015226042 A JP 2015226042A
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting element
phosphor layer
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014112150A
Other languages
Japanese (ja)
Other versions
JP6349973B2 (en
Inventor
玲子 大村
Reiko Omura
玲子 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2014112150A priority Critical patent/JP6349973B2/en
Publication of JP2015226042A publication Critical patent/JP2015226042A/en
Application granted granted Critical
Publication of JP6349973B2 publication Critical patent/JP6349973B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a light-emitting device having good light extraction efficiency and a method of manufacturing the same.SOLUTION: The light-emitting device includes: a substrate 11 having a conductive part 12; a light-emitting element 14; a phosphor layer 16; and a reflection member 17. The phosphor layer is provided on an upper surface of the light-emitting element, and the reflection member is provided on the phosphor layer so as to expose a part of the phosphor layer. In other words, the reflection member is provided so as not to entirely cover a surface of the phosphor layer but to partially cover it.

Description

本発明は、発光素子と、蛍光体とを有する発光装置に関するものである。   The present invention relates to a light emitting device having a light emitting element and a phosphor.

一般に、発光ダイオード(LED)等の発光素子を用いた発光装置は、発光素子や保護素子等の電子部品と、それらを配置する基板と、発光素子や保護素子等を保護するための透光性樹脂とを備えている。   In general, a light-emitting device using a light-emitting element such as a light-emitting diode (LED) is a light-transmitting device for protecting electronic components such as a light-emitting element and a protective element, a substrate on which the electronic components are arranged, and the light-emitting element and the protective element. Resin.

発光装置を白色発光させるために、発光素子と、発光素子を覆うように蛍光体が含有された透光性樹脂を設けることが知られている。この発光装置は、発光素子から出力される青色系の光の一部を蛍光体により波長変換して、その波長変換された黄色系の光と発光素子からの青色系の光との混色により、白色系の光を発光させるものである。   In order to make the light emitting device emit white light, it is known to provide a light emitting element and a translucent resin containing a phosphor so as to cover the light emitting element. In this light emitting device, a part of blue light output from the light emitting element is wavelength-converted by the phosphor, and the wavelength-converted yellow light and blue light from the light emitting element are mixed, It emits white light.

また、特許文献1には、青色発光の波長変換に必要な蛍光物質を含む波長変換層の表面の全体を、SiO2を混入した光拡散層で被覆する半導体発光装置が開示されている。 Patent Document 1 discloses a semiconductor light emitting device that covers the entire surface of a wavelength conversion layer containing a fluorescent material necessary for wavelength conversion of blue light emission with a light diffusion layer mixed with SiO 2 .

特開2001−177157号公報JP 2001-177157 A

特許文献1のような構成により、発光素子の全方位に一様な色度及び色調の白色発光を得ることができる。しかしながら、光の取り出し効率については、更なる改善の余地がある。   With the configuration described in Patent Document 1, white light emission with uniform chromaticity and color tone can be obtained in all directions of the light emitting element. However, there is room for further improvement in light extraction efficiency.

そこで、本発明は、光の取り出し効率が良好な発光装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a light emitting device with good light extraction efficiency.

本発明の実施形態に係る発光装置は、
基体の上に配置される発光素子と、
前記発光素子の上面を覆う蛍光体層と、
前記蛍光体層の上に、蛍光体層の一部が露出するように設けられる反射部材と、
を有することを特徴とする発光装置。
A light-emitting device according to an embodiment of the present invention includes:
A light emitting device disposed on a substrate;
A phosphor layer covering an upper surface of the light emitting element;
A reflective member provided on the phosphor layer such that a part of the phosphor layer is exposed;
A light emitting device comprising:

本発明によれば、光の取り出し効率が良好な発光装置を得ることができる。   According to the present invention, a light emitting device with good light extraction efficiency can be obtained.

本発明の実施形態に係る発光装置の一例を示す概略平面図である。It is a schematic plan view which shows an example of the light-emitting device which concerns on embodiment of this invention. 図1に示す発光装置のI−I’線における概略断面図である。It is a schematic sectional drawing in the I-I 'line | wire of the light-emitting device shown in FIG. 本発明の実施形態に係る発光装置の変形例を示す概略断面図である。It is a schematic sectional drawing which shows the modification of the light-emitting device which concerns on embodiment of this invention. 本発明の実施形態に係る発光装置の変形例を示す概略断面図である。It is a schematic sectional drawing which shows the modification of the light-emitting device which concerns on embodiment of this invention. 本発明の実施形態に係る発光装置の変形例を示す概略断面図である。It is a schematic sectional drawing which shows the modification of the light-emitting device which concerns on embodiment of this invention. 本発明の実施形態に係る発光装置の製造工程の一例について説明する概略断面図である。It is a schematic sectional drawing explaining an example of the manufacturing process of the light-emitting device which concerns on embodiment of this invention. 本発明の実施形態に係る発光装置の製造工程の一例について説明する概略断面図である。It is a schematic sectional drawing explaining an example of the manufacturing process of the light-emitting device which concerns on embodiment of this invention. 本発明の実施形態に係る発光装置の製造工程の一例について説明する概略断面図である。It is a schematic sectional drawing explaining an example of the manufacturing process of the light-emitting device which concerns on embodiment of this invention. 本発明の実施形態に係る発光装置の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the light-emitting device which concerns on embodiment of this invention. 本発明の実施形態に係る発光装置の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the light-emitting device which concerns on embodiment of this invention. 本発明の実施形態に係る発光装置の変形例を示す概略断面図である。It is a schematic sectional drawing which shows the modification of the light-emitting device which concerns on embodiment of this invention. 本発明の実施形態に係る発光装置の変形例を示す概略断面図である。It is a schematic sectional drawing which shows the modification of the light-emitting device which concerns on embodiment of this invention. 本発明の実施形態に係る発光装置の変形例を示す概略断面図である。It is a schematic sectional drawing which shows the modification of the light-emitting device which concerns on embodiment of this invention. 本発明の実施形態に係る発光装置の変形例を示す概略断面図である。It is a schematic sectional drawing which shows the modification of the light-emitting device which concerns on embodiment of this invention.

本発明を実施するための発光装置について、図面を参照しながら説明する。   A light-emitting device for carrying out the present invention will be described with reference to the drawings.

図1は、本発明の実施形態に係る発光装置の一例を示す概略平面図である。図2は、図1に示す発光装置のI−I’線における概略断面図である。
本実施形態に係る発光装置10は、導電部12を有する基体11と、発光素子14と、蛍光体層16と、反射部材17を備えている。
FIG. 1 is a schematic plan view showing an example of a light emitting device according to an embodiment of the present invention. FIG. 2 is a schematic cross-sectional view taken along the line II ′ of the light emitting device shown in FIG.
The light emitting device 10 according to the present embodiment includes a base body 11 having a conductive portion 12, a light emitting element 14, a phosphor layer 16, and a reflecting member 17.

基体11は、絶縁性の母材(セラミック等)と、発光素子への給電のための配線である導電部12とを有しており、発光素子などが載置可能な平面を有する平板状などの部材である。   The base 11 has an insulating base material (ceramic or the like) and a conductive portion 12 that is a wiring for feeding power to the light emitting element, and has a flat surface on which a light emitting element or the like can be placed. It is a member.

発光素子14は、基体上に実装されている。発光素子14は、対向する一対の主面を有する透光性の基板14aの一方の主面に、発光層を含む半導体層14bが形成され、さらに半導体層14bの表面に正電極及び負電極(以下、電極14cともいう)が形成されている。本実施形態の発光装置において、発光素子14は、電極形成面と対向する基板14a側を主光取り出し面として配置する(フリップチップ実装)。発光素子の電極14cは、基体11に形成された導電部12の上に接合部材13を介して接続される。   The light emitting element 14 is mounted on a base. In the light-emitting element 14, a semiconductor layer 14b including a light-emitting layer is formed on one main surface of a light-transmitting substrate 14a having a pair of opposing main surfaces, and a positive electrode and a negative electrode ( Hereinafter, the electrode 14c is also formed. In the light emitting device of the present embodiment, the light emitting element 14 is arranged with the side of the substrate 14a facing the electrode forming surface as a main light extraction surface (flip chip mounting). The electrode 14 c of the light emitting element is connected to the conductive portion 12 formed on the base 11 via the bonding member 13.

発光素子の上面には、蛍光体層16が設けられている。そして、蛍光体層の上に、蛍光体層の一部が露出するように反射部材17が設けられている。換言すると、反射部材17が、蛍光体層の表面の全面を覆うのではなく、部分的に覆うように設けられている。   A phosphor layer 16 is provided on the upper surface of the light emitting element. A reflecting member 17 is provided on the phosphor layer so that a part of the phosphor layer is exposed. In other words, the reflecting member 17 is provided so as to partially cover the entire surface of the phosphor layer rather than covering the entire surface.

発光素子からの光と、蛍光体からの光と、を混色して白色光を得る発光装置は、発光素子からの光の一部は、そのままの光、つまり、波長変換されない光として外部に取り出される必要がある。そのため、蛍光体層の上面に、反射部材が設けられていない領域(露出領域)を設けることで、蛍光体層内に戻されることなく、外部に取り出し易くすることができる。   In a light emitting device that obtains white light by mixing light from a light emitting element and light from a phosphor, a part of the light from the light emitting element is extracted to the outside as it is, that is, light that is not wavelength-converted. Need to be. Therefore, by providing a region (exposed region) where no reflecting member is provided on the upper surface of the phosphor layer, it can be easily taken out without being returned to the phosphor layer.

また、発光素子からの光は、蛍光体を励起するための光も必要である。蛍光体層の上に反射部材を設けない場合も、発光素子からの光の一部は、蛍光体を励起する光として用いられる。ここで、本願の実施形態に示すように、蛍光体層の上に、部分的に反射部材を設けることで、蛍光体層内に光を戻すことができ、その戻り光を、新たに蛍光体を励起する光として用いることができる。つまり、蛍光体層の上に反射部材が無ければ、青色光として外部に放出された光が、反射部材をもけることで、蛍光体を励起するための光として用いられることになる。これにより、蛍光体の量を少なくしても、波長変換した光を効率よく取り出すことができる。
以下、本実施形態に係る発光装置の各構成について簡単に説明する。
Moreover, the light from a light emitting element also needs the light for exciting a fluorescent substance. Even when a reflecting member is not provided on the phosphor layer, a part of the light from the light emitting element is used as light for exciting the phosphor. Here, as shown in the embodiment of the present application, by partially providing a reflecting member on the phosphor layer, the light can be returned into the phosphor layer, and the return light is newly converted into the phosphor. Can be used as light to excite. That is, if there is no reflecting member on the phosphor layer, the light emitted to the outside as blue light is used as light for exciting the phosphor by having the reflecting member. Thereby, even if it reduces the quantity of fluorescent substance, the wavelength-converted light can be taken out efficiently.
Hereinafter, each configuration of the light emitting device according to the present embodiment will be briefly described.

(基体)
基体は、発光素子や保護素子等の電子部品を配置するためのものである。基体の形状は、特に限定されないが、上面(発光素子等の載置面)が平坦であることが好ましい。基体の形状としては、例えば、矩形や多角形等の平板状や、凹部を有する形状とすることができる。
基体の母材は、絶縁性のものを用いることができ、例えば、アルミナや窒化アルミニウム等のセラミックスを用いることが好ましいが、この限りではなく、LTCC、ガラスエポシキ樹脂や熱可塑性樹脂も可能である。
基体の導電部は、発光素子等への給電のためのものであり、Cu、Ni、Ag、Snが挙げられる。
(Substrate)
The base is for arranging electronic components such as a light emitting element and a protective element. The shape of the substrate is not particularly limited, but it is preferable that the upper surface (mounting surface of the light emitting element or the like) is flat. As a shape of a base | substrate, it can be set as the shape which has flat shape, such as a rectangle and a polygon, and a recessed part, for example.
As the base material of the base, an insulating material can be used. For example, ceramics such as alumina and aluminum nitride are preferably used, but this is not restrictive, and LTCC, glass epoxy resin, and thermoplastic resin are also possible. .
The conductive portion of the base is for supplying power to the light emitting element, and examples thereof include Cu, Ni, Ag, and Sn.

(発光素子)
発光素子は、基体上(導電部上又は母材上)に、接合部材を介して、もしくは、更に別部材を介して接合される。発光素子は、同一面側に正負一対の電極を備えた発光素子や、上下面に電極を有するバーティカルタイプの発光素子を用いてもよい。
(Light emitting element)
The light emitting element is bonded to the base (on the conductive portion or the base material) via a bonding member or further via another member. As the light emitting element, a light emitting element having a pair of positive and negative electrodes on the same surface side or a vertical type light emitting element having electrodes on the upper and lower surfaces may be used.

発光素子としては、可視光領域の光を発光する発光ダイオードを用いるのが好ましい。例えば、基板上に、InN、AlN、GaN、InGaN、AlGaN、InGaAlN等の窒化物半導体、III−V族化合物半導体、III−VI族化合物半導体等、種々の半導体によって、発光層を含む積層構造が形成されたものが挙げられる。発光素子の基板としては、サファイア等の絶縁性基板や、SiC、GaN、GaAs等の導電性基板等が挙げられる。尚、発光素子の基板は、必ずしも必要ではなく、基体上に実装後又は実装前に除去してもよい。   As the light-emitting element, a light-emitting diode that emits light in the visible light region is preferably used. For example, a multilayer structure including a light emitting layer is formed on a substrate by various semiconductors such as nitride semiconductors such as InN, AlN, GaN, InGaN, AlGaN, and InGaAlN, III-V compound semiconductors, III-VI compound semiconductors, and the like. What was formed is mentioned. Examples of the substrate of the light emitting element include an insulating substrate such as sapphire, a conductive substrate such as SiC, GaN, and GaAs. Note that the substrate of the light emitting element is not necessarily required, and may be removed after mounting on the base body or before mounting.

(接合部材)
接合部材は、基体上に、発光素子を接合させるための部材である。
(Joining member)
A joining member is a member for joining a light emitting element on a base | substrate.

まず、フリップチップ実装の場合、及びバーティカルタイプの発光素子を用いる場合について説明する。接合部材は、少なくとも発光素子の電極と導電部との間に介在するように配置される。接合部材としては、発光素子と導電部とを導通させることができる導電性材料を用いる。例えば、Sn−Cu、Sn−Ag−Cu、Au−Sn等のハンダ材料やAu等の金属バンプ、異方性導電ペースト等を用いることができる。   First, the case of flip chip mounting and the case of using a vertical type light emitting element will be described. The joining member is disposed so as to be interposed at least between the electrode of the light emitting element and the conductive portion. As the bonding member, a conductive material capable of conducting the light emitting element and the conductive portion is used. For example, a solder material such as Sn—Cu, Sn—Ag—Cu, or Au—Sn, a metal bump such as Au, an anisotropic conductive paste, or the like can be used.

発光素子は、この接合部材によって、導電部の上に支持されるので、発光素子の半導体層の下面と基体の上面とは、接合部材の厚さと、発光素子の電極の厚さと、基体上面から露出する導電部の厚さの総和に相当する距離だけ離間して、空隙を有している。   Since the light emitting element is supported on the conductive portion by this bonding member, the lower surface of the semiconductor layer of the light emitting element and the upper surface of the base are formed from the thickness of the bonding member, the thickness of the electrode of the light emitting element, and the upper surface of the base. There are gaps spaced apart by a distance corresponding to the total thickness of the exposed conductive portions.

接合部材の厚みと発光素子の電極の厚みの総和は、1μm〜150μmであることが好ましい。   The total sum of the thickness of the bonding member and the thickness of the electrode of the light emitting element is preferably 1 μm to 150 μm.

フェイスアップ実装の場合は、上記のような導電性材料の接合部材を用いることができることに加え、絶縁性材料も用いることができる。例えば、エポキシ樹脂、シリコーン樹脂等が挙げられる。   In the case of face-up mounting, in addition to the use of the conductive material bonding member as described above, an insulating material can also be used. For example, an epoxy resin, a silicone resin, etc. are mentioned.

(蛍光体層)
蛍光体層は、発光素子からの光を、異なる波長に変換させるものであり、発光素子からの光をより短波長に変換させるもの、または、長波長に変換させるものを用いることができる。光取り出し効率の観点からは、発光素子からの光を長波長に変換させるものが好ましい。蛍光体層は、少なくとも、発光素子の上面に配置されている。蛍光体層は、発光素子の上面の80%〜100%を覆うように設けるのが好ましく、特に、全面(100%)を覆うのが好ましい。
(Phosphor layer)
The phosphor layer converts light from the light emitting element into a different wavelength, and can convert light from the light emitting element into a shorter wavelength or one that converts into a longer wavelength. From the viewpoint of light extraction efficiency, a material that converts light from the light emitting element into a long wavelength is preferable. The phosphor layer is disposed at least on the upper surface of the light emitting element. The phosphor layer is preferably provided so as to cover 80% to 100% of the upper surface of the light emitting element, and particularly preferably covers the entire surface (100%).

また、発光素子の上面以外の面上を覆うように設けられてもよく、例えば、発光素子の側面を覆ってもよい。さらに、蛍光体層は、発光素子と直接接して設けてもよく、あるいは、透光性の別部材を介して間接的に覆ってもよい。
蛍光体層は、任意の厚みで形成することができ、その上面が平坦状、凸状、凹状等とすることができる。特に、上面が平坦状な蛍光体層とするのが好ましく、さらに、略均一な厚みの蛍光体層とするのが好ましい。略均一な厚みの蛍光体層とする場合は、0.1μm〜100μm程度の厚みとするのが好ましい。
Moreover, it may be provided so as to cover a surface other than the top surface of the light emitting element, and for example, the side surface of the light emitting element may be covered. Further, the phosphor layer may be provided in direct contact with the light emitting element, or may be indirectly covered through a light-transmitting separate member.
The phosphor layer can be formed with an arbitrary thickness, and its upper surface can be flat, convex, concave, or the like. In particular, a phosphor layer having a flat upper surface is preferable, and a phosphor layer having a substantially uniform thickness is more preferable. When the phosphor layer has a substantially uniform thickness, the thickness is preferably about 0.1 μm to 100 μm.

蛍光体は、当該分野で公知のものを使用することができる。例えば、セリウムで賦活されたイットリウム・アルミニウム・ガーネット(YAG)系蛍光体、セリウムで賦活されたルテチウム・アルミニウム・ガーネット(LAG)、ユウロピウム及び/又はクロムで賦活された窒素含有アルミノ珪酸カルシウム(CaO−Al−SiO)系蛍光体、ユウロピウムで賦活されたシリケート((Sr,Ba)SiO)系蛍光体、βサイアロン蛍光体、CASN系又はSCASN系蛍光体等の窒化物系蛍光体、KSF系蛍光体(KSiF:Mn)、硫化物系蛍光体などが挙げられる。これにより、可視波長の一次光及び二次光の混色光(例えば、白色系)を出射する発光装置とすることができる。発光装置が液晶ディスプレイのバックライト等に用いられる場合、青色光によって励起され、赤色発光する蛍光体(例えば、KSF系蛍光体)と、緑色発光する蛍光体(例えば、βサイアロン蛍光体)を用いることが好ましい。これにより、発光装置を用いたディスプレイの色再現範囲を広げることができる。照明等に用いられる場合、青緑色に発光する素子と赤色蛍光体とを組み合わせて用いることができる。 As the phosphor, those known in the art can be used. For example, yttrium-aluminum-garnet (YAG) phosphors activated with cerium, lutetium-aluminum-garnet (LAG) activated with cerium, nitrogen-containing calcium aluminosilicate (CaO- activated with europium and / or chromium) Al 2 O 3 —SiO 2 ) -based phosphor, nitride-based fluorescence such as europium-activated silicate ((Sr, Ba) 2 SiO 4 ) -based phosphor, β-sialon phosphor, CASN-based or SCASN-based phosphor Body, KSF phosphor (K 2 SiF 6 : Mn), sulfide phosphor and the like. Thereby, it can be set as the light-emitting device which radiate | emits the mixed color light (for example, white type | system | group) of the primary light and secondary light of visible wavelength. When the light emitting device is used for a backlight of a liquid crystal display or the like, a phosphor that is excited by blue light and emits red light (for example, KSF phosphor) and a phosphor that emits green light (for example, β sialon phosphor) are used. It is preferable. Thereby, the color reproduction range of the display using a light-emitting device can be expanded. When used for illumination or the like, an element emitting blue-green and a red phosphor can be used in combination.

蛍光体は、例えば、中心粒径が50μm以下、30μm以下、10μm以下であるものが好ましい。中心粒径は、市販の粒子測定器又は粒度分布測定器等によって測定及び算出することができる。なお、上記の粒径は、F.S.S.S.No(Fisher Sub Sieve Sizer’s No)における空気透過法で得られる粒径を指す。特に、蛍光体としてYAG等を用いる場合には、これらの超微粒子を均一に分散して焼結されたバルク体(例えば、板状体)であることが好ましい。このような形態によって、単結晶構造及び/又は多結晶構造として、ボイド、不純物層を低減し、高い透明性を確保することができる。   The phosphor preferably has, for example, a center particle diameter of 50 μm or less, 30 μm or less, and 10 μm or less. The central particle size can be measured and calculated by a commercially available particle measuring device or particle size distribution measuring device. In addition, said particle size is F.R. S. S. S. It refers to the particle size obtained by the air permeation method in No (Fisher Sub Sieve Sizer's No). In particular, when YAG or the like is used as the phosphor, a bulk body (for example, a plate-like body) obtained by uniformly dispersing and sintering these ultrafine particles is preferable. With such a configuration, voids and impurity layers can be reduced and high transparency can be secured as a single crystal structure and / or a polycrystalline structure.

蛍光体は、例えば、いわゆるナノクリスタル、量子ドットと称される発光物質でもよい。これらの材料としては、半導体材料、例えば、II−VI族、III−V族、IV−VI族半導体、具体的には、CdSe、コアシェル型のCdSSe1−x/ZnS、GaP等のナノサイズの高分散粒子が挙げられる。このような蛍光体は、例えば、粒径1nm〜20nm程度(原子10個〜50個)程度が挙げられる。このような蛍光体を用いることにより、内部散乱を抑制することができ、光の透過率をより一層向上させることができる。内部散乱を抑制することにより、上面に対して垂直な方向への光の配光成分を増加させることができ、同時に、発光装置の側面又は下面に向かう光を抑制することができ、よって、光取り出し効率をより向上させることができる。例えば、バックライトに適用する場合に、バックライトへの入光効率をさらに増加させることができる。
量子ドット蛍光体は、不安定であるため、PMMA(ポリメタクリル酸メチル)などの樹脂で表面修飾又は安定化してもよい。これらは透明樹脂(例えば、エポキシ樹脂、シリコーン樹脂等)に混合されて成形されたバルク体(例えば、板状体)であってもよいし、ガラス板の間に透明樹脂とともに封止された板状体であってもよい。
The phosphor may be, for example, a so-called nanocrystal or a light emitting material called a quantum dot. Examples of these materials include semiconductor materials such as II-VI, III-V, and IV-VI semiconductors. Specifically, CdSe, core-shell CdS x Se 1-x / ZnS, and GaP Examples include highly dispersed particles of size. Examples of such a phosphor include a particle size of about 1 nm to 20 nm (10 to 50 atoms). By using such a phosphor, internal scattering can be suppressed and the light transmittance can be further improved. By suppressing the internal scattering, the light distribution component of light in the direction perpendicular to the upper surface can be increased, and at the same time, the light traveling toward the side surface or the lower surface of the light emitting device can be suppressed. The extraction efficiency can be further improved. For example, when applied to a backlight, the light entrance efficiency to the backlight can be further increased.
Since the quantum dot phosphor is unstable, it may be surface-modified or stabilized with a resin such as PMMA (polymethyl methacrylate). These may be a bulk body (for example, a plate-like body) formed by mixing with a transparent resin (for example, an epoxy resin, a silicone resin, etc.), or a plate-like body sealed with a transparent resin between glass plates. It may be.

(反射部材)
反射部材は、蛍光体層の上に、蛍光体層の一部が露出するように設けられ、主として発光素子からの光を蛍光体層内に向けて反射させるものである。この反射された光(戻り光)を、蛍光体の励起光として用いることができる。そのため、蛍光体層に近い位置に設けるのが好ましく、特に、蛍光体層上に接して設けるのが好ましい。これにより、蛍光体層からの光を効率よく蛍光体層内に向けて反射する(戻す)ことができ、蛍光体層中で拡散させて蛍光体の励起光として利用し、光の取り出し効率を上げることが出来る。尚、蛍光体層の上に、電着法で反射部材を含む層を形成する場合は、蛍光体層と反射部材とを接着させる被覆層(蛍光体層を電着で形成させる場合に用いられる層)を介することもできる。このように、反射部材の固定に必要な接着部材を介する場合も、蛍光体層と反射部材とが接しているものとする。
(Reflective member)
The reflecting member is provided on the phosphor layer so that a part of the phosphor layer is exposed, and mainly reflects light from the light emitting element toward the phosphor layer. This reflected light (return light) can be used as excitation light for the phosphor. Therefore, it is preferable to provide it at a position close to the phosphor layer, and it is particularly preferable to provide it in contact with the phosphor layer. As a result, light from the phosphor layer can be efficiently reflected (returned) toward the phosphor layer, diffused in the phosphor layer and used as excitation light for the phosphor, and light extraction efficiency can be improved. Can be raised. When a layer including a reflecting member is formed on the phosphor layer by an electrodeposition method, it is used to coat the phosphor layer and the reflecting member (when the phosphor layer is formed by electrodeposition). Layer). As described above, the phosphor layer and the reflecting member are also in contact with each other even when an adhesive member necessary for fixing the reflecting member is interposed.

反射部材の面積は、蛍光体層の面積の1%〜90%が好ましい。特に好ましくは、20%〜50%である。   The area of the reflecting member is preferably 1% to 90% of the area of the phosphor layer. Particularly preferably, it is 20% to 50%.

反射部材は、発光素子の上面に加え、側面(周り)に配置されていてもよい。この場合、発光素子の側面に蛍光体層が設けられている場合は、その表面に設けるのが好ましい。また、発光素子の側面に蛍光体層が設けられていない場合であっても、反射部材を設けることで、発光素子からの光を、発光素子の内部に向けて反射して戻すことができる。なお、このように発光素子の側面に蛍光体層を有しない場合は、発光素子の側面の全面を覆うように反射部材を設けることが好ましい   The reflecting member may be disposed on the side surface (around) in addition to the upper surface of the light emitting element. In this case, when the phosphor layer is provided on the side surface of the light emitting element, it is preferable to provide the phosphor layer on the surface. Further, even when the phosphor layer is not provided on the side surface of the light emitting element, by providing the reflecting member, light from the light emitting element can be reflected back toward the inside of the light emitting element. In the case where the phosphor layer is not provided on the side surface of the light emitting element as described above, it is preferable to provide a reflecting member so as to cover the entire side surface of the light emitting element.

反射部材は、発光素子から出射された光、または蛍光体層で波長変換された光を効率よく反射させることができる材料が好ましく、90%以上反射させることができる材料がより好ましい。また、発光素子から出射された光、または蛍光体層で波長変換された光が透過、吸収しにくい材料が好ましい。   The reflective member is preferably a material that can efficiently reflect the light emitted from the light emitting element or the light whose wavelength is converted by the phosphor layer, and more preferably a material that can reflect 90% or more. In addition, a material that does not easily transmit or absorb light emitted from the light emitting element or light converted in wavelength by the phosphor layer is preferable.

反射材料としては、屈折率が1.6以上の高い材料、例えば、TiO、ZrO、BaSO4、MgO等の粉末を用いることで、効率よく光を反射させることができる。加えてSiO、ZnOも可能である。これらの材料は単独で又は2種以上を組み合わせて用いてもよい。特に、屈折率が高い反射部材17とすることで発光素子からの光(例えば青色光)をより効率よく拡散させることができ、取り出し効率を向上させることができる。 As a reflective material, light can be efficiently reflected by using a material having a high refractive index of 1.6 or more, for example, a powder of TiO 2 , ZrO 2 , BaSO 4 , MgO, or the like. In addition, SiO 2 and ZnO are also possible. These materials may be used alone or in combination of two or more. In particular, by using the reflecting member 17 having a high refractive index, light (for example, blue light) from the light emitting element can be diffused more efficiently, and extraction efficiency can be improved.

このように、反射部材17を設けることにより、発光素子からの光が蛍光体層内に戻ってくるため、その戻ってきた光によって励起された蛍光体からの光が外部に多く出ることが可能になり、取り出し効率を向上させることができる。   Thus, by providing the reflecting member 17, the light from the light emitting element returns to the phosphor layer, so that a large amount of light from the phosphor excited by the returned light can be emitted to the outside. Thus, the extraction efficiency can be improved.

(その他の部材)
上記の発光装置は、更に、別部材を有していてもよい。例えば、発光素子と、その上面を覆う蛍光体層と、その上に設けられる反射部材と、を覆う封止部材を有していてもよい。例えば、図7、図8に示すように、封止部材20は、基板の上面の一部を覆うとともに、上記の部材を覆うことで、これらを保護することができる。
(Other parts)
Said light-emitting device may have another member further. For example, you may have the sealing member which covers the light emitting element, the fluorescent substance layer which covers the upper surface, and the reflection member provided on it. For example, as shown in FIGS. 7 and 8, the sealing member 20 covers a part of the upper surface of the substrate and covers the above members, thereby protecting them.

封止部材は、反射部材やフィラーなどを、実質的に含まないものが好ましく、つまり、透明のものが好ましく、また、耐光性及び絶縁性を有するものが好ましい。封止部材の好ましい材料としては、シリコーン樹脂組成物、変性シリコーン樹脂組成物、エポキシ樹脂組成物、変性エポキシ樹脂組成物、アクリル樹脂組成物等、シリコーン樹脂、エポキシ樹脂、ユリア樹脂、フッ素樹脂及びこれらの樹脂を少なくとも1種以上含むハイブリッド樹脂等の樹脂によって形成することができる。   The sealing member is preferably substantially free of a reflecting member, a filler, or the like, that is, a transparent member is preferable, and a member having light resistance and insulation is preferable. Preferred materials for the sealing member include silicone resin composition, modified silicone resin composition, epoxy resin composition, modified epoxy resin composition, acrylic resin composition, silicone resin, epoxy resin, urea resin, fluororesin, and these These resins can be formed of a resin such as a hybrid resin containing at least one kind of resin.

また、封止部材の大きさは、特に限定されず、発光装置の輝度、指向性等を考慮して適宜調整することができる。また、封止部材の上面は、凸状、凸レンズ状、凹状、凹レンズ状、平面状等の形状とすることができる。   In addition, the size of the sealing member is not particularly limited, and can be appropriately adjusted in consideration of the luminance, directivity, and the like of the light emitting device. Further, the upper surface of the sealing member can have a convex shape, a convex lens shape, a concave shape, a concave lens shape, a planar shape, or the like.

また、発光素子を、フリップチップ実装する場合は、発光素子と基板との間に、樹脂(アンダーフィル)を介在させることができる。さらに、この樹脂は、発光素子の側面を覆うように設けられてもよい。   In the case where the light emitting element is flip-chip mounted, a resin (underfill) can be interposed between the light emitting element and the substrate. Furthermore, this resin may be provided so as to cover the side surface of the light emitting element.

(発光装置の変形例)
図3は、本発明の実施形態に係る発光装置の変形例を示す概略断面図である。
この変形例の発光装置では、蛍光体層16が、発光素子の側面に設けられていることを除いては図2に示す実施形態と同じである。この変形例においても、光取り出し効率を向上させることができる。このように、発光素子の側面にも蛍光体層を設ける場合、発光素子の上面に設ける蛍光体と、同じ組成又は異なる組成のものを用いることができる。また、上面と側面とに、同時に形成してもよく、あるいは別工程で設けてもよい。さらに、形成方法についても、同じ又は異なる方法で設けることができる。
(Modification of light emitting device)
FIG. 3 is a schematic sectional view showing a modification of the light emitting device according to the embodiment of the present invention.
The light emitting device of this modification is the same as the embodiment shown in FIG. 2 except that the phosphor layer 16 is provided on the side surface of the light emitting element. Also in this modification, the light extraction efficiency can be improved. As described above, when the phosphor layer is also provided on the side surface of the light emitting element, a phosphor having the same composition or a different composition as the phosphor provided on the upper surface of the light emitting element can be used. Moreover, you may form simultaneously on an upper surface and a side surface, or you may provide in another process. Further, the formation method can be the same or different.

図4は、本発明の実施形態に係る発光装置の変形例を示す概略断面図である。
この変形例の発光装置では、反射部材17が、発光素子の側面に設けられた蛍光体層の表面にもあることを除いては図2に示す実施形態と同じである。この変形例においても、光取り出し効率を向上させることができる。このように、発光素子の側面にも反射部材を設ける場合、発光素子の上面に設ける反射部材と、同じ部材又は異なる部材を用いることができる。また、上面と側面とに、同時に形成してもよく、あるいは別工程で設けてもよい。さらに、形成方法についても、同じ又は異なる方法で設けることができる。
FIG. 4 is a schematic cross-sectional view showing a modification of the light emitting device according to the embodiment of the present invention.
The light emitting device of this modification is the same as the embodiment shown in FIG. 2 except that the reflecting member 17 is also on the surface of the phosphor layer provided on the side surface of the light emitting element. Also in this modification, the light extraction efficiency can be improved. Thus, when providing a reflective member also on the side surface of a light emitting element, the same member as a reflective member provided in the upper surface of a light emitting element, or a different member can be used. Moreover, you may form simultaneously on an upper surface and a side surface, or you may provide in another process. Further, the formation method can be the same or different.

図5は、本発明の実施形態に係る発光装置の変形例を示す概略断面図である。
この変形例の発光装置では、発光素子の半導体層側を上側にして実装(フェイスアップ実装)しており、発光素子の電極面が上側となり、ワイヤ19を用いてで基板の導電部と導通をとっている。このような場合も、発光素子の上に設けられた蛍光体層が、一部露出するように反射部材を設けることで、光の取り出し効率を向上させることができる。
FIG. 5 is a schematic cross-sectional view showing a modification of the light emitting device according to the embodiment of the present invention.
In the light emitting device of this modified example, mounting is performed with the semiconductor layer side of the light emitting element facing up (face-up mounting), and the electrode surface of the light emitting element is on the upper side, and the conductive portion of the substrate is electrically connected using the wire 19. I'm taking it. Even in such a case, the light extraction efficiency can be improved by providing the reflecting member so that the phosphor layer provided on the light emitting element is partially exposed.

図7〜図12は、上記の実施形態に係る発光装置の変形例に、更に封止部材を設けた例を示す概略断面図である。
この変形例の発光装置では、蛍光体層16と、その上に設けられる反射部材17を封止部材20が覆ったものである。この変形例においても、光取り出し効率を向上させることができる。
封止部材は、図7に示すように、発光素子の上面のみを覆うように設けてもよく、あるいは、図8〜図10に示すように、発光素子の側面も覆うように設けてもよい。また、封止部材は、図7〜図11に示すように上面が平坦な面としてもよく、あるいは図12に示すように凸状にしてもよい。また、封止部材は、基板にまで達するように設けることもできる。
7 to 12 are schematic cross-sectional views showing an example in which a sealing member is further provided in the modification of the light emitting device according to the above embodiment.
In the light emitting device of this modification, the sealing member 20 covers the phosphor layer 16 and the reflecting member 17 provided thereon. Also in this modification, the light extraction efficiency can be improved.
The sealing member may be provided so as to cover only the upper surface of the light emitting element as shown in FIG. 7, or may be provided so as to cover the side surface of the light emitting element as shown in FIGS. . Further, the sealing member may have a flat upper surface as shown in FIGS. 7 to 11, or may have a convex shape as shown in FIG. Further, the sealing member can be provided so as to reach the substrate.

(発光装置の製造方法)
次に、本実施形態に係る発光装置の製造方法について説明する。
(Method for manufacturing light emitting device)
Next, a method for manufacturing the light emitting device according to this embodiment will be described.

図6a〜図6cは、本実施形態に係る発光装置の製造工程の一例について説明する概略断面図である。ここでは、発光素子をフリップチップ実装する場合について説明する。   6a to 6c are schematic cross-sectional views illustrating an example of a manufacturing process of the light emitting device according to this embodiment. Here, a case where the light-emitting element is flip-chip mounted will be described.

まず、導電部12を有する基体11を準備し、導電部12の上に、接合部材13を介して発光素子14の電極14cを接続する。図6aに示すように、発光素子14は、導電部12に接合部材13を介して発光素子14の電極14cが対向するように接続される。基体11の導電部12と発光素子14とを接続する工法は、接合部材13に応じて適宜選択することができるが、例えば、超音波、熱、荷重、光、フラックス等を用いて接続することができる。接合部材13としてハンダ材料を用いる場合、発光素子14の周囲に露出する導電部12は、余分なハンダ材料を逃がす効果がある。つまり、適量のハンダで接合することができるとともに、ハンダ量の過多から生じる不良を低減させ、安定した接合状態となる。   First, the base body 11 having the conductive portion 12 is prepared, and the electrode 14 c of the light emitting element 14 is connected to the conductive portion 12 via the bonding member 13. As shown in FIG. 6 a, the light emitting element 14 is connected to the conductive portion 12 via the bonding member 13 so that the electrode 14 c of the light emitting element 14 faces the conductive portion 12. The method of connecting the conductive portion 12 of the substrate 11 and the light emitting element 14 can be appropriately selected according to the bonding member 13. For example, the connection is made using ultrasonic waves, heat, load, light, flux, or the like. Can do. When a solder material is used as the bonding member 13, the conductive portion 12 exposed around the light emitting element 14 has an effect of releasing excess solder material. That is, it is possible to bond with an appropriate amount of solder, reduce defects caused by excessive amount of solder, and achieve a stable bonding state.

次に、図6bに示すように、基体11の上に、発光素子14を覆うように蛍光体層16を形成する。蛍光体層16を形成する方法としては1)スパッタリング法、2)蒸着法、3)沈降法、4)ポッティング法、5)印刷法、6)電着法、7)静電塗装法、8)スプレー法等を用いることができる。さらに、9)蛍光体板や蛍光体シートなど、予め成形された別部材を貼り付けるなどの方法を用いてもよい。このような場合、反射部材が設けられたものでもよく、あるいは発光素子を覆うように設けたあとに反射部材を設けてもよい。これらの方法を用いることにより、それぞれの部位に略均一な厚みで蛍光体層を形成することができる。1)2)3)の場合、発光素子14及び基体11全体に蛍光体層をバインダーレスで付着させることができる。4)5)の場合、透光性部材中に分散させた蛍光体を用いることで、選択的に蛍光体を付着させることが可能である。6)7)の場合、蛍光体を付着させたい部位に導電性を持った素材を使用することで、選択的に蛍光体を付着させることができる。8)の場合、透光性部材と溶剤中に分散させた蛍光体を用いることで、選択的に蛍光体を付着させることが可能である。9)の場合、蛍光体を付着させたい部位に選択的に蛍光体を付着させることができる。   Next, as shown in FIG. 6 b, a phosphor layer 16 is formed on the substrate 11 so as to cover the light emitting element 14. Methods for forming the phosphor layer 16 include 1) sputtering method, 2) vapor deposition method, 3) sedimentation method, 4) potting method, 5) printing method, 6) electrodeposition method, 7) electrostatic coating method, and 8). A spray method or the like can be used. Furthermore, 9) A method such as attaching another preformed member such as a phosphor plate or a phosphor sheet may be used. In such a case, the reflective member may be provided, or the reflective member may be provided after being provided so as to cover the light emitting element. By using these methods, the phosphor layer can be formed with a substantially uniform thickness at each site. In the case of 1), 2) and 3), the phosphor layer can be attached to the whole of the light emitting element 14 and the base 11 without a binder. 4) In the case of 5), the phosphor can be selectively attached by using the phosphor dispersed in the translucent member. 6) In the case of 7), the phosphor can be selectively attached by using a conductive material at the site where the phosphor is to be attached. In the case of 8), it is possible to selectively attach the phosphor by using the translucent member and the phosphor dispersed in the solvent. In the case of 9), the phosphor can be selectively attached to the site where the phosphor is to be attached.

上述の6)電着法を用いて蛍光体層を形成する工程について、図6a〜図6cを用いて詳説する。蛍光体層16は、例えば、蛍光体を含む溶液(電着用の浴液)中に、発光素子14を載置した基体11を配置させ、溶液中における電気泳動により、蛍光体粒子を基体11の導電部12及び発光素子14の表面に堆積させることで形成される。   The step of forming the phosphor layer using the above-described 6) electrodeposition method will be described in detail with reference to FIGS. 6a to 6c. The phosphor layer 16 is, for example, a substrate 11 on which the light emitting element 14 is placed in a solution containing phosphor (electrodeposition bath solution), and phosphor particles are dispersed on the substrate 11 by electrophoresis in the solution. It is formed by depositing on the surfaces of the conductive portion 12 and the light emitting element 14.

発光素子の表面が導電性の材料とされている場合は、発光素子自体に電圧を印加することにより、帯電された蛍光体粒子を電気泳動させて発光素子上に堆積させることができる。また、サファイアなどの絶縁性基板に半導体を積層させてなる発光素子のように、発光素子の表面が非導電性の部位を有する場合は、図6bのように発光素子14の非導電性の部位に導電性を有する被覆層15(例えばアルミニウム、亜鉛、ITO等)を設けた後、その被覆層15に電圧を印加することにより、帯電された蛍光体粒子を電気泳動させて被覆層15を介して絶縁性基板14a上に堆積させることができる。なお、蛍光体層16の厚みは、蛍光体粒子の堆積条件や時間により適宜調整することができる。   When the surface of the light emitting element is made of a conductive material, charged phosphor particles can be electrophoresed and deposited on the light emitting element by applying a voltage to the light emitting element itself. Further, when the surface of the light emitting element has a non-conductive portion like a light emitting device in which a semiconductor is stacked on an insulating substrate such as sapphire, the non-conductive portion of the light emitting element 14 as shown in FIG. A conductive coating layer 15 (for example, aluminum, zinc, ITO, etc.) is provided on the substrate, and then a voltage is applied to the coating layer 15 to cause the charged phosphor particles to undergo electrophoresis and through the coating layer 15. Can be deposited on the insulating substrate 14a. The thickness of the phosphor layer 16 can be adjusted as appropriate depending on the deposition conditions and time of the phosphor particles.

また、このような被覆層が、上述のアルミニウムや亜鉛のように、光を透過させない部材からなる場合、透明化処理を施すことが必要である。具体的には、アルミニウムの場合は、酸化さえて酸化アルミニウムとすることで、透光性の被覆層とすることができ、これにより、発光素子からの光を外部に放出させることができる。このような透明化処理は、電着工程後に、水蒸気処理することで、容易に行うことができる。   Moreover, when such a coating layer consists of a member which does not permeate | transmit light like the above-mentioned aluminum and zinc, it is necessary to give a transparency process. Specifically, in the case of aluminum, a light-transmitting coating layer can be obtained by oxidizing to aluminum oxide, whereby light from the light-emitting element can be emitted to the outside. Such a transparency treatment can be easily performed by performing a steam treatment after the electrodeposition step.

反射部材17は、蛍光体層16を覆うように形成する。反射部材の形成方法は、上述の蛍光体層と同様の方法を用いることができる。例えば、電着法を用いて反射部材を形成する場合、反射部材17を構成する反射材料を含む溶液中に、蛍光体層を形成した状態の発光装置(製造途中品)を配置させ、溶液中で帯電された反射材料を電気泳動させることで、蛍光体層16の上面に反射部材17を形成することができる。このように、電着により反射部材を形成する場合、予め、溶液中の反射材料の濃度と、電流や時間を調整して、対象物への電着量(付着速度)を調べておくことで、反射部材の付着量を制御することができる。これにより、蛍光体層の全面を覆うのではなく、部分的に覆うことを、容易に実施することができる。   The reflection member 17 is formed so as to cover the phosphor layer 16. As a method for forming the reflecting member, the same method as that for the phosphor layer described above can be used. For example, when the reflecting member is formed by using the electrodeposition method, the light emitting device in the state where the phosphor layer is formed (manufactured product) is placed in the solution containing the reflecting material constituting the reflecting member 17, and the solution is placed in the solution. The reflecting member 17 can be formed on the upper surface of the phosphor layer 16 by electrophoresing the reflecting material charged in (1). Thus, when forming a reflective member by electrodeposition, the concentration of the reflective material in the solution, the current and time are adjusted in advance, and the amount of electrodeposition (attachment speed) on the object is examined. It is possible to control the adhesion amount of the reflecting member. Thereby, it is possible to easily cover the entire phosphor layer instead of covering the entire surface.

反射部材の厚みについても、堆積条件や時間により適宜調整することができる。   The thickness of the reflecting member can also be adjusted as appropriate depending on the deposition conditions and time.

他にも反射部材17を形成する方法としては、1)スパッタリング法、2)蒸着法、3)沈降法、4)ポッティング法、5)印刷法、7)静電塗装法、8)スプレー法等を用いることができ、蛍光体層16の表面に対して選択的に、反射部材17を形成することができる。尚、反射部材の形成方法によっては、マスクを用いてもよい。また、反射部材を蛍光体層に接着するための接着剤とともに用いるのが好ましい。結着剤としては、樹脂やガラスなどを用いることができる。   Other methods for forming the reflecting member 17 include 1) sputtering method, 2) vapor deposition method, 3) sedimentation method, 4) potting method, 5) printing method, 7) electrostatic coating method, 8) spraying method and the like. The reflective member 17 can be formed selectively with respect to the surface of the phosphor layer 16. In addition, you may use a mask depending on the formation method of a reflection member. Moreover, it is preferable to use it with the adhesive agent for adhere | attaching a reflection member to a fluorescent substance layer. As the binder, resin, glass, or the like can be used.

以下、本発明に係る実施例について詳述する。   Examples according to the present invention will be described in detail below.

図2は、本実施例に係る発光装置を示す概略断面図である。この発光装置は、導電部12を有する基体11、接合部材13、発光素子14、被覆層15、蛍光体層16、反射部材17を備えている。   FIG. 2 is a schematic cross-sectional view showing the light emitting device according to the present embodiment. The light emitting device includes a base body 11 having a conductive portion 12, a bonding member 13, a light emitting element 14, a coating layer 15, a phosphor layer 16, and a reflecting member 17.

基体11の母材としては、アルミナセラミックスを用い、導電部12としては、Auを用いている。基体11には導電部12の一部が埋められており、Auよりも高融点の金属であるW(タングステン)が用いられている。導電部12は基体11の裏面にも露出している。これにより、発光素子14と外部電源とを電気的に接続する端子として機能する。   Alumina ceramics is used as the base material of the base 11, and Au is used as the conductive portion 12. A part of the conductive portion 12 is buried in the base 11, and W (tungsten), which is a metal having a higher melting point than Au, is used. The conductive portion 12 is also exposed on the back surface of the base 11. Thereby, it functions as a terminal for electrically connecting the light emitting element 14 and the external power source.

発光素子14は、接合部材13としてAuバンプを用いて導電部12に接続されている。発光素子14としては、絶縁性のサファイアからなる基板14aの上に半導体層14bを形成したものを用いる。導電性を有する被覆層15はZn(亜鉛)を用い、発光素子14の基板14aを覆うように形成する。蛍光体層16は、例えばYAG系の蛍光体粒子(粒径は5μm)を用い、被覆層15の表面、発光素子14の半導体層14bの表面、及び発光素子14の周囲の導電部12上に付着させる。
蛍光体粒子は電着法により形成するため、被覆層15上及び発光素子14の半導体層14b上に略均一な厚みで付着させることができる。
The light emitting element 14 is connected to the conductive portion 12 using an Au bump as the bonding member 13. As the light emitting element 14, a substrate in which a semiconductor layer 14 b is formed on a substrate 14 a made of insulating sapphire is used. The coating layer 15 having conductivity is made of Zn (zinc) so as to cover the substrate 14 a of the light emitting element 14. The phosphor layer 16 uses, for example, YAG phosphor particles (having a particle size of 5 μm), and is formed on the surface of the coating layer 15, the surface of the semiconductor layer 14 b of the light emitting element 14, and the conductive portion 12 around the light emitting element 14. Adhere.
Since the phosphor particles are formed by an electrodeposition method, the phosphor particles can be attached to the covering layer 15 and the semiconductor layer 14b of the light emitting element 14 with a substantially uniform thickness.

反射部材17は、TiOの粒子平均粒径は0.26μmを電着法により蛍光体層16上のみに付着させて形成する。 The reflecting member 17 is formed by adhering an average particle diameter of TiO 2 of 0.26 μm only on the phosphor layer 16 by an electrodeposition method.

これにより、取り出し効率が向上する。   Thereby, the extraction efficiency is improved.

上記電着法に限らず、上述した方法によって蛍光体層16や反射部材17を形成してもよい。   Not only the electrodeposition method but also the phosphor layer 16 and the reflection member 17 may be formed by the method described above.

本実施例は比較例に比べ発光ムラが少なく、光の取り出し効率が良好な発光装置を得ることができる。また、光の取り出し量が増加するため、蛍光体量を減少することが可能であり、少量の蛍光体で色が狙えることが可能である。また拡散部材の量を変更することにより、色調を変えることも可能である。   In this embodiment, it is possible to obtain a light emitting device with less light emission unevenness and better light extraction efficiency than the comparative example. Further, since the amount of extracted light increases, the amount of phosphor can be reduced, and the color can be aimed with a small amount of phosphor. It is also possible to change the color tone by changing the amount of the diffusing member.

本発明の発光装置は、光吸収を低減し、高出力化が可能な発光装置とすることができ、各種表示装置、照明器具、ディスプレイ、液晶ディスプレイのバックライト光源、さらには、ファクシミリ、コピー機、スキャナ等における画像読取装置、プロジェクタ装置など、広範囲の用途に利用することができる。   The light-emitting device of the present invention can be a light-emitting device capable of reducing light absorption and increasing output, and various display devices, lighting fixtures, displays, backlight light sources for liquid crystal displays, as well as facsimiles and copiers. It can be used for a wide range of applications such as an image reading device in a scanner, a projector device, and the like.

10 発光装置
11 基体
12 導電部
13 接合部材
14 発光素子
14a 基板
14b 半導体層
14c 電極
15 被覆層
16 蛍光体層
17 反射部材
18 保護素子
19 ワイヤ
20 封止部材
DESCRIPTION OF SYMBOLS 10 Light-emitting device 11 Base | substrate 12 Conductive part 13 Joining member 14 Light-emitting element 14a Substrate 14b Semiconductor layer 14c Electrode 15 Covering layer 16 Phosphor layer 17 Reflective member 18 Protection element 19 Wire 20 Sealing member

Claims (7)

基体の上に配置される発光素子と、
前記発光素子の上面を覆う蛍光体層と、
前記蛍光体層の上に、蛍光体層の一部が露出するように設けられる反射部材と、
を有することを特徴とする発光装置。
A light emitting device disposed on a substrate;
A phosphor layer covering an upper surface of the light emitting element;
A reflective member provided on the phosphor layer such that a part of the phosphor layer is exposed;
A light emitting device comprising:
前記反射部材は、前記蛍光体層の上に接している請求項1に記載の発光装置。   The light emitting device according to claim 1, wherein the reflecting member is in contact with the phosphor layer. 前記反射部材は、前記発光素子の側面に配置されている請求項1又は2に記載の発光装置。   The light emitting device according to claim 1, wherein the reflecting member is disposed on a side surface of the light emitting element. 発光素子を覆う蛍光体層を形成する工程と、
前記蛍光体層の上に、蛍光体層の一部が露出するように反射部材を形成する工程と、
を具備することを特徴とする発光装置の製造方法。
Forming a phosphor layer covering the light emitting element;
Forming a reflecting member on the phosphor layer so that a part of the phosphor layer is exposed;
A method of manufacturing a light emitting device, comprising:
前記反射部材を形成する工程において、前記蛍光体層の上に接するように、前記反射部材を形成する請求項4に記載の発光装置の製造方法。   The manufacturing method of the light-emitting device according to claim 4, wherein in the step of forming the reflecting member, the reflecting member is formed so as to be in contact with the phosphor layer. 前記蛍光体層は、電着法、スパッタリング法、蒸着法、沈降法、ポッティング法、印刷法、電着法、静電塗装法、スプレー法から選択される方法により形成される請求項4又は5に記載の発光装置の製造方法。   The phosphor layer is formed by a method selected from an electrodeposition method, a sputtering method, a vapor deposition method, a sedimentation method, a potting method, a printing method, an electrodeposition method, an electrostatic coating method, and a spray method. The manufacturing method of the light-emitting device as described in any one of. 前記反射部材は、電着法、スパッタリング法、蒸着法、沈降法、ポッティング法、印刷法、電着法、静電塗装法、スプレー法から選択される方法により形成される請求項4乃至6のいずれか1項に記載の発光装置の製造方法。   The reflective member is formed by a method selected from an electrodeposition method, a sputtering method, a vapor deposition method, a sedimentation method, a potting method, a printing method, an electrodeposition method, an electrostatic coating method, and a spray method. The manufacturing method of the light-emitting device of any one.
JP2014112150A 2014-05-30 2014-05-30 LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD Active JP6349973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014112150A JP6349973B2 (en) 2014-05-30 2014-05-30 LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014112150A JP6349973B2 (en) 2014-05-30 2014-05-30 LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD

Publications (2)

Publication Number Publication Date
JP2015226042A true JP2015226042A (en) 2015-12-14
JP6349973B2 JP6349973B2 (en) 2018-07-04

Family

ID=54842579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014112150A Active JP6349973B2 (en) 2014-05-30 2014-05-30 LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD

Country Status (1)

Country Link
JP (1) JP6349973B2 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005191514A (en) * 2003-10-31 2005-07-14 Toyoda Gosei Co Ltd Light emitting element and light emitting device
WO2005104247A1 (en) * 2004-04-19 2005-11-03 Matsushita Electric Industrial Co., Ltd. Method for fabricating led illumination light source and led illumination light source
JP2008117976A (en) * 2006-11-06 2008-05-22 Stanley Electric Co Ltd Method of manufacturing color conversion light emitting device using electrophoretic migration
JP2009283887A (en) * 2008-04-24 2009-12-03 Citizen Holdings Co Ltd Led light source and chromaticity adjustment method for the led light source
JP2011515846A (en) * 2008-03-21 2011-05-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Light emitting device
WO2011096171A1 (en) * 2010-02-08 2011-08-11 パナソニック株式会社 Light-emitting device and surface light source device using the same
JP2011166148A (en) * 2010-02-12 2011-08-25 Lg Innotek Co Ltd Light emitting element, method of manufacturing the same, and light emitting element package
JP2011216905A (en) * 2004-02-23 2011-10-27 Philips Lumileds Lightng Co Llc Wavelength converted semiconductor light emitting device
US20120305970A1 (en) * 2011-06-02 2012-12-06 Hyung Kun Kim Light emitting device package and manufacturing method thereof
JP2012256848A (en) * 2011-03-24 2012-12-27 Nichia Chem Ind Ltd Light-emitting device and method for manufacturing the same
JP2013105877A (en) * 2011-11-14 2013-05-30 Koito Mfg Co Ltd Light-emitting device
JP2013197259A (en) * 2012-03-19 2013-09-30 Stanley Electric Co Ltd Light emitting device and manufacturing method of the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005191514A (en) * 2003-10-31 2005-07-14 Toyoda Gosei Co Ltd Light emitting element and light emitting device
JP2011216905A (en) * 2004-02-23 2011-10-27 Philips Lumileds Lightng Co Llc Wavelength converted semiconductor light emitting device
WO2005104247A1 (en) * 2004-04-19 2005-11-03 Matsushita Electric Industrial Co., Ltd. Method for fabricating led illumination light source and led illumination light source
JP2008117976A (en) * 2006-11-06 2008-05-22 Stanley Electric Co Ltd Method of manufacturing color conversion light emitting device using electrophoretic migration
JP2011515846A (en) * 2008-03-21 2011-05-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Light emitting device
JP2009283887A (en) * 2008-04-24 2009-12-03 Citizen Holdings Co Ltd Led light source and chromaticity adjustment method for the led light source
WO2011096171A1 (en) * 2010-02-08 2011-08-11 パナソニック株式会社 Light-emitting device and surface light source device using the same
JP2011166148A (en) * 2010-02-12 2011-08-25 Lg Innotek Co Ltd Light emitting element, method of manufacturing the same, and light emitting element package
JP2012256848A (en) * 2011-03-24 2012-12-27 Nichia Chem Ind Ltd Light-emitting device and method for manufacturing the same
US20120305970A1 (en) * 2011-06-02 2012-12-06 Hyung Kun Kim Light emitting device package and manufacturing method thereof
JP2013105877A (en) * 2011-11-14 2013-05-30 Koito Mfg Co Ltd Light-emitting device
JP2013197259A (en) * 2012-03-19 2013-09-30 Stanley Electric Co Ltd Light emitting device and manufacturing method of the same

Also Published As

Publication number Publication date
JP6349973B2 (en) 2018-07-04

Similar Documents

Publication Publication Date Title
US10230034B2 (en) Light emitting device and method for manufacturing light emitting device
JP5962102B2 (en) Light emitting device and manufacturing method thereof
US9577161B2 (en) Light emitting device having first and second wavelength converter parts
TWI481077B (en) Semiconductor light emitting device and manufacturing method of semiconductor light emitting device
US8288790B2 (en) Light-emitting device
US9728685B2 (en) Light emitting device and lighting device including same
JP6079209B2 (en) Light emitting device and manufacturing method thereof
JP6693044B2 (en) Light emitting device and manufacturing method thereof
JP2015220446A (en) Light-emitting device and method of manufacturing the same
JP7506328B2 (en) Light source and light emitting device including the light source
JP6065408B2 (en) Light emitting device and manufacturing method thereof
JP7235944B2 (en) Light-emitting device and method for manufacturing light-emitting device
JP2018019023A (en) Light-emitting device and method for manufacturing the same
JP2015026871A (en) Light emitting device
JP6579159B2 (en) Light emitting device
JP6326830B2 (en) Light emitting device and lighting device including the same
JP6928244B2 (en) Light emitting device
JP5644967B2 (en) Light emitting device and manufacturing method thereof
JP5472031B2 (en) Light emitting device and manufacturing method thereof
JP7121312B2 (en) light emitting device
US11769862B2 (en) Light emitting device
JP6349973B2 (en) LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
JP6592886B2 (en) Method for manufacturing light emitting device
JP2015026872A (en) Light-emitting device, and method of manufacturing the same
JP6923811B2 (en) Manufacturing method of light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180521

R150 Certificate of patent or registration of utility model

Ref document number: 6349973

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250