JP2015225731A - 燃料電池発電装置 - Google Patents

燃料電池発電装置 Download PDF

Info

Publication number
JP2015225731A
JP2015225731A JP2014108505A JP2014108505A JP2015225731A JP 2015225731 A JP2015225731 A JP 2015225731A JP 2014108505 A JP2014108505 A JP 2014108505A JP 2014108505 A JP2014108505 A JP 2014108505A JP 2015225731 A JP2015225731 A JP 2015225731A
Authority
JP
Japan
Prior art keywords
pure water
fuel cell
cell power
supply passage
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014108505A
Other languages
English (en)
Inventor
啓史 森本
Hiroshi Morimoto
啓史 森本
渡辺 哲也
Tetsuya Watanabe
哲也 渡辺
政彦 嶋津
Masahiko Shimazu
政彦 嶋津
玉田 晴彦
Haruhiko Tamada
晴彦 玉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Original Assignee
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp filed Critical Noritz Corp
Priority to JP2014108505A priority Critical patent/JP2015225731A/ja
Publication of JP2015225731A publication Critical patent/JP2015225731A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】燃料電池発電装置において、運転停止後の燃料電池発電部の近傍の純水供給通路内に発生した気泡を除去可能なもの、燃料電池発電部の運転再開を安定して実行可能なもの、等を提供する。
【解決手段】燃料電池発電装置2は、燃料電池発電部5と、この燃料電池発電部5の蒸発器5bへ改質用の純水を供給する為の純水供給通路31とを備え、純水供給通路31から気泡を除去する為の気泡除去手段41が、純水供給通路31の燃料電池発電部5の近傍部に設けられ、純水供給通路31のうちの気泡除去手段41から蒸発器5bに至る下流側供給通路部31bが下り勾配となるように構成されている。
【選択図】図2

Description

本発明は燃料電池発電装置に関し、特に燃料電池発電部の蒸発部に連なる純水供給通路内に発生した気泡を除去可能なものに関する。
従来から、空気と改質燃料ガス(水素含有ガス)との酸化還元反応によって化学エネルギーを電気エネルギーに変換することで電力を発生させ、この発電の際に副次的に発生する排熱を湯水として回収する燃料電池コージェネレーションシステムが実用に供されている。この燃料電池コージェネレーションシステムは、発電を行なう燃料電池発電装置、排熱回収による熱交換後の湯水を貯湯する貯湯給湯装置、燃料電池発電装置と貯湯給湯装置との間に湯水を循環させる排熱回収循環回路等を備えている。
上記の燃料電池発電装置は、空気と改質燃料ガスとで発電を行なう燃料電池セルスタックとこの燃料電池セルスタックに供給する改質燃料ガスを純水(水蒸気)と燃料ガスから生成する改質器及び蒸発器を有する燃料電池発電部、この燃料電池発電部からの排気ガスを外部に排出する排気通路、この排気通路に設置され且つ燃料電池発電部からの排気ガスと貯湯給湯装置の貯湯タンクに蓄えられた湯水との間で熱交換する排熱回収熱交換器等を備えている。
ところで、燃料電池発電装置では、排熱回収熱交換器により排気ガスを冷却することによって生成された凝縮水を再使用する、所謂水自立運転が行われている。通常は、排熱回収循環回路に湯水を循環し、排熱回収熱交換器にて湯水と排気ガスとの間で熱交換を行い、排気ガスに含まれる水蒸気を冷却して凝縮水を回収し、この凝縮水を浄化してから発電に再使用する。
即ち、燃料電池発電装置は、水自立運転に必要な水処理装置を備えている。この水処理装置は、凝縮水を回収する水回収通路、この水回収通路で回収された凝縮水を浄化する水処理タンク、この水処理タンクで浄化された純水を一時的に貯留する純水タンク、この純水タンクと燃料電池発電部の蒸発器とを接続する純水供給通路と、この純水供給通路に設置され且つ純水タンクの純水を蒸発器に供給する純水ポンプ等を備えている。
しかし、水回収通路で回収された凝縮水中には、排気ガスに含まれていた二酸化炭素が溶け込んでいるので、この二酸化炭素によって水処理タンクのイオン交換樹脂の寿命が短くなる虞がある。この問題を解決する為に、例えば、特許文献1の燃料電池システムにおいては、水回収通路を、水処理タンクの上端部に呼気装置を介して接続し、この呼気装置によって、回収された凝縮水を気体に接触させて脱炭酸を促進することで、水処理タンクのイオン交換樹脂の寿命を長くする技術が開示されている。
また、発電運転中の燃料電池発電部において純水供給通路内に気泡が発生すると、蒸発器に必要な純水を安定して供給できなくなる。この問題を解決する為に、特許文献2の固体酸化物形燃料電池システムにおいては、純水供給通路を流れる純水に混入した気泡をカウントし、このカウント数に基づいて純水ポンプを追加作動させることで、予め設定された純水流量を蒸発器に供給する技術が開示されている。
特開2009−87609号公報 特許第5317187号公報
しかし、特許文献1,2の純水供給通路は、一般的に燃料電池発電部の近傍に配置されているため、運転停止後の燃料電池発電部の余熱によって、純水供給通路内に滞留している純水が加熱されてしまい、純水中の溶存二酸化炭素や酸素等が気泡となって滞留してしまう虞がある。この純水供給通路内に気泡が滞留している状態では、運転再開時に、純水ポンプが空回りしてしまい、燃料電池発電部への純水の供給量が安定せず、燃料電池発電部に不具合が発生するという問題がある。
特許文献2の固体酸化物形燃料電池システムにおいては、燃料電池発電部の発電運転中に気泡が発生した際に、気泡の数に基づいてポンプの出力を調整することで、純水の供給量を調整しているが、燃料電池発電部の運転停止後に気泡が発生して滞留していると、上記の問題と同様に、運転再開時に、純水ポンプが空回りしてしまい、純水の供給量が安定しなくなる。
本発明の目的は、燃料電池発電装置において、運転停止後の燃料電池発電部の近傍の純水供給通路内に発生した気泡を除去可能なもの、燃料電池発電部の運転再開を安定して実行可能なもの、等を提供することである。
請求項1の燃料電池発電装置は、燃料電池発電部と、この燃料電池発電部の蒸発部へ改質用の純水を供給する為の純水供給通路とを備えた燃料電池発電装置であって、前記純水供給通路から気泡を除去する為の気泡除去手段が、前記純水供給通路の前記燃料電池発電部の近傍部に設けられた燃料電池発電装置において、前記純水供給通路のうちの前記気泡除去手段から前記蒸発部に至る通路部分が下り勾配となるように構成されたことを特徴としている。
請求項2の燃料電池発電装置は、請求項1の発明において、前記純水供給通路の前記通路部分には、純水の流動の有無を検知する為の水流検知手段が設けられたことを特徴としている。
請求項1の発明によれば、純水供給通路のうちの気泡除去手段から蒸発部に至る通路部分が下り勾配となるように構成されたので、下り勾配の通路部分内に発生した気泡は、比重の関係で通路部分を上方に向かって流れ、気泡除去手段に送られて除去される。
従って、燃料電池発電部の熱によって、通路部分内の純水が加熱されて純水中の溶存二酸化炭素が気泡となっても、この気泡は通路部分から気泡除去手段を介して外部に排出されるので、純水供給通路のうちの燃料電池発電部の熱によって気泡が最も発生しやすい通路部分の気泡の滞留を防止し、純水ポンプの空回りを防止することができる。
また、燃料電池発電部の運転再開時に、通路部分を流れる純水に気泡を混入させず、純水ポンプの空回りを防ぐので、燃料電池発電部の蒸発部に必要な純水流量を安定して供給することができ、燃料電池発電装置を安定して運転再開することができるので、燃料電池発電部が故障するのを防止することができる。
請求項2の発明によれば、純水供給通路の通路部分には、純水の流動の有無を検知する為の水流検知手段が設けられたので、水流検知手段で純水の流動を検知することで、純水ポンプの空回りを確実に防止することができる。純水の流動を検知した状態で純水ポンプの回転数を制御することで、蒸発部に安定した純水流量を供給することができるので、純水供給通路のうちの気泡除去手段より上流側の通路部分の流量センサや気泡センサ等を省略することができる。
本発明の実施例に係る燃料電池コージェネレーションの概略構成図である。 燃料電池発電装置の概略構成図である。 純水供給通路と気泡除去手段の正面図である。 部分変更形態に係る純水供給通路と気泡除去手段の正面図である。
以下、本発明を実施するための形態について実施例に基づいて説明する。
先ず、燃料電池発電装置2について説明する。
図1に示すように、燃料電池発電装置2は、空気と改質燃料ガスとから発電を行うものであり、排熱回収による熱交換後の湯水を貯湯する貯湯給湯装置3と、この貯湯給湯装置3と燃料電池発電装置2との間に湯水を循環させる為の湯水循環回路4等と組み合わせることで燃料電池コージェネレーションシステム1を構成しているが、燃料電池発電装置2以外の詳細な構成の説明は省略する。
図2に示すように、燃料電池発電装置2は、燃料電池発電部5、カソード空気用送風装置6、燃料改質空気用送風装置7、燃料ガス昇圧装置8、排気通路11、排熱回収熱交換器12、水処理装置13、インバータ14等を備え、これらの各種器具が外装ケース15に収納されて構成され、燃料電池発電部5にて発電された直流電力は、インバータ14を介して交流電力に変換されて外部に出力される。
次に、燃料電池発電部5について説明する。
図2に示すように、燃料電池発電部5は、燃料電池セルスタック5a、蒸発器5b、燃料改質器5c、オフガス燃焼室5d、発電部内熱交換器5e等を備え、燃料改質器5cによって改質された改質燃料ガス及び酸化剤としての空気を燃料電池セルスタック5aで化学反応させることで発電を行うものである。
燃料電池セルスタック5aは、複数の燃料電池セルで構成されている。各燃料電池セルは、ジルコニア等の固体電解質と燃料極と酸素極から夫々形成されている。燃料電池セルスタック5aの燃料極(アノード)側に燃料改質器5cから改質燃料ガスが供給され、燃料電池セルスタック5aの酸素極(カソード)側にカソード空気用送風装置6から空気通路16と排気ガスにより加熱される発電部内熱交換器5eとを介して空気が供給され、これらを高温の環境下で電気化学反応させて直流電力を生成する。
蒸発器5b(蒸発部に相当する)は、燃料ガスに混合する為の水蒸気を生成して燃料改質器5cに供給するものである。蒸発器5bには、燃料ガス昇圧装置8によって取り込まれて昇圧された燃料ガス(都市ガスやLPG等)と燃料改質空気用送風装置7によって取り込まれた燃料改質用の空気とが共通通路19を介して供給され、水処理装置13から純水が純水供給通路31を介して供給される。蒸発器5bは、供給された純水から水蒸気を生成する。
燃料改質器5cは、その内部にニッケルや白金等の改質触媒を備え、蒸発器5bから供給される脱硫された燃料ガスと空気と水蒸気とを混合して反応(所謂、水蒸気改質)させて、水素リッチな改質燃料ガスを生成し、この改質燃料ガスを燃料電池セルスタック5aの燃料極側に供給する。
オフガス燃焼室5dは、燃料電池セルスタック5aの発電に伴い生じる残余燃料を燃焼処理する為のものであり、燃料電池セルスタック5aの燃料極側及び酸素極側の各排出側と接続されている。このオフガス燃焼室5dでは、燃料極側から排出された残余燃料ガスを含む反応燃料ガスと酸素極側から排出された酸素を含む空気とを公知の燃焼触媒を用いて燃焼させることによって高温の排気ガスを生成し、この排気ガスは燃料改質器5cや発電部内熱交換器5eを加熱してから、排気通路11を介して外部に排出される。
カソード空気用送風装置6は、フィルタを介して外部から空気を発電空気ブロワに取り込み、この取り込まれた空気を、バッファタンクと流量センサと逆止弁が設置された空気通路16を介して燃料電池発電部5に供給する。
燃料改質空気用送風装置7は、フィルタを介して外部から燃料改質用の空気を改質空気ブロワに取り込み、この取り込まれた燃料改質用の空気を改質空気通路17と共通通路19とを介して燃料電池発電部5に供給する。
燃料ガス昇圧装置8は、図示外のガス供給源から燃料ガスを電磁弁とガスガバナを通して燃料昇圧ブロワに取り込み、この昇圧された燃料ガスを、バッファタンクと流量センサと脱硫器とが設置されたガス通路18とこのガス通路18に連なる共通通路19とを介して燃料電池発電部5に供給する。
排気通路11は、オフガス燃焼室5dから延びる上流側排気通路部11a、この上流側排気通路部11aの下流側から延びる下流側排気通路部11bを備え、下流側排気通路部11bの下流端が排気口11cに接続され、燃料電池発電部5のオフガス燃焼室5dから排出された排気ガスは、上流側排気通路部11aと下流側排気通路部11bとを通り排気口11cから外部に排出される。
排熱回収用熱交換器12は、上流側排気通路部11aと下流側排気通路部11bとの間に設置されている。排熱回収用熱交換器12は、排気通路11の一部を構成する排気通路側熱交換通路部12a、湯水循環回路4の一部を構成する湯水側熱交換通路部12bを備えている。この排熱回収用熱交換器12において、燃料電池発電部5から排出される高温の排気ガスは、貯湯給湯装置3の貯湯タンクに蓄えられた湯水との間で熱交換されて、排気ガス中に含まれる水蒸気は冷却されて凝縮水となる。
次に、水処理装置13について説明する。
図2に示すように、水処理装置13は、水回収通路21、水処理タンク22、純水タンク23、純水供給手段24等を備え、排熱回収熱交換器12で凝縮された凝縮水を回収し、凝縮水から不純物を取り除き、凝縮水から生成された純水を一時的に貯留した後に燃料電池発電部5に供給するものである。
水回収通路21は、燃料電池発電部5の排気ガスを排熱回収熱交換器12によって冷却された凝縮水を排気通路11から回収する為のものであり、排気通路11の下流側排気通路部11bと水処理タンク22とを接続している。
水処理タンク22は、水回収通路21で回収された凝縮水の不純物を除去する為のものであり、凝縮水を浄化する為のイオン交換樹脂が収納されている。水処理タンク22の上端部に水回収通路21の下流端が接続され、水処理タンク22の下端部にタンク連結通路25の上流端が接続されている。水処理タンク22の上端部にオーバーフロー用の排水通路26が接続され、排水通路26の途中部に中和器27が設置されている。
純水タンク23は、水処理タンク22により処理された純水を貯留する為のものである。純水タンク23の上端部に、水処理タンク22から延びるタンク連結通路25の下流端が接続されている。タンク連結通路25の途中部にオーバーフロー用の排水通路28が接続されている。純水タンク23には、純水タンク23内に貯留された純水の液面を3段階(上位レベルL1、中位レベルL2、下位レベルL3)に応じて検出可能な水位スイッチ29が設けられている。
純水供給手段24は、純水タンク23に貯留された純水を燃料電池発電部5に供給する為のものであり、純水供給通路31、この純水供給通路31に設置された純水ポンプ32等を有している。純水供給通路31の途中部には、気泡を除去する為の気泡除去手段41が設けられている。
純水供給通路31は、上流側供給通路部31a、下流側供給通路部31bとを有している。上流側供給通路部31aの上流端は、純水タンク23の下端部に接続され、上流側供給通路部31aの下流端は、鉛直状に上方に向かって延び、気泡除去手段41のエア抜き弁42に接続されている(図3参照)。上流側供給通路部31aには、純水ポンプ32が設置されている。
純水ポンプ32は、ステッピングモータにより偏心カムを介して進退駆動されるプランジャと、このプランジャが進退駆動可能に収容され且つ吸込口と吐出口とを有するチャンバ等を備えたプランジャポンプで構成され、プランジャの進退駆動に伴いチャンバ内の純水を蒸発器5bに圧送する。
次に、気泡除去手段41について説明する。
図2,図3に示すように、気泡除去手段41は、純水供給通路31から気泡を除去する為のものであり、エア抜き弁42、エア抜き通路44等を備え、純水供給通路31よりも上方に位置するように設けられると共に燃料電池発電部5の近傍部に配置されている。純水供給通路31(上流側供給通路部31a及び下流側供給通路部31b)内に発生した気泡は、上方に流れてエア抜き弁42に流れ込み、エア抜き弁42からエア抜き通路44を介して排出可能である。
エア抜き弁42は、ケーシング42a、このケーシング42aの内部に形成されたフロート室42b、このフロート室42bの上端部に設けられた弁座42c、このフロート室42bに収納されたフロート弁体42d等を備えた公知のエア抜き弁の構造である。
エア抜き通路44は、エア抜き弁42と換気ファン45とを接続する為のものであり、エア抜き通路44の上流端は、エア抜き弁42の出口側に接続され、気泡除去手段41の排出口41aであるエア抜き通路44の下流端が、換気ファン45の吸込口45aの近傍に配置されている。換気ファン45は、外装ケース15内を換気する為に外装ケース15の外周部に設置されている。
次に、本発明に関連する下流側供給通路部31bの構造について説明する。
図2,図3に示すように、純水供給通路31のうちの気泡除去手段41から蒸発器5bに至る下流側供給通路部31b(通路部分に相当する)は、気泡除去手段41から蒸発器5bに向かって下り勾配となるように構成されている。下流側供給通路部31bの上流端は、エア抜き弁42に接続され、下流側供給通路部31bの下流端は、燃料電池発電部5の蒸発器5bに接続されている。
下流側供給通路部31bの上流端及び下流端の他の器具への接続部分を除く大部分の傾斜角度は、例えば、45度程度に設定されているが、特にこの傾斜角度に限定する必要はなく、例えば、約20度〜80度の範囲内で設定されるのが望ましい。下流側供給通路部31bが下り傾斜状に構成されることで、下流側供給通路部31b内に発生した気泡は下流側供給通路部31bから蒸発器5bへ流れ難くなり、下流側供給通路部31bに滞留し難くなる。
次に、水流検知手段51について説明する。
図2,図3に示すように、下流側供給通路部31bにおける燃料電池発電部5の近傍部には、純水の流動の有無を検知する為の水流検知手段51が設けられている。この水流検知手段51は、フラッパー弁51a、このフラッパー弁51aの位置を検知可能な近接スイッチ51b等を備えた公知の開閉センサ付きフラッパー弁の構造であり、フラッパー弁51aの動作と近接スイッチ51bの検知に応じて、下流側供給通路部31bに純水が流れているかを検知することができる。尚、水流検知手段51は、気泡を下流側から上流側に向かって流す為の隙間又は小径孔を備えている。
この水流検知手段51において、純水ポンプ32が駆動すると、純水の圧力を受けてフラッパー弁51aが作動して、下流側供給通路部31bを連通状態に切り換えるが、下流側供給通路部31bの水流検知手段51の上流側に気泡が滞留していると、純水ポンプ32が駆動しても、フラッパー弁51aは作動せず、下流側供給通路部31bを閉鎖状態に維持する。水流検知手段51は、近接スイッチ51bがフラッパー弁51aの作動状態を検知し、この検知信号を制御ユニット(図示略)に送信し、この検知信号に基づいて純水の流動の有無を検知する。
次に、本発明の燃料電池発電装置2の作用及び効果について説明する。
燃料電池発電装置2の発電稼動に伴い、予め設定された純水流量(例えば5cc/min)が燃料電池発電部5の蒸発器5bに供給されるように、純水ポンプ32のステッピングモータを駆動し、純水タンク23内の純水を純水供給通路31を介して蒸発器5bに供給する。
燃料電池発電部5の発電運転時には、純水ポンプ32の駆動に伴う圧力によって、純水がエア抜き弁42のフロート室42bを通り、フロート室42bにおいて、純水の水位が上昇するのに伴いフロート弁体42dが上昇し、フロート室42bの上端側に設けられた弁座42cに当接することで、エア抜き弁42は閉弁状態になる。
ところで、燃料電池発電装置2の運転が停止すると、燃料電池発電部5の余熱によって、純水供給通路31内に滞留している純水が加熱されてしまう。この純水には、排気ガスに含まれる二酸化炭素が溶け込んでいるので、純水中には、炭酸、炭酸イオン、炭酸水素イオン等が存在している。このため、純水供給通路31内の純水が加熱されると、純水中の溶存二酸化炭素が気泡となって発生する。
純水供給通路31内に気泡が発生すると、気泡は純水供給通路31を上方に流れ、エア抜き弁42のフロート室42bに流れ、フロート室42bに気泡が溜まる。特に、下流側供給通路部31bは、燃料電池発電部5に最も近くに設置されているので、発生する気泡の量も多くなるが、気泡は下流側供給通路部31bを上方に向かって自然に流れてフロート室42bに流れ込む。下流側供給通路部31bの水流検知手段51の下流側には、気泡が滞留する虞があるが、滞留する気泡は比較的少量である。
フロート室42bに気泡が流入し続けてエア量が増していくと、フロート室42bの純水の水位が下降し、フロート弁体42dに作用する浮力が減少し、その浮力がフロート弁体42dの自重よりも小さくなったときに、フロート弁体42dが下方へ移動して弁座42cから離隔することで、エア抜き弁42が開弁状態になる。エア抜き弁42が開弁状態になると、フロート室42bの気泡はエア抜き通路44を通って外部に排出される。
燃料電池発電装置2の運転の再開に伴い、純水ポンプ32が駆動されると、純水ポンプ32による圧力によってフロート室42bに純水が流入して気泡を上方に押圧し、フロート室42bの気泡はエア抜き通路44を介して換気ファン45から外部に自動的に排出され、その後、フロート弁体42dが上方へ移動して弁座42cに当接することで、エア抜き弁42を閉弁状態にする。
以上説明したように、純水供給通路31のうちの気泡除去手段41から蒸発器5bに至る下流側供給通路部31bが下り勾配となるように構成されたので、下り勾配の下流側供給通路部31b内に発生した気泡は、比重の関係で下流側供給通路部31bを上方に向かって流れ、気泡除去手段41に自動的に送られる。
従って、燃料電池発電部5の熱によって、下流側供給通路部31b内の純水が加熱されて純水中の溶存二酸化炭素が気泡となっても、この気泡は下流側供給通路部31bから気泡除去手段41を介して外部に排出されるので、純水供給通路31のうちの燃料電池発電部5の熱によって気泡が最も発生しやすい通路部分(下流側供給通路部31b)の気泡の滞留を防止し、純水ポンプ32の空回りを防止することができる。
また、燃料電池発電部5の運転再開時に、下流側供給通路部31bを流れる純水に気泡を混入させず、純水ポンプ32の空回りを防ぐので、燃料電池発電部5の蒸発器5bに必要な純水流量を安定して供給することができ、燃料電池発電装置2を安定して運転再開することができるので、燃料電池発電部5が故障するのを防止することができる。
さらに、純水供給通路31の下流側供給通路部31bには、純水の流動の有無を検知する為の水流検知手段51が設けられたので、水流検知手段51で純水の流動を検知することで、純水ポンプ32の空回りを確実に防止することができる。純水の流動を検知した状態で純水ポンプ32の回転数を制御することで、蒸発器5bに安定した純水流量を供給することができるので、純水供給通路31のうちの気泡除去手段41より上流側の通路部分(上流側供給通路部31a)の流量センサや気泡センサ等を省略することができる
水流検知手段51が純水の流動を検知しない状態では、純水供給通路31内の気泡を除去する為に純水ポンプ32の出力を一定時間上昇させて、気泡を純水供給通路31内から強制的に排出し、一定時間以内に水流検知手段51が純水の流動を検知している状態になると、純水ポンプ32の出力を通常状態に戻す。尚、純水ポンプ32の出力を上昇して一定時間経過しても、水流検知手段51が純水の流動を検知しない場合、改質用の水不足による異常運転を回避する為に燃料電池発電装置2の運転を停止する。
次に、前記実施例を部分的に変更した形態について説明する。
[1]図4に示すように、水流検知手段51Aは、弱い付勢力のバネ部材が組み込まれた逆止弁51Aa、この逆止弁51Aaの弁体の位置を検知可能な近接スイッチ51Ab等を備えた構造であっても良い。この水流検知手段51Aにおいては、逆止弁51Aaの動作と近接スイッチ51Abの検知に応じて、下流側供給通路部31bに純水が流れているかを検知することができる。尚、水流検知手段51Aは、気泡を下流側から上流側に向かって流す為の隙間又は小径孔を備えている。
この水流検知手段51Aにおいて、純水ポンプ32が駆動すると、純水の圧力を受けて逆止弁51Aaが開弁状態になって、下流側供給通路部31bを連通状態に切り換えるが、下流側供給通路部31bの水流検知手段51Aの上流側に気泡が滞留していると、純水ポンプ32が駆動しても、逆止弁51Aaは閉弁状態を維持する。近接スイッチ51Abは、逆止弁51Aaの作動状態を検知することで、純水の流動の有無を検知する。
[2]前記実施例において、水流検知手段51の構造は、ほんの一例を示したに過ぎず、下流側供給通路部31bの純水の流動の有無を検知する為のものであれば、適宜変更可能である。
[3]前記実施例において、気泡除去手段41の構造は、ほんの一例を示したに過ぎず、気泡除去手段41のエア抜き弁42、エア抜き通路44の構造は、純水供給通路31から気泡を除去する為のものであれば、適宜変更可能である。
[4]その他、当業者であれば、本発明の趣旨を逸脱することなく、前記実施例に種々の変更を付加した形態で実施可能であり、本発明はそのような変更形態を包含するものである。
2 燃料電池発電装置
5 燃料電池発電部
5b 蒸発器(蒸発部)
31 純水供給通路
31b 下流側供給通路部(通路部分)
41 気泡除去手段
51,51A 水流検知手段

Claims (2)

  1. 燃料電池発電部と、この燃料電池発電部の蒸発部へ改質用の純水を供給する為の純水供給通路とを備えた燃料電池発電装置であって、前記純水供給通路から気泡を除去する為の気泡除去手段が、前記純水供給通路の前記燃料電池発電部の近傍部に設けられた燃料電池発電装置において、
    前記純水供給通路のうちの前記気泡除去手段から前記蒸発部に至る通路部分が下り勾配となるように構成されたことを特徴とする燃料電池発電装置。
  2. 前記純水供給通路の前記通路部分には、純水の流動の有無を検知する為の水流検知手段が設けられたことを特徴とする請求項1に記載の燃料電池発電装置。

JP2014108505A 2014-05-26 2014-05-26 燃料電池発電装置 Pending JP2015225731A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014108505A JP2015225731A (ja) 2014-05-26 2014-05-26 燃料電池発電装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014108505A JP2015225731A (ja) 2014-05-26 2014-05-26 燃料電池発電装置

Publications (1)

Publication Number Publication Date
JP2015225731A true JP2015225731A (ja) 2015-12-14

Family

ID=54842356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014108505A Pending JP2015225731A (ja) 2014-05-26 2014-05-26 燃料電池発電装置

Country Status (1)

Country Link
JP (1) JP2015225731A (ja)

Similar Documents

Publication Publication Date Title
JP5371554B2 (ja) 固体酸化物形燃料電池システム
JP2005183197A (ja) 燃料電池の停止方法
JP2001006711A (ja) 燃料電池システム
JP6100066B2 (ja) 燃料電池システム及びその制御方法
JP2010255950A (ja) 排熱回収装置および燃料電池システム
JP2014207060A (ja) 燃料電池システム用イオン交換装置
JP2005141924A (ja) 移動体用燃料電池システム
JP4469560B2 (ja) 燃料電池システム
JPWO2010041471A1 (ja) 水素生成装置、燃料電池システム、及び水素生成装置の運転方法
JP2009064784A (ja) 燃料電池装置
JP2013004295A (ja) 燃料電池装置
JP4477030B2 (ja) 燃料電池装置
KR101252839B1 (ko) 회수장치를 채용한 연료전지
US20110269034A1 (en) Fuel cell system
JP5041704B2 (ja) 燃料電池発電システム、その運転方法、プログラム、及び記録媒体
JP5667252B2 (ja) 固体酸化物形燃料電池システム
JP2010027217A (ja) 燃料電池システム
JP2015225731A (ja) 燃料電池発電装置
JP4719407B2 (ja) 燃料電池コージェネレーションシステム
JP2006147348A (ja) 燃料電池発電装置ならびにその水質管理方法
JP4550491B2 (ja) 燃料電池システムおよびそれを用いた輸送機器
JP2010170926A (ja) 燃料電池システムの掃気処理装置および掃気処理方法
JP2009081058A (ja) 燃料電池の運転方法
JP2015122228A (ja) 燃料電池発電装置
JP2006114413A (ja) 燃料電池発電装置の水質管理方法