JP2015225310A - Image capturing device, control method therefor, program, and storage medium - Google Patents

Image capturing device, control method therefor, program, and storage medium Download PDF

Info

Publication number
JP2015225310A
JP2015225310A JP2014111666A JP2014111666A JP2015225310A JP 2015225310 A JP2015225310 A JP 2015225310A JP 2014111666 A JP2014111666 A JP 2014111666A JP 2014111666 A JP2014111666 A JP 2014111666A JP 2015225310 A JP2015225310 A JP 2015225310A
Authority
JP
Japan
Prior art keywords
focus
focus adjustment
focus detection
signal
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014111666A
Other languages
Japanese (ja)
Inventor
嘉人 玉木
Yoshito Tamaki
嘉人 玉木
福田 浩一
Koichi Fukuda
浩一 福田
斎藤 潤一
Junichi Saito
潤一 斎藤
英秋 高宮
Hideaki Takamiya
英秋 高宮
勇希 吉村
Yuki Yoshimura
勇希 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2014111666A priority Critical patent/JP2015225310A/en
Publication of JP2015225310A publication Critical patent/JP2015225310A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)
  • Studio Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable high-precision focus adjustment even when an in-focus position according to a contrast evaluation is outside a drivable range of a focusing lens.SOLUTION: An image capturing device includes; an image sensor in which a plurality of first focus detection pixels for receiving light rays passing through a first pupil area of an imaging optical system, a plurality of second focus detection pixels for receiving light rays passing through a second pupil region, and a plurality of imaging pixels are arrayed; a first focus adjustment unit which performs phase difference-based focus adjustment, based on a first signal and second signal acquired from the first focus detection pixels and second focus detection pixels, respectively; a second focus adjustment unit which performs contrast detection-based focus adjustment, based on a sum signal obtained by shifting and adding the first signal and second signal; and a control unit. When a difference between a defocus amount detected by the second focus adjustment unit and a maximum drivable amount of a focusing lens is within a range in which the second focus adjustment unit can perform focus adjustment by the summing process that shifts and adds the first signal and second signal, the control unit lets the second focus adjustment unit perform focus adjustment by the summing process.

Description

本発明は、撮像素子から出力される光電変換信号に基づくオートフォーカス(AF)制御を行う技術に関するものである。   The present invention relates to a technique for performing autofocus (AF) control based on a photoelectric conversion signal output from an image sensor.

撮像装置における焦点検出方法の1つに、撮像素子に配置された焦点検出用画素により位相差方式の焦点検出を行う撮像面位相差方式がある。また、撮像装置の焦点検出の別の方法として、撮像素子から出力される撮影画像に対して行うコントラスト評価に基づいて焦点検出を行うコントラスト方式がある。   As one of focus detection methods in the imaging apparatus, there is an imaging plane phase difference method in which phase detection method focus detection is performed by focus detection pixels arranged in an image sensor. As another method of focus detection of the image pickup apparatus, there is a contrast method in which focus detection is performed based on contrast evaluation performed on a captured image output from the image sensor.

特許文献1では、撮像面位相差方式が可能な撮像装置において、コントラスト評価手段と相関計算手段とを持ち、それらから得られる2つのピント評価範囲の絶対値を比較し、比較結果により被写体のピント評価値を決定する方法が開示されている。特許文献1のコントラスト評価手段では、異なる瞳領域からの像信号をシフト加算して得られた信号のコントラスト評価値を元にコントラストピント位置を決定するため、AFのためにフォーカスレンズ駆動を実際に行うことなくピント位置を特定することができる。   In Patent Document 1, an imaging apparatus capable of an imaging surface phase difference method has a contrast evaluation unit and a correlation calculation unit, compares absolute values of two focus evaluation ranges obtained from them, and compares the focus of an object based on the comparison result. A method for determining an evaluation value is disclosed. In the contrast evaluation means of Patent Document 1, the focus lens is actually driven for AF in order to determine the contrast focus position based on the contrast evaluation value of the signal obtained by shifting and adding image signals from different pupil regions. The focus position can be specified without performing.

特開2013−25246号公報JP 2013-25246 A

しかしながら、被写体の位置によってはコントラスト評価手段で取得したコントラストピント位置がフォーカスレンズの駆動範囲外である場合がある。特許文献1に開示されている従来技術には、このような場合に対して具体的な対策が示されていない。そのため、コントラスト評価による焦点調節が不能となってしまう場合があった。   However, depending on the position of the subject, the contrast focus position acquired by the contrast evaluation unit may be outside the driving range of the focus lens. The prior art disclosed in Patent Document 1 does not show a specific countermeasure for such a case. Therefore, focus adjustment by contrast evaluation may be impossible.

本発明は、上述した課題に鑑みてなされたものであり、その目的は、コントラスト評価によるピント位置がフォーカスレンズの駆動範囲外であっても、高精度な焦点調節を可能とすることである。   The present invention has been made in view of the above-described problems, and an object of the present invention is to enable highly accurate focus adjustment even when the focus position by contrast evaluation is outside the driving range of the focus lens.

本発明に係わる撮像装置は、結像光学系の第1の瞳部分領域を通過する光束を受光する第1の焦点検出用画素と、前記第1の瞳部分領域とは異なる前記結像光学系の第2の瞳部分領域を通過する光束を受光する第2の焦点検出用画素と、前記結像光学系の前記第1の瞳部分領域と前記第2の瞳部分領域を合わせた瞳領域を通過する光束を受光する撮像用画素とを複数配列した撮像素子と、前記第1の焦点検出用画素から得られる第1の信号と、前記第2の焦点検出用画素から得られる第2の信号とに基づいて位相差方式の焦点調節を行う第1の焦点調節手段と、前記第1の焦点検出用画素から得られる第1の信号と、前記第2の焦点検出用画素から得られる第2の信号とをシフトして加算することにより生成された加算信号に基づいてコントラスト検出方式の焦点調節を行う第2の焦点調節手段と、前記結像光学系の大デフォーカス状態から小デフォーカス状態までの焦点調節を前記第1の焦点調節手段を用いて行い、前記小デフォーカス状態から最良合焦位置の近傍までの焦点調節を前記第2の焦点調節手段を用いて行うように制御する制御手段と、を備え、前記制御手段は、前記第2の焦点調節手段により検出されたデフォーカス量と前記結像光学系のフォーカスレンズの最大駆動量との差が、前記第2の焦点調節手段により前記第1の信号と前記第2の信号をシフトして加算する加算処理で焦点調節が可能な範囲以内の場合に、前記第2の焦点調節手段に前記加算処理による焦点調節を行わせることを特徴とする。   An imaging apparatus according to the present invention includes a first focus detection pixel that receives a light beam passing through a first pupil partial region of the imaging optical system, and the imaging optical system different from the first pupil partial region. A second focus detection pixel that receives a light beam passing through the second pupil partial region, and a pupil region obtained by combining the first pupil partial region and the second pupil partial region of the imaging optical system. An imaging device in which a plurality of imaging pixels that receive a passing light beam are arranged, a first signal obtained from the first focus detection pixel, and a second signal obtained from the second focus detection pixel First focus adjusting means for performing phase difference based focus adjustment, a first signal obtained from the first focus detection pixel, and a second signal obtained from the second focus detection pixel. Control based on the sum signal generated by shifting and summing A second focus adjusting unit that performs a focus adjustment of a strike detection method, and a focus adjustment from a large defocus state to a small defocus state of the imaging optical system is performed using the first focus adjusting unit; Control means for controlling the focus adjustment from the defocused state to the vicinity of the best focus position using the second focus adjustment means, and the control means is controlled by the second focus adjustment means. The difference between the detected defocus amount and the maximum drive amount of the focus lens of the imaging optical system is added by shifting and adding the first signal and the second signal by the second focus adjusting means. When the focus adjustment is within a range where the process can be performed, the second focus adjustment unit is caused to perform the focus adjustment by the addition process.

本発明によれば、コントラスト評価によるピント位置がフォーカスレンズの駆動範囲外であっても、高精度な焦点調節を可能とすることができる。   According to the present invention, it is possible to perform high-precision focus adjustment even when the focus position by contrast evaluation is outside the driving range of the focus lens.

本発明の撮像装置の第1の実施形態の構成を示す図。The figure which shows the structure of 1st Embodiment of the imaging device of this invention. 画素配列の概略図。Schematic of a pixel arrangement. 画素の概略平面図と概略断面図。The schematic plan view and schematic sectional drawing of a pixel. 画素と瞳分割の概略説明図。Schematic explanatory drawing of pixel and pupil division. 撮像素子と瞳分割の概略説明図Schematic explanatory diagram of image sensor and pupil division 第1焦点検出信号と第2焦点検出信号のデフォーカス量と像ずれ量の概略関係図。FIG. 3 is a schematic relationship diagram between a defocus amount and an image shift amount of a first focus detection signal and a second focus detection signal. 第1焦点検出処理の流れを示すフローチャート。The flowchart which shows the flow of a 1st focus detection process. 第1焦点検出信号と第2焦点検出信号の瞳ずれによるシェーディングの概略説明図。The schematic explanatory drawing of the shading by the pupil shift | offset | difference of a 1st focus detection signal and a 2nd focus detection signal. フィルター周波数帯域の例を示す図。The figure which shows the example of a filter frequency band. 第1焦点検出信号と第2焦点検出信号の例を示す図。The figure which shows the example of a 1st focus detection signal and a 2nd focus detection signal. 光学補正処理と第1フィルター処理後の第1焦点検出信号と第2焦点検出信号の例を示す図。The figure which shows the example of the 1st focus detection signal and 2nd focus detection signal after an optical correction process and a 1st filter process. 第1デフォーカス量と第2デフォーカス量の算出例を示す図。The figure which shows the example of calculation of 1st defocus amount and 2nd defocus amount. リフォーカス処理の概略説明図。Schematic explanatory drawing of a refocus process. 第1の実施形態における第2焦点検出処理の流れを示すフローチャート。6 is a flowchart showing a flow of second focus detection processing in the first embodiment. 第2フィルター処理後の第1焦点検出信号と第2焦点検出信号の例を示す図。The figure which shows the example of the 1st focus detection signal after a 2nd filter process, and a 2nd focus detection signal. 第2フィルター処理後の第1焦点検出信号と第2焦点検出信号をシフト加算した例を示す図。The figure which shows the example which carried out the shift addition of the 1st focus detection signal and 2nd focus detection signal after a 2nd filter process. ピーク位置が特定できる場合の第2評価値の例を示す図。The figure which shows the example of the 2nd evaluation value in case a peak position can be specified. リフォーカス可能範囲の概略説明図。FIG. 3 is a schematic explanatory diagram of a refocusable range. ピーク位置が特定できない場合の第2評価値の例を示す図。The figure which shows the example of the 2nd evaluation value when a peak position cannot be specified. 第1の実施形態における焦点検出処理の流れを示すフローチャート。5 is a flowchart showing a flow of focus detection processing in the first embodiment. 第2の実施形態における焦点検出処理の流れを示すフローチャート。9 is a flowchart showing a flow of focus detection processing in the second embodiment.

以下、本発明の実施形態について、添付図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

(第1の実施形態)
[全体構成]
図1は本発明の撮像装置の第1の実施形態であるデジタルカメラの構成を示す図である。図1において、101は結像光学系の先端に配置された第1レンズ群で、光軸方向に進退可能に保持される。102は絞り兼用シャッタで、その開口径を調節することで撮影時の光量調節を行うほか、静止画撮影時には露光秒時調節用シャッタとしても機能する。103は第2レンズ群である。そして絞り兼用シャッタ102及び第2レンズ群103は一体となって光軸方向に進退し、第1レンズ群101の進退動作との連動により、変倍作用(ズーム機能)をなす。
(First embodiment)
[overall structure]
FIG. 1 is a diagram showing a configuration of a digital camera which is a first embodiment of an imaging apparatus of the present invention. In FIG. 1, reference numeral 101 denotes a first lens group disposed at the tip of the imaging optical system, which is held so as to be able to advance and retract in the optical axis direction. Reference numeral 102 denotes an aperture / shutter, which adjusts the light amount at the time of shooting by adjusting the aperture diameter, and also functions as an exposure time adjustment shutter at the time of still image shooting. Reference numeral 103 denotes a second lens group. The diaphragm shutter 102 and the second lens group 103 integrally move forward and backward in the optical axis direction, and perform a zooming function (zoom function) in conjunction with the forward and backward movement of the first lens group 101.

105は第3レンズ群で、光軸方向の進退により、焦点調節を行なう。106は光学的ローパスフィルタで、撮影画像の偽色やモアレを軽減するための光学素子である。107は2次元CMOSフォトセンサーと周辺回路からなる撮像素子であり、結像光学系の結像面に配置される。   Reference numeral 105 denotes a third lens group that performs focus adjustment by advancing and retreating in the optical axis direction. Reference numeral 106 denotes an optical low-pass filter, which is an optical element for reducing false colors and moire in a captured image. Reference numeral 107 denotes an image pickup element including a two-dimensional CMOS photosensor and a peripheral circuit, which is disposed on the image forming plane of the image forming optical system.

111はズームアクチュエータで、不図示のカム筒を回動することで、第1レンズ群111ないし第3レンズ群105を光軸方向に進退駆動し、変倍操作を行なう。112は絞りシャッタアクチュエータで、絞り兼用シャッタ102の開口径を制御して撮影光量を調節すると共に、静止画撮影時の露光時間制御を行なう。114はフォーカスアクチュエータで、第3レンズ群105を光軸方向に進退駆動して焦点調節を行なう。   A zoom actuator 111 rotates a cam cylinder (not shown) to drive the first lens group 111 to the third lens group 105 forward and backward in the optical axis direction, thereby performing a zooming operation. Reference numeral 112 denotes an aperture shutter actuator that controls the aperture diameter of the aperture / shutter 102 to adjust the amount of photographing light, and controls the exposure time during still image photographing. Reference numeral 114 denotes a focus actuator, which performs focus adjustment by driving the third lens group 105 back and forth in the optical axis direction.

115は撮影時の被写体照明用の電子フラッシュで、キセノン管を用いた閃光照明装置が好適であるが、連続発光するLEDを備えた照明装置を用いてもよい。116はAF補助光装置で、所定の開口パターンを有したマスクの像を、投光レンズを介して被写界に投影し、暗い被写体あるいは低コントラスト被写体に対する焦点検出能力を向上させる。   Reference numeral 115 denotes an electronic flash for illuminating a subject at the time of photographing. A flash illumination device using a xenon tube is suitable, but an illumination device including LEDs that emit light continuously may be used. Reference numeral 116 denotes an AF auxiliary light device that projects an image of a mask having a predetermined aperture pattern onto a subject field via a light projection lens, thereby improving the focus detection capability for a dark subject or a low-contrast subject.

121は、カメラ本体の種々の制御を司るカメラ内のCPUで、演算部、ROM、RAM、A/Dコンバータ、D/Aコンバータ、通信インターフェイス回路等を有する。そして、ROMに記憶された所定のプログラムに基づいて、カメラが有する各種回路を駆動し、AF、撮影、画像処理、記録等の一連の動作を実行する。CPU121は本実施形態の焦点検出信号生成手段、第1焦点検出手段、第2焦点検出手段である。   Reference numeral 121 denotes a CPU in the camera that controls various controls of the camera body, and includes a calculation unit, a ROM, a RAM, an A / D converter, a D / A converter, a communication interface circuit, and the like. Then, based on a predetermined program stored in the ROM, various circuits included in the camera are driven, and a series of operations such as AF, photographing, image processing, and recording are executed. The CPU 121 is a focus detection signal generation unit, a first focus detection unit, and a second focus detection unit of the present embodiment.

122は電子フラッシュ制御回路で、撮影動作に同期して電子フラッシュ115を点灯制御する。123は補助光駆動回路で、焦点検出動作に同期してAF補助光装置116を点灯制御する。124は撮像素子駆動回路で、撮像素子107の撮像動作を制御するとともに、取得した画像信号をA/D変換してCPU121に送信する。125は画像処理回路で、撮像素子107が取得した画像のγ変換、カラー補間、JPEG圧縮等の処理を行う。   An electronic flash control circuit 122 controls lighting of the electronic flash 115 in synchronization with the photographing operation. Reference numeral 123 denotes an auxiliary light driving circuit that controls the lighting of the AF auxiliary light device 116 in synchronization with the focus detection operation. An image sensor driving circuit 124 controls the image capturing operation of the image sensor 107 and A / D converts the acquired image signal and transmits the image signal to the CPU 121. An image processing circuit 125 performs processing such as γ conversion, color interpolation, and JPEG compression of an image acquired by the image sensor 107.

126はフォーカス駆動回路で、焦点検出結果に基づいてフォーカスアクチュエータ114を駆動制御し、第3レンズ群105を光軸方向に進退駆動して焦点調節を行なう。128は絞りシャッタ駆動回路で、絞りシャッタアクチュエータ112を駆動制御して絞り兼用シャッタ102の開口を制御する。129はズーム駆動回路で、撮影者のズーム操作に応じてズームアクチュエータ111を駆動する。   A focus drive circuit 126 controls the focus actuator 114 based on the focus detection result, and adjusts the focus by driving the third lens group 105 back and forth in the optical axis direction. Reference numeral 128 denotes an aperture shutter drive circuit which controls the aperture shutter actuator 112 to control the aperture of the aperture / shutter 102. Reference numeral 129 denotes a zoom drive circuit that drives the zoom actuator 111 in accordance with the zoom operation of the photographer.

131はLCD等の表示装置で、カメラの撮影モードに関する情報、撮影前のプレビュー画像と撮影後の確認用画像、焦点検出時の合焦状態表示画像等を表示する。132は操作スイッチ群で、電源スイッチ、レリーズ(撮影トリガ)スイッチ、ズーム操作スイッチ、撮影モード選択スイッチ等で構成される。133は着脱可能なフラッシュメモリで、撮影済み画像を記録する。
[撮像素子]
本実施形態における撮像素子の撮像用画素と焦点検出用画素の配列の概略図を図2に示す。
Reference numeral 131 denotes a display device such as an LCD, which displays information related to the shooting mode of the camera, a preview image before shooting, a confirmation image after shooting, a focus state display image at the time of focus detection, and the like. An operation switch group 132 includes a power switch, a release (shooting trigger) switch, a zoom operation switch, a shooting mode selection switch, and the like. Reference numeral 133 denotes a detachable flash memory that records a photographed image.
[Image sensor]
FIG. 2 shows a schematic diagram of the arrangement of the imaging pixels and focus detection pixels of the imaging device in the present embodiment.

図2は、本実施形態における2次元CMOSセンサー(撮像素子)の画素(撮像用画素)配列を4列×4行の範囲で、焦点検出用画素配列を8列×4行の範囲で示したものである。図2に示した2列×2行の画素群200では、R(赤)の分光感度を有する画素200Rが左上に、G(緑)の分光感度を有する画素200Gが右上と左下に、B(青)の分光感度を有する画素200Bが右下に配置されている。さらに、各画素は2列×1行に配列された第1焦点検出用画素201と第2焦点検出用画素202により構成されている。   FIG. 2 shows the pixel (imaging pixel) array of the two-dimensional CMOS sensor (imaging device) in this embodiment in a range of 4 columns × 4 rows, and the focus detection pixel array in a range of 8 columns × 4 rows. Is. In the pixel group 200 of 2 columns × 2 rows shown in FIG. 2, a pixel 200R having a spectral sensitivity of R (red) is on the upper left, a pixel 200G having a spectral sensitivity of G (green) is on the upper right and lower left, and B ( A pixel 200B having a spectral sensitivity of (blue) is arranged at the lower right. Further, each pixel includes a first focus detection pixel 201 and a second focus detection pixel 202 arranged in 2 columns × 1 row.

図2に示した4列×4行の画素(8列×4行の焦点検出用画素)を面上に多数配置し、撮像画像(焦点検出信号)の取得を可能としている。本実施形態では、画素の周期Pが4μm、画素数Nが横5575列×縦3725行=約2075万画素、焦点検出用画素の列方向周期PAFが2μm、焦点検出用画素数NAFが横11150列×縦3725行=約4150万画素の撮像素子として説明を行う。   A large number of 4 columns × 4 rows of pixels (8 columns × 4 rows of focus detection pixels) shown in FIG. 2 are arranged on the surface, and a captured image (focus detection signal) can be acquired. In the present embodiment, the pixel period P is 4 μm, the number of pixels N is 5575 columns × 3725 rows = about 20.75 million pixels, the column direction cycle PAF of focus detection pixels is 2 μm, and the focus detection pixel number NAF is 11150 horizontally. The description will be made assuming that the image sensor has columns × vertical rows 3725 = approximately 41.5 million pixels.

図2に示した撮像素子の1つの画素200Gを、撮像素子の受光面側(+z側)から見た平面図を図3(a)に示し、図3(a)のa−a断面を−y側から見た断面図を図3(b)に示す。   FIG. 3A shows a plan view of one pixel 200G of the image pickup device shown in FIG. 2 as viewed from the light receiving surface side (+ z side) of the image pickup device, and a cross section taken along the line aa in FIG. A cross-sectional view seen from the y side is shown in FIG.

図3に示すように、本実施形態の画素200Gでは、各画素の受光側に入射光を集光するためのマイクロレンズ305が形成され、x方向にNH分割(2分割)、y方向にNV分割(1分割)された光電変換部301と光電変換部302が形成される。光電変換部301と光電変換部302が、それぞれ、第1焦点検出用画素201と第2焦点検出用画素202に対応する。   As shown in FIG. 3, in the pixel 200G of the present embodiment, a microlens 305 for condensing incident light is formed on the light receiving side of each pixel, and is divided into NH (two divisions) in the x direction and NV in the y direction. A divided (one-divided) photoelectric conversion unit 301 and a photoelectric conversion unit 302 are formed. The photoelectric conversion unit 301 and the photoelectric conversion unit 302 correspond to the first focus detection pixel 201 and the second focus detection pixel 202, respectively.

光電変換部301と光電変換部302は、p型層とn型層の間にイントリンシック層を挟んだpin構造フォトダイオードとしてもよいし、必要に応じて、イントリンシック層を省略し、pn接合フォトダイオードとしてもよい。   The photoelectric conversion unit 301 and the photoelectric conversion unit 302 may be a pin structure photodiode in which an intrinsic layer is sandwiched between a p-type layer and an n-type layer, or an intrinsic layer may be omitted and a pn junction if necessary. A photodiode may be used.

各画素には、マイクロレンズ305と、光電変換部301および光電変換部302との間に、カラーフィルター306が形成される。また、必要に応じて、各画素毎にカラーフィルターの分光透過率を変えてもよいし、カラーフィルターを省略してもよい。   In each pixel, a color filter 306 is formed between the microlens 305 and the photoelectric conversion unit 301 and the photoelectric conversion unit 302. Further, as necessary, the spectral transmittance of the color filter may be changed for each pixel, or the color filter may be omitted.

図3に示した画素200Gに入射した光は、マイクロレンズ305により集光され、カラーフィルター306で分光されたのち、光電変換部301と光電変換部302で受光される。   The light incident on the pixel 200 </ b> G illustrated in FIG. 3 is collected by the microlens 305, dispersed by the color filter 306, and then received by the photoelectric conversion unit 301 and the photoelectric conversion unit 302.

光電変換部301と光電変換部302では、受光量に応じて電子とホールが対生成され、空乏層で分離された後、負電荷の電子はn型層(不図示)に蓄積され、一方、ホールは定電圧源(不図示)に接続されたp型層を通じて撮像素子外部へ排出される。光電変換部301と光電変換部302のn型層(不図示)に蓄積された電子は、転送ゲートを介して、静電容量部(FD)に転送され、電圧信号に変換される。   In the photoelectric conversion unit 301 and the photoelectric conversion unit 302, a pair of electrons and holes are generated according to the amount of received light and separated by a depletion layer, and then negatively charged electrons are accumulated in an n-type layer (not shown), The holes are discharged to the outside of the image sensor through a p-type layer connected to a constant voltage source (not shown). Electrons accumulated in the n-type layer (not shown) of the photoelectric conversion unit 301 and the photoelectric conversion unit 302 are transferred to the capacitance unit (FD) through the transfer gate and converted into a voltage signal.

図3に示した本実施形態の画素構造と瞳分割との対応関係を示した概略説明図を図4に示す。図3(a)に示した本実施形態の画素構造のa−a断面を+y側から見た断面図と結像光学系の射出瞳面を図4に示す。図4では、射出瞳面の座標軸と対応を取るために、断面図のx軸とy軸を図3に対して反転させている。   FIG. 4 is a schematic explanatory diagram showing the correspondence between the pixel structure of this embodiment shown in FIG. 3 and pupil division. FIG. 4 shows a sectional view of the pixel structure of the present embodiment shown in FIG. 3A as viewed from the + y side and an exit pupil plane of the imaging optical system. In FIG. 4, in order to correspond to the coordinate axis of the exit pupil plane, the x-axis and y-axis of the cross-sectional view are inverted with respect to FIG.

図4で、第1焦点検出用画素201の第1瞳部分領域501は、重心が−x方向に偏心している光電変換部301の受光面と、マイクロレンズによって、概ね共役関係になっており、第1焦点検出用画素201で受光可能な瞳領域を表している。第1焦点検出用画素201の第1瞳部分領域501は、瞳面上で+X側に重心が偏心している。   In FIG. 4, the first pupil partial region 501 of the first focus detection pixel 201 is substantially conjugated with the light receiving surface of the photoelectric conversion unit 301 whose center of gravity is decentered in the −x direction and the microlens. A pupil region that can be received by the first focus detection pixel 201 is shown. The first pupil partial region 501 of the first focus detection pixel 201 has an eccentric center of gravity on the + X side on the pupil plane.

図4で、第2焦点検出用画素202の第2瞳部分領域502は、重心が+x方向に偏心している光電変換部302の受光面と、マイクロレンズによって、概ね共役関係になっており、第2焦点検出用画素202で受光可能な瞳領域を表している。第2焦点検出用画素202の第2瞳部分領域502は、瞳面上で−X側に重心が偏心している。   In FIG. 4, the second pupil partial region 502 of the second focus detection pixel 202 is substantially conjugated with the light receiving surface of the photoelectric conversion unit 302 whose center of gravity is decentered in the + x direction and the microlens. A pupil region that can be received by the bifocal detection pixel 202 is shown. The center of gravity of the second pupil partial region 502 of the second focus detection pixel 202 is eccentric to the −X side on the pupil plane.

また、図4で、瞳領域500は、光電変換部301と光電変換部302(第1焦点検出用画素201と第2焦点検出用画素202)を全て合わせた際の画素200G全体で受光可能な瞳領域である。   In FIG. 4, the pupil region 500 can receive light in the entire pixel 200 </ b> G when the photoelectric conversion unit 301 and the photoelectric conversion unit 302 (first focus detection pixel 201 and second focus detection pixel 202) are all combined. This is the pupil area.

本実施形態の撮像素子と瞳分割との対応関係を示した概略図を図5に示す。第1瞳部分領域501と第2瞳部分領域502の異なる瞳部分領域を通過した光束は、撮像素子の各画素に、それぞれ、異なる角度で入射し、2×1分割された第1焦点検出用画素201と第2焦点検出用画素202で受光される。本実施形態は、瞳領域が水平方向に2つに瞳分割されている例である。必要に応じて、垂直方向に瞳分割を行ってもよい。   FIG. 5 is a schematic diagram showing the correspondence between the image sensor of this embodiment and pupil division. Light beams that have passed through different pupil partial areas of the first pupil partial area 501 and the second pupil partial area 502 are incident on each pixel of the image sensor at different angles, and are used for first focus detection divided into 2 × 1. Light is received by the pixel 201 and the second focus detection pixel 202. In the present embodiment, the pupil region is divided into two pupils in the horizontal direction. If necessary, pupil division may be performed in the vertical direction.

本実施形態の撮像素子は、結像光学系の第1瞳部分領域を通過する光束を受光する第1焦点検出用画素と、第1瞳部分領域と異なる結像光学系の第2瞳部分領域を通過する光束を受光する第2焦点検出用画素と、結像光学系の第1瞳部分領域と第2瞳部分領域を合わせた瞳領域を通過する光束を受光する撮像用画素が複数配列されている。   The imaging device of the present embodiment includes a first focus detection pixel that receives a light beam passing through the first pupil partial region of the imaging optical system, and a second pupil partial region of the imaging optical system different from the first pupil partial region. A plurality of second focus detection pixels for receiving a light beam passing through the first imaging element and a plurality of imaging pixels for receiving a light beam passing through a pupil region including the first pupil partial region and the second pupil partial region of the imaging optical system. ing.

本実施形態の撮像素子では、それぞれの撮像用画素が第1焦点検出用画素と第2焦点検出用画素から構成されている。必要に応じて、撮像用画素と、第1焦点検出用画素、第2焦点検出用画素を個別の画素構成とし、撮像用画素配列の一部に、第1焦点検出用画素と第2焦点検出用画素を部分的に配置する構成としてもよい。   In the imaging device of the present embodiment, each imaging pixel is composed of a first focus detection pixel and a second focus detection pixel. If necessary, the imaging pixel, the first focus detection pixel, and the second focus detection pixel are configured as separate pixels, and the first focus detection pixel and the second focus detection are included in a part of the imaging pixel array. A configuration may be adopted in which the pixels for use are partially arranged.

本実施形態では、撮像素子の各画素の第1焦点検出用画素201の受光信号を集めて第1焦点信号を生成し、各画素の第2焦点検出用画素202の受光信号を集めて第2焦点信号を生成して焦点検出を行う。また、撮像素子の画素毎に、第1焦点検出用画素201と第2焦点検出用画素202の信号を加算することで、有効画素数Nの解像度の撮像信号(撮像画像)を生成する。
[デフォーカス量と像ずれ量の関係]
以下、本実施形態の撮像素子により取得される第1焦点検出信号と第2焦点検出信号のデフォーカス量と像ずれ量の関係について説明する。図6に、第1焦点検出信号と第2焦点検出信号のデフォーカス量と第1焦点検出信号と第2焦点検出信号間の像ずれ量の概略関係図を示す。撮像面800に本実施形態の撮像素子が配置され、図4、図5と同様に、結像光学系の射出瞳が、第1瞳部分領域501と第2瞳部分領域502に2分割される。
In the present embodiment, a first focus signal is generated by collecting the light reception signals of the first focus detection pixels 201 of each pixel of the image sensor, and the second light reception signals of the second focus detection pixels 202 of each pixel are collected. A focus signal is generated to perform focus detection. Further, by adding the signals of the first focus detection pixel 201 and the second focus detection pixel 202 for each pixel of the imaging element, an imaging signal (captured image) having a resolution of N effective pixels is generated.
[Relationship between defocus amount and image shift amount]
Hereinafter, the relationship between the defocus amount and the image shift amount of the first focus detection signal and the second focus detection signal acquired by the image sensor of the present embodiment will be described. FIG. 6 shows a schematic relationship diagram of the defocus amounts of the first focus detection signal and the second focus detection signal and the image shift amount between the first focus detection signal and the second focus detection signal. The imaging device of the present embodiment is arranged on the imaging surface 800, and the exit pupil of the imaging optical system is divided into a first pupil partial region 501 and a second pupil partial region 502, as in FIGS. .

デフォーカス量dは、被写体の結像位置から撮像面までの距離を大きさ|d|とし、被写体の結像位置が撮像面より被写体側にある前ピン状態を負符号(d<0)、被写体の結像位置が撮像面より被写体の反対側にある後ピン状態を正符号(d>0)として定義する。被写体の結像位置が撮像面(合焦位置)にある合焦状態はd=0である。図6で、被写体801は合焦状態(d=0)の例を示しており、被写体802は前ピン状態(d<0)の例を示している。前ピン状態(d<0)と後ピン状態(d>0)を合わせて、デフォーカス状態(|d|>0)とする。   The defocus amount d is a distance | d | from the imaging position of the subject to the imaging surface, and a negative sign (d <0) indicates a front pin state where the imaging position of the subject is on the subject side from the imaging surface. A rear pin state in which the imaging position of the subject is on the opposite side of the subject from the imaging surface is defined as a positive sign (d> 0). An in-focus state where the imaging position of the subject is on the imaging surface (in-focus position) is d = 0. In FIG. 6, the subject 801 shows an example in a focused state (d = 0), and the subject 802 shows an example in a front pin state (d <0). The front pin state (d <0) and the rear pin state (d> 0) are combined to form a defocus state (| d |> 0).

前ピン状態(d<0)では、被写体802からの光束のうち、第1瞳部分領域501(第2瞳部分領域502)を通過した光束は、一度、集光した後、光束の重心位置G1(G2)を中心として幅Γ1(Γ2)に広がり、撮像面800でボケた像となる。ボケた像は、撮像素子に配列された各画素を構成する第1焦点検出用画素201(第2焦点検出用画素202)により受光され、第1焦点検出信号(第2焦点検出信号)が生成される。よって、第1焦点検出信号(第2焦点検出信号)は、撮像面800上の重心位置G1(G2)に、被写体802が幅Γ1(Γ2)にボケた被写体像として形成される。被写体像のボケ幅Γ1(Γ2)は、デフォーカス量dの大きさ|d|が増加するのに伴い、概ね、比例して増加していく。同様に、第1焦点検出信号と第2焦点検出信号間の被写体像の像ずれ量p(=光束の重心位置の差G1−G2)の大きさ|p|も、デフォーカス量dの大きさ|d|が増加するのに伴い、概ね、比例して増加していく。後ピン状態(d>0)でも、第1焦点検出信号と第2焦点検出信号間の被写体像の像ずれ方向が前ピン状態と反対となるが、同様である。   In the front pin state (d <0), the luminous flux that has passed through the first pupil partial area 501 (second pupil partial area 502) out of the luminous flux from the subject 802 is once condensed and then the gravity center position G1 of the luminous flux. The image spreads in the width Γ 1 (Γ 2) with (G 2) as the center, resulting in a blurred image on the imaging surface 800. The blurred image is received by the first focus detection pixel 201 (second focus detection pixel 202) constituting each pixel arranged in the image sensor, and a first focus detection signal (second focus detection signal) is generated. Is done. Therefore, the first focus detection signal (second focus detection signal) is formed as a subject image in which the subject 802 is blurred by the width Γ1 (Γ2) at the gravity center position G1 (G2) on the imaging surface 800. The blur width Γ1 (Γ2) of the subject image generally increases in proportion to the amount of defocus amount d | d |. Similarly, the magnitude | p | of the object image displacement amount p (= difference G1-G2 in the center of gravity of the light beam) between the first focus detection signal and the second focus detection signal is also the size of the defocus amount d. As | d | increases, it generally increases in proportion. Even in the rear pin state (d> 0), the image shift direction of the subject image between the first focus detection signal and the second focus detection signal is opposite to that in the front pin state, but the same.

したがって、本実施形態では、第1焦点検出信号と第2焦点検出信号、もしくは、第1焦点検出信号と第2焦点検出信号を加算した撮像信号のデフォーカス量の大きさが増加するのに伴い、第1焦点検出信号と第2焦点検出信号間の像ずれ量の大きさが増加する。
[焦点検出]
本実施形態では、第1焦点検出信号と第2焦点検出信号のデフォーカス量と像ずれ量の関係性を用いて、位相差方式の第1焦点検出と、リフォーカス原理に基づいた方式(以後、リフォーカス方式と呼ぶ)の第2焦点検出を行う。大デフォーカス状態から小デフォーカス状態まで焦点調節するために第1焦点検出を行い、小デフォーカス状態から最良合焦位置近傍まで焦点調節するために第2焦点検出を行う。
[位相差方式の第1焦点検出]
以下、本実施形態における位相差方式の第1焦点検出について説明する。位相差方式の第1焦点検出では、第1焦点検出信号と第2焦点検出信号を相対的にシフトさせて信号の一致度を表す相関量(第1評価値)を計算し、相関(信号の一致度)が良くなるシフト量から像ずれ量を検出する。撮像信号のデフォーカス量の大きさが増加するのに伴い、第1焦点検出信号と第2焦点検出信号間の像ずれ量の大きさが増加する関係性から、像ずれ量を第1デフォーカス量に変換して焦点検出を行う。
Therefore, in this embodiment, as the magnitude of the defocus amount of the first focus detection signal and the second focus detection signal or the imaging signal obtained by adding the first focus detection signal and the second focus detection signal increases. The amount of image shift between the first focus detection signal and the second focus detection signal increases.
[Focus detection]
In the present embodiment, using the relationship between the defocus amount and the image shift amount of the first focus detection signal and the second focus detection signal, a method based on the first focus detection of the phase difference method and the refocus principle (hereinafter referred to as “refocus”). Second focus detection). First focus detection is performed to adjust the focus from the large defocus state to the small defocus state, and second focus detection is performed to adjust the focus from the small defocus state to the vicinity of the best focus position.
[First focus detection of phase difference method]
The phase difference type first focus detection in the present embodiment will be described below. In the first focus detection based on the phase difference method, the first focus detection signal and the second focus detection signal are relatively shifted to calculate a correlation amount (first evaluation value) representing the degree of coincidence of the signals. The image shift amount is detected from the shift amount that improves the degree of coincidence. As the magnitude of the defocus amount of the imaging signal increases, the image defocus amount is set to the first defocus because of the relationship that the image defocus amount between the first focus detection signal and the second focus detection signal increases. The focus is detected by converting it into a quantity.

図7に、本実施形態の第1焦点検出処理の流れの概略図を示す。なお、図7の動作は、本実施形態の焦点検出信号生成手段、第1焦点検出手段である撮像素子107、画像処理回路125とCPU121によって実行される。   FIG. 7 shows a schematic diagram of the flow of the first focus detection process of the present embodiment. Note that the operation of FIG. 7 is executed by the focus detection signal generation unit, the image sensor 107 serving as the first focus detection unit, the image processing circuit 125, and the CPU 121 of the present embodiment.

ステップS110で、撮像素子の有効画素領域の中から焦点調節を行う焦点検出領域を設定する。焦点検出信号生成手段により、焦点検出領域の第1焦点検出用画素の受光信号から第1焦点検出信号(A像)を生成し、焦点検出領域の第2焦点検出用画素の受光信号から第2焦点検出信号(B像)を生成する。   In step S110, a focus detection area for performing focus adjustment is set from the effective pixel area of the image sensor. The focus detection signal generating means generates a first focus detection signal (A image) from the light reception signal of the first focus detection pixel in the focus detection area, and generates a second from the light reception signal of the second focus detection pixel in the focus detection area. A focus detection signal (B image) is generated.

ステップS120で、第1焦点検出信号と第2焦点検出信号に、それぞれ、信号データ量を抑制するために列方向に3画素加算処理を行い、さらに、RGB信号を輝度Y信号にするためにベイヤー(RGB)加算処理を行う。これら2つの加算処理を合わせて第1画素加算処理とする。   In step S120, the first focus detection signal and the second focus detection signal are each subjected to 3-pixel addition processing in the column direction in order to suppress the signal data amount, and further, Bayer is used to convert the RGB signal into the luminance Y signal. (RGB) addition processing is performed. These two addition processes are combined into a first pixel addition process.

ステップS130では、第1焦点検出信号と第2焦点検出信号に、それぞれ、シェーディング補正処理(光学補正処理)を行う。   In step S130, shading correction processing (optical correction processing) is performed on the first focus detection signal and the second focus detection signal, respectively.

以下、第1焦点検出信号と第2焦点検出信号の瞳ずれによるシェーディングについて説明する。図8に、撮像素子の周辺像高における第1焦点検出用画素201の第1瞳部分領域501、第2焦点検出用画素202の第2瞳部分領域502、および結像光学系の射出瞳400の関係を示す。   Hereinafter, shading due to pupil shift between the first focus detection signal and the second focus detection signal will be described. FIG. 8 shows the first pupil partial region 501 of the first focus detection pixel 201, the second pupil partial region 502 of the second focus detection pixel 202, and the exit pupil 400 of the imaging optical system at the peripheral image height of the image sensor. The relationship is shown.

図8(a)は、結像光学系の射出瞳距離Dlと撮像素子の設定瞳距離Dsが同じ場合である。この場合は、第1瞳部分領域501と第2瞳部分領域502により、結像光学系の射出瞳400が、概ね、均等に瞳分割される。   FIG. 8A shows a case where the exit pupil distance Dl of the imaging optical system and the set pupil distance Ds of the image sensor are the same. In this case, the exit pupil 400 of the imaging optical system is substantially equally divided by the first pupil partial region 501 and the second pupil partial region 502.

これに対して、図8(b)に示した結像光学系の射出瞳距離Dlが撮像素子の設定瞳距離Dsより短い場合、撮像素子の周辺像高では、結像光学系の射出瞳と撮像素子の入射瞳の瞳ずれを生じ、結像光学系の射出瞳400が、不均一に瞳分割されてしまう。同様に、図8(c)に示した結像光学系の射出瞳距離Dlが撮像素子の設定瞳距離Dsより長い場合、撮像素子の周辺像高では、結像光学系の射出瞳と撮像素子の入射瞳の瞳ずれを生じ、結像光学系の射出瞳400が、不均一に瞳分割されてしまう。周辺像高で瞳分割が不均一になるのに伴い、第1焦点検出信号と第2焦点検出信号の強度も不均一になり、第1焦点検出信号と第2焦点検出信号のいずれか一方の強度が大きくなり、他方の強度が小さくなるシェーディングが生じる。   On the other hand, when the exit pupil distance D1 of the imaging optical system shown in FIG. 8B is shorter than the set pupil distance Ds of the image sensor, the peripheral pupil height of the image sensor is equal to the exit pupil of the imaging optical system. A pupil shift of the entrance pupil of the image sensor occurs, and the exit pupil 400 of the imaging optical system is non-uniformly divided into pupils. Similarly, when the exit pupil distance Dl of the imaging optical system shown in FIG. 8C is longer than the set pupil distance Ds of the image sensor, the exit pupil and the image sensor of the imaging optical system are used at the peripheral image height of the image sensor. This causes a pupil shift of the entrance pupil, and the exit pupil 400 of the imaging optical system is non-uniformly divided into pupils. As pupil division becomes nonuniform at the peripheral image height, the intensity of the first focus detection signal and the second focus detection signal also becomes nonuniform, and one of the first focus detection signal and the second focus detection signal Shading occurs with increasing strength and decreasing the other strength.

図7のステップS130では、焦点検出領域の像高と、撮像レンズ(結像光学系)のF値、射出瞳距離に応じて、第1焦点検出信号の第1シェーディング補正係数と、第2焦点検出信号の第2シェーディング補正係数を、それぞれ生成する。第1シェーディング補正係数を第1焦点検出信号に乗算し、第2シェーディング補正係数を第2焦点検出信号に乗算して、第1焦点検出信号と第2焦点検出信号のシェーディング補正処理(光学補正処理)を行う。   In step S130 of FIG. 7, the first shading correction coefficient of the first focus detection signal and the second focus are determined according to the image height of the focus detection area, the F value of the imaging lens (imaging optical system), and the exit pupil distance. A second shading correction coefficient of the detection signal is generated respectively. The first focus detection signal is multiplied by the first focus detection signal, the second shading correction coefficient is multiplied by the second focus detection signal, and shading correction processing (optical correction processing) of the first focus detection signal and the second focus detection signal is performed. )I do.

位相差方式の第1焦点検出では、第1焦点検出信号と第2焦点検出信号の相関(信号の一致度)を基に、第1検出デフォーカス量の検出を行う。瞳ずれによるシェーディングが生じると第1焦点検出信号と第2焦点検出信号の相関(信号の一致度)が低下する場合がある。よって、位相差方式の第1焦点検出では、第1焦点検出信号と第2焦点検出信号の相関(信号の一致度)を改善し、焦点検出性能を良好とするために、シェーディング補正処理(光学補正処理)を行うことが望ましい。   In the first focus detection of the phase difference method, the first detection defocus amount is detected based on the correlation (signal coincidence) between the first focus detection signal and the second focus detection signal. When shading due to pupil shift occurs, the correlation (signal coincidence) between the first focus detection signal and the second focus detection signal may be reduced. Therefore, in the first focus detection of the phase difference method, the shading correction processing (optical) is performed in order to improve the correlation (signal matching degree) between the first focus detection signal and the second focus detection signal and to improve the focus detection performance. It is desirable to perform correction processing.

図7のステップS140では、第1焦点検出信号と第2焦点検出信号に、第1フィルター処理を行う。本実施形態の第1フィルター処理の通過帯域例を、図9の実線で示す。本実施形態では、位相差方式の第1焦点検出により、大デフォーカス状態での焦点検出を行うため、第1フィルター処理の通過帯域は低周波帯域を含むように構成される。必要に応じて、大デフォーカス状態から小デフォーカス状態まで焦点調節を行う際に、デフォーカス状態に応じて、第1焦点検出時の第1フィルター処理の通過帯域を、図9の1点鎖線のように、より高周波帯域に調整してもよい。   In step S140 of FIG. 7, the first filter processing is performed on the first focus detection signal and the second focus detection signal. An example of the pass band of the first filter processing of the present embodiment is shown by a solid line in FIG. In the present embodiment, since the focus detection in the large defocus state is performed by the first focus detection of the phase difference method, the pass band of the first filter processing is configured to include the low frequency band. When the focus adjustment is performed from the large defocus state to the small defocus state as necessary, the pass band of the first filter processing at the time of the first focus detection according to the defocus state is indicated by a one-dot chain line in FIG. As described above, it may be adjusted to a higher frequency band.

次に、図7のステップS150では、第1フィルター処理後の第1焦点検出信号と第2焦点検出信号を相対的に瞳分割方向にシフトさせる第1シフト処理を行い、信号の一致度を表す相関量(第1評価値)を算出する。   Next, in step S150 of FIG. 7, a first shift process for relatively shifting the first focus detection signal and the second focus detection signal after the first filter process in the pupil division direction is performed, and the degree of coincidence of the signals is expressed. A correlation amount (first evaluation value) is calculated.

第1フィルター処理後のk番目の第1焦点検出信号をA(k)、第2焦点検出信号をB(k)、焦点検出領域に対応する番号kの範囲をWとする。第1シフト処理によるシフト量をs1、シフト量s1のシフト範囲をΓ1として、相関量(第1評価値)CORは、式(1)により算出される。   The k-th first focus detection signal after the first filter processing is A (k), the second focus detection signal is B (k), and the range of the number k corresponding to the focus detection area is W. The correlation amount (first evaluation value) COR is calculated by Equation (1), where s1 is the shift amount by the first shift process and Γ1 is the shift range of the shift amount s1.

Figure 2015225310
Figure 2015225310

シフト量s1の第1シフト処理により、k番目の第1焦点検出信号A(k)とk−s1番目の第2焦点検出信号B(k−s1)を対応させ減算し、シフト減算信号を生成する。生成されたシフト減算信号の絶対値を計算し、焦点検出領域に対応する範囲W内で番号kの和を取り、相関量(第1評価値)COR(s1)を算出する。必要に応じて、各行毎に算出された相関量(第1評価値)を、シフト量毎に複数行に渡って加算してもよい。   By the first shift process of the shift amount s1, the k-th first focus detection signal A (k) and the k-s1th second focus detection signal B (k-s1) are subtracted in correspondence to generate a shift subtraction signal. To do. The absolute value of the generated shift subtraction signal is calculated, the number k is summed within the range W corresponding to the focus detection area, and the correlation amount (first evaluation value) COR (s1) is calculated. If necessary, the correlation amount (first evaluation value) calculated for each row may be added over a plurality of rows for each shift amount.

ステップS160では、相関量(第1評価値)から、サブピクセル演算により、相関量が最小値となる実数値のシフト量を算出して像ずれ量p1とする。像ずれ量p1に、焦点検出領域の像高と、撮像レンズ(結像光学系)のF値、射出瞳距離に応じた第1変換係数K1をかけて、第1デフォーカス量(Def1)を検出する。   In step S160, a real-valued shift amount at which the correlation amount is the minimum value is calculated from the correlation amount (first evaluation value) by subpixel calculation, and is set as the image shift amount p1. The first defocus amount (Def1) is obtained by multiplying the image shift amount p1 by the image height of the focus detection area, the F value of the imaging lens (imaging optical system), and the first conversion coefficient K1 corresponding to the exit pupil distance. To detect.

本実施形態では、位相差方式の第1焦点検出手段により、第1焦点検出信号と第2焦点検出信号に、第1フィルター処理と第1シフト処理を行い、相関量を算出し、相関量から第1デフォーカス量を検出する。   In the present embodiment, the first filter processing and the first shift processing are performed on the first focus detection signal and the second focus detection signal by the first focus detection means of the phase difference method, the correlation amount is calculated, and the correlation amount is calculated. A first defocus amount is detected.

本実施形態の撮像素子では、焦点検出用画素(第1焦点検出用画素、第2焦点検出用画素)が受光する光束と、撮像用画素が受光する光束が異なる。そのため、結像光学系の各収差(球面収差、非点収差、コマ収差など)の焦点検出用画素への影響と撮像信号への影響が異なる。結像光学系の絞り値(F値)が小さい(明るい)と差異がより大きくなる。そのため、結像光学系の絞り値が小さい(明るい)時に、位相差方式の第1焦点検出により算出される検出合焦位置(第1デフォーカス量が0となる位置)と撮像信号の最良合焦位置(撮像信号のMTFピーク位置)との間に差が生じる場合がある。よって、特に、結像光学系の絞り値(F値)が所定絞り値以下の場合に、位相差方式の第1焦点検出の焦点検出精度が低下する場合がある。   In the imaging device of the present embodiment, the light beam received by the focus detection pixels (first focus detection pixel and second focus detection pixel) is different from the light beam received by the imaging pixel. Therefore, the influence of each aberration (spherical aberration, astigmatism, coma aberration, etc.) of the imaging optical system on the focus detection pixel is different from the influence on the imaging signal. When the aperture value (F value) of the imaging optical system is small (bright), the difference becomes larger. Therefore, when the aperture value of the imaging optical system is small (bright), the best focus between the detection focus position (position where the first defocus amount is 0) calculated by the first focus detection of the phase difference method and the imaging signal. There may be a difference between the focal position (the MTF peak position of the imaging signal). Therefore, particularly when the aperture value (F value) of the imaging optical system is equal to or smaller than the predetermined aperture value, the focus detection accuracy of the first focus detection of the phase difference method may be lowered.

図10に、本実施形態の撮像素子の周辺像高での撮像信号の最良合焦位置における第1焦点検出信号(破線)と第2焦点検出信号(実線)の例を示す。撮像信号の最良合焦位置であるが、結像光学系の各収差の影響により、第1焦点検出信号と第2焦点検出信号の信号形状が異なる例である。図11に、シェーディング補正処理および第1フィルター処理後の第1焦点検出信号(破線)と第2焦点検出信号(実線)を示す。撮像信号の最良合焦位置であるが、第1焦点検出信号と第2焦点検出信号間の像ずれ量p1が0ではない。よって、位相差方式の第1焦点検出により算出される検出合焦位置と撮像信号の最良合焦位置との間に差が生じる。   FIG. 10 shows an example of the first focus detection signal (broken line) and the second focus detection signal (solid line) at the best focus position of the image pickup signal at the peripheral image height of the image sensor of the present embodiment. Although it is the best focus position of the imaging signal, the signal shapes of the first focus detection signal and the second focus detection signal are different due to the influence of each aberration of the imaging optical system. FIG. 11 shows the first focus detection signal (broken line) and the second focus detection signal (solid line) after the shading correction process and the first filter process. Although it is the best focus position of the imaging signal, the image shift amount p1 between the first focus detection signal and the second focus detection signal is not zero. Therefore, a difference is generated between the detection focus position calculated by the first focus detection of the phase difference method and the best focus position of the imaging signal.

図12に、本実施形態における位相差方式の第1焦点検出による第1デフォーカス量(破線)の例を示す。横軸は、設定デフォーカス量であり、縦軸は検出デフォーカス量である。図10に示した第1焦点検出信号と第2焦点検出信号は、図12の設定デフォーカス量0[mm]における第1焦点検出信号と第2焦点検出信号である。図12を見ると、設定デフォーカス量0の最良合焦位置において、破線で示した第1焦点検出による第1デフォーカス量が後ピン側に約50μmオフセットしており、最良合焦位置と第1焦点検出により算出される検出合焦位置との間に約50μmの差異が生じていることがわかる。   FIG. 12 shows an example of the first defocus amount (broken line) by the first focus detection of the phase difference method in the present embodiment. The horizontal axis is the set defocus amount, and the vertical axis is the detected defocus amount. The first focus detection signal and the second focus detection signal shown in FIG. 10 are the first focus detection signal and the second focus detection signal when the set defocus amount is 0 [mm] in FIG. Referring to FIG. 12, at the best focus position with the set defocus amount of 0, the first defocus amount by the first focus detection indicated by the broken line is offset by about 50 μm to the rear pin side. It can be seen that there is a difference of about 50 μm from the detected in-focus position calculated by the single focus detection.

本実施形態では、焦点検出信号から算出される検出合焦位置と撮像信号の最良合焦位置との差を抑制し、高精度な焦点検出を可能とする。そのために、位相差方式の第1焦点検出に加えて、結像光学系の最良合焦位置近傍で高精度な焦点検出が可能なリフォーカス方式の第2焦点検出を行う。
[リフォーカス方式の第2焦点検出]
以下、本実施形態におけるリフォーカス方式(コントラスト検出方式)の第2焦点検出について説明する。本実施形態のリフォーカス方式の第2焦点検出では、第1焦点検出信号と第2焦点検出信号を相対的にシフトして加算し、シフト加算信号(リフォーカス信号)を生成する。生成されたシフト加算信号(リフォーカス信号)のコントラスト評価値を算出し、コントラスト評価値から撮像信号のMTFピーク位置を推定し、第2デフォーカス量を検出する。
In the present embodiment, the difference between the detected in-focus position calculated from the focus detection signal and the best in-focus position of the imaging signal is suppressed, thereby enabling highly accurate focus detection. Therefore, in addition to the first focus detection based on the phase difference method, the second focus detection based on the refocus method that enables highly accurate focus detection near the best focus position of the imaging optical system is performed.
[Refocus second focus detection]
Hereinafter, the second focus detection of the refocus method (contrast detection method) in the present embodiment will be described. In the second focus detection of the refocus method of the present embodiment, the first focus detection signal and the second focus detection signal are relatively shifted and added to generate a shift addition signal (refocus signal). A contrast evaluation value of the generated shift addition signal (refocus signal) is calculated, an MTF peak position of the imaging signal is estimated from the contrast evaluation value, and a second defocus amount is detected.

本実施形態の撮像素子により取得された第1焦点検出信号と第2焦点検出信号による1次元方向(列方向、水平方向)のリフォーカス処理の概略説明図を図13に示す。図13の撮像面800は、図5、図6に示した撮像面800に対応している。図13では、iを整数として、撮像面800に配置された撮像素子の列方向i番目の画素の第1焦点検出信号をAi、第2焦点検出信号をBiで模式的に表している。第1焦点検出信号Aiは、(図5の瞳部分領域501に対応した)主光線角度θaでi番目の画素に入射した光束の受光信号である。第2焦点検出信号Biは、(図5の瞳部分領域502に対応した)主光線角度θbでi番目の画素に入射した光束の受光信号である。   FIG. 13 shows a schematic explanatory diagram of the refocus processing in the one-dimensional direction (column direction, horizontal direction) by the first focus detection signal and the second focus detection signal acquired by the image sensor of the present embodiment. An imaging surface 800 in FIG. 13 corresponds to the imaging surface 800 illustrated in FIGS. 5 and 6. In FIG. 13, i is an integer, and the first focus detection signal of the i-th pixel in the column direction of the image sensor arranged on the imaging surface 800 is schematically represented by Ai, and the second focus detection signal is schematically represented by Bi. The first focus detection signal Ai is a light reception signal of a light beam incident on the i-th pixel at the principal ray angle θa (corresponding to the pupil partial region 501 in FIG. 5). The second focus detection signal Bi is a light reception signal of a light beam incident on the i-th pixel at the principal ray angle θb (corresponding to the pupil partial region 502 in FIG. 5).

第1焦点検出信号Aiと第2焦点検出信号Biは、光強度分布情報だけでなく、入射角度情報も有している。よって、第1焦点検出信号Aiを角度θaに沿って仮想結像面810まで平行移動させ、第2焦点検出信号Biを角度θbに沿って仮想結像位置810まで平行移動させ、加算することで、仮想結像面810でのリフォーカス信号を生成できる。第1焦点検出信号Aiを角度θaに沿って仮想結像面810まで平行移動させることは、列方向に+0.5画素シフトに対応し、第2焦点検出信号Biを角度θbに沿って仮想結像面810まで平行移動させることは、列方向に−0.5画素シフトに対応する。したがって、第1焦点検出信号Aiと第2焦点検出信号Biを相対的に+1画素シフトさせ、AiとBi+1を対応させて加算することで、仮想結像面810でのリフォーカス信号を生成できる。同様に、第1焦点検出信号Aiと第2焦点検出信号Biを整数シフトさせて加算することで、整数シフト量に応じた各仮想結像面でのシフト加算信号(リフォーカス信号)を生成できる。生成されたシフト加算信号(リフォーカス信号)のコントラスト評価値を算出し、算出されたコントラスト評価値から撮像信号のMTFピーク位置を推定することで、リフォーカス方式の第2焦点検出を行う。   The first focus detection signal Ai and the second focus detection signal Bi have not only light intensity distribution information but also incident angle information. Therefore, the first focus detection signal Ai is translated along the angle θa to the virtual imaging plane 810, and the second focus detection signal Bi is translated along the angle θb to the virtual imaging position 810 and added. A refocus signal at the virtual imaging plane 810 can be generated. Translating the first focus detection signal Ai along the angle θa to the virtual imaging plane 810 corresponds to a +0.5 pixel shift in the column direction, and the second focus detection signal Bi is virtually linked along the angle θb. Translating to the image plane 810 corresponds to a -0.5 pixel shift in the column direction. Therefore, the first focus detection signal Ai and the second focus detection signal Bi are relatively shifted by +1 pixel, and Ai and Bi + 1 are added in correspondence with each other, whereby a refocus signal on the virtual imaging plane 810 can be generated. Similarly, the first focus detection signal Ai and the second focus detection signal Bi are shifted by an integer and added to generate a shift addition signal (refocus signal) on each virtual imaging plane corresponding to the integer shift amount. . The contrast evaluation value of the generated shift addition signal (refocus signal) is calculated, and the MTF peak position of the imaging signal is estimated from the calculated contrast evaluation value, thereby performing the second focus detection of the refocus method.

図14に、本実施形態の第2焦点検出処理の流れの概略図を示す。なお、図14の動作は、本実施形態の焦点検出信号生成手段、第2焦点検出手段である撮像素子107、画像処理回路125とCPU121によって実行される。   FIG. 14 shows a schematic diagram of the flow of the second focus detection process of the present embodiment. The operation of FIG. 14 is executed by the focus detection signal generation unit, the image sensor 107 as the second focus detection unit, the image processing circuit 125, and the CPU 121 of the present embodiment.

ステップS210で、撮像素子の有効画素領域の中から焦点調節を行う焦点検出領域を設定する。焦点検出信号生成手段により、焦点検出領域の第1焦点検出用画素の受光信号から第1焦点検出信号(A像)を生成し、焦点検出領域の第2焦点検出用画素の受光信号から第2焦点検出信号(B像)を生成する。   In step S210, a focus detection area for performing focus adjustment is set from the effective pixel area of the image sensor. The focus detection signal generating means generates a first focus detection signal (A image) from the light reception signal of the first focus detection pixel in the focus detection area, and generates a second from the light reception signal of the second focus detection pixel in the focus detection area. A focus detection signal (B image) is generated.

ステップS220で、第1焦点検出信号と第2焦点検出信号に、それぞれ、信号データ量を抑制するために列方向に3画素加算処理を行い、さらに、RGB信号を輝度Y信号にするためにベイヤー(RGB)加算処理を行う。これら2つの加算処理を合わせて第2画素加算処理とする。必要に応じて、3画素加算処理とベイヤー(RGB)加算処理のいずれか、または、これら両方の加算処理を省略してもよい。   In step S220, the first focus detection signal and the second focus detection signal are each subjected to a three-pixel addition process in the column direction in order to suppress the amount of signal data, and further, Bayer is used to convert the RGB signal into a luminance Y signal. (RGB) addition processing is performed. These two addition processes are combined into a second pixel addition process. If necessary, one or both of the three-pixel addition process and the Bayer (RGB) addition process may be omitted.

ステップS230では、第1焦点検出信号と第2焦点検出信号に、第2フィルター処理を行う。本実施形態の第2フィルター処理の通過帯域例を、図9の破線および点線で示す。本実施形態では、リフォーカス方式の第2焦点検出により、小デフォーカス状態から最良合焦位置近傍まで焦点検出を行う。したがって、第2フィルター処理の通過帯域は、第1フィルター処理の通過帯域よりも、高周波帯域を含むように設定される。   In step S230, the second filter processing is performed on the first focus detection signal and the second focus detection signal. An example of a pass band of the second filter processing of the present embodiment is indicated by a broken line and a dotted line in FIG. In the present embodiment, focus detection is performed from the small defocus state to the vicinity of the best in-focus position by the refocus second focus detection. Therefore, the pass band of the second filter process is set to include a higher frequency band than the pass band of the first filter process.

必要に応じて、第2フィルター処理に被写体信号のエッジ抽出を行うラプラシアン型(2階微分型)[1,−2,1]フィルターを用いて、図9の点線で示すように第2フィルター処理の通過帯域をより高周波帯域に設定してもよい。被写体の高周波成分を抽出して第2焦点検出を行うことにより、焦点検出精度をより向上させることができる。   If necessary, second filter processing is performed using a Laplacian (second-order differential) [1, -2,1] filter that performs edge extraction of the subject signal in the second filter processing, as indicated by the dotted line in FIG. The pass band may be set to a higher frequency band. By extracting the high frequency component of the subject and performing the second focus detection, the focus detection accuracy can be further improved.

ステップS240では、第2フィルター処理後の第1焦点検出信号と第2焦点検出信号を相対的に瞳分割方向にシフトさせる第2シフト処理を行い、加算してシフト加算信号(リフォーカス信号)を生成する。さらに、生成されたシフト加算信号からコントラスト評価値(第2評価値)を算出する。   In step S240, a second shift process for relatively shifting the first focus detection signal and the second focus detection signal after the second filter process in the pupil division direction is performed and added to generate a shift addition signal (refocus signal). Generate. Further, a contrast evaluation value (second evaluation value) is calculated from the generated shift addition signal.

第1フィルター処理後のk番目の第1焦点検出信号をA(k)、第2焦点検出信号をB(k)、焦点検出領域に対応する番号kの範囲をWとする。第2シフト処理によるシフト量をs2、シフト量s2のシフト範囲をΓ2として、コントラスト評価値(第2評価値)RFCONは、式(2)により算出される。   The k-th first focus detection signal after the first filter processing is A (k), the second focus detection signal is B (k), and the range of the number k corresponding to the focus detection area is W. The contrast evaluation value (second evaluation value) RFCON is calculated by Expression (2), where s2 is the shift amount by the second shift process and Γ2 is the shift range of the shift amount s2.

Figure 2015225310
Figure 2015225310

シフト量s2の第2シフト処理により、k番目の第1焦点検出信号A(k)とk−s2番目の第2焦点検出信号B(k−s2)を対応させて加算し、シフト加算信号を生成する。シフト加算信号の絶対値を計算し、焦点検出領域Wの範囲での最大値を取り、コントラスト評価値(第2評価値)RFCON(s2)を算出する。必要に応じて、各行毎に算出されたコントラスト評価値(第2評価値)をシフト量毎に、複数行に渡って加算してもよい。   By the second shift processing of the shift amount s2, the kth first focus detection signal A (k) and the ks2th second focus detection signal B (ks2) are added in correspondence with each other, and the shift addition signal is obtained. Generate. The absolute value of the shift addition signal is calculated, the maximum value in the range of the focus detection area W is taken, and the contrast evaluation value (second evaluation value) RFCON (s2) is calculated. If necessary, the contrast evaluation value (second evaluation value) calculated for each row may be added over a plurality of rows for each shift amount.

ステップS250では、コントラスト評価値(第2評価値)から、サブピクセル演算により、コントラスト評価値が最大値となる実数値のシフト量を算出してピークシフト量p2とする。ピークシフト量p2に、焦点検出領域の像高と、撮像レンズ(結像光学系)のF値、射出瞳距離に応じた第2変換係数K2をかけて、第2検出デフォーカス量(Def2)を検出する。必要に応じて、第1変換係数K1と第2変換係数K2を同一の値としても良い。   In step S250, a real-value shift amount at which the contrast evaluation value is the maximum value is calculated from the contrast evaluation value (second evaluation value) by subpixel calculation, and is set as the peak shift amount p2. The second detection defocus amount (Def2) is obtained by multiplying the peak shift amount p2 by the image height of the focus detection area, the F value of the imaging lens (imaging optical system), and the second conversion coefficient K2 corresponding to the exit pupil distance. Is detected. If necessary, the first conversion coefficient K1 and the second conversion coefficient K2 may be the same value.

本実施形態では、リフォーカス方式の第2焦点検出手段により、第1焦点検出信号と第2焦点検出信号に、第2フィルター処理と第2シフト処理を行い、加算してシフト加算信号を生成する。そして、シフト加算信号からコントラスト評価値を算出し、コントラスト評価値から第2デフォーカス量を検出する。   In the present embodiment, the second focus detection unit of the refocus method performs the second filter processing and the second shift processing on the first focus detection signal and the second focus detection signal, and adds them to generate a shift addition signal. . Then, a contrast evaluation value is calculated from the shift addition signal, and a second defocus amount is detected from the contrast evaluation value.

本実施形態の撮像素子では、図4、図5に示したように、第1焦点検出用画素が受光する光束と第2焦点検出用画素が受光する光束を加算したものが、撮像用画素が受光する光束となる。位相差方式の第1焦点検出とは異なり、リフォーカス方式の第2焦点検出では、第1焦点検出信号と第2焦点検出信号のシフト加算信号(リフォーカス信号)により焦点検出を行う。よって、第2焦点検出で用いられるシフト加算信号に対応する光束と、撮像信号に対応する光束が、概ね一致するため、結像光学系の各収差(球面収差、非点収差、コマ収差など)のシフト加算信号への影響と撮像信号への影響も、概ね同じである。したがって、リフォーカス方式の第2焦点検出により算出される検出合焦位置(第2検出デフォーカス量が0となる位置)と撮像信号の最良合焦位置(撮像信号のMTFピーク位置)が、概ね一致するため、位相差方式の第1焦点検出より高精度に焦点検出できる。   In the imaging device of this embodiment, as shown in FIGS. 4 and 5, the imaging pixel is obtained by adding the light beam received by the first focus detection pixel and the light beam received by the second focus detection pixel. The light beam is received. Unlike the first focus detection using the phase difference method, the second focus detection using the refocus method performs focus detection using a shift addition signal (refocus signal) of the first focus detection signal and the second focus detection signal. Therefore, since the light beam corresponding to the shift addition signal used in the second focus detection and the light beam corresponding to the imaging signal substantially coincide, each aberration of the imaging optical system (spherical aberration, astigmatism, coma aberration, etc.) The influence on the shift addition signal and the influence on the imaging signal are substantially the same. Therefore, the detection focus position (position where the second detection defocus amount is 0) calculated by the refocus second focus detection and the best focus position of the imaging signal (MTF peak position of the imaging signal) are approximately Therefore, the focus detection can be performed with higher accuracy than the first focus detection using the phase difference method.

図10に示した本実施形態の撮像素子の周辺像高での撮像信号の最良合焦位置における第1焦点検出信号(破線)と第2焦点検出信号(実線)の例に、第2フィルター処理を施した後の第1焦点検出信号(破線)と第2焦点検出信号(実線)を図15に示す。また、第2フィルター処理後の第1焦点検出信号(破線)と第2焦点検出信号(実線)を、それぞれ、相対的に−2、−1、0、1、2シフトさせてシフト加算したシフト加算信号(リフォーカス信号)の例を図16に示す。シフト量の変化に伴い、シフト加算信号のピーク値が変化することがわかる。各シフト加算信号から算出されたコントラスト評価値(第2評価値)の例を図17に示す。   An example of the first focus detection signal (broken line) and the second focus detection signal (solid line) at the best focus position of the image pickup signal at the peripheral image height of the image pickup device of the present embodiment shown in FIG. FIG. 15 shows the first focus detection signal (broken line) and the second focus detection signal (solid line) after applying the above. In addition, the first focus detection signal (broken line) and the second focus detection signal (solid line) after the second filter processing are relatively shifted by -2, -1, 0, 1, 2, and shifted to add. An example of the addition signal (refocus signal) is shown in FIG. It can be seen that the peak value of the shift addition signal changes as the shift amount changes. An example of the contrast evaluation value (second evaluation value) calculated from each shift addition signal is shown in FIG.

図12に、本実施形態におけるリフォーカス方式の第2焦点検出による第2デフォーカス量(実線)の例を示す。横軸は、設定デフォーカス量であり、縦軸は検出デフォーカス量である。図10に示した第1焦点検出信号と第2焦点検出信号は、図12の設定デフォーカス量0[mm]における第1焦点検出信号と第2焦点検出信号である。設定デフォーカス量0の最良合焦位置において、第2焦点検出による第2デフォーカス量は、第1焦点検出による第1デフォーカス量よりも小さく抑制され、高精度に焦点検出できることがわかる。   FIG. 12 shows an example of the second defocus amount (solid line) by the second focus detection of the refocus method in the present embodiment. The horizontal axis is the set defocus amount, and the vertical axis is the detected defocus amount. The first focus detection signal and the second focus detection signal shown in FIG. 10 are the first focus detection signal and the second focus detection signal when the set defocus amount is 0 [mm] in FIG. It can be seen that at the best focus position with the set defocus amount 0, the second defocus amount by the second focus detection is suppressed to be smaller than the first defocus amount by the first focus detection, and the focus detection can be performed with high accuracy.

したがって、本実施形態では、結像光学系の設定デフォーカス量0の最良合焦位置近傍において、リフォーカス方式の第2焦点検出の方が、位相差方式の第1焦点検出より、高精度に焦点検出できる。
[リフォーカス可能範囲]
一方、リフォーカス可能範囲には限界があるため、リフォーカス方式の第2焦点検出が高精度で焦点検出できるデフォーカス量の範囲は限定される。
Therefore, in the present embodiment, the refocus second focus detection is more accurate than the phase difference first focus detection in the vicinity of the best focus position with the set defocus amount 0 of the imaging optical system. Focus detection is possible.
[Refocusable range]
On the other hand, since there is a limit to the refocusable range, the range of the defocus amount that can be detected with high accuracy by the refocus second focus detection is limited.

本実施形態におけるリフォーカス可能範囲の概略説明図を図18に示す。許容錯乱円をδとし、結像光学系の絞り値をFとすると、絞り値Fでの被写界深度は±Fδである。これに対して、NH×NV(2×1)分割されて狭くなった瞳部分領域501(502)の水平方向の実効絞り値F01(F02)は、F01=NHFと暗くなる。第1焦点検出信号(第2焦点検出信号)毎の実効的な被写界深度は±NHFδとNH倍深くなり、合焦範囲がNH倍に広がる。実効的な被写界深度±NHFδの範囲内では、第1焦点検出信号(第2焦点検出信号)毎に合焦した被写体像が取得されている。よって、図13に示した主光線角度θa(θb)に沿って第1焦点検出信号(第2焦点検出信号)を平行移動するリフォーカス処理により、撮影後に、合焦位置を再調整(リフォーカス)することができる。よって、撮影後に合焦位置を再調整(リフォーカス)できる撮像面からのデフォーカス量dは限定されており、デフォーカス量dのリフォーカス可能範囲は、概ね、式(3)の範囲である。   A schematic explanatory diagram of a refocusable range in the present embodiment is shown in FIG. If the allowable circle of confusion is δ and the aperture value of the imaging optical system is F, the depth of field at the aperture value F is ± Fδ. On the other hand, the effective aperture value F01 (F02) in the horizontal direction of the pupil partial region 501 (502) narrowed by dividing NH × NV (2 × 1) becomes dark as F01 = NHF. The effective depth of field for each first focus detection signal (second focus detection signal) is ± NHFδ and NH times deep, and the focusing range is extended NH times. Within the range of effective depth of field ± NHFδ, a focused subject image is acquired for each first focus detection signal (second focus detection signal). Therefore, the refocusing process for refocusing (refocusing) after shooting is performed by the refocusing process of translating the first focus detection signal (second focus detection signal) along the principal ray angle θa (θb) shown in FIG. )can do. Therefore, the defocus amount d from the imaging surface where the focus position can be readjusted (refocused) after shooting is limited, and the refocusable range of the defocus amount d is approximately the range of Expression (3). .

|d|≦NHFδ …(3)
許容錯乱円δは、δ=2ΔX(画素周期ΔXのナイキスト周波数1/(2ΔX)の逆数)などで規定される。必要に応じて、第2画素加算処理後の第1焦点検出信号(第2焦点検出信号)の周期ΔXAF(=6ΔX:6画素加算の場合)のナイキスト周波数1/(2ΔXAF)の逆数を許容錯乱円δ=2ΔXAFとして用いてもよい。
| D | ≦ NHFδ (3)
The permissible circle of confusion δ is defined by δ = 2ΔX (the reciprocal of the Nyquist frequency 1 / (2ΔX) of the pixel period ΔX). If necessary, the reciprocal of the Nyquist frequency 1 / (2ΔXAF) of the period ΔXAF (= 6ΔX: in the case of 6 pixel addition) of the first focus detection signal (second focus detection signal) after the second pixel addition processing is allowed to be perturbed. It may be used as a circle δ = 2ΔXAF.

リフォーカス方式の第2焦点検出が高精度で行えるデフォーカス量の範囲は、概ね、式(3)の範囲に限定され、第2焦点検出により高精度に焦点検出可能なデフォーカス範囲は、位相差方式の第1焦点検出可能なデフォーカス範囲以下の範囲である。図6に示したように、第1焦点検出信号と第2焦点検出信号との水平方向の相対的なシフト量とデフォーカス量は、概ね、比例する。   The range of the defocus amount at which the refocus second focus detection can be performed with high accuracy is generally limited to the range of the expression (3), and the defocus range where the focus detection can be performed with high accuracy by the second focus detection is This is the range below the defocus range in which the first focus detection of the phase difference method can be performed. As shown in FIG. 6, the relative shift amount and defocus amount in the horizontal direction between the first focus detection signal and the second focus detection signal are approximately proportional.

したがって、本実施形態では、リフォーカス方式の第2焦点検出の第2シフト処理のシフト範囲が、位相差方式の第1焦点検出の第1シフト処理のシフト範囲以下となるように構成される。そのため、被写体の移動等によってリフォーカス方式の第2焦点検出の第2シフト処理のシフト範囲内に合焦位置がない場合には図19のようなコントラスト評価値(第2評価値)となる。   Therefore, the present embodiment is configured such that the shift range of the second shift process of the refocus second focus detection is equal to or smaller than the shift range of the first shift process of the phase difference first focus detection. Therefore, when there is no in-focus position within the shift range of the second shift process of the second focus detection by the refocus method due to movement of the subject or the like, the contrast evaluation value (second evaluation value) as shown in FIG. 19 is obtained.

本実施形態の焦点検出では、結像光学系の大デフォーカス状態から小デフォーカス状態まで焦点調節するために第1焦点検出を行い、結像光学系の小デフォーカス状態から最良合焦位置近傍まで焦点調節するために第2焦点検出を行う。したがって、第2焦点検出の第2フィルター処理の通過帯域が、第1焦点検出の第1フィルター処理の通過帯域より高周波帯域を含むことが望ましい。また、第2焦点検出の第2画素加算処理の画素加算数が、第1焦点検出の第1画素加算処理の画素加算数以下であることが望ましい。   In the focus detection of this embodiment, the first focus detection is performed to adjust the focus from the large defocus state to the small defocus state of the imaging optical system, and the vicinity of the best focus position from the small defocus state of the imaging optical system. The second focus detection is performed in order to adjust the focus up to. Therefore, it is desirable that the pass band of the second filter processing of the second focus detection includes a higher frequency band than the pass band of the first filter processing of the first focus detection. In addition, it is desirable that the pixel addition number in the second pixel addition process for the second focus detection is equal to or less than the pixel addition number in the first pixel addition process for the first focus detection.

上述したように、結像光学系の絞り値が所定絞り値以下(所定F値以下)の場合に、位相差方式の第1焦点検出の焦点検出精度が低下する場合がある。したがって、必要に応じて、結像光学系の絞り値が所定絞り値以下の場合に、位相差方式の第1焦点検出に加えて、リフォーカス方式の第2焦点検出により第2デフォーカス量を検出し、高精度な焦点検出を行うことが望ましい。
[焦点検出処理の処理フロー]
本実施形態の焦点検出処理フローを図20に示す。本実施形態では、結像光学系のデフォーカス量の絶対値が所定値1以下(第1の所定値以下)になるまで位相差方式の第1焦点検出を行ってレンズ駆動し、結像光学系の大デフォーカス状態から小デフォーカス状態まで焦点調節を行う。その後、結像光学系のデフォーカス量の絶対値が所定値2(<所定値1)以下(第2の所定値以下)になるまでリフォーカス方式の第2焦点検出を行ってレンズ駆動し、結像光学系の小デフォーカス状態から最良合焦位置近傍まで焦点調節を行う。
As described above, when the aperture value of the imaging optical system is equal to or smaller than the predetermined aperture value (predetermined F value), the focus detection accuracy of the first focus detection of the phase difference method may decrease. Therefore, if necessary, when the aperture value of the imaging optical system is equal to or smaller than the predetermined aperture value, the second defocus amount is set by the refocus second focus detection in addition to the phase difference first focus detection. It is desirable to detect and perform highly accurate focus detection.
[Processing flow of focus detection processing]
A focus detection processing flow of this embodiment is shown in FIG. In the present embodiment, the lens is driven by performing the first focus detection of the phase difference method until the absolute value of the defocus amount of the imaging optical system becomes a predetermined value 1 or less (first predetermined value or less), and the lens is driven. The focus is adjusted from the large defocus state to the small defocus state of the system. Thereafter, the lens is driven by performing the second focus detection of the refocus method until the absolute value of the defocus amount of the imaging optical system is equal to or smaller than a predetermined value 2 (<predetermined value 1) (second predetermined value). Focus adjustment is performed from the small defocus state of the imaging optical system to the vicinity of the best focus position.

ステップS100で、位相差方式による第1焦点検出により第1検出デフォーカス量(Def1)を検出する。ステップS101で、検出された第1デフォーカス量(Def1)の大きさ|Def1|が所定値1より大きい場合は、ステップS102へと移行して、第1デフォーカス量(Def1)に応じてレンズ駆動を行い、ステップS100に戻る。また、ステップS100で検出された第1デフォーカス量(Def1)の大きさ|Def1|が所定値1以下の場合は、ステップS200に進む。   In step S100, the first detection defocus amount (Def1) is detected by the first focus detection by the phase difference method. When the detected magnitude | Def1 | of the first defocus amount (Def1) is larger than the predetermined value 1 in step S101, the process proceeds to step S102, and the lens is set according to the first defocus amount (Def1). Driving is performed, and the process returns to step S100. On the other hand, when the magnitude | Def1 | of the first defocus amount (Def1) detected in step S100 is equal to or smaller than the predetermined value 1, the process proceeds to step S200.

ステップS200で、リフォーカス方式による第2焦点検出により第2検出デフォーカス量(Def2)を検出する。ステップS201では、第2デフォーカス量(Def2)の大きさ|Def2|がフォーカスレンズの駆動可能な範囲を示す最大駆動デフォーカス量(Def_FL、最大駆動量)より大きいか否かを判断する。ステップS200で検出された第2デフォーカス量(Def2)の大きさ|Def2|が最大駆動デフォーカス量(Def_FL)より大きい場合は、フォーカスレンズ駆動による焦点調節ができないと判断する。そして、ステップS204へと移行して、リフォーカス処理による合焦画像生成が可能か否かを判定する。また、ステップS201で、第2デフォーカス量(Def2)の大きさ|Def2|が最大駆動デフォーカス量(Def_FL)以下の場合は、フォーカスレンズ駆動による焦点調節ができると判断して、ステップS202へと移行する。   In step S200, the second detection defocus amount (Def2) is detected by the second focus detection by the refocus method. In step S201, it is determined whether or not the magnitude | Def2 | of the second defocus amount (Def2) is larger than a maximum drive defocus amount (Def_FL, maximum drive amount) indicating a driveable range of the focus lens. When the magnitude | Def2 | of the second defocus amount (Def2) detected in step S200 is larger than the maximum drive defocus amount (Def_FL), it is determined that focus adjustment by driving the focus lens cannot be performed. Then, the process proceeds to step S204, and it is determined whether or not a focused image can be generated by the refocus process. If the magnitude | Def2 | of the second defocus amount (Def2) is equal to or smaller than the maximum drive defocus amount (Def_FL) in step S201, it is determined that the focus adjustment by driving the focus lens can be performed, and the process proceeds to step S202. And migrate.

ステップS202では、第2デフォーカス量(Def2)の大きさ|Def2|が所定値2(<所定値1)以下か否かを判定する。第2デフォーカス量(Def2)の大きさ|Def2|が所定値2(<所定値1)より大きい場合は、ステップS203で、第2デフォーカス量(Def2)に応じてレンズ駆動を行い、ステップS200に戻る。また、第2デフォーカス量(Def2)の大きさ|Def2|が所定値2以下の場合は、焦点調節動作を終了する。   In step S202, it is determined whether or not the magnitude | Def2 | of the second defocus amount (Def2) is equal to or smaller than a predetermined value 2 (<predetermined value 1). If the magnitude | Def2 | of the second defocus amount (Def2) is larger than the predetermined value 2 (<predetermined value 1), the lens is driven according to the second defocus amount (Def2) in step S203, and the step Return to S200. On the other hand, when the magnitude | Def2 | of the second defocus amount (Def2) is equal to or smaller than the predetermined value 2, the focus adjustment operation ends.

ステップS204では、第2デフォーカス量(Def2)と最大駆動デフォーカス量(Def_FL)との差の大きさ|Def2−Def_FL|が合焦位置を再調整(リフォーカス)できる撮像面からの調整デフォーカス量d’より大きいか否かを判断する。|Def2−Def_FL|が調整デフォーカス量d’以下(調整範囲以内)の場合、合焦位置を再調整(リフォーカス)できると判定してステップS205へと移行する。また、|Def2−Def_FL|が調整デフォーカス量d’より大きい場合、合焦位置を再調整(リフォーカス)できる範囲ではないため、合焦NGと判定して、焦点調節動作を終了する。   In step S204, the magnitude | Def2−Def_FL | of the difference between the second defocus amount (Def2) and the maximum drive defocus amount (Def_FL) is adjusted from the imaging surface where the focus position can be readjusted (refocused). It is determined whether or not the focus amount is greater than d ′. If | Def2−Def_FL | is equal to or smaller than the adjustment defocus amount d ′ (within the adjustment range), it is determined that the focus position can be readjusted (refocus), and the process proceeds to step S205. If | Def2−Def_FL | is larger than the adjustment defocus amount d ′, it is not within the range where the focus position can be readjusted (refocused), so it is determined that the focus is NG and the focus adjustment operation is terminated.

ステップS205では、本実施形態のフォーカスレンズ駆動手段の最大駆動デフォーカス量(Def_FL)に応じてレンズ駆動を行う。そして、リフォーカス処理を行うため、ステップS206へと移行する。   In step S205, the lens is driven according to the maximum driving defocus amount (Def_FL) of the focus lens driving unit of the present embodiment. Then, in order to perform the refocus process, the process proceeds to step S206.

ステップS206では、ステップS205で最大駆動デフォーカス量(Def_FL)だけフォーカスレンズを駆動させた位置で取得した画像信号に対して、(Def2)と(Def_FL)との差のデフォーカス量を用いてリフォーカス処理を行う。そして、合焦画像を生成し、焦点調節動作を終了する。なお、リフォーカス処理に関しては、図13を用いて前述した通りである。   In step S206, the image signal acquired at the position where the focus lens is driven by the maximum drive defocus amount (Def_FL) in step S205 is re-resolved using the defocus amount of the difference between (Def2) and (Def_FL). Perform focus processing. Then, a focused image is generated, and the focus adjustment operation is terminated. The refocus processing is as described above with reference to FIG.

以上の構成により、焦点検出信号から算出される検出合焦位置と撮像信号の最良合焦位置との間の差を抑制し、高精度な焦点調節が可能となる。また、第2焦点検出手段で算出したコントラスト評価値から算出される第2検出デフォーカス量がフォーカスレンズの最大駆動デフォーカス量より大きいとしても焦点調節不能とならず、高精度な焦点調節が可能となる。   With the above configuration, it is possible to suppress the difference between the detected in-focus position calculated from the focus detection signal and the best in-focus position of the imaging signal, and to perform highly accurate focus adjustment. Further, even if the second detection defocus amount calculated from the contrast evaluation value calculated by the second focus detection means is larger than the maximum driving defocus amount of the focus lens, focus adjustment is not impossible, and high-precision focus adjustment is possible. It becomes.

(第2の実施形態)
図21は、第2の実施形態の焦点検出処理の流れの概略を示すフローチャートである。本実施形態では、第2デフォーカス量(Def2)がフォーカスレンズの最大駆動デフォーカス量(Def_FL)よりも大きく、かつ合焦位置を再調整(リフォーカス)できる撮像面からの調整デフォーカス量d’よりも小さい場合の例である。このような場合に、フォーカスレンズ駆動を行わずに第2デフォーカス量(Def2)を用いてリフォーカス処理を行い、合焦画像を生成する。
(Second Embodiment)
FIG. 21 is a flowchart illustrating an outline of the flow of focus detection processing according to the second embodiment. In this embodiment, the second defocus amount (Def2) is larger than the maximum driving defocus amount (Def_FL) of the focus lens, and the adjustment defocus amount d from the imaging surface where the focus position can be readjusted (refocused). It is an example when it is smaller than '. In such a case, a refocus process is performed using the second defocus amount (Def2) without driving the focus lens, and a focused image is generated.

図21のステップS300からステップS302は図20のステップS100からステップS102と同様である。ステップS400からステップS404は図20のステップS200からステップS204と同様である。   Steps S300 to S302 in FIG. 21 are the same as steps S100 to S102 in FIG. Steps S400 to S404 are the same as steps S200 to S204 in FIG.

ステップS405は、ステップS404において第2デフォーカス量(Def2)と最大駆動デフォーカス量(Def_FL)との差の大きさ|Def2−Def_FL|が合焦位置を再調整(リフォーカス)できる調整デフォーカス量d’以下の場合に行われる。   In step S405, the adjustment defocus that allows the magnitude | Def2-Def_FL | of the difference between the second defocus amount (Def2) and the maximum drive defocus amount (Def_FL) in step S404 to readjust the focus position (refocus). This is performed when the amount is less than d ′.

ステップS405では、第2デフォーカス量(Def2)が合焦位置を再調整(リフォーカス)できる調整デフォーカス量d’よりも大きいか否かを判定し、フォーカスレンズ駆動が必要か否かを判定する。第2デフォーカス量(Def2)が合焦位置を再調整(リフォーカス)できる調整デフォーカス量d’よりも大きい場合、リフォーカス処理が行える範囲にフォーカスレンズを移動させる必要があるため、ステップS406へと移行する。   In step S405, it is determined whether or not the second defocus amount (Def2) is larger than the adjustment defocus amount d ′ that allows the focus position to be readjusted (refocused), and whether or not the focus lens drive is necessary. To do. If the second defocus amount (Def2) is larger than the adjustment defocus amount d ′ that allows the focus position to be readjusted (refocused), it is necessary to move the focus lens to a range where the refocus processing can be performed. Migrate to

ステップS406では、フォーカスレンズ駆動を行い、リフォーカス処理を行うためにステップS407へと移行する。この場合、ステップS407のリフォーカス処理で用いるデフォーカス量は第2デフォーカス量(Def2)と最大駆動デフォーカス量(Def_FL)との差のデフォーカス量である。   In step S406, the focus lens is driven, and the process proceeds to step S407 to perform a refocus process. In this case, the defocus amount used in the refocus processing in step S407 is a defocus amount that is the difference between the second defocus amount (Def2) and the maximum drive defocus amount (Def_FL).

一方、第2デフォーカス量(Def2)が合焦位置を再調整(リフォーカス)できる調整デフォーカス量d’以下の場合、フォーカスレンズ駆動を行わなくてもリフォーカス処理が可能であると判定して、ステップS407へと移行する。この場合、フォーカスレンズ駆動を行っていないため、ステップS407のリフォーカス処理で用いるデフォーカス量は第2デフォーカス量(Def2)である。   On the other hand, when the second defocus amount (Def2) is equal to or smaller than the adjustment defocus amount d ′ that allows the focus position to be readjusted (refocused), it is determined that the refocus processing can be performed without driving the focus lens. Then, the process proceeds to step S407. In this case, since the focus lens drive is not performed, the defocus amount used in the refocus processing in step S407 is the second defocus amount (Def2).

ステップS407では、ステップS405もしくはステップS406で取得したデフォーカス量を用いてリフォーカス処理を行って合焦画像を生成し、焦点調節動作を終了する。なお、リフォーカス処理に関しては、図13を用いて前述した通りである。上記以外は、第1の実施形態と同様である。   In step S407, a refocus process is performed using the defocus amount acquired in step S405 or step S406 to generate a focused image, and the focus adjustment operation ends. The refocus processing is as described above with reference to FIG. Other than the above, the second embodiment is the same as the first embodiment.

以上の構成により、焦点検出信号から算出される検出合焦位置と撮像信号の最良合焦位置との間の差を抑制し、高精度な焦点調節が可能となる。また、第2焦点検出手段で算出したコントラスト評価値から算出される第2デフォーカス量が最大駆動デフォーカス量より大きいとしても焦点調節不能とならず、高精度な焦点調節が可能となる。さらに、第2焦点検出手段で算出したコントラスト評価値から算出される第2デフォーカス量がフォーカスレンズの最大駆動デフォーカス量より大きい場合に、フォーカスレンズ駆動を伴わずに、高速高精度な焦点調節が可能となる。
(その他の実施形態)
また、本発明は、以下の処理を実行することによっても実現される。即ち、上述した実施形態の機能を実現するソフトウェア(プログラム)を、ネットワーク又は各種記憶媒体を介してシステム或いは装置に供給し、そのシステム或いは装置のコンピュータ(またはCPUやMPU等)がプログラムを読み出して実行する処理である。
With the above configuration, it is possible to suppress the difference between the detected in-focus position calculated from the focus detection signal and the best in-focus position of the imaging signal, and to perform highly accurate focus adjustment. Further, even if the second defocus amount calculated from the contrast evaluation value calculated by the second focus detection means is larger than the maximum drive defocus amount, focus adjustment is not impossible, and highly accurate focus adjustment is possible. Further, when the second defocus amount calculated from the contrast evaluation value calculated by the second focus detection means is larger than the maximum driving defocus amount of the focus lens, high-speed and high-precision focus adjustment without driving the focus lens. Is possible.
(Other embodiments)
The present invention can also be realized by executing the following processing. That is, software (program) that realizes the functions of the above-described embodiments is supplied to a system or apparatus via a network or various storage media, and a computer (or CPU, MPU, or the like) of the system or apparatus reads the program. It is a process to be executed.

200:画素群、200R,200G,200B:画素、201,202:焦点検出用画素、501:第1瞳部分領域、502:第2瞳部分領域 200: pixel group, 200R, 200G, 200B: pixel, 201, 202: focus detection pixel, 501: first pupil partial region, 502: second pupil partial region

Claims (14)

結像光学系の第1の瞳部分領域を通過する光束を受光する第1の焦点検出用画素と、前記第1の瞳部分領域とは異なる前記結像光学系の第2の瞳部分領域を通過する光束を受光する第2の焦点検出用画素と、前記結像光学系の前記第1の瞳部分領域と前記第2の瞳部分領域を合わせた瞳領域を通過する光束を受光する撮像用画素とを複数配列した撮像素子と、
前記第1の焦点検出用画素から得られる第1の信号と、前記第2の焦点検出用画素から得られる第2の信号とに基づいて位相差方式の焦点調節を行う第1の焦点調節手段と、
前記第1の焦点検出用画素から得られる第1の信号と、前記第2の焦点検出用画素から得られる第2の信号とをシフトして加算することにより生成された加算信号に基づいてコントラスト検出方式の焦点調節を行う第2の焦点調節手段と、
前記結像光学系の大デフォーカス状態から小デフォーカス状態までの焦点調節を前記第1の焦点調節手段を用いて行い、前記小デフォーカス状態から最良合焦位置の近傍までの焦点調節を前記第2の焦点調節手段を用いて行うように制御する制御手段と、を備え、
前記制御手段は、前記第2の焦点調節手段により検出されたデフォーカス量と前記結像光学系のフォーカスレンズの最大駆動量との差が、前記第2の焦点調節手段により前記第1の信号と前記第2の信号をシフトして加算する加算処理で焦点調節が可能な範囲以内の場合に、前記第2の焦点調節手段に前記加算処理による焦点調節を行わせることを特徴とする撮像装置。
A first focus detection pixel that receives a light beam passing through the first pupil partial region of the imaging optical system, and a second pupil partial region of the imaging optical system that is different from the first pupil partial region. A second focus detection pixel that receives a light beam that passes through, and an image sensor that receives a light beam that passes through a pupil region obtained by combining the first pupil partial region and the second pupil partial region of the imaging optical system. An image sensor having a plurality of pixels arranged;
First focus adjustment means for performing phase difference type focus adjustment based on a first signal obtained from the first focus detection pixel and a second signal obtained from the second focus detection pixel. When,
Contrast based on an addition signal generated by shifting and adding the first signal obtained from the first focus detection pixel and the second signal obtained from the second focus detection pixel. A second focus adjusting means for performing focus adjustment of the detection method;
The focus adjustment from the large defocus state to the small defocus state of the imaging optical system is performed using the first focus adjustment unit, and the focus adjustment from the small defocus state to the vicinity of the best focus position is performed. Control means for performing control using the second focus adjustment means,
The control means determines that the difference between the defocus amount detected by the second focus adjustment means and the maximum drive amount of the focus lens of the imaging optical system is the first signal by the second focus adjustment means. And an image pickup apparatus that causes the second focus adjustment means to perform focus adjustment by the addition processing when the addition processing for shifting and adding the second signals is within a range in which focus adjustment is possible. .
前記第2の焦点調節手段により検出されたデフォーカス量が前記結像光学系のフォーカスレンズの最大駆動量よりも大きく、且つ前記第2の焦点調節手段により検出されたデフォーカス量と前記結像光学系のフォーカスレンズの最大駆動量との差が前記第2の焦点調節手段により前記加算処理で焦点調節が可能な範囲以内の場合に、前記制御手段は、前記フォーカスレンズを前記最大駆動量まで駆動させた後、前記第2の焦点調節手段に前記加算処理による焦点調節を行わせることを特徴とする請求項1に記載の撮像装置。   The defocus amount detected by the second focus adjustment means is larger than the maximum drive amount of the focus lens of the imaging optical system, and the defocus amount detected by the second focus adjustment means and the image formation When the difference from the maximum drive amount of the focus lens of the optical system is within a range in which focus adjustment can be performed by the addition processing by the second focus adjustment unit, the control unit moves the focus lens to the maximum drive amount. The imaging apparatus according to claim 1, wherein after being driven, the second focus adjustment unit performs focus adjustment by the addition process. 前記第2の焦点調節手段により検出されたデフォーカス量が、前記結像光学系のフォーカスレンズの最大駆動量よりも大きく、且つ前記第2の焦点調節手段により前記加算処理で焦点調節が可能な範囲以内の場合に、前記制御手段は、前記フォーカスレンズの駆動を行わずに、前記第2の焦点調節手段に前記加算処理による焦点調節を行わせることを特徴とする請求項1に記載の撮像装置。   The defocus amount detected by the second focus adjustment means is larger than the maximum drive amount of the focus lens of the imaging optical system, and the focus adjustment is possible by the addition processing by the second focus adjustment means. 2. The imaging according to claim 1, wherein the control unit causes the second focus adjustment unit to perform focus adjustment by the addition process without driving the focus lens when the value is within the range. apparatus. 前記第1の焦点調節手段による焦点調節を、デフォーカス量の絶対値が第1の所定値以下になるまで行った後、前記第2の焦点検出手段による焦点調節を、デフォーカス量の絶対値が、前記第1の所定値よりも小さい第2の所定値以下になるまで行うことを特徴とする請求項1に記載の撮像装置。   After the focus adjustment by the first focus adjustment unit is performed until the absolute value of the defocus amount is equal to or less than the first predetermined value, the focus adjustment by the second focus detection unit is performed by using the absolute value of the defocus amount. The imaging apparatus according to claim 1, wherein the imaging device is performed until the value becomes equal to or smaller than a second predetermined value that is smaller than the first predetermined value. 前記第1の焦点調節手段は、前記第1の信号と前記第2の信号に、第1のフィルター処理と第1のシフト処理を施して相関量を算出し、該相関量から第1のデフォーカス量を検出するとともに、前記第2の焦点調節手段は、前記第1の信号と前記第2の信号に、第2のフィルター処理と第2のシフト処理を施し、加算して前記加算信号を生成し、該加算信号からコントラスト評価値を算出し、該コントラスト評価値から第2のデフォーカス量を検出することを特徴とする請求項1に記載の撮像装置。   The first focus adjusting unit calculates a correlation amount by performing a first filter process and a first shift process on the first signal and the second signal, and calculates a first decimation from the correlation amount. In addition to detecting the focus amount, the second focus adjusting unit performs a second filter process and a second shift process on the first signal and the second signal, and adds them to obtain the added signal. The imaging apparatus according to claim 1, wherein the imaging device generates, calculates a contrast evaluation value from the addition signal, and detects a second defocus amount from the contrast evaluation value. 前記第2のフィルター処理の通過帯域が、前記第1のフィルター処理の通過帯域より高い周波帯域を含むことを特徴とする請求項5に記載の撮像装置。   The imaging apparatus according to claim 5, wherein a pass band of the second filter process includes a frequency band higher than a pass band of the first filter process. 結像光学系の第1の瞳部分領域を通過する光束を受光する第1の焦点検出用画素と、前記第1の瞳部分領域とは異なる前記結像光学系の第2の瞳部分領域を通過する光束を受光する第2の焦点検出用画素と、前記結像光学系の前記第1の瞳部分領域と前記第2の瞳部分領域を合わせた瞳領域を通過する光束を受光する撮像用画素とを複数配列した撮像素子を備える撮像装置を制御する方法であって、
前記第1の焦点検出用画素から得られる第1の信号と、前記第2の焦点検出用画素から得られる第2の信号とに基づいて位相差方式の焦点調節を行う第1の焦点調節工程と、
前記第1の焦点検出用画素から得られる第1の信号と、前記第2の焦点検出用画素から得られる第2の信号とをシフトして加算することにより生成された加算信号に基づいてコントラスト検出方式の焦点調節を行う第2の焦点調節工程と、
前記結像光学系の大デフォーカス状態から小デフォーカス状態までの焦点調節を前記第1の焦点調節工程で行い、前記小デフォーカス状態から最良合焦位置の近傍までの焦点調節を前記第2の焦点調節工程で行うように制御する制御工程と、を備え、
前記制御工程では、前記第2の焦点調節工程により検出されたデフォーカス量と前記結像光学系のフォーカスレンズの最大駆動量との差が、前記第2の焦点調節工程により前記第1の信号と前記第2の信号をシフトして加算する加算処理で焦点調節が可能な範囲以内の場合に、前記第2の焦点調節工程において前記加算処理による焦点調節を行わせることを特徴とする撮像装置の制御方法。
A first focus detection pixel that receives a light beam passing through the first pupil partial region of the imaging optical system, and a second pupil partial region of the imaging optical system that is different from the first pupil partial region. A second focus detection pixel that receives a light beam that passes through, and an image sensor that receives a light beam that passes through a pupil region obtained by combining the first pupil partial region and the second pupil partial region of the imaging optical system. A method for controlling an imaging device including an imaging device in which a plurality of pixels are arranged,
A first focus adjustment step of performing phase difference type focus adjustment based on a first signal obtained from the first focus detection pixel and a second signal obtained from the second focus detection pixel; When,
Contrast based on an addition signal generated by shifting and adding the first signal obtained from the first focus detection pixel and the second signal obtained from the second focus detection pixel. A second focus adjustment step for performing detection-type focus adjustment;
The focus adjustment from the large defocus state to the small defocus state of the imaging optical system is performed in the first focus adjustment step, and the focus adjustment from the small defocus state to the vicinity of the best focus position is performed in the second focus adjustment step. And a control process for performing control in the focus adjustment process.
In the control step, the difference between the defocus amount detected in the second focus adjustment step and the maximum drive amount of the focus lens of the imaging optical system is determined by the second focus adjustment step. When the addition processing for shifting and adding the second signal is within a range where focus adjustment is possible, the imaging device is characterized in that focus adjustment by the addition processing is performed in the second focus adjustment step. Control method.
前記第2の焦点調節工程により検出されたデフォーカス量が前記結像光学系のフォーカスレンズの最大駆動量よりも大きく、且つ前記第2の焦点調節工程により検出されたデフォーカス量と前記結像光学系のフォーカスレンズの最大駆動量との差が前記第2の焦点調節工程により前記加算処理で焦点調節が可能な範囲以内の場合に、前記制御工程では、前記フォーカスレンズを前記最大駆動量まで駆動させた後、前記第2の焦点調節工程において前記加算処理による焦点調節を行わせることを特徴とする請求項7に記載の撮像装置の制御方法。   The defocus amount detected by the second focus adjustment step is larger than the maximum drive amount of the focus lens of the imaging optical system, and the defocus amount detected by the second focus adjustment step and the image formation When the difference from the maximum drive amount of the focus lens of the optical system is within a range in which the focus adjustment can be performed by the addition process by the second focus adjustment step, the control step is configured to move the focus lens to the maximum drive amount. 8. The method of controlling an imaging apparatus according to claim 7, wherein after the driving, the focus adjustment by the addition process is performed in the second focus adjustment step. 前記第2の焦点調節工程により検出されたデフォーカス量が、前記結像光学系のフォーカスレンズの最大駆動量よりも大きく、且つ前記第2の焦点調節工程により前記加算処理で焦点調節が可能な範囲以内の場合に、前記制御工程では、前記フォーカスレンズの駆動を行わずに、前記第2の焦点調節工程において前記加算処理による焦点調節を行わせることを特徴とする請求項7に記載の撮像装置の制御方法。   The defocus amount detected by the second focus adjustment step is larger than the maximum drive amount of the focus lens of the imaging optical system, and the focus adjustment can be performed by the addition processing by the second focus adjustment step. 8. The imaging according to claim 7, wherein in the case of being within a range, the focus adjustment by the addition process is performed in the second focus adjustment step without driving the focus lens in the control step. 9. Control method of the device. 前記第1の焦点調節工程による焦点調節を、デフォーカス量の絶対値が第1の所定値以下になるまで行った後、前記第2の焦点検出工程による焦点調節を、デフォーカス量の絶対値が、前記第1の所定値よりも小さい第2の所定値以下になるまで行うことを特徴とする請求項7に記載の撮像装置の制御方法。   After performing the focus adjustment in the first focus adjustment process until the absolute value of the defocus amount is equal to or less than the first predetermined value, the focus adjustment in the second focus detection process is performed using the absolute value of the defocus amount. The method according to claim 7, wherein the control is performed until the value becomes equal to or less than a second predetermined value that is smaller than the first predetermined value. 前記第1の焦点調節工程では、前記第1の信号と前記第2の信号に、第1のフィルター処理と第1のシフト処理を施して相関量を算出し、該相関量から第1のデフォーカス量を検出するとともに、前記第2の焦点調節工程では、前記第1の信号と前記第2の信号に、第2のフィルター処理と第2のシフト処理を施し、加算して前記加算信号を生成し、該加算信号からコントラスト評価値を算出し、該コントラスト評価値から第2のデフォーカス量を検出することを特徴とする請求項7に記載の撮像装置の制御方法。   In the first focus adjustment step, a correlation amount is calculated by performing a first filter process and a first shift process on the first signal and the second signal, and the first defocusing process calculates a correlation value. In addition to detecting the focus amount, in the second focus adjustment step, the first signal and the second signal are subjected to a second filter process and a second shift process and added to obtain the added signal. 8. The method according to claim 7, further comprising: generating a contrast evaluation value from the added signal, and detecting a second defocus amount from the contrast evaluation value. 前記第2のフィルター処理の通過帯域が、前記第1のフィルター処理の通過帯域より高い周波帯域を含むことを特徴とする請求項11に記載の撮像装置の制御方法。   The method of controlling an imaging apparatus according to claim 11, wherein the pass band of the second filter processing includes a frequency band higher than the pass band of the first filter processing. 請求項8乃至12のいずれか1項に記載の制御方法の各工程をコンピュータに実行させるためのプログラム。   The program for making a computer perform each process of the control method of any one of Claims 8 thru | or 12. 請求項8乃至12のいずれか1項に記載の制御方法の各工程をコンピュータに実行させるためのプログラムを記憶したコンピュータが読み取り可能な記憶媒体。   A computer-readable storage medium storing a program for causing a computer to execute each step of the control method according to any one of claims 8 to 12.
JP2014111666A 2014-05-29 2014-05-29 Image capturing device, control method therefor, program, and storage medium Pending JP2015225310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014111666A JP2015225310A (en) 2014-05-29 2014-05-29 Image capturing device, control method therefor, program, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014111666A JP2015225310A (en) 2014-05-29 2014-05-29 Image capturing device, control method therefor, program, and storage medium

Publications (1)

Publication Number Publication Date
JP2015225310A true JP2015225310A (en) 2015-12-14

Family

ID=54842058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014111666A Pending JP2015225310A (en) 2014-05-29 2014-05-29 Image capturing device, control method therefor, program, and storage medium

Country Status (1)

Country Link
JP (1) JP2015225310A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016226273A (en) * 2015-05-29 2016-12-28 エルエス産電株式会社Lsis Co., Ltd. Power conversion apparatus and method for operating thereof
JP2017139740A (en) * 2016-01-29 2017-08-10 キヤノン株式会社 Imaging device and imaging apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016226273A (en) * 2015-05-29 2016-12-28 エルエス産電株式会社Lsis Co., Ltd. Power conversion apparatus and method for operating thereof
JP2017139740A (en) * 2016-01-29 2017-08-10 キヤノン株式会社 Imaging device and imaging apparatus

Similar Documents

Publication Publication Date Title
JP6239862B2 (en) Focus adjustment apparatus, focus adjustment method and program, and imaging apparatus
CN107465866B (en) Image processing apparatus and method, image capturing apparatus, and computer-readable storage medium
JP6362060B2 (en) Imaging apparatus, control method thereof, and program
JP6239857B2 (en) Imaging apparatus and control method thereof
JP6249825B2 (en) Imaging device, control method thereof, and control program
JP6239855B2 (en) Focus adjustment apparatus, focus adjustment method and program, and imaging apparatus
JP6381266B2 (en) IMAGING DEVICE, CONTROL DEVICE, CONTROL METHOD, PROGRAM, AND STORAGE MEDIUM
JP2015129846A (en) Image capturing device and control method therefor
JP7057397B2 (en) Image processing device, image pickup device, image processing method, program, and storage medium
JP6371568B2 (en) FOCUS DETECTION DEVICE, IMAGING DEVICE, AND FOCUS DETECTION METHOD
JP2016038414A (en) Focus detection device, control method thereof, and imaging apparatus
JP6486149B2 (en) Image processing apparatus, imaging apparatus, image processing method, program, and storage medium
JP6700986B2 (en) Image processing device, imaging device, image processing method, and program
JP2015194736A (en) Imaging device and method for controlling the same
JP2015210285A (en) Imaging device, manufacturing method of the same, program thereof and recording medium
JP6254843B2 (en) Image processing apparatus and control method thereof
JP6285683B2 (en) Imaging apparatus and control method thereof
JP2015145970A (en) Imaging device, control method of the same, program abd recording medium
JP2015225310A (en) Image capturing device, control method therefor, program, and storage medium
JP2015225311A (en) Image capturing device, control method therefor, program, and storage medium
WO2016181620A1 (en) Image processing device, imaging device, image processing method, program, and storage medium
JP2018116267A (en) Focus detection device and method, and imaging device
JP2016133595A (en) Controller, imaging device, control method, program, and storage medium
JP2016009024A (en) Focus detector, control method of the same, and imaging apparatus
JP2015215395A (en) Imaging device, control device, control method, program, and storage medium