JP2015224385A - NbC DISPERSION STRENGTHENED HASTELLOY BASE ALLOY, METHOD FOR PRODUCING THE SAME, STEEL HAVING CORROSION RESISTANT-WEAR RESISTANT SURFACE BUILD-UP WELD LAYER, METHOD FOR PRODUCING THE SAME, AND COLD TOOL - Google Patents

NbC DISPERSION STRENGTHENED HASTELLOY BASE ALLOY, METHOD FOR PRODUCING THE SAME, STEEL HAVING CORROSION RESISTANT-WEAR RESISTANT SURFACE BUILD-UP WELD LAYER, METHOD FOR PRODUCING THE SAME, AND COLD TOOL Download PDF

Info

Publication number
JP2015224385A
JP2015224385A JP2014111897A JP2014111897A JP2015224385A JP 2015224385 A JP2015224385 A JP 2015224385A JP 2014111897 A JP2014111897 A JP 2014111897A JP 2014111897 A JP2014111897 A JP 2014111897A JP 2015224385 A JP2015224385 A JP 2015224385A
Authority
JP
Japan
Prior art keywords
hastelloy
nbc
alloy
powder
build
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014111897A
Other languages
Japanese (ja)
Other versions
JP6528106B2 (en
Inventor
雅義 秋山
Masayoshi Akiyama
雅義 秋山
佳史 東川
Yoshifumi Higashikawa
佳史 東川
正樹 森田
Masaki Morita
正樹 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AISEIHAADO KK
Original Assignee
AISEIHAADO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AISEIHAADO KK filed Critical AISEIHAADO KK
Priority to JP2014111897A priority Critical patent/JP6528106B2/en
Publication of JP2015224385A publication Critical patent/JP2015224385A/en
Application granted granted Critical
Publication of JP6528106B2 publication Critical patent/JP6528106B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an alloy and a steel combining cold wear resistance and corrosion resistance and not conventionally present, methods for producing them, and a relatively inexpensive cold tool produced from the alloy and steel.SOLUTION: As a steel 1 in which a build-up weld layer 3 is formed on the surface of a metallic material to be formed into a base material 2 by a plasma powder build-up welding technique such as build-up welding, a mixture obtained by dispersing a small amount of the fine particles of niobium carbide with the average particle diameter below 45 μm into a Hastelloy is applied upon the welding, thus the wear resistance provided in the niobium carbide is imparted without damaging the wear resistance characteristically provided in the Hastelloy. Further, as the alloy in which the fine particles of the niobium carbide below 45 μm are dispersed into the Hastelloy, it is a new NbC dispersion strengthened Hastelloy combining corrosion resistance and wear resistance.

Description

高い耐腐食性と耐摩耗性を有する新規合金と、この合金からなる肉盛溶接層を母材の表面に有し高い耐腐食性と耐摩耗性を具えた鋼材と、これらの合金と鋼材から製造される冷間工具に関するものである。   From a new alloy with high corrosion resistance and wear resistance, a steel material with a build-up weld layer made of this alloy on the surface of the base metal and having high corrosion resistance and wear resistance, and from these alloys and steel materials The present invention relates to a manufactured cold tool.

強い腐食環境下で使用される合金材料としては、現在のところ事実上、高ニッケル(Ni)基合金であるハステロイしか存在しないといわれている。しかしながら、ハステロイは耐摩耗性に乏しく、強い摩擦力で接触対象と接する摺動部材としては利用することができないという問題がある。一方、耐摩耗性に優れた合金としては、ステライト等のコバルト(Co)基合金が知られているが、ステライト等は耐食性に乏しく、腐食環境下では利用することができないという問題がある。   Currently, it is said that, as an alloy material used in a strong corrosive environment, only Hastelloy, which is a high nickel (Ni) -based alloy, exists at present. However, there is a problem that Hastelloy has poor wear resistance and cannot be used as a sliding member that comes into contact with a contact object with a strong frictional force. On the other hand, cobalt (Co) based alloys such as stellite are known as alloys having excellent wear resistance. However, stellite has poor corrosion resistance and cannot be used in a corrosive environment.

強腐食環境下で使用される工具・装置としては、合成ゴム混練機用ロータを例示することができる。合成ゴム混練機用ロータの分野においては、炭素鋼母材の表面に、Ni系やCo系の自溶合金を溶射被覆したものが知られている(特許文献1参照)。しかしながら、溶射技術では、母材表面に比較的薄い溶射被膜を形成することしかできず、しかも母材との冶金的接合性が悪く、剥離を起こしやすいという大きな問題がある。   As a tool and apparatus used in a strong corrosive environment, a rotor for a synthetic rubber kneader can be exemplified. In the field of a rotor for a synthetic rubber kneader, a carbon steel base material is known in which a Ni-based or Co-based self-fluxing alloy is spray-coated (see Patent Document 1). However, the thermal spraying technique can only form a relatively thin thermal spray coating on the surface of the base material, and has a great problem that it is poor in metallurgical bonding with the base material and easily causes peeling.

このような事情もあり、合成ゴム混練機用ロータには、耐腐食性を優先し短期間での交換を前提としてハステロイが利用されることが多い現状にある。換言すれば、強い腐食環境下において好適に利用することができる耐摩耗性を有する合金、特に溶接金属は存在しない、とこれまで考えられてきた。そのため、高耐腐食性と高耐摩耗性の両方の性質を備えた溶接金属系の設備素材や工具素材は、存在していないのが現状であり、現実的には設備や工具の早期交換しか対応策がなく、設備コストや工具コストが極めて高くついている。しかしながら、素材加工産業での設備運転環境は過酷化しており、設備や工具の強腐食環境下での耐摩耗性の要求が高度化している。そのため、従来にない高耐腐食性と高耐摩耗性を兼ね備えた合金素材が求められている。   Under such circumstances, hastelloy is often used for rotors for synthetic rubber kneaders, giving priority to corrosion resistance and presuming replacement in a short period of time. In other words, it has hitherto been considered that there is no alloy having wear resistance, particularly a weld metal, which can be suitably used in a strong corrosive environment. For this reason, there are currently no weld metal equipment materials and tool materials that have both high corrosion resistance and high wear resistance properties. There are no countermeasures, and equipment costs and tool costs are extremely high. However, the equipment operating environment in the material processing industry is becoming harsher, and the demand for wear resistance in a highly corrosive environment of equipment and tools is becoming higher. Therefore, an alloy material that has both high corrosion resistance and high wear resistance, which has never existed before, has been demanded.

合金の母材表面の硬度を向上させる手法の一つとして、硬質物質であるニオブ炭化物(NbC)を含む金属−炭化物複合皮膜を金属表面に溶接により形成する技術が提案されている(例えば、特許文献2、特許文献3参照)。特許文献2に開示された技術は、継目無管のプラグミル圧延に使用されるプラグとして、炭素鋼、合金鋼、ステンレス鋼、Ni基合金等の母材表面に、NbC粉末とステンレス鋼粉末からなるマトリックス金属の混合粉末をプラズマ粉体肉盛法によって金属−炭化物複合皮膜を形成するものである。一方、特許文献3に開示された技術は、熱間加工用工具及び継目無管鋼のプラグとして、炭素鋼、合金鋼、ステンレス鋼、ニッケル基合金等の母材表面に、NbC粉末とCo基合金又はNi基合金からなるマトリックス金属の混合粉末を、プラズマ粉体肉盛法等によって金属−炭化物複合皮膜を形成するものである。   As one of the techniques for improving the hardness of the base material surface of an alloy, a technique for forming a metal-carbide composite film containing niobium carbide (NbC), which is a hard substance, on a metal surface by welding has been proposed (for example, patents). Reference 2 and Patent Reference 3). The technique disclosed in Patent Document 2 is made of NbC powder and stainless steel powder on the surface of a base material such as carbon steel, alloy steel, stainless steel, or Ni-based alloy as a plug used in seamless pipe mill rolling. A metal-carbide composite film is formed from a mixed powder of matrix metal by a plasma powder overlaying method. On the other hand, the technique disclosed in Patent Document 3 is a tool for hot working and a plug of seamless pipe steel, on the surface of a base material such as carbon steel, alloy steel, stainless steel, nickel base alloy, NbC powder and Co base. A metal-carbide composite coating is formed from a mixed powder of a matrix metal made of an alloy or a Ni-based alloy by a plasma powder cladding method or the like.

特開2003−277861号公報Japanese Patent Laid-Open No. 2003-277861 特開平9−52105号公報JP-A-9-52105 特開2007−160338号公報JP 2007-160338 A

しかしながら、特許文献2、3に開示された技術は、熱間工具に適用されるものであり、熱間での耐摩耗性評価と冷間での耐摩耗性評価は、使用環境、特に温度環境の相違から摩耗部分の様相と形態が全く異なるため、熱間工具に適用される条件を冷間工具に適用される条件に転用することはできない。その理由の一つとしては、特許文献2、3に記載の技術では、100μm程度の巨大なNbCの粒が用いられているが、NbCの硬度は極めて高く、このように巨大な硬質物質が表面に存在する工具を冷間で用いると、工具と接触する被加工材表面に擦過痕をつけてしまうのに対して、熱間では、被加工材が高温であり、加工後に表層部分は酸化物として落剥してしまうので、たとえ疵がついても実害が無い、ということが挙げられる。すなわち冷間では、被加工材はそのまま製品として出荷されるので、擦過痕が残存することは許されないという、熱間との顕著な相違がある。また、冷間工具の材料として、ハステロイ中にNbCを分散させた合金や、このような合金を表面肉盛層として母材の表面に形成した鋼材については、過去に報告の事例が存在しない。   However, the techniques disclosed in Patent Documents 2 and 3 are applied to hot tools, and the wear resistance evaluation in the hot and the wear resistance evaluation in the cold are performed in the use environment, particularly in the temperature environment. Since the appearance and form of the worn part are completely different from each other, the condition applied to the hot tool cannot be diverted to the condition applied to the cold tool. One of the reasons is that in the techniques described in Patent Documents 2 and 3, huge NbC grains of about 100 μm are used, but the hardness of NbC is extremely high, and such a huge hard substance is on the surface. If the tool that is present in the cold is used, the surface of the workpiece that comes into contact with the tool will be scratched, whereas the workpiece will be hot during the hot process, and the surface layer will be oxide after processing. It is said that there will be no real harm even if a flaw is attached. That is, in the cold, the workpiece is shipped as a product as it is, so there is a significant difference from the hot that the scratch marks are not allowed to remain. In addition, as a material for a cold tool, there has been no reported example of an alloy in which NbC is dispersed in Hastelloy or a steel material in which such an alloy is used as a surface overlay layer on the surface of a base material.

さらに、特許文献2、3では、使用されるNbCの平均粒径が65〜135μm程度のものが好ましい、と開示されており、実施例では平均粒径が100μm(特許文献2、3)と120μm(特許文献2)のNbCを用いた実験例が開示されているが、この平均粒径は比較的大きいものであるとはいえ、この範囲よりも小さく市販もされていないNbC粉末を用いた場合の耐摩耗性についてはこれまで検討すらされてこなかった。その理由としては、比較的粒径の小さいNbCの粉末は、プラズマ粉体肉盛溶接を含む溶接をすることができないと当業者の間で言われてきており、それが当然のこととして信じられてきたことによるものと考えられる。   Further, Patent Documents 2 and 3 disclose that the average particle diameter of NbC used is preferably about 65 to 135 μm. In the examples, the average particle diameter is 100 μm (Patent Documents 2 and 3) and 120 μm. Although the experimental example using NbC of (patent document 2) is disclosed, although this average particle diameter is relatively large, when NbC powder smaller than this range and not commercially available is used So far, the wear resistance has not been studied. For this reason, it has been said by those skilled in the art that NbC powder having a relatively small particle size cannot be welded, including plasma powder overlay welding, and this is believed to be a matter of course. This is probably due to the fact that

以上のような問題に鑑みて本発明は、耐腐食性と耐摩耗性の両方の性質を兼ね備えた冷間工具に適した斬新な合金及び鋼材として、ハステロイ中に比較的細かいNbC粉末を分散させた構成を有する合金とその製法、斯かる合金を表面肉盛層として備えた鋼材とその製法、並びにこれらの合金若しくは鋼材からなる有用な冷間工具の提供を主たる目的とするものである。   In view of the above problems, the present invention is a novel alloy and steel material suitable for cold tools having both corrosion resistance and wear resistance properties, and relatively fine NbC powder is dispersed in Hastelloy. The main object of the present invention is to provide an alloy having such a structure and a method for producing the same, a steel material provided with such an alloy as a surface overlay layer, a method for producing the steel material, and a useful cold tool made of these alloys or steel materials.

本発明の新規合金は、ハステロイ中に、平均粒径が45μm未満のニオブ炭化物粉末を分散させてなることを特徴とするNbC分散強化型ハステロイ系合金である。   The novel alloy of the present invention is an NbC dispersion strengthened hastelloy alloy characterized in that niobium carbide powder having an average particle size of less than 45 μm is dispersed in hastelloy.

斯かる本発明は、細かい粒子のNbCを溶接することができないと考えられていたこれまでの常識を覆して、耐腐食性を具えたハステロイに、硬質で耐摩耗効果があるNbCの細かい粉末を分散させることに初めて成功したものであり、耐腐食性と耐摩耗性の両方の特性を兼ね備えた新規な合金を創出したものである。このNbC分散強化型ハステロイ系合金は、耐腐食性と耐摩耗性を有するという、強腐食環境で長期間使用することができるこれまでにない冷間工具の材料として使用することができる極めて有用なものとなる。   In the present invention, NbC fine powder that is hard and wear-resistant is applied to Hastelloy that has been considered to be unable to weld NbC of fine particles, and that has heretofore been considered to be resistant to corrosion. It was the first successful dispersion and created a new alloy that combines both corrosion resistance and wear resistance. This NbC dispersion strengthened hastelloy alloy has extremely high corrosion resistance and wear resistance and can be used as a material for an unprecedented cold tool that can be used for a long time in a highly corrosive environment. It will be a thing.

ここで、ハステロイは、ニッケル(Ni)基にモリブデン(Mo)やクロム(Cr)を比較的多く混合することによって耐腐食性や耐熱性を高めた合金の総称であり、本発明のNbC分散強化型ハステロイ系合金には、最も一般的なハステロイ・C276やハステロイ・C22を始めとするあらゆるハステロイ系合金を、要求される腐食環境やコストに応じて適宜選択し、適用することができる。   Here, Hastelloy is a general term for alloys whose corrosion resistance and heat resistance are improved by mixing a relatively large amount of molybdenum (Mo) and chromium (Cr) into a nickel (Ni) group, and the NbC dispersion strengthening of the present invention. As the type Hastelloy alloy, any Hastelloy alloy including the most common Hastelloy C276 and Hastelloy C22 can be appropriately selected and applied according to the required corrosive environment and cost.

このNbC分散強化型ハステロイ系合金は、ハステロイの粉末と、粒径が45μm未満のNbCの粉末との混合物を原料として、鋳造又はプラズマ溶接により合金として製造することができる。鋳造の場合は、合金の原料となるハステロイを溶かした溶解炉にNbCの粉末を投入したものを型に流して鋳込む方法を採用することができる。プラズマ溶接による場合、高温を供給することができるプラズマ粉体溶接(Plasma Transferred Arc 溶接:以下、PTA溶接)法を用いて適宜の母材にハステロイとNbCの粉末の混合物を肉盛溶接し、その肉盛溶接層のみを抽出するという方法を採用することができる。   This NbC dispersion-strengthened hastelloy alloy can be manufactured as an alloy by casting or plasma welding using a mixture of hastelloy powder and NbC powder having a particle size of less than 45 μm as a raw material. In the case of casting, it is possible to adopt a method in which NbC powder is poured into a melting furnace in which Hastelloy, which is a raw material of the alloy, is melted, and poured into a mold. In the case of plasma welding, a mixture of Hastelloy and NbC powder is overlay welded to an appropriate base material using a plasma powder welding (PTA welding) method that can supply a high temperature. A method of extracting only the overlay welding layer can be employed.

本発明のNbC分散強化型ハステロイ系合金の製造にあたっては、ハステロイとニオブ炭化物の粉末混合物中に占めるニオブ炭化物の粉末の重量比を0%よりも多く50%以下とすることが望ましい。ニオブ炭化物の粉末は、重量比で0%を超える値とすることが前提(ニオブ炭化物の粉末をハステロイ粉末に混合することが必須)であるが、重量比50%を超えた場合には、得られた合金がハステロイ本来の耐腐食性を十分に発揮できず、強腐食環境下での使用に適さなくなる可能性が高いと考えられることから、本発明においては、ニオブ炭化物の粉末は、ハステロイの粉末との混合物の0〜50重量%とすることが適切であるといえる。この範囲であれば、要求される耐摩耗性能と耐腐食性能に応じてニオブ炭化物の粉末を適宜割合とすればよいが、ハステロイとの混合物に占めるニオブ炭化物の粉末の重量比を5%以上30%以下とすれば、比較的少量のニオブ炭化物粉末であっても十分な耐摩耗性と耐腐食性を有するNbC分散強化型ハステロイ系合金を得ることができる。   In producing the NbC dispersion strengthened hastelloy alloy of the present invention, it is desirable that the weight ratio of niobium carbide powder in the powder mixture of hastelloy and niobium carbide is more than 0% and 50% or less. Niobium carbide powder is premised on a weight ratio exceeding 0% (necessary to mix niobium carbide powder with Hastelloy powder), but if the weight ratio exceeds 50%, it will be obtained. In the present invention, the niobium carbide powder is made of Hastelloy because it is considered that the obtained alloy cannot sufficiently exhibit the inherent corrosion resistance of Hastelloy and is not likely to be suitable for use in a strong corrosion environment. It can be said that it is appropriate to make it 0 to 50 weight% of a mixture with a powder. Within this range, the niobium carbide powder may be appropriately mixed in accordance with the required wear resistance and corrosion resistance, but the weight ratio of the niobium carbide powder in the mixture with Hastelloy is 5% to 30%. % Or less, an NbC dispersion strengthened hastelloy alloy having sufficient wear resistance and corrosion resistance can be obtained even with a relatively small amount of niobium carbide powder.

このようにハステロイの粉末をマトリックスとして、45μm未満という細かいNbCの粉末を比較的少量だけ添加して溶接した場合、得られた合金中ではNbCの粉末の一部は、プラズマ溶接等の溶接時の熱によってNbCの表層部が(あるいは場合によっては芯部までが)融け、隣り合った同種のNbCの粒と結合して45μm以上の塊となるものも存在する可能性があるものの、大半のNbCの粉末は投入された際の大きさ(45μm)よりも小さい粒子として存在し、しかもニオブ(Nb)と炭素(C)とが分離せずNbCとして存在したままの状態であり、ハステロイ中にほぼ均一に分散しているため、ハステロイの耐腐食性を損なうことなくNbCによる耐摩耗性を獲得できることになるのである。   When a relatively small amount of fine NbC powder of less than 45 μm is added and welded using Hastelloy powder as a matrix in this way, a part of the NbC powder in the obtained alloy is obtained during welding such as plasma welding. Although the surface layer of NbC is melted by heat (or in some cases up to the core), there is a possibility that some of the NbC may be bonded to adjacent NbC grains and become a lump of 45 μm or more. Is present as particles smaller than the size (45 μm) when charged, and niobium (Nb) and carbon (C) are not separated and remain as NbC. Since it is uniformly dispersed, wear resistance by NbC can be obtained without impairing the corrosion resistance of Hastelloy.

また、本発明に係る鋼材は、母材となる金属材の表面に、肉盛溶接層を形成した鋼材であって、この肉盛溶接層が、上述したNbC分散強化型ハステロイ系合金、すなわちハステロイに平均粒径が45μm未満のニオブ炭化物の粉末を分散させた合金からなるものであることを特徴としている。   The steel material according to the present invention is a steel material in which a build-up weld layer is formed on the surface of a metal material as a base material, and this build-up weld layer is the above-described NbC dispersion strengthened hastelloy alloy, that is, hastelloy. And an alloy in which niobium carbide powder having an average particle size of less than 45 μm is dispersed.

本発明の係る鋼材は、ハステロイによる耐腐食性に加えて、ハステロイにはない耐摩耗性をニオブ炭化物によって兼ね備えた肉盛溶接層を母材の表面に有する鋼材である。特に、平均粒径45μm未満という非常に小さいニオブ炭化物の粉末をハステロイに混在させた合金は上述の通りこれまで存在せず、またこの合金を肉盛溶接層として有する鋼材としても従来にない全く新規なものであり、上述したNbC分散強化型ハステロイ系合金と同様に、強い腐食環境下で使用される鋼材として、特に冷間において耐摩耗性能が要求される鋼材として、極めて有用なものである。   The steel material according to the present invention is a steel material having, on the surface of the base material, a built-up weld layer that has a wear resistance not found in Hastelloy in combination with niobium carbide in addition to the corrosion resistance due to Hastelloy. In particular, as described above, an alloy in which very small niobium carbide powder having an average particle size of less than 45 μm is mixed in Hastelloy has not existed as described above, and it is completely new as a steel material having this alloy as a buildup weld layer As in the case of the NbC dispersion strengthened hastelloy-based alloy described above, it is extremely useful as a steel material used in a strong corrosive environment, particularly as a steel material requiring wear resistance in the cold.

肉盛溶接層は、溶射被膜の形成技術と異なり、比較的厚い層を形成することができる上に、肉盛溶接層と母材とが部分的に混ざり合うため剥離の問題も生じ難いといえる。このことと、一般的な腐食環境下での摩耗に対する肉盛溶接層の耐久性を考慮すると、肉盛溶接層の平均厚さを、2mm以上4mm以下とすれば十分である。一層盛りの肉盛溶接では、2mm程度の肉盛溶接層を形成するのが限界であるため、二層盛りの肉盛溶接層を形成する場合には、肉盛溶接層の総厚さの上限は4mmとなる。   Unlike the thermal spray coating technology, the overlay weld layer can form a relatively thick layer, and the overlay weld layer and the base material are partially mixed, so that it is difficult to cause peeling problems. . Considering this and the durability of the build-up weld layer against wear under a general corrosive environment, it is sufficient that the average thickness of the build-up weld layer is 2 mm or more and 4 mm or less. In the case of forming a build-up weld layer of about 2 mm, the upper limit of the total thickness of the build-up weld layer is required when forming a build-up weld layer of two layers. Is 4 mm.

一方、本発明の鋼材において母材に適用される金属材は特に限定されるものではないが、肉盛溶接層の形成時に、肉盛溶接層のハステロイ中のニッケルが希釈されて耐腐食性が低下することは避けるべきである。そこで母材には、ニッケルを8%以上57%以下の重量割合で含有する合金からなる金属材が適切であるといえる。このようにニッケル(Ni)を比較的多く含有する金属材としては、ニッケルを比較的多く含有する合金として、オーステナイト系ステンレス(SUS304(Ni含有率8〜10.5%)、SUS316L(Ni含有率10〜14%)、SUS309S(Ni含有率12〜15%))や、ハステロイ(Ni含有率57%)等を例示することができる。すなわち、ニッケルの含有率が少ないと、肉盛溶接時にハステロイ中のニッケルが母材と混合された希釈され、肉盛溶接層の耐腐食性が低下するおそれがある一方、安価に製造できるという利点があることから、ニッケル含有率の下限値は8%が限界であり、肉盛溶接層のハステロイとの希釈の問題を生じない素材として、ハステロイを母材とした場合のニッケル含有率(57%)が上限となる。   On the other hand, the metal material applied to the base material in the steel material of the present invention is not particularly limited, but at the time of forming the build-up weld layer, the nickel in the hastelloy of the build-up weld layer is diluted and has corrosion resistance. Degradation should be avoided. Therefore, it can be said that a metal material made of an alloy containing nickel in a weight ratio of 8% or more and 57% or less is appropriate for the base material. Thus, as a metal material containing a relatively large amount of nickel (Ni), as an alloy containing a relatively large amount of nickel, austenitic stainless steel (SUS304 (Ni content 8 to 10.5%), SUS316L (Ni content) 10-14%), SUS309S (Ni content 12-15%)), Hastelloy (Ni content 57%), and the like. In other words, if the nickel content is low, the nickel in the Hastelloy is mixed with the base material at the time of build-up welding, and the corrosion resistance of the build-up weld layer may be reduced. Therefore, the lower limit of the nickel content is 8%, and as a material that does not cause a problem of dilution with the hastelloy of the build-up weld layer, the nickel content (57% when using hastelloy as a base material) ) Is the upper limit.

斯かる本発明の鋼材は、母材となる金属材の表面に、ハステロイの粉末とニオブ炭化物の粉末との混合物をプラズマ粉体肉盛溶接法により溶接する溶接工程を経て製造することができる。   Such a steel material of the present invention can be manufactured through a welding process in which a mixture of Hastelloy powder and niobium carbide powder is welded to the surface of a metal material as a base material by a plasma powder overlay welding method.

このようなPTA溶接法による鋼材の製造方法においては、ハステロイの粉末との混合物中に占めるニオブ炭化物の粉末の重量比を0%よりも多く50%以下とすることが望ましい。ニオブ炭化物の粉末は、溶接時に添加する粉末の混合物中に重量比で0%を超える値とすることが前提(ニオブ炭化物の粉末をハステロイ粉末に混合することが必須)であるが、重量比50%を超えた場合には、肉盛溶接層がハステロイ本来の耐腐食性を十分に発揮できず、強腐食環境下での使用に適さなくなる可能性が高いと考えられることから、本発明においては、ニオブ炭化物の粉末は、粉末混合物中で0〜50%とすることが適切であるといえる。この範囲であれば、要求される耐摩耗性能と耐腐食性能に応じてニオブ炭化物の粉末を適宜割合とすればよいが、ハステロイの粉末との混合物に占めるニオブ炭化物の粉末の重量比を5%以上30%以下とすれば、比較的少量のニオブ炭化物粉末であっても十分な耐摩耗性と耐腐食性を有する肉盛溶接層を得ることができる。   In such a method for producing a steel material by PTA welding, it is desirable that the weight ratio of niobium carbide powder in the mixture with Hastelloy powder is more than 0% and 50% or less. The niobium carbide powder is premised to have a value exceeding 0% by weight in the powder mixture added at the time of welding (it is essential to mix the niobium carbide powder into the Hastelloy powder), but the weight ratio is 50 In the present invention, it is highly likely that the overlay weld layer cannot fully exhibit the inherent corrosion resistance of Hastelloy and is not suitable for use in a strong corrosion environment. It can be said that the niobium carbide powder is suitably 0 to 50% in the powder mixture. Within this range, the niobium carbide powder may be appropriately mixed in accordance with the required wear resistance and corrosion resistance, but the weight ratio of the niobium carbide powder in the mixture with the Hastelloy powder is 5%. If it is 30% or less, a build-up weld layer having sufficient wear resistance and corrosion resistance can be obtained even with a relatively small amount of niobium carbide powder.

ただしこの他にも、本発明に係る上述した鋼材の製造方法においては、ハステロイの種類、ハステロイの粉末とニオブ炭化物の粉末の混合割合、ニオブ炭化物の粉末のサイズ、母材の種類等については、求められる腐食環境、耐摩耗性の程度、耐久性、コスト等によって、上述した通り種々アレンジすることができる。   However, in addition to the above, in the above-described method for manufacturing a steel material according to the present invention, the type of Hastelloy, the mixing ratio of Hastelloy powder and Niobium carbide powder, the size of Niobium carbide powder, the type of base material, etc. Depending on the corrosive environment required, the degree of wear resistance, durability, cost, etc., various arrangements can be made as described above.

さらに、本発明に係る冷間工具は、上述のNbC分散強化型ハステロイ系合金からなるもの、若しくは上述の鋼材により形成されて肉盛溶接層を摩擦面として設定したものである。このような冷間工具は、例えば次の様にして作製することも可能である。先ず、NbC分散強化型ハステロイ系合金の溶接棒を、鋳造等の方法で、事前に製造しておく。その後、工具強度を保たせるために、炭素鋼等の安価な強度部材を用いて、これを工具形状に近い形に予め成形あるいは加工する。その上で、その表面の必要な場所に、前記の溶接棒を用いて肉盛溶接を行う。もちろん、この肉盛溶接を直接PTA肉盛溶接によって行っても何ら問題はない。肉盛溶接完了後は、溶接表面にある溶接起因の凹凸を、切削などの加工によって除去し、所定の工具形状に仕上げる。以上のような工程で冷間工具を作製することも可能である。このような本発明の冷間工具では、摩擦面がハステロイ中にニオブ炭化物の細かい粒を適度に分散させた状態にあることから、従来のニオブ炭化物の巨大な粒を用いた場合のように工具と接触する被加工材表面に擦過痕をつけてしまう虞がなく、製品となる被加工材の品質や価値を向上することができる。また、耐腐食性と耐摩耗性を兼ね備え、耐久性のある冷間工具はこれまで存在していないことから、本発明は特に素材加工産業において全く新しく有用な冷間工具を提供することができるものである。   Furthermore, the cold tool which concerns on this invention consists of the above-mentioned NbC dispersion strengthening type | mold hastelloy-type alloy, or is formed with the above-mentioned steel material, and set the build-up welding layer as a friction surface. Such a cold tool can be produced as follows, for example. First, a welding rod of NbC dispersion strengthened hastelloy alloy is manufactured in advance by a method such as casting. Thereafter, in order to maintain the tool strength, an inexpensive strength member such as carbon steel is used, and this is pre-formed or processed into a shape close to the tool shape. Then, build-up welding is performed at the required place on the surface using the welding rod. Of course, there is no problem even if this overlay welding is directly performed by PTA overlay welding. After the build-up welding is completed, the unevenness caused by welding on the welding surface is removed by machining such as cutting, and finished into a predetermined tool shape. It is also possible to produce a cold tool by the process as described above. In such a cold tool of the present invention, since the friction surface is in a state in which fine particles of niobium carbide are appropriately dispersed in Hastelloy, the tool is as in the case of using conventional niobium carbide particles. There is no risk of scratching the surface of the workpiece that comes into contact with the workpiece, and the quality and value of the workpiece as a product can be improved. In addition, since there has been no durable cold tool that has both corrosion resistance and wear resistance, the present invention can provide a completely new and useful cold tool particularly in the material processing industry. Is.

本発明は、ハステロイ中にニオブ炭化物の小さい粒子を分散させた合金、もしくはハステロイとニオブ炭化物の合金から構成された肉盛溶接層を母材の表面に形成したものであるため、ハステロイの耐腐食性とニオブ炭化物の耐摩耗性の両方の特質を兼ね備えた全く新しい合金と鋼材を提供することができるものである。またそれにより、斯かる合金や鋼材から製造される有用な冷間工具であれば、強腐食環境下において耐摩耗性を発揮することができ、従来は頻繁に交換するほかなかったという状況を一変させ、このような状況で用いられる冷間工具として耐久性のあるものを新たに供給することができるようになる。   The present invention is an alloy in which small particles of niobium carbide are dispersed in hastelloy, or a built-up weld layer composed of an alloy of hastelloy and niobium carbide is formed on the surface of the base metal. It is possible to provide a completely new alloy and steel material that have both the characteristics of both wear resistance and wear resistance of niobium carbide. In addition, this makes it possible for a useful cold tool manufactured from such an alloy or steel material to exhibit wear resistance in a highly corrosive environment, changing the situation that it had to be replaced frequently in the past. Thus, it is possible to newly supply a durable cold tool used in such a situation.

本発明の一実施形態に係る鋼材及びその製造工程をPTA溶接装置と共に示す概観図。The general view which shows the steel materials which concern on one Embodiment of this invention, and its manufacturing process with a PTA welding apparatus. 同実施形態に係る鋼材と比較例の肉盛溶接層の組織の状態を示す光学顕微鏡写真。The optical microscope photograph which shows the state of the structure | tissue of the steel material which concerns on the same embodiment, and the overlay welding layer of a comparative example. 同実施形態に係る鋼材と比較例の試験片の冷間摩耗試験の概要を示す図。The figure which shows the outline | summary of the cold wear test of the steel material which concerns on the same embodiment, and the test piece of a comparative example. 同冷間摩耗試験を行った試験片と摩耗深さの計算概要を示す図。The figure which shows the calculation outline | summary of the test piece which performed the same cold wear test, and wear depth. 同冷間摩耗試験の結果を示すグラフ。The graph which shows the result of the cold wear test. 同実施形態に係る鋼材と比較例の試験片の冷間腐食試験の結果を示すグラフ。The graph which shows the result of the cold corrosion test of the steel material which concerns on the same embodiment, and the test piece of a comparative example.

以下、本発明の一実施形態を、図面を参照して説明する。
本発明の一実施形態に係る鋼材1は、図1に示すように、母材2と、この母材2の表面に形成された肉盛溶接層3とから構成されるものであり、同図の通り、プラズマ粉体肉盛溶接(Plasma Transferred Arc 溶接:以下、PTA溶接)法により製造されるものである。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, a steel material 1 according to an embodiment of the present invention includes a base material 2 and a build-up weld layer 3 formed on the surface of the base material 2. As described above, it is manufactured by a plasma powder overlay welding (Plasma Transferred Arc welding: hereinafter referred to as PTA welding) method.

図1は、本実施形態に適用されるPTA溶接装置4の要部の概観と、母材2への肉盛溶接層3の形成過程を示す模式的な縦断面図である。この溶接装置4は、主としてPTA装置(トーチのみを図示している)を備えた通常のものであるので、以下に簡単に説明する。トーチ4は、適宜の駆動手段(図示省略)により、例えば図中の左右方向に移動可能とされている。具体的にトーチ4は、内側から順にタングステン電極41、内壁42、中壁43、外壁44により構成されている。内壁42は水冷式ノズルとして機能している。タングステン電極41と内壁42とによりプラズマガス供給用ノズルを構成しており、図中上方から供給されるプラズマガスPGをトーチ4の先端部に向けて送出するようにしている。また、内壁42と中壁43とによりプラズマアーク収束及び粉体供給用ノズルを構成しており、図中上方から供給されるキャリアガスCGと、マトリックスとなるハステロイの粉末と、ニオブ炭化物(NbC)の粉末の混合物3aをトーチ4の先端部から放出するようにしている。さらに中壁43と外壁44とによりシールドガス供給用ノズルを構成しており、図中上方から供給されるシールドガスSGをトーチ4の先端部から噴射するようにしている。また、符号45及び46はそれぞれパイロットアーク電源、プラズマアーク電源を示している。パイロットアーク電源45は、タングステン電極41と母材2との間に電圧を発生させるためのものであり、プラズマアーク電源46は、発生した電圧を安定させるように制御するものである。プラズマガスPG、キャリアガスCG、シールドガスSGには、例えばアルゴン(Ar)ガスを適用することが好ましい。   FIG. 1 is a schematic longitudinal cross-sectional view showing an overview of the main part of a PTA welding apparatus 4 applied to the present embodiment and the process of forming the build-up weld layer 3 on the base material 2. Since this welding apparatus 4 is a normal apparatus mainly including a PTA apparatus (only a torch is shown), it will be briefly described below. The torch 4 can be moved, for example, in the left-right direction in the figure by appropriate driving means (not shown). Specifically, the torch 4 includes a tungsten electrode 41, an inner wall 42, an intermediate wall 43, and an outer wall 44 in order from the inside. The inner wall 42 functions as a water-cooled nozzle. The tungsten electrode 41 and the inner wall 42 constitute a plasma gas supply nozzle, and the plasma gas PG supplied from above in the figure is sent out toward the tip of the torch 4. The inner wall 42 and the inner wall 43 constitute a plasma arc convergence and powder supply nozzle. The carrier gas CG supplied from above in the figure, Hastelloy powder serving as a matrix, and niobium carbide (NbC). The powder mixture 3 a is discharged from the tip of the torch 4. Further, the middle wall 43 and the outer wall 44 constitute a shield gas supply nozzle, and the shield gas SG supplied from above in the figure is injected from the tip of the torch 4. Reference numerals 45 and 46 denote a pilot arc power source and a plasma arc power source, respectively. The pilot arc power supply 45 is for generating a voltage between the tungsten electrode 41 and the base material 2, and the plasma arc power supply 46 is controlled to stabilize the generated voltage. For example, argon (Ar) gas is preferably used as the plasma gas PG, the carrier gas CG, and the shield gas SG.

本実施形態の鋼材1において、母材2には、ニッケルを比較的多く含有する金属材として、ステンレスSUS316L(極低炭素鋼、Ni含有割合は10〜14重量%)を適用しているが、その他にも、SUS304やSUS309L等のオーステナイト系ステンレスや、ハステロイ等の比較的Ni含有率が高い金属材を母材2として適用することができる。   In the steel material 1 of the present embodiment, the base material 2 is made of stainless steel SUS316L (very low carbon steel, Ni content is 10 to 14% by weight) as a metal material containing a relatively large amount of nickel. In addition, an austenitic stainless steel such as SUS304 or SUS309L, or a metal material having a relatively high Ni content such as Hastelloy can be used as the base material 2.

肉盛溶接層3のマトリックスとなるハステロイとしては、本実施形態ではハステロイ・C276(Ni:57%、Mo:17%、Cr:16%、Fe:4〜7%、W:3〜4.5%。何れも重量%)を適用している。その他、ハステロイ・C22(Ni:52%、Mo:13%、Cr:22%、Fe:3%、W:3%。何れも重量%)や、他のハステロイと総称される合金に含まれるものを利用することができる。PTA溶接法では、ハステロイを粉末として供給している。   In this embodiment, Hastelloy C276 (Ni: 57%, Mo: 17%, Cr: 16%, Fe: 4-7%, W: 3-4.5) is used as the matrix of the overlay weld layer 3. %. Both are weight%). Others included in Hastelloy C22 (Ni: 52%, Mo: 13%, Cr: 22%, Fe: 3%, W: 3%, all weight percent) and other alloys collectively called Hastelloy Can be used. In the PTA welding method, Hastelloy is supplied as a powder.

肉盛溶接層3のハステロイに混合されるニオブ炭化物(NbC)は、粒径45μm未満の粉末(以下、このサイズの粉末を「細粒」という)を適用している。市販されているNbC粉末は、公称値では最小でも粒径150μmの粗大粒主体の粉末であるため、本実施形態では、市販の150μmまでのNbC粉末を目の粗さが45μmの篩にかけることにより細粒を得ている。本実施形態では、ハステロイの粉末との混合物3aに対するNbCの細粒の重量比を変化させて複数の試験片を作成している。具体的には、ハステロイの粉末との混合物3a中に10〜50重量%の範囲でNbCの細粒を添加した5種類の肉盛溶接層3を備えた鋼材1の試験片を作成した。   As the niobium carbide (NbC) mixed with the Hastelloy of the build-up weld layer 3, a powder having a particle size of less than 45 μm (hereinafter, this size of powder is referred to as “fine particles”) is applied. Since the commercially available NbC powder is a powder mainly composed of coarse particles having a particle size of 150 μm at the minimum, in this embodiment, the commercially available NbC powder up to 150 μm is passed through a sieve having a mesh size of 45 μm. To obtain fine granules. In the present embodiment, a plurality of test pieces are prepared by changing the weight ratio of the fine NbC particles to the mixture 3a with the Hastelloy powder. Specifically, a test piece of steel material 1 having five types of overlay weld layers 3 in which fine NbC particles were added in a range of 10 to 50% by weight in a mixture 3a with Hastelloy powder was prepared.

また、NbCの細粒をハステロイに混合した肉盛溶接層3との比較のために、比較例として、細粒に代えて、粒径45μm以上75μm未満の粉末(以下、このサイズの粉末を「中粒」という)をハステロイに混合して肉盛溶接層を母材の表面に形成した試験片と、粒径75μm以上150μm未満の粉末(以下、このサイズの粉末を「粗粒」という)をハステロイに混合して肉盛溶接層を母材の表面に形成した試験片も形成した。細粒の場合と同様に、市販の150μm程度のNbC粉末を目の粗さが75μmの篩にかけることにより中粒を得て、残ったものを粗粒として使用した。図2に、肉盛溶接時に添加する粉末の混合物3aにおいて、NbCの細粒を30%(a)、中粒を30%(b)、粗粒を40%(c)でそれぞれ混合して得られた肉盛溶接層の光学顕微鏡写真による肉盛溶接組織の写真を示す。各写真中、灰色部分がハステロイであり、ハステロイ中に分散している歪な粒形状の塊がNbCの粒である。NbCの細粒を用いたPTA溶接後の肉盛溶接層3の平均粒径は、投入時の粒径よりも小さい45μm以下(同図(a))であり、NbCの中粒、粗粒をそれぞれ用いたPTA溶接後の肉盛溶接層3の平均粒径は、同じく投入時の粒径よりも小さい45μm以上75μm未満(同図(b))、75μm以上150μm未満(同図(c))である。ハステロイ中のNbCの粒子のなかには近くのNbC粒子同士が大きく凝集しているものもあるが、大半は投入時の粒径よりも小さい粒となって存在している。同図(c)に示されるように、NbCの粗粒を用いた場合には、溶接は可能であるが、溶接されたNbCの粗粒に大きな軽石状態の穴の欠陥(写真中、黒い部分)が極めて多く観測されたため、NbCの粗粒は溶接不良発生率が高いと判断されたことにより、以下の摩耗試験や腐食試験を行わなかった。同図(a)(b)のNbCの細粒や中粒の写真でも黒い部分が見受けられるが、溶接組織全体でみると、溶接不良が高いといえるようなレベルではない。特に本実施形態の肉盛溶接層3では、NbCの細粒が溶接組織全体に亘ってほぼ均一に分散していることがわかる。   In addition, for comparison with the overlay welding layer 3 in which NbC fine particles are mixed in Hastelloy, as a comparative example, instead of fine particles, a powder having a particle size of 45 μm or more and less than 75 μm (hereinafter referred to as “powder of this size” A test piece in which a build-up weld layer is formed on the surface of the base material by mixing Hastelloy) and a powder having a particle size of 75 μm or more and less than 150 μm (hereinafter, this size of powder is called “coarse”). A test piece in which the overlay weld layer was formed on the surface of the base material by mixing with Hastelloy was also formed. As in the case of fine particles, a commercially available NbC powder of about 150 μm was passed through a sieve having a mesh size of 75 μm to obtain medium particles, and the remaining particles were used as coarse particles. FIG. 2 shows a mixture 3a of powders added at the time of overlay welding, obtained by mixing NbC fine grains at 30% (a), medium grains at 30% (b), and coarse grains at 40% (c). The photograph of the build-up weld structure | tissue by the optical microscope photograph of the obtained build-up weld layer is shown. In each photograph, the gray part is Hastelloy, and the distorted grain-shaped lump dispersed in Hastelloy is NbC grains. The average particle size of the overlay weld layer 3 after PTA welding using NbC fine particles is 45 μm or less (the figure (a)) smaller than the particle size at the time of charging. The average particle size of the overlay welding layer 3 after PTA welding used is 45 μm or more and less than 75 μm (the same figure (b)) and 75 μm or more and less than 150 μm (the same figure (c)). It is. Some of the NbC particles in Hastelloy have agglomerated nearby NbC particles, but most exist as particles smaller than the particle size at the time of charging. As shown in FIG. 4C, when NbC coarse particles are used, welding is possible, but the welded NbC coarse particles have large pumice-like hole defects (black portions in the photograph). ) Was observed so much that the NbC coarse particles were judged to have a high welding failure rate, and the following wear test and corrosion test were not performed. Although black portions can be seen in the NbC fine and medium-sized photographs in FIGS. 4A and 4B, it is not at a level where the weld defect is high in the entire welded structure. In particular, in the build-up weld layer 3 of the present embodiment, it can be seen that the fine NbC particles are distributed almost uniformly throughout the entire welded structure.

本実施形態の鋼材1の冷間摩耗試験、冷間腐食試験のために、縦30mm、横10mm、高さ25mmの鋼片Aを作成した(図3参照)。高さ方向のうち、下から22〜24mm(平均厚さ23mm)の領域は、ステンレス・SUS316Lからなる母材Aa(2)であり、表面から1〜3mm(平均厚さ2mm)の領域は、ハステロイ・C276の粉末とNbCを母材Aa(2)の表面に形成した肉盛溶接層Ab(3)である。このような鋼材1を、肉盛溶接層Ab(3)におけるNbCの細粒が10〜50重量%(10%刻み)である5種類について作成した。   A steel piece A having a length of 30 mm, a width of 10 mm, and a height of 25 mm was prepared for the cold wear test and the cold corrosion test of the steel material 1 of the present embodiment (see FIG. 3). Among the height direction, the region of 22-24 mm (average thickness 23 mm) from the bottom is the base material Aa (2) made of stainless steel and SUS316L, and the region of 1-3 mm (average thickness 2 mm) from the surface is This is an overlay welding layer Ab (3) in which Hastelloy · C276 powder and NbC are formed on the surface of the base material Aa (2). Such steel materials 1 were prepared for five types of NbC fine particles of 10 to 50% by weight (10% increments) in the overlay welding layer Ab (3).

また、比較例として、肉盛溶接層AbにおけるNbCの中粒が10〜50重量%(10%刻み)である5種類について試験片Aを作成し、さらにNbCを含有しないハステロイ・C276のみを母材の表面に肉盛溶接した試験片Aと、コバルト基合金であるステライトを母材Aaの表面に肉盛溶接した試験片も同様に作成した。各試験片Aの母材Aaは、本実施形態の鋼材1と同じくステンレス・SUS316Lであり、肉盛溶接層の形成方法も上述したPTA法を用いている。   As comparative examples, specimens A were prepared for 5 types of NbC medium grains of 10 to 50% by weight (in increments of 10%) in the overlay welding layer Ab, and only Hastelloy · C276 containing no NbC was used as a mother. A test piece A was welded on the surface of the material, and a test piece was also prepared in which the stellite, which is a cobalt-based alloy, was built-up on the surface of the base material Aa. The base material Aa of each test piece A is stainless steel SUS316L as in the steel material 1 of the present embodiment, and the above-described PTA method is also used as a method for forming the build-up weld layer.

図3は、冷間摩耗試験の概要図である。本実施形態の5種の鋼材1を含む試験片Aの肉盛溶接層Aaを、直径125mmの摺動面がステライト製であるディスク5に室温25℃(冷間)で押し付けた。ディスク5の回転速度は毎分30回転、押し付け荷重は350kPa、押し付け時間を3分として、図4に示すような摩耗痕Axを試験片Aに形成した。摩耗痕Axの測定方法は、摩耗試験後の試験片Aを両側面から観測し、摩耗痕長さL1、L2の平均値を平均摩耗長さLとし(同図中(1)式)、そのLの値とディスク5の半径rを用いて摩耗痕深さdを計算した。   FIG. 3 is a schematic diagram of a cold wear test. The build-up weld layer Aa of the test piece A including the five types of steel materials 1 of the present embodiment was pressed against the disk 5 having a sliding surface of 125 mm in diameter made of stellite at room temperature of 25 ° C. (cold). A wear mark Ax as shown in FIG. 4 was formed on the test piece A with the rotational speed of the disk 5 being 30 revolutions per minute, the pressing load being 350 kPa, and the pressing time being 3 minutes. The measurement method of the wear mark Ax is that the specimen A after the wear test is observed from both sides, and the average value of the wear mark lengths L1 and L2 is the average wear length L (Equation (1) in the figure). The wear mark depth d was calculated using the value of L and the radius r of the disk 5.

各試験片Aについての摩耗痕深さの測定結果を図5にグラフとして示す。同図の横軸は、肉盛溶接層Ab(3)を形成する際のハステロイ・C276の粉末との混合物3aにおけるに対するNbCの粉末の投入率(重量割合、%)を示し、縦軸は計算により得られた摩耗痕深さ(μm)を示している。横軸0%の位置に、比較のために作成したハステロイ・C276のみからなる肉盛溶接層(▲C276)と、ステライトのみからなる肉盛溶接層(●STL)の摩耗痕深さがプロットされている。耐摩耗性を有さないハステロイ・C276の肉盛溶接層では、400μm以上の摩耗痕深さとなったのに対して、耐摩耗性に優れたステライトの肉盛溶接層では、殆ど摩耗が生じていないことが分かる。一方、NbCの中粒をハステロイ・C276に添加した肉盛溶接層(■NbC中粒)では、NbCの中粒の低投入率領域で摩耗深さの値に乱れが認められたが、NbCが20〜50%の領域ではステライトには劣るものの、100μm前後の摩耗深さとなり、ハステロイ・C276単体の肉盛溶接層と比較すると良好な耐摩耗性が認められた。本実施形態の鋼材1であるNbCの細粒をハステロイ・C276に添加した肉盛溶接層(◆NbC細粒)では、投入率にあまり関係せず、摩耗深さが低位で安定し、50%以下の全領域で概ね100μm若しくはそれ以下の摩耗深さであった。すなわち、ハステロイ・C276にNbCの細粒を添加すると、ステライトとほぼ同等の冷間耐摩耗性が得られるといえる。特に、NbCの細粒が10%という少量での耐摩耗効果が良好であることから、NbCの細粒をごく少量でもハステロイ・C276の粉末に混合しても、肉盛溶接層の冷間での高い耐摩耗性が得られることが初めて実証された。   The measurement result of the wear scar depth about each test piece A is shown as a graph in FIG. The horizontal axis of the figure shows the NbC powder input rate (weight ratio,%) relative to the mixture 3a with Hastelloy · C276 powder when forming the build-up weld layer Ab (3), and the vertical axis is calculated. Shows the wear scar depth (μm) obtained. At the position of 0% on the horizontal axis, the wear scar depths of the overlay welding layer (▲ C276) made only of Hastelloy C276 and the overlay weld layer (● STL) made only of stellite are plotted for comparison. ing. The wear-resistant Hastelloy C276 overlay weld layer has a wear mark depth of 400 μm or more, while the Stellite overlay weld layer with excellent wear resistance shows almost no wear. I understand that there is no. On the other hand, in the built-up welded layer (■ NbC medium grain) in which NbC medium grains are added to Hastelloy C276, a disturbance was observed in the wear depth value in the low NbC medium grain injection rate region. Although it is inferior to stellite in the region of 20 to 50%, it has a wear depth of about 100 μm, and good wear resistance was recognized as compared with the overlay welding layer of Hastelloy · C276 alone. In the build-up welded layer (◆ NbC fine grain) in which the fine grain of NbC, which is the steel material 1 of this embodiment, is added to Hastelloy C276, the wear depth is stable at a low level regardless of the input rate, and 50% The wear depth was approximately 100 μm or less in all the following regions. That is, it can be said that when NbC fine grains are added to Hastelloy C276, cold wear resistance substantially equivalent to that of stellite can be obtained. In particular, the NbC fine particles have a good wear resistance in a small amount of 10%. Therefore, even if a very small amount of NbC fine particles is mixed with Hastelloy / C276 powder, It was demonstrated for the first time that high wear resistance was obtained.

次に、上述した各試験片Aを用いて、冷間での腐食試験を行った。冷間腐食試験は、JIS G0577「ステンレス鋼の孔電電位測定方法」に準拠した。PH3.0に保った80℃(冷間)の腐食溶液(CaClをHClにてPH調整)に試験片Aを浸漬し、電位差を増加させながら電流が流れ出し腐食が一気に進むまでの時間を調査した。各試験片Aについての腐食試験の結果を図6にグラフとして示す。同図の横軸は、肉盛溶接層Ab(3)を形成する際のハステロイ・C276の粉末との混合物3aにおけるに対するNbCの粉末の投入率(重量割合、%)を示し、縦軸は電位(孔電電位)を示している。縦軸の値が大きいほど腐食が生じにくいため電流が流れにくく、小さいほどすぐに腐食が進んで一気に電流が流れることが表される。横軸0の位置にプロットされたハステロイ・C276のみからなる肉盛溶接層(▲C276)と、ステライトのみからなる肉盛溶接層(●STL)の電位は、それぞれ0.8と0.6であった。一方、NbCの中粒をハステロイ・C276に添加した肉盛溶接層(■NbC中粒)では、NbCの中粒の低投入率によって電位(すなわち腐食の進展速度)に乱れが認められ、NbCの投入率を増やすに従って、腐食が早く進みやすくなることが示された。本実施形態の鋼材1であるNbCの細粒をハステロイ・C276に添加した肉盛溶接層(◆NbC細粒)では、投入率が10%、30%、40%の場合にステライトとハステロイ・C276の中間の値の電位となり、50%ではステライトよりもやや低い電位となり、20%ではハステロイ・C276よりも高い電位となった。すなわち、NbCの細粒では、10〜50%の全般に亘って腐食進展速度が抑えられているが、特に投入率が10〜30%の間で腐食進展速度が強く抑えられており、ハステロイ・C276単体の値に近く、少投入率の領域で投入率の増加に伴う腐食進展速度の減少が少ない、換言すれば高い耐腐食性を有しているということが初めて実証された。 Next, using each test piece A described above, a cold corrosion test was performed. The cold corrosion test was in accordance with JIS G0577 “Method for Measuring Pore Potential of Stainless Steel”. Investigate the time required for corrosion to proceed at a stroke as the test piece A is immersed in an 80 ° C (cold) corrosion solution (CaCl 2 adjusted to pH with HCl) maintained at pH 3.0, increasing the potential difference. did. The result of the corrosion test about each test piece A is shown as a graph in FIG. The horizontal axis of the figure shows the NbC powder input rate (weight ratio,%) relative to the mixture 3a with Hastelloy · C276 powder when forming the build-up weld layer Ab (3), and the vertical axis shows the potential. (Poreelectric potential). As the value on the vertical axis is larger, corrosion is less likely to occur, so current is less likely to flow. The potentials of the overlay welded layer (▲ C276) consisting only of Hastelloy · C276 and the overlay welded layer consisting only of stellite (● STL) plotted at the position of the horizontal axis 0 are 0.8 and 0.6, respectively. there were. On the other hand, in the build-up weld layer (■ NbC medium grain) in which NbC medium grains are added to Hastelloy C276, disturbance in the potential (that is, the progress rate of corrosion) is observed due to the low NbC medium grain injection rate. It was shown that corrosion increases easily as the input rate is increased. In the built-up welded layer (◆ NbC fine particles) in which NbC fine particles, which are the steel material 1 of this embodiment, are added to Hastelloy · C276, Stellite and Hastelloy · C276 are used when the input rate is 10%, 30%, and 40%. Of 50%, the potential was slightly lower than Stellite, and 20% was higher than Hastelloy · C276. That is, in NbC fine grains, the corrosion progress rate is suppressed over the entire range of 10 to 50%, but the corrosion progress rate is strongly suppressed particularly when the input rate is 10 to 30%. It was close to the value of C276 alone, and it was demonstrated for the first time that it has a small decrease in the corrosion progress rate with an increase in the input rate in the low input rate region, in other words, it has high corrosion resistance.

以上の冷間摩耗試験と冷間腐食試験の結果を総合的に勘案すると、母材1の表面に肉盛溶接層3を形成する場合、ハステロイ・C276の粉末にNbCの細粒又は中粒を添加した肉盛溶接層3であれば、冷間での耐摩耗性と耐腐食性の両方を兼ね備えた鋼材1を得ることができ、特にNbCは粒径45μm未満の細粒とすることが好ましく、ハステロイ・C276単体の肉盛溶接層の結果も鑑みると、肉盛溶接時の粉体の混合物3aに占める重量比が50%以下、とりわけ5%以上30%以下のNbCの細粒を添加した場合に冷間耐摩耗性能と冷間耐腐食性能が得られることが明らかとなった。すなわち、本実施形態の鋼材1における肉盛溶接層3は、全く新しいタイプの冷間における耐摩耗性と耐腐食性を有するNbC分散強化型ハステロイ系合金、換言すればNbC分散強化型ハステロイ溶接被膜であるといえる。   Considering the results of the above cold wear test and cold corrosion test comprehensively, when forming the build-up weld layer 3 on the surface of the base material 1, NbC fine grains or medium grains are added to Hastelloy C276 powder. With the added overlay weld layer 3, it is possible to obtain a steel material 1 having both cold wear resistance and corrosion resistance. In particular, NbC is preferably a fine particle having a particle size of less than 45 μm. In view of the results of the overlay welding layer of Hastelloy C276 alone, NbC fine particles having a weight ratio of 50% or less, particularly 5% or more and 30% or less of the powder mixture 3a during overlay welding were added. In some cases, it was found that cold wear resistance and cold corrosion resistance were obtained. That is, the build-up weld layer 3 in the steel material 1 of this embodiment is a completely new type of NbC dispersion strengthened hastelloy alloy having cold wear resistance and corrosion resistance, in other words, NbC dispersion strengthened hastelloy weld coating. You can say that.

したがって、本実施形態の鋼材1により冷間工具を製造すれば、摩擦面となる肉盛溶接層には少量のNbCの細粒をハステロイ中に分散させればよいことから、これまで両立しなかった耐摩耗性と耐腐食性を兼ね備えた斬新且つ有用な冷間工具を、比較的安価で市場に提供することができる。冷間加工用工具に硬質物質を分散させると、被加工材の表面に疵をつけるとこれまで考えられており、その様な工具は作製されて来なかったという業界の事情があったが、強腐食環境下で用いられる冷感加工工具においても事情は同じである。また、本発明において、NbCの細粒をハステロイに投入し分散させると、当初予想した以上の効果が得られたことは、当該技術分野において画期的なことであるといえる。このような冷間工具としては、例えば前述した強腐食環境下で使用される合成ゴム生成分野で用いられる混練機用ロータや、押出機や乾燥機のスクリューやシリンダ等を挙げることができ、その他にも、カーボン生成分野、セラミック生成分野などの従来からハステロイが利用されてきた腐食環境で使用される工具に適用することができる。   Therefore, if a cold tool is manufactured with the steel material 1 of this embodiment, it is only necessary to disperse a small amount of NbC fine particles in Hastelloy in the build-up weld layer serving as a friction surface. A novel and useful cold tool having both wear resistance and corrosion resistance can be provided to the market at a relatively low cost. When hard materials are dispersed in cold working tools, it has been thought up to now that the surface of the workpiece will be wrinkled, and there has been an industry situation that such tools have not been produced. The situation is the same also in the cold feeling tool used in a strong corrosive environment. Further, in the present invention, when NbC fine particles are introduced into Hastelloy and dispersed therein, it can be said that it is an epoch-making in the technical field that an effect more than originally expected is obtained. Examples of such a cold tool include a rotor for a kneader used in the synthetic rubber production field used in the above-mentioned strong corrosion environment, a screw or a cylinder of an extruder or a dryer, etc. In addition, the present invention can be applied to a tool used in a corrosive environment where hastelloy has been conventionally used, such as a carbon generation field and a ceramic generation field.

なお本発明の構成は、上述した実施形態に限られるものではない。以上の実施形態では、ハステロイ中にNbCの細粒を分散させた肉盛溶接層を母材の表面に形成した鋼材について説明したが、この肉盛溶接層と同様の構成からなるNbC分散強化型ハステロイ系合金とすることもできる。さらに、本発明の趣旨を逸脱しない範囲で鋼材における母材や肉盛溶接層若しくはNbC分散強化型ハステロイ系合金のマトリックスの材料を変更したり、同合金や肉盛溶接層に添加されるNbCの粒径や投入率を変更することは、冷間工具として使用される環境や要求される仕様に応じて適宜変更することができる。その他、肉盛溶接層を含む鋼材や合金の製造方法、適用される冷間工具についても上記実施形態に限られず、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   The configuration of the present invention is not limited to the above-described embodiment. In the above embodiment, the steel material in which the build-up weld layer in which the fine particles of NbC are dispersed in the Hastelloy is formed on the surface of the base material has been described, but the NbC dispersion strengthened type having the same configuration as this build-up weld layer. A Hastelloy alloy can also be used. Furthermore, the base material in the steel material, the build-up weld layer, or the matrix material of the NbC dispersion strengthened hastelloy alloy can be changed without departing from the spirit of the present invention, or the NbC added to the alloy or the build-up weld layer can be changed. Changing the particle size and the charging rate can be changed as appropriate according to the environment used as a cold tool and the required specifications. In addition, the manufacturing method of the steel material or alloy including the overlay welding layer and the applied cold tool are not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

本発明は、ハステロイ中にニオブ炭化物を分散させた合金や、この合金を肉盛溶接層として母材の表面に形成した鋼材により、耐腐食性と耐摩耗性とを兼ね備えた新たな合金及び鋼材とそれらの製法、並びに斯かる鋼材から製造される冷間工具を創出するものであり、金属材料分野やその用途としての素材加工産業などにおいて、極めて有益なものとなり得る。   The present invention provides a new alloy and steel material having both corrosion resistance and wear resistance by an alloy in which niobium carbide is dispersed in hastelloy and a steel material formed on the surface of the base metal as a build-up weld layer. And a manufacturing method thereof, and a cold tool manufactured from such a steel material, and can be extremely useful in the field of metal materials and the material processing industry as its application.

1…鋼材
2…母材
3…肉盛溶接層
DESCRIPTION OF SYMBOLS 1 ... Steel material 2 ... Base material 3 ... Overlay welding layer

Claims (12)

ハステロイ中に、平均粒径が45μm未満のニオブ炭化物の粉末を分散させてなることを特徴とするNbC分散強化型ハステロイ系合金。 An NbC dispersion-strengthened hastelloy alloy obtained by dispersing niobium carbide powder having an average particle size of less than 45 μm in hastelloy. 請求項1に記載のNbC分散強化型ハステロイ系合金の製造方法であって、
前記ハステロイの粉末と、粒径が45μm未満の前記ニオブ炭化物の粉末との混合物を原料として、鋳造又はプラズマ溶接により合金を製造することを特徴とするNbC分散強化型ハステロイ系合金の製造方法。
A method for producing the NbC dispersion-strengthened hastelloy alloy according to claim 1,
A method for producing an NbC dispersion strengthened hastelloy alloy, characterized in that an alloy is produced by casting or plasma welding using a mixture of the hastelloy powder and the niobium carbide powder having a particle size of less than 45 μm as a raw material.
前記混合物中に占める前記ニオブ炭化物の粉末の重量比を、0%よりも多く50%以下としている請求項2に記載のNbC分散強化型ハステロイ系合金の製造方法。 The method for producing an NbC dispersion-strengthened hastelloy alloy according to claim 2, wherein a weight ratio of the niobium carbide powder in the mixture is more than 0% and 50% or less. 前記混合物中に占める前記ニオブ炭化物の粉末の重量比を、5%以上30%以下としている請求項3に記載のNbC分散強化型ハステロイ系合金の製造方法。 The method for producing an NbC dispersion strengthened hastelloy alloy according to claim 3, wherein a weight ratio of the niobium carbide powder in the mixture is 5% or more and 30% or less. 母材となる金属材の表面に、肉盛溶接層を形成した鋼材であって、
前記肉盛溶接層が、請求項1に記載のNbC分散強化型ハステロイ系合金からなるものであることを特徴とする鋼材。
A steel material in which a build-up weld layer is formed on the surface of a metal material as a base material,
A steel material, wherein the build-up weld layer is made of the NbC dispersion strengthened hastelloy alloy according to claim 1.
前記肉盛溶接層の平均厚さを、2mm以上4mm以下としている請求項5に記載の鋼材。 The steel material according to claim 5, wherein an average thickness of the build-up weld layer is 2 mm or more and 4 mm or less. 前記母材は、ニッケルを8%以上57%以下の重量割合で含有する合金からなる金属材である請求項5又は6の何れかに記載の鋼材。 The steel material according to claim 5 or 6, wherein the base material is a metal material made of an alloy containing nickel in a weight ratio of 8% to 57%. 請求項5乃至7の何れかに記載の鋼材の製造方法であって、
前記母材となる金属材の表面に、前記ハステロイの粉末と前記ニオブ炭化物の粉末との混合物をプラズマ粉体肉盛溶接法により溶接する溶接工程を含むことを特徴とする鋼材の製造方法。
A method for manufacturing a steel material according to any one of claims 5 to 7,
A method for producing a steel material, comprising: a welding step of welding a mixture of the Hastelloy powder and the niobium carbide powder to the surface of the metal material as the base material by a plasma powder overlay welding method.
当該溶接工程において、前記混合物中の前記ニオブ炭化物の粉末の重量比を、0%よりも多く50%以下としている請求項8に記載の鋼材の製造方法。 9. The method for manufacturing a steel material according to claim 8, wherein in the welding step, a weight ratio of the niobium carbide powder in the mixture is set to more than 0% and 50% or less. 前記混合物中の前記ニオブ炭化物の粉末の重量比を、5%以上30%以下としている請求項9に記載の鋼材の製造方法。 The method for producing a steel material according to claim 9, wherein a weight ratio of the niobium carbide powder in the mixture is 5% or more and 30% or less. 請求項1に記載のNbC分散強化型ハステロイ系合金により形成されたことを特徴とする冷間工具。 A cold tool formed of the NbC dispersion strengthened hastelloy alloy according to claim 1. 請求項5乃至7の何れかに記載の鋼材により形成され、前記肉盛溶接層を摩擦面として設定したものであることを特徴とする冷間工具。 A cold tool formed of the steel material according to any one of claims 5 to 7, wherein the build-up weld layer is set as a friction surface.
JP2014111897A 2014-05-30 2014-05-30 NbC dispersion-hardened corrosion-resistant nickel-chromium-molybdenum alloy and method for manufacturing the same, steel material provided with corrosion-resistant and wear-resistant surface overlay welding layer and method for manufacturing the same, and cold tool Active JP6528106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014111897A JP6528106B2 (en) 2014-05-30 2014-05-30 NbC dispersion-hardened corrosion-resistant nickel-chromium-molybdenum alloy and method for manufacturing the same, steel material provided with corrosion-resistant and wear-resistant surface overlay welding layer and method for manufacturing the same, and cold tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014111897A JP6528106B2 (en) 2014-05-30 2014-05-30 NbC dispersion-hardened corrosion-resistant nickel-chromium-molybdenum alloy and method for manufacturing the same, steel material provided with corrosion-resistant and wear-resistant surface overlay welding layer and method for manufacturing the same, and cold tool

Publications (2)

Publication Number Publication Date
JP2015224385A true JP2015224385A (en) 2015-12-14
JP6528106B2 JP6528106B2 (en) 2019-06-12

Family

ID=54841388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014111897A Active JP6528106B2 (en) 2014-05-30 2014-05-30 NbC dispersion-hardened corrosion-resistant nickel-chromium-molybdenum alloy and method for manufacturing the same, steel material provided with corrosion-resistant and wear-resistant surface overlay welding layer and method for manufacturing the same, and cold tool

Country Status (1)

Country Link
JP (1) JP6528106B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108296665A (en) * 2018-01-26 2018-07-20 哈尔滨工业大学(威海) A kind of nano particle insertion type seam organization method of modifying, device and welding wire
KR20180101425A (en) * 2016-01-08 2018-09-12 플로웍스 인터내셔널 엘엘씨 Method for producing phosphoric acid in a reaction tank in which a mixed tee assembly and a mixed tee assembly are attached
WO2021087133A1 (en) * 2019-11-01 2021-05-06 Exxonmobil Chemical Patents Inc. Bimetallic materials comprising cermets with improved metal dusting corrosion and abrasion/erosion resistance
CN114700495A (en) * 2022-04-07 2022-07-05 西安交通大学 Non-cracking high-wear-resistance corrosion-resistance nickel-based composite material and preparation method thereof
JP7163009B2 (en) 2017-06-26 2022-10-31 三菱重工業株式会社 High temperature sliding parts and steam turbines

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63199892A (en) * 1987-02-12 1988-08-18 Kubota Ltd Conductive roll for electroplating
JPS63199893A (en) * 1987-02-12 1988-08-18 Kubota Ltd Conductive roll for electroplating
JPH01294844A (en) * 1988-05-24 1989-11-28 Tocalo Co Ltd Composite material showing superior corrosion resistance under chloride-containing environment
JPH0539501A (en) * 1991-05-27 1993-02-19 Daido Steel Co Ltd Hard particle dispersed alloy powder and production thereof
WO1994011128A1 (en) * 1992-11-18 1994-05-26 The Broken Hill Proprietary Company Limited A composite roll
JP2002115975A (en) * 2000-10-12 2002-04-19 Sumitomo Metal Ind Ltd Member for heating oven
JP2005120457A (en) * 2003-10-20 2005-05-12 Ebara Corp Coating alloy having corrosion resistance and abrasion resistance
JP2005120458A (en) * 2003-10-20 2005-05-12 Ebara Corp Device with the use of coating alloy having corrosion resistance and abrasion resistance
JP2013086120A (en) * 2011-10-17 2013-05-13 Hitachi Plant Technologies Ltd Build up welding body and equipment for seawater using the build up welding body

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63199892A (en) * 1987-02-12 1988-08-18 Kubota Ltd Conductive roll for electroplating
JPS63199893A (en) * 1987-02-12 1988-08-18 Kubota Ltd Conductive roll for electroplating
JPH01294844A (en) * 1988-05-24 1989-11-28 Tocalo Co Ltd Composite material showing superior corrosion resistance under chloride-containing environment
JPH0539501A (en) * 1991-05-27 1993-02-19 Daido Steel Co Ltd Hard particle dispersed alloy powder and production thereof
US5350437A (en) * 1991-05-27 1994-09-27 Daido Tokushuko Kabushiki Kaisha Method of manufacturing an alloy powder with hard particles dispersed therein
WO1994011128A1 (en) * 1992-11-18 1994-05-26 The Broken Hill Proprietary Company Limited A composite roll
JP2002115975A (en) * 2000-10-12 2002-04-19 Sumitomo Metal Ind Ltd Member for heating oven
JP2005120457A (en) * 2003-10-20 2005-05-12 Ebara Corp Coating alloy having corrosion resistance and abrasion resistance
JP2005120458A (en) * 2003-10-20 2005-05-12 Ebara Corp Device with the use of coating alloy having corrosion resistance and abrasion resistance
JP2013086120A (en) * 2011-10-17 2013-05-13 Hitachi Plant Technologies Ltd Build up welding body and equipment for seawater using the build up welding body

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180101425A (en) * 2016-01-08 2018-09-12 플로웍스 인터내셔널 엘엘씨 Method for producing phosphoric acid in a reaction tank in which a mixed tee assembly and a mixed tee assembly are attached
KR102601044B1 (en) * 2016-01-08 2023-11-09 플로웍스 인터내셔널 엘엘씨 A method of producing phosphoric acid in a reaction tank to which a mixed tee assembly and a mixed tee assembly are attached.
JP7163009B2 (en) 2017-06-26 2022-10-31 三菱重工業株式会社 High temperature sliding parts and steam turbines
CN108296665A (en) * 2018-01-26 2018-07-20 哈尔滨工业大学(威海) A kind of nano particle insertion type seam organization method of modifying, device and welding wire
WO2021087133A1 (en) * 2019-11-01 2021-05-06 Exxonmobil Chemical Patents Inc. Bimetallic materials comprising cermets with improved metal dusting corrosion and abrasion/erosion resistance
CN114700495A (en) * 2022-04-07 2022-07-05 西安交通大学 Non-cracking high-wear-resistance corrosion-resistance nickel-based composite material and preparation method thereof
CN114700495B (en) * 2022-04-07 2023-09-22 西安交通大学 Non-cracking high-wear-resistance corrosion-resistance nickel-based composite material and preparation method thereof

Also Published As

Publication number Publication date
JP6528106B2 (en) 2019-06-12

Similar Documents

Publication Publication Date Title
Saroj et al. Microstructure and mechanical performance of TiC-Inconel825 composite coating deposited on AISI 304 steel by TIG cladding process
Nurminen et al. Microstructure and properties of hard and wear resistant MMC coatings deposited by laser cladding
CA2830543C (en) Fine grained ni-based alloys for resistance to stress corrosion cracking and methods for their design
JP2015224385A (en) NbC DISPERSION STRENGTHENED HASTELLOY BASE ALLOY, METHOD FOR PRODUCING THE SAME, STEEL HAVING CORROSION RESISTANT-WEAR RESISTANT SURFACE BUILD-UP WELD LAYER, METHOD FOR PRODUCING THE SAME, AND COLD TOOL
TWI726875B (en) New powder composition and use thereof
Yung et al. Tribological performances of ZrC-Ni and TiC-Ni cermet reinforced PTA hardfacings at elevated temperatures
CN108130529A (en) A kind of particle enhanced nickel base metal powder for ultrahigh speed laser melting coating
JP2006316309A (en) High wear resistant tough steel having excellent fatigue strength
Raahgini et al. Abrasive wear performance of laser cladded Inconel 625 based metal matrix composites: Effect of the vanadium carbide reinforcement phase content
CN108130530A (en) A kind of particle for ultrahigh speed laser melting coating enhances powder metal composition
CN101818343A (en) Laser cladding method of composite coating containing spherical tungsten carbide
Günen et al. A new approach to improve some properties of wire arc additively manufactured stainless steel components: Simultaneous homogenization and boriding
Ozel et al. Microstructural characteristic of NiTi coating on stainless steel by plasma transferred arc process
Garbade et al. Overview on hardfacing processes, materials and applications
Sahu et al. On the constancy in wear characteristic of large area TiC–Ni coating developed by overlapping of TIG arc scanning
Bendikiene et al. Wear behaviour of Cr3C2–Ni cermet reinforced hardfacings
JP2014100730A (en) Method of repairing cermet-coated member
JP6534136B2 (en) NbC dispersion strengthened austenitic stainless alloy and method for manufacturing the same, steel material provided with seizure resistance / abrasion resistant surface overlay welding layer, method for manufacturing the same, and cold tool
CN115383110A (en) Spherical tungsten carbide and nickel-based alloy mixed powder for screw reinforcement and laser cladding method
KR101565728B1 (en) Method for Forming Hard Metal Cemented Carbide Layer by Welding Work Pieces with Cemented Carbide Powder
Jeyaprakash et al. Surface alloying of FeCoCrNiMn particles on Inconel-718 using plasma-transferred arc technique: microstructure and wear characteristics
Bakic et al. Microstructural characterization of WC and CrC based coatings applied by different processes
Deshmukh et al. Evaluation of surface characteristics of PTAW Hardfacing based on energy and powder supplied
CN113195759A (en) Corrosion and wear resistant nickel base alloy
Schreiber et al. Hardfacing material solutions for high performance coatings in wear and corrosion applications

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181211

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190412

R150 Certificate of patent or registration of utility model

Ref document number: 6528106

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150