JP2015223534A - Apparatus and method for treating iron/manganese-containing water - Google Patents

Apparatus and method for treating iron/manganese-containing water Download PDF

Info

Publication number
JP2015223534A
JP2015223534A JP2014108163A JP2014108163A JP2015223534A JP 2015223534 A JP2015223534 A JP 2015223534A JP 2014108163 A JP2014108163 A JP 2014108163A JP 2014108163 A JP2014108163 A JP 2014108163A JP 2015223534 A JP2015223534 A JP 2015223534A
Authority
JP
Japan
Prior art keywords
manganese
iron
containing water
water
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014108163A
Other languages
Japanese (ja)
Other versions
JP6329814B2 (en
Inventor
俊朗 國東
Toshiaki Kunito
俊朗 國東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2014108163A priority Critical patent/JP6329814B2/en
Publication of JP2015223534A publication Critical patent/JP2015223534A/en
Application granted granted Critical
Publication of JP6329814B2 publication Critical patent/JP6329814B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus for treating iron/manganese-containing water, which has a simpler structure, in which a manganese oxide catalyst is restrained from being dropped in a support layer even when the iron/manganese-containing water is made to pass therethrough at a high linear velocity, and which can be operated more stably in comparison with the conventional system.SOLUTION: The apparatus for treating iron/manganese-containing water includes: oxidizer adding means for adding an oxidizer to the iron/manganese-containing water in which at least one of iron and manganese is contained; an oxidation treatment tank 12 in which the oxidizer-added water is treated oxidatively and the manganese oxide catalyst containing manganese dioxide is packed; and a membrane filtration unit 14 in which the oxidatively-treated water is subjected to membrane filtration. The particle having the specific gravity larger than 2.6 is used as a supporting particle which is made adjacent to the manganese oxide catalyst existing in the support layer, that is used for supporting the manganese oxide catalyst in the oxidation treatment tank 12, and which constitutes an adjacent layer.

Description

本発明は、鉄およびマンガンのうち少なくとも1つを含む鉄/マンガン含有水の処理装置および処理方法に関する。   The present invention relates to a treatment apparatus and treatment method for iron / manganese-containing water containing at least one of iron and manganese.

上水源となる河川水や地下水等には溶解性鉄や溶解性マンガンが含まれている場合がある。このような鉄/マンガン含有水中の溶解性鉄や溶解性マンガンを除去する方法としては、接触マンガン砂ろ過法が知られている。接触マンガン砂ろ過法は、原水をマンガン砂の充填槽中を下向流で通過させる間に、溶解性マンガンを酸化析出させ、マンガン砂に捕捉させる方法である。   River water, groundwater, etc., which are water sources, may contain soluble iron and soluble manganese. As a method for removing soluble iron and soluble manganese in such iron / manganese-containing water, a contact manganese sand filtration method is known. The contact manganese sand filtration method is a method in which soluble manganese is precipitated by oxidation and trapped in manganese sand while raw water is passed through the manganese sand filling tank in a downward flow.

また、鉄/マンガン含有水の高速処理を行う方法として、原水に塩素を添加しながら、酸化マンガン触媒が充填された酸化処理槽に例えば1,000m/日以上の高線速の上向流で通水して、原水中の鉄およびマンガンを酸化析出させ、後段のろ過膜で酸化析出物を除去する方法が知られている(例えば、特許文献1参照)。   In addition, as a method of performing high-speed treatment of iron / manganese-containing water, while adding chlorine to raw water, an upward flow of, for example, 1,000 m / day or more is applied to an oxidation treatment tank filled with a manganese oxide catalyst. A method is known in which iron and manganese in raw water are oxidized and precipitated by passing water, and the oxidized precipitate is removed by a subsequent filtration membrane (see, for example, Patent Document 1).

この方法は、接触マンガン砂ろ過法に比べて、高線速で原水を通水できるため、設備を小型化することができるうえ、原水中の濁質による閉塞が少ないため、酸化処理槽の洗浄頻度も少なくできるという利点を持つ。   Compared with the contact manganese sand filtration method, this method can pass the raw water at a higher linear speed, so the equipment can be downsized and there is less blockage due to turbidity in the raw water, so the oxidation treatment tank can be washed. It has the advantage of being less frequent.

このような装置では一般的に例えば特許文献2,3に示されるように、酸化処理槽において酸化マンガン触媒層の下部に砂利を充填して支持層を形成して酸化マンガン触媒の下部への流出を防ぐことが行われている。しかし、高線速で酸化処理槽に通水を行うと、支持層の砂利も流動し、酸化マンガン触媒が徐々に砂利の間に落ち込んでしまうことがあった。この結果、支持層中で酸化マンガン触媒の表面に原水中のマンガン等が付着、成長、肥大化し、支持層が閉塞してしまうという問題が生じることがあった。また、砂利の粒径を大きくすることにより、高線速でも砂利自体を流動させないようにすることは可能だが、その場合、粒径0.4〜1.0mm程度の酸化マンガン触媒と砂利との粒径の差が大きくなり、やはり同様に支持層中に酸化マンガン触媒が落ち込んでしまうという問題があった。   In such an apparatus, as generally shown in Patent Documents 2 and 3, for example, gravel is filled in the lower part of the manganese oxide catalyst layer in the oxidation treatment tank to form a support layer, and the manganese oxide catalyst flows out to the lower part. It has been done to prevent. However, when water is passed through the oxidation treatment tank at a high linear velocity, the gravel of the support layer also flows, and the manganese oxide catalyst may gradually fall between the gravel. As a result, there has been a problem that manganese or the like in raw water adheres, grows and enlarges on the surface of the manganese oxide catalyst in the support layer, and the support layer is blocked. In addition, it is possible to prevent gravel itself from flowing even at a high linear velocity by increasing the particle size of gravel, but in that case, the manganese oxide catalyst having a particle size of about 0.4 to 1.0 mm and gravel There was a problem that the difference in particle size was increased and the manganese oxide catalyst dropped into the support layer as well.

このような問題を解決するために、特許文献3のように、粒状のマンガン触媒が充填された塔本体の底部に原水が流入するチャンバー室を形成し、このチャンバー室の上面に設けた多数の分散ノズルから原水をマンガン触媒充填層に供給する上向流式マンガン接触塔が提案されている。しかし、特許文献3の装置では、装置が複雑化する上に、コストが上昇してしまうという問題があった。   In order to solve such a problem, as in Patent Document 3, a chamber chamber into which raw water flows is formed at the bottom of a tower body filled with a granular manganese catalyst, and a large number of chamber chambers provided on the upper surface of the chamber chamber are formed. An upflow type manganese contact tower for supplying raw water to a manganese catalyst packed bed from a dispersion nozzle has been proposed. However, the apparatus of Patent Document 3 has a problem that the apparatus becomes complicated and the cost increases.

特許第3786888号公報Japanese Patent No. 3786888 特許第4013565号公報Japanese Patent No. 40113565 特許第4599335号公報Japanese Patent No. 4599335

本発明の目的は、よりシンプルな構造で、高線速で通水しても酸化マンガン触媒が支持層中に落ち込むことを抑制し、従来型システムと比べて安定運転が可能となる鉄/マンガン含有水の処理装置および処理方法を提供することにある。   The object of the present invention is iron / manganese, which has a simpler structure, suppresses the manganese oxide catalyst from falling into the support layer even when water flows at a high linear velocity, and enables stable operation compared to conventional systems. It is in providing the processing apparatus and processing method of contained water.

本発明は、鉄およびマンガンのうち少なくとも1つを含む鉄/マンガン含有水に酸化剤を添加する酸化剤添加手段と、前記酸化剤が添加された酸化剤添加水を酸化処理する、二酸化マンガンを含む酸化触媒を充填した酸化処理槽と、前記酸化処理した酸化処理水を膜ろ過する膜ろ過装置と、を備え、前記酸化処理槽において前記酸化触媒を支持する支持層における前記酸化触媒に隣接する隣接層を構成する支持粒子として比重2.6より大きい粒子を用いる鉄/マンガン含有水の処理装置である。   The present invention provides an oxidizing agent adding means for adding an oxidizing agent to iron / manganese-containing water containing at least one of iron and manganese, and manganese dioxide for oxidizing the oxidizing agent-added water to which the oxidizing agent is added. An oxidation treatment tank filled with an oxidation catalyst containing, and a membrane filtration device for membrane-filtering the oxidized treatment water, and adjacent to the oxidation catalyst in a support layer that supports the oxidation catalyst in the oxidation treatment tank This is an iron / manganese-containing water treatment apparatus using particles having a specific gravity of greater than 2.6 as support particles constituting the adjacent layer.

前記鉄/マンガン含有水の処理装置において、前記隣接層を構成する支持粒子が二酸化マンガン粒子を含むことが好ましい。   In the iron / manganese-containing water treatment apparatus, the support particles constituting the adjacent layer preferably include manganese dioxide particles.

前記鉄/マンガン含有水の処理装置において、前記隣接層を構成する支持粒子の粒径が、1.0mmより大きいことが好ましい。   In the iron / manganese-containing water treatment apparatus, it is preferable that the particle size of the support particles constituting the adjacent layer is larger than 1.0 mm.

前記鉄/マンガン含有水の処理装置において、前記支持層が複数層より構成され、前記隣接層を構成する支持粒子の粒径は、それ以外の層を構成する支持粒子の粒径より小さいことが好ましい。   In the iron / manganese-containing water treatment apparatus, the support layer is composed of a plurality of layers, and the particle size of the support particles constituting the adjacent layer is smaller than the particle size of the support particles constituting the other layers. preferable.

前記鉄/マンガン含有水の処理装置において、前記支持層を構成する支持粒子の粒径は、前記酸化触媒の粒径より大きいことが好ましい。   In the iron / manganese-containing water treatment apparatus, the support particles constituting the support layer preferably have a particle size larger than that of the oxidation catalyst.

前記鉄/マンガン含有水の処理装置において、前記酸化処理槽における上向流による通水流速を、1000m/日より大きく、3600m/日以下に制御する流速制御手段を有することが好ましい。   In the iron / manganese-containing water treatment apparatus, it is preferable that flow rate control means for controlling a water flow rate by an upward flow in the oxidation treatment tank to be greater than 1000 m / day and not more than 3600 m / day.

また、本発明は、鉄およびマンガンのうち少なくとも1つを含む鉄/マンガン含有水に酸化剤を添加する酸化剤添加工程と、前記酸化剤が添加された酸化剤添加水を、二酸化マンガンを含む酸化触媒を充填した酸化処理槽に通水して酸化処理する酸化処理工程と、前記酸化処理した酸化処理水を膜ろ過装置に通水して膜ろ過する膜ろ過工程と、を含み、前記酸化処理槽において前記酸化触媒を支持する支持層における前記酸化触媒に隣接する隣接層を構成する支持粒子として比重2.6より大きい粒子を用い、前記酸化処理槽における上向流による通水流速を、1000m/日より大きく、3600m/日以下に制御する鉄/マンガン含有水の処理方法である。   Moreover, this invention contains manganese dioxide, the oxidizing agent addition process which adds an oxidizing agent to the iron / manganese containing water containing at least 1 among iron and manganese, and the oxidizing agent addition water to which the said oxidizing agent was added An oxidation treatment step in which water is passed through an oxidation treatment tank filled with an oxidation catalyst to oxidize, and a membrane filtration step in which the oxidized treatment water is passed through a membrane filtration device and subjected to membrane filtration. In the treatment tank, particles having a specific gravity greater than 2.6 are used as the support particles constituting the adjacent layer adjacent to the oxidation catalyst in the support layer that supports the oxidation catalyst. This is a treatment method of iron / manganese-containing water that is controlled to be greater than 1000 m / day and not more than 3600 m / day.

本発明では、酸化処理槽の支持層における酸化触媒に隣接する隣接層を構成する支持粒子として比重2.6より大きい粒子を用いることにより、よりシンプルな構造で、高線速で通水しても酸化マンガン触媒が支持層中に落ち込むことを抑制し、従来型システムと比べて安定運転が可能となる鉄/マンガン含有水の処理装置および処理方法を提供することができる。   In the present invention, by using particles larger than the specific gravity 2.6 as the support particles constituting the adjacent layer adjacent to the oxidation catalyst in the support layer of the oxidation treatment tank, water can be passed at a high linear velocity with a simpler structure. In addition, it is possible to provide a treatment apparatus and treatment method for iron / manganese-containing water that suppresses the manganese oxide catalyst from falling into the support layer and enables stable operation as compared with the conventional system.

本発明の実施形態に係る鉄/マンガン含有水の処理装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the processing apparatus of the iron / manganese containing water which concerns on embodiment of this invention. 本発明の実施形態に係る鉄/マンガン含有水の処理装置における酸化処理槽の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the oxidation treatment tank in the processing apparatus of the iron / manganese containing water which concerns on embodiment of this invention. 実施例で用いた酸化処理槽の層構成を示す概略図である。It is the schematic which shows the layer structure of the oxidation treatment tank used in the Example. 比較例で用いた酸化処理槽の層構成を示す概略図である。It is the schematic which shows the layer structure of the oxidation treatment tank used by the comparative example. 実施例および比較例における酸化処理層の入口圧力の経時変化を示す図である。It is a figure which shows the time-dependent change of the inlet pressure of the oxidation process layer in an Example and a comparative example.

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。   Embodiments of the present invention will be described below. This embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.

本発明の実施形態に係る鉄/マンガン含有水処理装置の一例の概略を図1に示し、その構成について説明する。鉄/マンガン含有水処理装置1は、二酸化マンガンを含む酸化触媒を充填した酸化処理槽12と、膜ろ過装置14とを備える。鉄/マンガン含有水処理装置1は、原水槽10と、処理水槽16とを備えてもよい。   An outline of an example of the iron / manganese-containing water treatment apparatus according to the embodiment of the present invention is shown in FIG. The iron / manganese-containing water treatment device 1 includes an oxidation treatment tank 12 filled with an oxidation catalyst containing manganese dioxide, and a membrane filtration device 14. The iron / manganese-containing water treatment apparatus 1 may include a raw water tank 10 and a treated water tank 16.

図1の鉄/マンガン含有水処理装置1において、原水槽10の入口には原水配管26が接続され、原水槽10の出口と酸化処理槽12の酸化剤添加水入口とはポンプ20を介して原水供給配管28により接続されている。酸化処理槽12の出口と膜ろ過装置14の入口とは酸化処理水配管30により接続され、膜ろ過装置14の膜ろ過水出口と処理水槽16の入口とは膜ろ過水配管32により接続されている。処理水槽16の処理水出口には処理水配管34が接続されている。また、処理水槽16の逆洗水出口と膜ろ過水配管32の途中とはポンプ24を介して逆洗水配管38により接続されている。原水供給配管28のポンプ20の下流側には、酸化剤槽18の出口がポンプ22を介して酸化剤配管36により接続されている。   In the iron / manganese-containing water treatment apparatus 1 of FIG. 1, a raw water pipe 26 is connected to the inlet of the raw water tank 10, and the outlet of the raw water tank 10 and the oxidizing agent added water inlet of the oxidation treatment tank 12 are connected via a pump 20. The raw water supply pipe 28 is connected. The outlet of the oxidation treatment tank 12 and the inlet of the membrane filtration device 14 are connected by an oxidation treatment water pipe 30, and the outlet of the membrane filtration water of the membrane filtration device 14 and the inlet of the treatment water tank 16 are connected by a membrane filtration water pipe 32. Yes. A treated water pipe 34 is connected to the treated water outlet of the treated water tank 16. Further, the backwash water outlet of the treated water tank 16 and the middle of the membrane filtrate water pipe 32 are connected by a backwash water pipe 38 via the pump 24. The outlet of the oxidant tank 18 is connected to the downstream side of the pump 20 of the raw water supply pipe 28 by an oxidant pipe 36 via the pump 22.

本実施形態に係る鉄/マンガン含有水処理方法および鉄/マンガン含有水処理装置1の動作について説明する。   The operation of the iron / manganese-containing water treatment method and the iron / manganese-containing water treatment apparatus 1 according to the present embodiment will be described.

原水である、鉄およびマンガンのうち少なくとも1つを含む鉄/マンガン含有水は、原水配管26を通して、必要に応じて原水槽10に貯留される。鉄/マンガン含有水は、ポンプ20によって原水供給配管28を通して酸化処理槽12に送液されるが、原水供給配管28の途中において酸化剤槽18から酸化剤がポンプ22によって酸化剤配管36を通して鉄/マンガン含有水に添加され(酸化剤添加工程)、酸化剤添加水として酸化処理槽12に送液される。本実施形態では、酸化剤槽18、ポンプ22および酸化剤配管36が酸化剤添加手段として機能する。   Iron / manganese-containing water containing at least one of iron and manganese, which is raw water, is stored in the raw water tank 10 through the raw water pipe 26 as necessary. The iron / manganese-containing water is sent to the oxidation treatment tank 12 through the raw water supply pipe 28 by the pump 20, and in the middle of the raw water supply pipe 28, the oxidant from the oxidant tank 18 passes through the oxidant pipe 36 by the pump 22. / Addition to manganese-containing water (oxidizing agent adding step), and sent to the oxidation treatment tank 12 as oxidizing agent added water. In the present embodiment, the oxidant tank 18, the pump 22, and the oxidant pipe 36 function as oxidant addition means.

酸化処理槽12において、酸化剤添加水は上向流で通水され、充填された二酸化マンガンを含む酸化触媒により酸化処理される(酸化処理工程)。鉄/マンガン含有水に酸化剤が添加されながら、二酸化マンガンを含む酸化触媒が充填された酸化処理槽12に通水されることにより、溶存鉄および溶存マンガンが酸化析出される。   In the oxidation treatment tank 12, the oxidant-added water is passed in an upward flow and is oxidized by an oxidation catalyst containing filled manganese dioxide (oxidation treatment step). While the oxidizing agent is added to the iron / manganese-containing water, water is passed through the oxidation treatment tank 12 filled with the oxidation catalyst containing manganese dioxide, so that dissolved iron and dissolved manganese are oxidized and precipitated.

酸化処理された酸化処理水は、酸化処理槽12の出口から酸化処理水配管30を通して膜ろ過装置14へ送液され、膜ろ過装置14において、酸化析出された析出物が膜ろ過される(膜ろ過工程)。   Oxidized oxidized water is fed from the outlet of the oxidation treatment tank 12 to the membrane filtration device 14 through the oxidation treated water pipe 30, and the oxidized precipitate is subjected to membrane filtration in the membrane filtration device 14 (membrane). Filtration step).

膜ろ過装置14の膜ろ過水は、膜ろ過水配管32を通して必要に応じて処理水槽16へ送液され、貯留される。処理水槽16に貯留された処理水の所定の量が処理水配管34を通して排出される。   The membrane filtrate of the membrane filtration device 14 is sent to the treated water tank 16 as needed through the membrane filtrate pipe 32 and stored. A predetermined amount of treated water stored in the treated water tank 16 is discharged through the treated water pipe 34.

膜ろ過装置14の膜の洗浄が必要となった場合、処理水槽16に貯留された処理水の少なくとも一部がポンプ24によって逆洗水配管38を通して膜ろ過水出口側から膜ろ過装置14へ供給され、ろ過膜の逆洗が行われる(逆洗工程)。本実施形態では、処理水槽16、ポンプ24および逆洗水配管38が逆洗手段として機能する。   When it is necessary to clean the membrane of the membrane filtration device 14, at least a part of the treated water stored in the treatment water tank 16 is supplied from the membrane filtration water outlet side to the membrane filtration device 14 through the backwash water pipe 38 by the pump 24. Then, the membrane is backwashed (backwashing step). In the present embodiment, the treated water tank 16, the pump 24, and the backwash water pipe 38 function as backwashing means.

本実施形態に係る鉄/マンガン含有水処理装置1では、鉄/マンガン含有水に酸化剤を添加しながら、二酸化マンガンを含む酸化触媒を充填した酸化処理槽12に通水することにより溶存鉄および溶存マンガンを酸化析出させ、その酸化処理水を膜ろ過する方法を用いる。そして、本実施形態に係る方法では、図2に示すように、酸化処理槽12において、酸化触媒40を支持する支持層42における酸化触媒40に隣接する隣接層44を構成する支持粒子として比重2.6より大きい粒子を用いる。これにより、よりシンプルな構造で、高線速で通水しても酸化マンガン触媒が支持層42中に落ち込むことを抑制し、従来型システムと比べて安定運転が可能となる。例えばLV3600m/日という高線速での通水を行っても支持層42の流動が抑制され、安定運転が可能となる。また、特許文献3のような複雑なノズルを設置しなくてもよく、低コストで、よりシンプルな構造での処理が可能となる。なお、本明細書において、例えば、酸化触媒(二酸化マンガン)および支持粒子の比重は、真比重であり、表面乾燥飽和状態における測定値の平均値である。本明細書において、酸化触媒(二酸化マンガン)および支持粒子の比重Aの粒子には、比重A±A×0.05の範囲の粒子を含む場合がある。例えば、比重2.6の粒子とは、2.6±2.6×0.05=2.47〜2.73の範囲の粒子を含む場合があるが、上記測定値の平均値として比重2.6の粒子である。   In the iron / manganese-containing water treatment apparatus 1 according to the present embodiment, dissolved iron and manganese are contained by passing water through an oxidation treatment tank 12 filled with an oxidation catalyst containing manganese dioxide while adding an oxidizing agent to the iron / manganese-containing water. A method is used in which dissolved manganese is oxidized and precipitated, and the oxidized water is subjected to membrane filtration. In the method according to the present embodiment, as shown in FIG. 2, in the oxidation treatment tank 12, specific gravity 2 is used as support particles constituting the adjacent layer 44 adjacent to the oxidation catalyst 40 in the support layer 42 that supports the oxidation catalyst 40. Use particles larger than .6. As a result, the manganese oxide catalyst can be prevented from falling into the support layer 42 even when water is passed at a high linear velocity with a simpler structure, and stable operation can be achieved as compared with the conventional system. For example, even if water is passed at a high linear speed of LV 3600 m / day, the flow of the support layer 42 is suppressed, and stable operation is possible. Further, it is not necessary to install a complicated nozzle as in Patent Document 3, and processing with a simpler structure is possible at low cost. In the present specification, for example, the specific gravity of the oxidation catalyst (manganese dioxide) and the support particles is true specific gravity, and is an average value of measured values in a surface dry saturated state. In this specification, the oxidation catalyst (manganese dioxide) and the particles having a specific gravity A of the support particles may include particles having a specific gravity A ± A × 0.05. For example, particles having a specific gravity of 2.6 may include particles in the range of 2.6 ± 2.6 × 0.05 = 2.47 to 2.73, but the specific gravity is 2 as an average value of the above measured values. .6 particles.

支持層42は、少なくとも1層より構成され、酸化処理槽12内の流れの編流、不陸等をより抑制する等の観点から、複数層より構成されることが好ましい。図2に示す一例において、支持層42は、例えば3層より構成され、積層された層46、層48、隣接層44を有する。層46は、最下層に位置する。層48は、層46に隣接して、その上層に位置する。隣接層44は、層48および酸化触媒40に隣接して、層48の上層であって酸化触媒40の下層に位置する。   The support layer 42 is composed of at least one layer, and is preferably composed of a plurality of layers from the viewpoint of further suppressing knitting, unevenness, etc. of the flow in the oxidation treatment tank 12. In the example illustrated in FIG. 2, the support layer 42 includes, for example, three layers and includes a stacked layer 46, a layer 48, and an adjacent layer 44. Layer 46 is located on the bottom layer. Layer 48 is located adjacent to and above layer 46. The adjacent layer 44 is adjacent to the layer 48 and the oxidation catalyst 40 and is located above the layer 48 and below the oxidation catalyst 40.

支持層42のうち酸化触媒40に隣接する隣接層44を構成する支持粒子の種類としては、比重2.6より大きく、酸化処理槽12内の流れの編流、不陸等を抑制することができるものであれば特に制限はない。隣接層44を構成する支持粒子の比重は3.5以上であることが好ましく、4.0以上であることがさらに好ましい。そのような支持粒子としては、例えば、二酸化マンガンを主成分(50重量%以上)とする二酸化マンガン粒子(比重4.0)、ガーネット粒子(比重3.5)等の無機粒子、磁鉄鉱(比重5.2)等の金属粒子等が挙げられる。それらの中でも、マンガン酸化をより促進し、処理水質をさらに良くするという観点から支持粒子としては二酸化マンガン粒子の使用が好ましい。   Of the support layer 42, the type of support particles constituting the adjacent layer 44 adjacent to the oxidation catalyst 40 is greater than a specific gravity of 2.6, and suppresses knitting or unevenness of the flow in the oxidation treatment tank 12. There is no particular limitation as long as it is possible. The specific gravity of the support particles constituting the adjacent layer 44 is preferably 3.5 or more, and more preferably 4.0 or more. Examples of such support particles include inorganic particles such as manganese dioxide particles (specific gravity 4.0) and garnet particles (specific gravity 3.5) containing manganese dioxide as a main component (50% by weight or more), magnetite (specific gravity 5). .2) and the like. Among them, it is preferable to use manganese dioxide particles as support particles from the viewpoint of further promoting manganese oxidation and further improving the quality of treated water.

隣接層44を構成する支持粒子の比重が2.6以下(例えば、砂利)であると、高線速で通水すると支持層42が流動してしまい、不陸が生じる。支持粒子の比重の上限は特に制限はないが、比重10を超えるような高比重の支持粒子を用いると支持層42の支持粒子を交換する際にハンドリングが悪く不便であるから、例えば10以下である。   If the specific gravity of the supporting particles constituting the adjacent layer 44 is 2.6 or less (for example, gravel), the water flows at a high linear velocity, the supporting layer 42 flows and unevenness occurs. The upper limit of the specific gravity of the support particles is not particularly limited. However, if support particles having a high specific gravity exceeding 10 are used, the handling particles are inconvenient and inconvenient when the support particles of the support layer 42 are exchanged. is there.

隣接層44以外の支持層42(例えば層46,48)を構成する支持粒子の種類としては、隣接層44を構成する支持粒子と同じ種類のものであってもよいし、異なる種類のものであってもよい。隣接層44以外の支持層42(例えば層46,48)として、二酸化マンガン粒子(比重4.0)、ガーネット粒子(比重3.5)等の比重2.6より大きい粒子を用いてもよいし、砂利(比重2.6)等の比重2.6以下の粒子を用いてもよい。   The kind of support particles constituting the support layer 42 (for example, the layers 46 and 48) other than the adjacent layer 44 may be the same type as that of the support particles constituting the adjacent layer 44, or a different kind. There may be. As the support layer 42 (for example, the layers 46 and 48) other than the adjacent layer 44, particles having a specific gravity greater than 2.6 such as manganese dioxide particles (specific gravity 4.0) and garnet particles (specific gravity 3.5) may be used. Particles having a specific gravity of 2.6 or less, such as gravel (specific gravity 2.6), may be used.

本実施形態に係る鉄/マンガン含有水処理装置において、支持層42を構成する支持粒子の粒径は、酸化触媒の粒径より大きいことが好ましい。より具体的には例えば、支持粒子の設計最大粒径は、酸化触媒の粒径より大きいことが好ましい。隣接層44を構成する支持粒子の粒径としては1.0mmより大きいことが好ましく、1.5mm以上であることがより好ましく、2mm以上8mm以下であることがさらに好ましい。支持粒子の粒径が1.0mm未満であると支持層42が流動して不陸が生じる可能性があり、支持粒子の粒径が8mmを超えると酸化マンガン触媒が支持層42中に落ち込む場合がある。なお、本明細書において、例えば、支持粒子の粒径は日本水道協会(JWWA A103:2006)水道用ろ過砂利抄記)により定義される粒径であり、酸化触媒の粒径は有効径である。   In the iron / manganese-containing water treatment apparatus according to this embodiment, the particle size of the support particles constituting the support layer 42 is preferably larger than the particle size of the oxidation catalyst. More specifically, for example, the design maximum particle size of the support particles is preferably larger than the particle size of the oxidation catalyst. The particle size of the support particles constituting the adjacent layer 44 is preferably larger than 1.0 mm, more preferably 1.5 mm or more, and further preferably 2 mm or more and 8 mm or less. When the particle size of the support particles is less than 1.0 mm, the support layer 42 may flow to cause unevenness, and when the particle size of the support particles exceeds 8 mm, the manganese oxide catalyst falls into the support layer 42. There is. In the present specification, for example, the particle size of the support particles is a particle size defined by the Japan Water Works Association (JWWA A103: 2006) Waterworks Gravel Abstract for Waterworks), and the particle size of the oxidation catalyst is an effective diameter.

比重2.6より大きい、好ましくは比重3.5以上、かつ粒径1.0mmより大きい、好ましくは粒径1.5mm以上の支持粒子を使用することにより、例えばLV3600m/日という高線速で通水を行っても、支持粒子の流動が抑制され、安定運転が可能となる。   By using support particles having a specific gravity of greater than 2.6, preferably a specific gravity of 3.5 or greater and a particle size of greater than 1.0 mm, preferably 1.5 mm or greater, for example, at a high linear velocity of LV3600 m / day. Even if water is passed, the flow of the support particles is suppressed and stable operation is possible.

支持層42の構成としては、支持層42が複数層より構成され、隣接層44を構成する支持粒子の粒径が、それ以外の層(例えば層46,48)を構成する支持粒子の粒径より小さいことが好ましい。3層以上で支持層42を構成する場合は、最下層から隣接層44に行くにしたがって粒径が小さな支持粒子で各層が構成されることが好ましい。   As the structure of the support layer 42, the support layer 42 is composed of a plurality of layers, and the particle diameter of the support particles constituting the adjacent layer 44 is the particle diameter of the support particles constituting the other layers (for example, layers 46 and 48). Preferably it is smaller. When the support layer 42 is constituted by three or more layers, it is preferable that each layer is constituted by support particles having a smaller particle diameter from the lowest layer to the adjacent layer 44.

単層または複数層の支持層42を構成する各層の層厚は、通水流速等に応じて決めればよく、特に制限はないが、例えば、50mm以上200mm以下程度の範囲とすればよい。支持層42が複数層より構成される場合、各層の層厚は同じであっても、異なっていてもよい。   The layer thickness of each layer constituting the single-layer or multiple-layer support layer 42 may be determined according to the water flow rate and the like, and is not particularly limited, but may be, for example, in the range of about 50 mm to 200 mm. When the support layer 42 is composed of a plurality of layers, the layer thickness of each layer may be the same or different.

支持層42の構成を示す図2の一例において、例えば、隣接層44(上段)を構成する支持粒子の粒径を2〜4mmとし、層48(中段)を構成する支持粒子の粒径を4〜8mmとし、層46(下段)を構成する支持粒子の粒径を8〜12mmとしてもよい。そして、隣接層44、層46,48の全ての層において、比重2.6より大きい、好ましくは比重3.5以上の粒子を使用してももちろんよい。しかし、粒径4〜8mmのものは最も一般的な比重2.6程度の砂利でもLV3600m/日において流動しにくいので、層46,48に関しては一般的な比重2.6程度の砂利で問題なく、コスト的にもそちらの方がより優れている。   In the example of FIG. 2 showing the configuration of the support layer 42, for example, the particle size of the support particles constituting the adjacent layer 44 (upper stage) is 2 to 4 mm, and the particle size of the support particles constituting the layer 48 (middle stage) is 4. The particle diameter of the support particles constituting the layer 46 (lower stage) may be 8 to 12 mm. Of course, particles having a specific gravity of more than 2.6, preferably a specific gravity of 3.5 or more may be used in all of the adjacent layers 44 and the layers 46 and 48. However, those with a particle size of 4 to 8 mm are difficult to flow at LV3600 m / day even with the most common gravel with a specific gravity of about 2.6, so the gravel with a specific specific gravity of about 2.6 is satisfactory for the layers 46 and 48. It ’s better in terms of cost.

処理対象となる鉄/マンガン含有水は、鉄およびマンガンのうち少なくとも1つを含み、少なくともマンガンを含むことが好ましく、通常は鉄およびマンガンの両方を含む。鉄/マンガン含有水中の溶解性鉄の含有量は、例えば0.1〜10mg/Lの範囲であり、溶解性マンガンの含有量は、例えば0.01〜5mg/Lの範囲である。   The iron / manganese-containing water to be treated contains at least one of iron and manganese, preferably contains at least manganese, and usually contains both iron and manganese. The content of soluble iron in the iron / manganese-containing water is, for example, in the range of 0.1 to 10 mg / L, and the content of soluble manganese is, for example, in the range of 0.01 to 5 mg / L.

処理対象となる鉄/マンガン含有水としては、例えば、河川水、地下水、湖沼水等が挙げられる。   Examples of the iron / manganese-containing water to be treated include river water, groundwater, lake water, and the like.

酸化剤としては、次亜塩素酸ナトリウム、さらし粉、過マンガン酸カリウム、二酸化塩素等が挙げられ、ランニングコスト、汎用性等の点から、次亜塩素酸ナトリウムが好ましい。   Examples of the oxidizing agent include sodium hypochlorite, bleached powder, potassium permanganate, chlorine dioxide and the like, and sodium hypochlorite is preferable from the viewpoint of running cost, versatility and the like.

酸化剤の添加量は、例えば、鉄/マンガン含有水中の溶解性鉄に対しては、鉄の含有量1モルに対して0.5モル以上2モル以下の範囲、溶解性マンガンに対しては、マンガン含有量1モルに対して1モル以上4モル以下の範囲である。酸化剤の添加量が上記の値未満であると、反応が不十分となる場合があり、過剰に入れすぎると、コスト面で不利となる上に、トリハロメタン生成量が増大する場合がある。   The amount of oxidant added is, for example, in the range of 0.5 mol to 2 mol with respect to 1 mol of iron for soluble iron in iron / manganese-containing water, The range is from 1 mol to 4 mol with respect to 1 mol of manganese content. If the addition amount of the oxidizing agent is less than the above value, the reaction may be insufficient. If it is excessively added, the cost may be disadvantageous and the amount of trihalomethane generated may increase.

酸化処理槽12で用いられる二酸化マンガンを含む酸化触媒としては、例えば、二酸化マンガンが粒状、固形状となった酸化触媒や、マンガン砂等が挙げられる。また、二酸化マンガンとしては、特に制限はなく、α型、β型、ε型、γ型、λ型、δ型およびR型の結晶構造を有する二酸化マンガンが挙げられ、これらのうち、反応性等の点から、β型の結晶構造を有する二酸化マンガンが好ましい。   Examples of the oxidation catalyst containing manganese dioxide used in the oxidation treatment tank 12 include an oxidation catalyst in which manganese dioxide is granular and solid, manganese sand, and the like. Further, the manganese dioxide is not particularly limited, and examples thereof include manganese dioxide having α-type, β-type, ε-type, γ-type, λ-type, δ-type, and R-type crystal structures. From this point, manganese dioxide having a β-type crystal structure is preferable.

酸化処理槽12では、二酸化マンガンを含む酸化触媒は上向流で原水が触媒層に通水されることにより、流動状態となり膨張床が形成される。   In the oxidation treatment tank 12, the oxidation catalyst containing manganese dioxide is in an upward flow, and raw water is passed through the catalyst layer to be in a fluid state to form an expanded bed.

二酸化マンガンを含む酸化触媒の密度は、2.8g/cm以上であることが好ましい。二酸化マンガンを含む酸化触媒の密度が2.8g/cm未満であると、高速で通水した場合に触媒が展開し、酸化処理槽12の槽高が高くなる場合がある。 The density of the oxidation catalyst containing manganese dioxide is preferably 2.8 g / cm 3 or more. When the density of the oxidation catalyst containing manganese dioxide is less than 2.8 g / cm 3 , the catalyst develops when water is passed at high speed, and the tank height of the oxidation treatment tank 12 may increase.

二酸化マンガンを含む酸化触媒の粒径は、0.4mm〜1.0mmの範囲であることが好ましい。二酸化マンガンを含む酸化触媒の粒径が0.4mm未満であると、触媒の展開率が上がり、粒径の小さいものが流出する場合があり、1.0mmを超えると、触媒表面積が減り、反応効率が低下する場合がある。   The particle diameter of the oxidation catalyst containing manganese dioxide is preferably in the range of 0.4 mm to 1.0 mm. If the particle size of the oxidation catalyst containing manganese dioxide is less than 0.4 mm, the rate of expansion of the catalyst may increase, and small particles may flow out. If the particle size exceeds 1.0 mm, the surface area of the catalyst decreases and the reaction Efficiency may be reduced.

酸化処理槽12における上向流による通水流速は、例えば、1000m/日以上4000m/日以下の高線速であり、2400m/日以上3600m/日以下の範囲の高線速であっても本実施形態に係る鉄/マンガン含有水処理装置および処理方法に適用可能である。酸化処理槽12における上向流による通水流速が1000m/日未満であると、触媒が略均一に流動せず、片流れが生じる場合があり、3600m/日を超えると、触媒の展開率が上がり、酸化処理槽12の槽高が高くなる場合がある。   The flow rate of water flow due to the upward flow in the oxidation treatment tank 12 is, for example, a high linear velocity of 1000 m / day or more and 4000 m / day or less, even if it is a high linear velocity in the range of 2400 m / day or more and 3600 m / day or less. The present invention is applicable to the iron / manganese-containing water treatment apparatus and treatment method according to the embodiment. If the water flow velocity due to the upward flow in the oxidation treatment tank 12 is less than 1000 m / day, the catalyst may not flow substantially uniformly, and a single flow may occur. If the flow rate exceeds 3600 m / day, the rate of development of the catalyst increases. The tank height of the oxidation treatment tank 12 may increase.

酸化処理槽12における反応温度は、例えば、1℃〜50℃の範囲である。   The reaction temperature in the oxidation treatment tank 12 is, for example, in the range of 1 ° C to 50 ° C.

膜ろ過装置14において用いるろ過膜は、酸化析出された鉄およびマンガン等の析出物をろ過できるものであればよく、特に制限はないが、例えば、UF膜、MF膜等が挙げられ、二酸化マンガンを含む酸化触媒から剥離した微細なマンガン粒子(例えば、0.1μm未満)等を除去できる等の点から、UF膜が好ましい。   The filtration membrane used in the membrane filtration device 14 is not particularly limited as long as it can filter precipitates such as oxidized iron and manganese, and examples thereof include a UF membrane and an MF membrane. Manganese dioxide A UF membrane is preferable because fine manganese particles (for example, less than 0.1 μm) and the like peeled from the oxidation catalyst containing can be removed.

本実施形態に係る鉄/マンガン含有水処理装置および処理方法は、例えば、浄水処理場、地下水の用水処理等において好適に適用可能である。   The iron / manganese-containing water treatment apparatus and treatment method according to the present embodiment can be suitably applied in, for example, a water purification plant, groundwater use water treatment, and the like.

以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。   Hereinafter, although an example and a comparative example are given and the present invention is explained more concretely in detail, the present invention is not limited to the following examples.

<実施例および比較例>
図1の装置を用い、2本のカラム(φ125mm×2000mm)に支持粒子を充填して支持層を形成した後、β型の結晶構造を有する酸化マンガン触媒(粒径0.5mm、比重4.0)を4.8Lずつ充填して触媒層(高さ390mm)を形成し、酸化処理槽とした。それぞれの装置で処理流量1500L/h(LV3000m/日)の上向流で連続運転を行った。実施例、比較例ともに支持層の構成は上層(隣接層):粒径2〜4mm×層厚100mm、中層:粒径4〜8mm×層厚100mm、下層:粒径8〜12mm×層厚100mmとし、実施例では上層の支持粒子として比重4.0の二酸化マンガン粒子(マンガン砂利)を用い、それ以外は全て比重2.6の砂利を用いた(図3参照)。比較例では上層、中層、下層で全て比重2.6の砂利を用いた(図4参照)。酸化剤として次亜塩素酸ナトリウムを注入し、残留塩素濃度が0.4mg/Lとなるようにした。原水は、支持層の下層内にφ15mmの円筒状管の側面にφ6mmの吐出口を18mm間隔で7カ所に一列で設けたものを用い、その円筒状管をカラムの支持層の下層の直径方向に吐出口が下向きになるように挿入して、ポンプにより供給した。原水水質は表1のようであった。酸化処理槽の入口圧力の経時変化を図5に、処理水質を表2に示す。
<Examples and Comparative Examples>
1, two columns (φ125 mm × 2000 mm) are filled with support particles to form a support layer, and then a manganese oxide catalyst having a β-type crystal structure (particle size 0.5 mm, specific gravity 4. 0) was charged in units of 4.8 L to form a catalyst layer (height 390 mm), which was used as an oxidation treatment tank. Each apparatus was continuously operated with an upward flow of a treatment flow rate of 1500 L / h (LV 3000 m / day). In both the examples and comparative examples, the structure of the support layer is the upper layer (adjacent layer): particle size 2 to 4 mm × layer thickness 100 mm, middle layer: particle size 4 to 8 mm × layer thickness 100 mm, lower layer: particle size 8 to 12 mm × layer thickness 100 mm In the examples, manganese dioxide particles (manganese gravel) having a specific gravity of 4.0 were used as support particles for the upper layer, and gravel having a specific gravity of 2.6 was used in all other cases (see FIG. 3). In the comparative example, gravel having a specific gravity of 2.6 was used for the upper layer, middle layer, and lower layer (see FIG. 4). Sodium hypochlorite was injected as an oxidizing agent so that the residual chlorine concentration was 0.4 mg / L. The raw water is one in which a φ6 mm discharge port is provided in a row at seven locations at intervals of 18 mm in the side surface of a φ15 mm cylindrical tube in the lower layer of the support layer, and the cylindrical tube is used in the diameter direction of the lower layer of the column support layer. It was inserted so that the discharge port faced downward and supplied by a pump. The raw water quality was as shown in Table 1. FIG. 5 shows the change over time in the inlet pressure of the oxidation treatment tank, and Table 2 shows the quality of the treated water.

支持層上層に比重4.0の二酸化マンガン粒子を使用した実施例では、実験期間中、酸化処理槽入口の圧力はほぼ一定で、安定運転できていたのに対し、上層を通常の比重2.6の砂利を使用した比較例では、目視で酸化マンガン触媒の支持層中への落ち込みが観察され、徐々に酸化処理槽入口圧力の上昇が見られるようになった。また処理水質に関しても初期においては両者に差はなかったが、酸化処理槽入口の圧力上昇後は、比較例の通常の砂利の場合、処理水質が悪化する結果となった。   In the example in which manganese dioxide particles having a specific gravity of 4.0 were used as the upper layer of the support layer, the pressure at the oxidation treatment tank inlet was almost constant during the experiment period, and stable operation was achieved, whereas the upper layer had a normal specific gravity of 2. In the comparative example using gravel of No. 6, a drop of the manganese oxide catalyst into the support layer was visually observed, and an increase in the oxidation treatment tank inlet pressure was gradually observed. Moreover, although there was no difference in both at the initial stage regarding the quality of the treated water, after the pressure increase at the oxidation treatment tank inlet, in the case of the normal gravel of the comparative example, the treated water quality deteriorated.

上記実施例のカラムを用い、処理流量をLV1000,2400,3000,3600,4000m/日の上向流で連続運転を行った。目視で支持層の流動を確認し、以下の基準で評価した。結果を表3に示す。
○:流動なし
△:僅かに流動あり
×:流動あり
Using the column of the above-mentioned example, continuous operation was performed with the processing flow rate being LV1000, 2400, 3000, 3600, 4000 m / day upward flow. The flow of the support layer was confirmed visually and evaluated according to the following criteria. The results are shown in Table 3.
○: No flow △: Slight flow ×: Flow

実施例のカラムでは、LV3600m/日の高線速で通水しても支持層の流動は観察されなかった。一方、比較例のカラムでは、LV2400m/日で僅かに支持層の流動が観察され、LV3000m/日では支持層の流動が観察された。   In the column of the example, no flow of the support layer was observed even when water was passed at a high linear velocity of LV3600 m / day. On the other hand, in the column of the comparative example, the flow of the support layer was slightly observed at LV2400 m / day, and the flow of the support layer was observed at LV3000 m / day.

このように、実施例の装置により、よりシンプルな構造で、高線速で通水しても酸化マンガン触媒が支持層中に落ち込むことを抑制し、従来型システムと比べて安定運転が可能となった。   As described above, the apparatus of the embodiment has a simpler structure and suppresses the manganese oxide catalyst from falling into the support layer even when water is passed at a high linear speed, enabling stable operation compared to the conventional system. became.

1 鉄/マンガン含有水処理装置、10 原水槽、12 酸化処理槽、14 膜ろ過装置、16 処理水槽、18 酸化剤槽、20,22,24 ポンプ、26 原水配管、28 原水供給配管、30 酸化処理水配管、32 膜ろ過水配管、34 処理水配管、36 酸化剤配管、38 逆洗水配管、40 酸化触媒、42 支持層、44 隣接層、46,48 層。   DESCRIPTION OF SYMBOLS 1 Iron / manganese containing water processing apparatus, 10 Raw water tank, 12 Oxidation processing tank, 14 Membrane filtration apparatus, 16 Treated water tank, 18 Oxidant tank, 20, 22, 24 Pump, 26 Raw water piping, 28 Raw water supply piping, 30 Oxidation Treated water piping, 32 membrane filtered water piping, 34 treated water piping, 36 oxidant piping, 38 backwash water piping, 40 oxidation catalyst, 42 support layer, 44 adjacent layers, 46, 48 layers.

Claims (7)

鉄およびマンガンのうち少なくとも1つを含む鉄/マンガン含有水に酸化剤を添加する酸化剤添加手段と、
前記酸化剤が添加された酸化剤添加水を酸化処理する、二酸化マンガンを含む酸化触媒を充填した酸化処理槽と、
前記酸化処理した酸化処理水を膜ろ過する膜ろ過装置と、
を備え、
前記酸化処理槽において前記酸化触媒を支持する支持層における前記酸化触媒に隣接する隣接層を構成する支持粒子として比重2.6より大きい粒子を用いることを特徴とする鉄/マンガン含有水の処理装置。
An oxidizing agent adding means for adding an oxidizing agent to iron / manganese-containing water containing at least one of iron and manganese;
An oxidation treatment tank filled with an oxidation catalyst containing manganese dioxide, which oxidizes the oxidant-added water to which the oxidant is added;
A membrane filtration device for membrane filtration of the oxidized treated water;
With
An iron / manganese-containing water treatment apparatus using particles having a specific gravity of greater than 2.6 as support particles constituting an adjacent layer adjacent to the oxidation catalyst in a support layer supporting the oxidation catalyst in the oxidation treatment tank. .
請求項1に記載の鉄/マンガン含有水の処理装置であって、
前記隣接層を構成する支持粒子が二酸化マンガン粒子を含むことを特徴とする鉄/マンガン含有水の処理装置。
The iron / manganese-containing water treatment apparatus according to claim 1,
An iron / manganese-containing water treatment apparatus, wherein the support particles constituting the adjacent layer contain manganese dioxide particles.
請求項1または2に記載の鉄/マンガン含有水の処理装置であって、
前記隣接層を構成する支持粒子の粒径が、1.0mmより大きいことを特徴とする鉄/マンガン含有水の処理装置。
The iron / manganese-containing water treatment apparatus according to claim 1 or 2,
The iron / manganese-containing water treatment apparatus, wherein a particle diameter of the support particles constituting the adjacent layer is larger than 1.0 mm.
請求項1〜3のいずれか1項に記載の鉄/マンガン含有水の処理装置であって、
前記支持層が複数層より構成され、前記隣接層を構成する支持粒子の粒径は、それ以外の層を構成する支持粒子の粒径より小さいことを特徴とする鉄/マンガン含有水の処理装置。
The iron / manganese-containing water treatment apparatus according to any one of claims 1 to 3,
The iron / manganese-containing water treatment apparatus, wherein the support layer is composed of a plurality of layers, and the particle size of the support particles constituting the adjacent layer is smaller than the particle size of the support particles constituting the other layers. .
請求項1〜4のいずれか1項に記載の鉄/マンガン含有水の処理装置であって、
前記支持層を構成する支持粒子の粒径は、前記酸化触媒の粒径より大きいことを特徴とする鉄/マンガン含有水の処理装置。
The iron / manganese-containing water treatment apparatus according to any one of claims 1 to 4,
The iron / manganese-containing water treatment apparatus, wherein a particle size of the support particles constituting the support layer is larger than a particle size of the oxidation catalyst.
請求項1〜5のいずれか1項に記載の鉄/マンガン含有水の処理装置であって、
前記酸化処理槽における上向流による通水流速を、1000m/日より大きく、3600m/日以下に制御する流速制御手段を有することを特徴とする鉄/マンガン含有水の処理装置。
The iron / manganese-containing water treatment apparatus according to any one of claims 1 to 5,
An iron / manganese-containing water treatment apparatus, comprising flow rate control means for controlling a flow rate of water flow by upward flow in the oxidation treatment tank to be greater than 1000 m / day and not more than 3600 m / day.
鉄およびマンガンのうち少なくとも1つを含む鉄/マンガン含有水に酸化剤を添加する酸化剤添加工程と、
前記酸化剤が添加された酸化剤添加水を、二酸化マンガンを含む酸化触媒を充填した酸化処理槽に通水して酸化処理する酸化処理工程と、
前記酸化処理した酸化処理水を膜ろ過装置に通水して膜ろ過する膜ろ過工程と、
を含み、
前記酸化処理槽において前記酸化触媒を支持する支持層における前記酸化触媒に隣接する隣接層を構成する支持粒子として比重2.6より大きい粒子を用い、
前記酸化処理槽における上向流による通水流速を、1000m/日より大きく、3600m/日以下に制御することを特徴とする鉄/マンガン含有水の処理方法。
An oxidizing agent adding step of adding an oxidizing agent to iron / manganese-containing water containing at least one of iron and manganese;
An oxidation treatment step in which the oxidant-added water to which the oxidant has been added is passed through an oxidation treatment tank filled with an oxidation catalyst containing manganese dioxide to oxidize, and
A membrane filtration step of passing the oxidized treated water through a membrane filtration device and performing membrane filtration;
Including
In the oxidation treatment tank, particles having a specific gravity of greater than 2.6 are used as support particles constituting the adjacent layer adjacent to the oxidation catalyst in the support layer that supports the oxidation catalyst.
A method for treating iron / manganese-containing water, wherein a flow rate of water flow by upward flow in the oxidation treatment tank is controlled to be greater than 1000 m / day and not more than 3600 m / day.
JP2014108163A 2014-05-26 2014-05-26 Iron / manganese-containing water treatment apparatus and treatment method Active JP6329814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014108163A JP6329814B2 (en) 2014-05-26 2014-05-26 Iron / manganese-containing water treatment apparatus and treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014108163A JP6329814B2 (en) 2014-05-26 2014-05-26 Iron / manganese-containing water treatment apparatus and treatment method

Publications (2)

Publication Number Publication Date
JP2015223534A true JP2015223534A (en) 2015-12-14
JP6329814B2 JP6329814B2 (en) 2018-05-23

Family

ID=54840733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014108163A Active JP6329814B2 (en) 2014-05-26 2014-05-26 Iron / manganese-containing water treatment apparatus and treatment method

Country Status (1)

Country Link
JP (1) JP6329814B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180105588A (en) * 2017-03-15 2018-09-28 가부시기가이샤 닛뽕쇼꾸바이 Waste water processing apparatus and Waste water processing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495203B1 (en) * 1968-10-25 1974-02-06
GB2297923A (en) * 1995-02-15 1996-08-21 L Air Liquide Societe Anonmyne Arrangement of a retaining grille of an active material in a vessel, and a vessel so equipped
JP2000296325A (en) * 1999-04-12 2000-10-24 Nippon Shokubai Co Ltd Reactor for production of alkanolamine and method for packing catalyst
JP2003103275A (en) * 2001-07-24 2003-04-08 Ngk Insulators Ltd Cleaning treatment method for manganese-containing water
JP2008246487A (en) * 1997-04-22 2008-10-16 Nippon Shokubai Co Ltd Apparatus for treating waste water
JP2013056303A (en) * 2011-09-08 2013-03-28 Japan Organo Co Ltd Apparatus for oxidizing manganese

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495203B1 (en) * 1968-10-25 1974-02-06
GB2297923A (en) * 1995-02-15 1996-08-21 L Air Liquide Societe Anonmyne Arrangement of a retaining grille of an active material in a vessel, and a vessel so equipped
JP2008246487A (en) * 1997-04-22 2008-10-16 Nippon Shokubai Co Ltd Apparatus for treating waste water
JP2000296325A (en) * 1999-04-12 2000-10-24 Nippon Shokubai Co Ltd Reactor for production of alkanolamine and method for packing catalyst
JP2003103275A (en) * 2001-07-24 2003-04-08 Ngk Insulators Ltd Cleaning treatment method for manganese-containing water
JP2013056303A (en) * 2011-09-08 2013-03-28 Japan Organo Co Ltd Apparatus for oxidizing manganese

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180105588A (en) * 2017-03-15 2018-09-28 가부시기가이샤 닛뽕쇼꾸바이 Waste water processing apparatus and Waste water processing method
JP2018153805A (en) * 2017-03-15 2018-10-04 株式会社日本触媒 Wastewater treatment apparatus and method
CN108622992A (en) * 2017-03-15 2018-10-09 株式会社日本触媒 Wastewater treatment equipment and wastewater treatment method
CN108622992B (en) * 2017-03-15 2022-05-24 株式会社日本触媒 Wastewater treatment apparatus and wastewater treatment method
JP7145628B2 (en) 2017-03-15 2022-10-03 株式会社日本触媒 Wastewater treatment equipment and wastewater treatment method
KR102457127B1 (en) * 2017-03-15 2022-10-20 가부시기가이샤 닛뽕쇼꾸바이 Waste water processing apparatus and Waste water processing method

Also Published As

Publication number Publication date
JP6329814B2 (en) 2018-05-23

Similar Documents

Publication Publication Date Title
JP5933854B1 (en) Method and apparatus for cleaning filtration membrane of water to be treated, and water treatment system
WO2012042700A1 (en) Up-flow filtration device characterized by method for stacking filter materials
JP5989437B2 (en) Water treatment system and water treatment method
JP6153386B2 (en) Iron / manganese-containing water treatment apparatus and treatment method
JP6128964B2 (en) Apparatus and method for treating water containing organic matter
JP5210787B2 (en) Water treatment apparatus and water treatment method
JP6329814B2 (en) Iron / manganese-containing water treatment apparatus and treatment method
CN102491574B (en) Advanced treatment technology for comprehensive wastewater of iron and steel enterprises
JP2017186771A (en) Groundwater recharge system
JP6242227B2 (en) Iron / manganese-containing water treatment apparatus and treatment method
CN106517597A (en) Electroplating nickel-containing wastewater treatment system
JP4394504B2 (en) Biological filtration equipment
JP2007268359A (en) Membrane separation method
JP2017018918A (en) Processing unit and processing method of water containing iron/manganese
JP6301668B2 (en) Manganese-containing water treatment apparatus and treatment method
JP6329807B2 (en) Iron / manganese-containing water treatment apparatus and treatment method
JP6484355B2 (en) Iron / manganese-containing water treatment apparatus and treatment method
JP7117099B2 (en) Apparatus and method for treating iron/manganese-containing water
JP5351406B2 (en) Aggregation filtration treatment method and aggregation filtration treatment apparatus
JP2017000960A (en) Membrane cleaning method
CN206408003U (en) A kind of processing system of Ni-containing Plating Wastewater
JP7090015B2 (en) Iron / manganese-containing water treatment equipment and treatment method
JP2017186770A (en) Groundwater processing method
JP2015160177A (en) Pretreatment device and seawater desalination apparatus using the same
JP2015186775A (en) Water treatment system and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180423

R150 Certificate of patent or registration of utility model

Ref document number: 6329814

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250