JP2015223019A - Arrangement wiring structure of series connection capacitor - Google Patents

Arrangement wiring structure of series connection capacitor Download PDF

Info

Publication number
JP2015223019A
JP2015223019A JP2014106013A JP2014106013A JP2015223019A JP 2015223019 A JP2015223019 A JP 2015223019A JP 2014106013 A JP2014106013 A JP 2014106013A JP 2014106013 A JP2014106013 A JP 2014106013A JP 2015223019 A JP2015223019 A JP 2015223019A
Authority
JP
Japan
Prior art keywords
capacitor
series
potential
potential side
capacitors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014106013A
Other languages
Japanese (ja)
Other versions
JP6344054B2 (en
Inventor
滝沢 聡毅
Akitake Takizawa
聡毅 滝沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2014106013A priority Critical patent/JP6344054B2/en
Publication of JP2015223019A publication Critical patent/JP2015223019A/en
Application granted granted Critical
Publication of JP6344054B2 publication Critical patent/JP6344054B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To solve such a problem of an arrangement wiring structure of a series circuit connecting 2K capacitors in series and outputting a positive electrode, an intermediate electrode and a negative electrode, that, in a configuration of simply arranging in series, the wiring inductance increases and the structure is elongated, so that compaction of efficient structure is impossible.SOLUTION: A capacitor on the highest potential side and a capacitor on the lowest potential side are arranged adjacently, a positive terminal of the capacitor on the highest potential side is defined as positive electrode output, a negative terminal of the capacitor on the lowest potential side is defined as negative electrode output, and a first capacitor series arrangement part where K capacitors on the highest potential side are arranged in series and a second capacitor series arrangement part where K capacitors on the lowest potential side are arranged in series are arranged in parallel, a connection point of a negative terminal of the K-th capacitor in the first capacitor series arrangement part and a positive terminal of the K-th capacitor in the second capacitor series arrangement part is defined as an intermediate electrode, outputting from between the capacitors on the highest potential side and the capacitors on the lowest potential side.

Description

本発明は、電力変換回路の主回路に適用するコンデンサの配置配線構造に関し、コンデンサ部分から最高電位、最低電位及び中間電位の3つの出力線を備え、半導体スイッチ回路と接続する場合に配線インダクタンスを低減する配置配線構造技術に関する。   The present invention relates to a capacitor arrangement wiring structure applied to a main circuit of a power conversion circuit, and includes three output lines of a maximum potential, a minimum potential, and an intermediate potential from the capacitor portion, and wiring inductance when connecting to a semiconductor switch circuit. The present invention relates to a reduced placement and wiring structure technology.

図4に電力変換回路の代表回路である直流を3相交流に変換する3レベルインバータの主回路図を示す。1が直流電源回路,2がモータなどの負荷,3が電力用半導体で構成するインバータ回路である。インバータ回路3は、U相用アームUA、V相用アームVA及びW相用アームWAを直流電源回路1と並列接続した構成である。各相アーム(UA、VA、WA)の回路構成は同じであるので、U相アームについて説明する。直列接続されているTU1〜TU4が半導体スイッチ素子としてのIGBT,DU1〜DU4が各IGBTに逆並列接続されている還流ダイオードである。また、ダイオードCDU1とCDU2が交流出力の電位を直流電源回路1の中間電位の中間極Mにクランプする中性点クランプ用ダイオードである。IGBTTU2とTU3との接続点である交流出力には、直流電源回路1の正極Pの電位、中間極Mの電位及び負極Nの電位の3つの電位を出力することができ、3レベルインバータと呼ばれる。但し、一般には直流電源回路1は,図示していない交流電源とダイオード整流器を介して,図示している大容量のコンデンサで構成されるのが一般的である。また、前記直流電圧が、適用するコンデンサの電圧定格よりも高い時は,図4の直流電源回路1に示すようにコンデンサCp1とCp2、Cn1とCn2のように多直列接続する必要がある。 FIG. 4 shows a main circuit diagram of a three-level inverter that converts direct current, which is a representative circuit of the power conversion circuit, into three-phase alternating current. 1 is a DC power supply circuit, 2 is a load such as a motor, and 3 is an inverter circuit constituted by a power semiconductor. The inverter circuit 3 has a configuration in which a U-phase arm UA, a V-phase arm VA, and a W-phase arm WA are connected in parallel to the DC power supply circuit 1. Since the circuit configuration of each phase arm (UA, VA, WA) is the same, the U-phase arm will be described. TU1 to TU4 connected in series are IGBTs as semiconductor switch elements, and DU1 to DU4 are freewheeling diodes connected in reverse parallel to each IGBT. The diodes CDU 1 and CDU 2 are neutral point clamping diodes that clamp the AC output potential to the intermediate pole M of the intermediate potential of the DC power supply circuit 1. The AC output, which is the connection point between IGBTTU2 and TU3, can output three potentials: the potential of the positive electrode P of the DC power supply circuit 1, the potential of the intermediate electrode M, and the potential of the negative electrode N. This is called a three-level inverter. . However, in general, the DC power supply circuit 1 is generally composed of a large-capacity capacitor shown in the figure via an AC power supply (not shown) and a diode rectifier. Further, when the DC voltage is higher than the voltage rating of the capacitor to be applied, it is necessary to make a multi-series connection like capacitors Cp1 and Cp2 and Cn1 and Cn2 as shown in the DC power supply circuit 1 of FIG.

図5に、複数個直列接続されたコンデンサの配置配線構造例を示す。図5(a)はK=2の時で、直流電源の正極Pと中間極Mとの間及び中間極Mと負極Nとの間にそれぞれ2個のコンデンサが直列接続された時の構成で、図5(b)はK=3の時で、直流電源の正極Pと中間極Mとの間及び中間極Mと負極Nとの間にそれぞれ3個のコンデンサが直列接続された時の構成である。図5(a)において、最も高電位側のコンデンサCp1の正端子の電位が正極Pとなり,変換回路のP側電位回路と導体4によって接続される。コンデンサCp1の負端子と同電位となるコンデンサCp2の正端子とが導体5で接続される。同様に導体7でコンデンサCp2の負端子とCn1の正端子間を,導体8でコンデンサCn1の負端子とCn2の正端子間を、それぞれ接続し,最低電位側のコンデンサCn2の負端子が負極Nとなり,変換回路のN電位回路に導体10で接続される。また、コンデンサCp2の負端子とCn1の正端子間を接続する導体7は中間電位の中間極Mとなり,変換回路のM電位回路に接続される。   FIG. 5 shows an example of a wiring arrangement structure of a plurality of capacitors connected in series. FIG. 5A shows a configuration when two capacitors are connected in series between the positive electrode P and the intermediate electrode M of the DC power source and between the intermediate electrode M and the negative electrode N when K = 2. FIG. 5B shows a configuration in which three capacitors are connected in series between the positive electrode P and the intermediate electrode M of the DC power source and between the intermediate electrode M and the negative electrode N when K = 3. It is. In FIG. 5A, the potential of the positive terminal of the capacitor Cp1 on the highest potential side is the positive electrode P, and is connected to the P-side potential circuit of the conversion circuit by the conductor 4. The negative terminal of the capacitor Cp1 and the positive terminal of the capacitor Cp2 having the same potential are connected by the conductor 5. Similarly, the conductor 7 is connected between the negative terminal of the capacitor Cp2 and the positive terminal of Cn1, the conductor 8 is connected between the negative terminal of the capacitor Cn1 and the positive terminal of Cn2, and the negative terminal of the capacitor Cn2 on the lowest potential side is the negative electrode N. Thus, the conductor 10 is connected to the N potential circuit of the conversion circuit. The conductor 7 connecting the negative terminal of the capacitor Cp2 and the positive terminal of Cn1 is an intermediate pole M having an intermediate potential, and is connected to the M potential circuit of the conversion circuit.

図5(b)においては、最も高電位側のコンデンサCp1の正端子の電位が正極Pとなり,変換回路のP側電位回路と導体4によって接続される。コンデンサCp1の負端子と同電位となるコンデンサCp2の正端子とが導体5で、コンデンサCp2の負端子と同電位となるコンデンサCp3の正端子とが導体6で、それぞれ接続される。同様に導体7でコンデンサCp3の負端子とCn1の正端子間を,導体8でコンデンサCn1の負端子とCn2の正端子間を、導体9でCn2の負端子とCn3の正端子間を、それぞれ接続し,最低電位側のコンデンサCn3の負端子が負極Nとなり,変換回路のN電位回路に導体10で接続される。また、コンデンサCp3の負端子とCn1の正端子間を接続する導体7は中間電位の中間極Mとなり,変換回路のM電位回路に接続される。   In FIG. 5B, the potential of the positive terminal of the capacitor Cp1 on the highest potential side is the positive electrode P, and is connected to the P-side potential circuit of the conversion circuit by the conductor 4. The positive terminal of the capacitor Cp2 having the same potential as the negative terminal of the capacitor Cp1 is connected by the conductor 5, and the positive terminal of the capacitor Cp3 having the same potential as the negative terminal of the capacitor Cp2 is connected by the conductor 6. Similarly, the conductor 7 is between the negative terminal of the capacitor Cp3 and the positive terminal of Cn1, the conductor 8 is between the negative terminal of the capacitor Cn1 and the positive terminal of Cn2, and the conductor 9 is between the negative terminal of Cn2 and the positive terminal of Cn3. The negative terminal of the capacitor Cn3 on the lowest potential side becomes the negative electrode N, and is connected to the N potential circuit of the conversion circuit by the conductor 10. The conductor 7 connecting the negative terminal of the capacitor Cp3 and the positive terminal of Cn1 becomes an intermediate pole M having an intermediate potential, and is connected to the M potential circuit of the conversion circuit.

図5(c)は、図5(a)において配線インダクタンスを低減するために絶縁材(図では省略)を挟んで並行平板配線した従来技術である。中間電位の中間極Mを出力する導体7xとコンデンサCp1の負端子とCp2の正端子を接続する導体5、最低電位の負極を出力する導体10x、コンデンサCn1の負端子とCn2の正端子を接続する導体8がラミネート配線され、配線インダクタンスが低減される。
図4に示すような3レベル変換回路と直列コンデンサの配置と接続法については,特許文献1、2などに、3レベルインバータのコンデンサと変換回路との平板接続法については特許文献3などに記載されている。
FIG. 5C shows a conventional technique in which parallel plate wiring is performed with an insulating material (not shown) interposed therebetween in order to reduce wiring inductance in FIG. The conductor 7x that outputs the intermediate pole M of the intermediate potential, the conductor 5 that connects the negative terminal of the capacitor Cp1 and the positive terminal of Cp2, the conductor 10x that outputs the negative terminal of the lowest potential, and the negative terminal of the capacitor Cn1 and the positive terminal of Cn2 are connected. The conductor 8 to be laminated is laminated and wiring inductance is reduced.
The arrangement and connection method of the three-level conversion circuit and the series capacitor as shown in FIG. 4 are described in Patent Documents 1 and 2, and the flat plate connection method of the capacitor and conversion circuit of the three-level inverter is described in Patent Document 3 Has been.

特開平11−155286号公報JP-A-11-155286 特開平8−214561号公報JP-A-8-214561 特開2010−288415号公報JP 2010-288415 A

図4に示す3レベルインバータ回路において,U相アームUAのIGBT(TU1)がターンオフする際の動作図を図6に示す。
図6において,IGBT(TU1)がオン状態の場合(モード1),点線で示す電流I1、I2が流れている状態から,IGBT(TU1)がターンオフすると,ダイオードCDU1が導通し,電流経路I3、I4に転流される(モード2)。その際過渡的に,コンデンサとスイッチ素子接続線の配線インダクタンス及びコンデンサ同士間接続線の配線インダクタンスL1、L2、L3、L4、L5と,IGBTの電流変化率(di/dt)に応じて,各配線インダクタンスには図6中の+の向きに電圧が発生する。
FIG. 6 shows an operation diagram when the IGBT (TU1) of the U-phase arm UA is turned off in the three-level inverter circuit shown in FIG.
In FIG. 6, when the IGBT (TU1) is in the ON state (mode 1), when the IGBT (TU1) is turned off from the state where the currents I1 and I2 indicated by the dotted lines are flowing, the diode CDU1 becomes conductive and the current path I3, Commutated to I4 (mode 2). At that time, depending on the wiring inductance of the capacitor and the switch element connection line, the wiring inductance L1, L2, L3, L4, and L5 of the connection line between the capacitors, and the current change rate (di / dt) of the IGBT, A voltage is generated in the wiring inductance in the + direction in FIG.

その結果、IGBT(DU1)のコレクタ−エミッタ間には最大,式(1)で示される電圧が印加される。図7にIGBT(TU1)ターンオフ時のコレクタ電流(ic)とコレクタエミッタ間電圧(VCE)波形を示す。
CE(peak)=Edp+(L1+L2+L3+L4+L5)×di/dt・・・(1) サージ電圧ΔV=(L1+L2+L3+L4+L5)×di/dt ・・・(2)
Edp :直流電源の正側直流電圧(コンデンサ電圧)
di/dt :IGBTターンオフ時のIGBTの電流変化率
L1、L2、L3、L4、L5: 各配線のインダクタンス値
As a result, the maximum voltage expressed by the equation (1) is applied between the collector and emitter of the IGBT (DU1). FIG. 7 shows the collector current (ic) and collector-emitter voltage (V CE ) waveforms when the IGBT (TU1) is turned off.
V CE (peak) = Edp + (L1 + L2 + L3 + L4 + L5) × di / dt (1) Surge voltage ΔV = (L1 + L2 + L3 + L4 + L5) × di / dt (2)
Edp: DC power source positive side DC voltage (capacitor voltage)
di / dt: IGBT current change rate L1, L2, L3, L4, L5 at IGBT turn-off: inductance value of each wiring

一例として数100AクラスのIGBTの場合,そのdi/dtは最大で5000A/μs程度となるため,仮にL1+L2+L3+L4+L5=50nHとすると,(1)式によるサージ分((L1+L2+L3+L4+L5)×di/dt)=250Vとなる。
従って,各配線インダクタンスの存在によって,IGBTターンオフ時にIGBTに印加されるピーク電圧値は,直流電圧(Edp)に対して上記(2)式のサージ電圧(ΔV)分高くなる。
特にコンデンサの直列数が増えると,コンデンサ間の配線インダクタンス値は直列数と比例的に増加するため,上記サージ電圧も高くなる問題が発生し,その結果,耐圧の高いIGBTが必要となる。
As an example, in the case of an IGBT of several hundreds of A class, the maximum di / dt is about 5000 A / μs. Therefore, assuming that L1 + L2 + L3 + L4 + L5 = 50 nH, the surge amount ((L1 + L2 + L3 + L4 + L5) × di / dt) = 250V It becomes.
Therefore, due to the presence of each wiring inductance, the peak voltage value applied to the IGBT when the IGBT is turned off becomes higher than the DC voltage (Edp) by the surge voltage (ΔV) of the above equation (2).
In particular, when the number of capacitors in series increases, the wiring inductance value between the capacitors increases in proportion to the number of series, so that the problem of an increase in the surge voltage occurs. As a result, an IGBT with a high breakdown voltage is required.

また、図5(c)に示すようなコンデンサの配置と,M電位用配線7xとN電位用配線10xと,各配線とを並行平板の配線構造とすれば,電流の対抗化によってコンデンサ部分の配線インダクタンスが低減でき,上記の課題の低減は可能となるが,配線5の部分は3枚重ねとなるため,絶縁材を2層にする必要があるなど,配線構造が複雑化する。
また、コンデンサを一直線上に並べると,長手方向に極端に長くなる構造となるため,装置全体設計の観点からスペースファクタを有効に利用できなくなる。
従って、本発明の課題は、2K(Kは2以上の整数)個のコンデンサを直列接続し、かつ最高電位と最低電位と中間電位との3つの電位を出力とするコンデンサの配置及び配線構造において、配線インダクタンスを低減でき、配置上の制約を小さくできる配置と配線構造を提供し、低耐圧の半導体素子を使用可能とし、装置の小型化、低価格化を実現することである。
In addition, if the capacitor arrangement as shown in FIG. 5C, the M potential wiring 7x, the N potential wiring 10x, and each wiring have a parallel-plate wiring structure, the capacitor portion of the capacitor portion can be obtained by optimizing the current. Although the wiring inductance can be reduced and the above-mentioned problems can be reduced, the wiring structure is complicated because, for example, the wiring 5 is three-layered, so that the insulating material needs to be two layers.
Further, if the capacitors are arranged in a straight line, the structure becomes extremely long in the longitudinal direction, so that the space factor cannot be effectively used from the viewpoint of the overall device design.
Accordingly, an object of the present invention is to provide a capacitor arrangement and wiring structure in which 2K (K is an integer of 2 or more) capacitors are connected in series and three potentials of a maximum potential, a minimum potential, and an intermediate potential are output. It is to provide an arrangement and a wiring structure that can reduce wiring inductance and reduce arrangement restrictions, make it possible to use a low-breakdown-voltage semiconductor element, and realize downsizing and cost reduction of the device.

上述の課題を解決するために、第1の発明においては、2K(Kは2以上の正の整数)個のコンデンサを直列接続し、かつ最高電位と最低電位と中間電位との3つの電位を出力とするコンデンサの配置及び配線構造において、最も高電位側のコンデンサと最も低電位側のコンデンサとを隣接して配置し、前記最も高電位側のコンデンサの正端子を最高電位電極出力とし、前記最も低電位側のコンデンサの負端子を最低電位電極出力とし、前記最も高電位側のコンデンサを基準にK個のコンデンサを電位の高いものから低いものへ順番に直列配置した第1のコンデンサ直列配置部と、前記最も低電位側のコンデンサを基準にK個のコンデンサを電位の低いものから高いものへ順番に直列配置した第2のコンデンサ直列配置部とを並列配置し、前記第1及び第2のコンデンサ直列配置部内で隣り合ったコンデンサの同電位となる端子同士をそれぞれ直列接続配線材で短絡配線し、前記第1のコンデンサ直列配置部のK番目のコンデンサの負端子と前記第2のコンデンサ直列配置部のK番目のコンデンサの正端子との接続点を中間電位の電極とし、前記中間電位の電極は前記最も高電位側のコンデンサと前記最も低電位側のコンデンサとの間から出力する。   In order to solve the above-mentioned problem, in the first invention, 2K (K is a positive integer of 2 or more) capacitors are connected in series, and three potentials of a maximum potential, a minimum potential, and an intermediate potential are set. In the capacitor arrangement and wiring structure to be output, the capacitor on the highest potential side and the capacitor on the lowest potential side are arranged adjacent to each other, the positive terminal of the capacitor on the highest potential side is set as the highest potential electrode output, First capacitor series arrangement in which the negative terminal of the capacitor on the lowest potential side is the lowest potential electrode output, and K capacitors are arranged in series from the highest potential to the lowest one based on the highest potential capacitor. And a second capacitor series arrangement unit in which K capacitors are arranged in series from the lowest potential to the highest one based on the lowest potential side capacitor in parallel. Terminals having the same potential of adjacent capacitors in the first and second capacitor series arrangement portions are short-circuited with series connection wiring materials, respectively, and the negative terminal of the Kth capacitor in the first capacitor series arrangement portion The connection point of the second capacitor series arrangement portion with the positive terminal of the Kth capacitor is an intermediate potential electrode, and the intermediate potential electrode is connected to the highest potential capacitor and the lowest potential capacitor. Output from between.

第2の発明においては、第1の発明における前記中間電位の電極の出力用の配線材と前記第1及び第2のコンデンサ直列配置部内の直列接続配線材とを絶縁材を挟んだ並行平板配線構造とする。   In the second invention, the parallel plate wiring in which the wiring material for output of the intermediate potential electrode in the first invention and the serial connection wiring material in the first and second capacitor series arrangement portions are sandwiched with an insulating material Structure.

第3の発明においては、第2の発明における前記絶縁材を挟んだ並行平板配線構造は、前記第1及び第2のコンデンサ直列配置部内の直列接続配線材としてL字型の導体を用い、前記中間電位の電極の出力用の配線材としてコの字型の導体を用い、前記コンデンサ端子と並立方向に前記絶縁材を挟む構造とする。   In a third invention, the parallel plate wiring structure sandwiching the insulating material in the second invention uses an L-shaped conductor as a serial connection wiring material in the first and second capacitor series arrangement portions, A U-shaped conductor is used as a wiring material for output of an intermediate potential electrode, and the insulating material is sandwiched in parallel with the capacitor terminal.

第4の発明においては、第2の発明における前記絶縁材を挟んだ並行平板配線構造は、前記中間電位の電極の出力用の配線材及び前記第1及び第2のコンデンサ直列配置部内の直列接続配線材として平板部分を含む導体を用い、前記平板部分に前記コンデンサ端子と直交する方向に前記絶縁材を挟む構造とする。   In a fourth invention, the parallel plate wiring structure sandwiching the insulating material in the second invention is a wiring material for output of the intermediate potential electrode and a series connection in the first and second capacitor series arrangement portions. A conductor including a flat plate portion is used as the wiring member, and the insulating material is sandwiched between the flat plate portion in a direction orthogonal to the capacitor terminal.

本発明では、最も高電位側のコンデンサと最も低電位側のコンデンサとを隣接して配置し、前記高電位側のコンデンサの正端子を最高電位電極出力とし、前記最低電位側のコンデンサの負端子を最低電位電極出力とし、前記高電位側のコンデンサを基準にK個のコンデンサを電位の高いものから低いものへ順番に直列配置した第1のコンデンサ直列配置部と、前記低電位側のコンデンサを基準にK個のコンデンサを電位の低いものから高いものへ順番に直列配置した第2のコンデンサ直列配置部とを並列配置し、前記第1のコンデンサ直列配置部のK番目のコンデンサの負端子と前記第2のコンデンサ直列配置部のK番目のコンデンサの正端子との接続点を中間電位の電極とし、前記中間電位の電極は前記最も高電位側のコンデンサと前記最も低電位側のコンデンサとの間から出力している。
この結果、構造上の制約を小さくできる配置と配線構造で配線インダクタンスを軽減できる直列コンデンサの配置と配線構造を提供することができ、低耐圧の半導体素子が使用可能となり、装置の小型化、低価格化が可能となる。
In the present invention, the capacitor on the highest potential side and the capacitor on the lowest potential side are arranged adjacent to each other, the positive terminal of the capacitor on the high potential side is set as the highest potential electrode output, and the negative terminal of the capacitor on the lowest potential side Is the lowest potential electrode output, and the first capacitor series arrangement portion in which K capacitors are arranged in order from the highest potential to the lowest potential with reference to the high potential side capacitor, and the low potential side capacitor A second capacitor series arrangement section in which K capacitors are arranged in series in order from the lowest potential to the highest one as a reference is arranged in parallel, and the negative terminal of the Kth capacitor of the first capacitor series arrangement section The connection point of the second capacitor series arrangement portion with the positive terminal of the Kth capacitor is an intermediate potential electrode, and the intermediate potential electrode is connected to the highest potential capacitor and the highest potential electrode. It is outputted from between the low potential side of the capacitor.
As a result, it is possible to provide an arrangement and wiring structure of a series capacitor that can reduce the wiring inductance by an arrangement that can reduce structural constraints and a wiring structure, and a low-breakdown-voltage semiconductor element can be used. Pricing is possible.

本発明の第1の実施例を示す構造図である。1 is a structural diagram showing a first embodiment of the present invention. 本発明の第2の実施例を示す構造図である。FIG. 3 is a structural diagram showing a second embodiment of the present invention. 本発明の第3の実施例を示す構造図である。It is a structural diagram which shows the 3rd Example of this invention. 3レベルインバータの回路図例である。It is an example of a circuit diagram of a three level inverter. 従来のコンデンサ直列接続の配置接続図例である。It is an example of an arrangement connection diagram of conventional capacitor series connection. 3レベルインバータにおける配線インダクタンスと動作モード例である。It is an example of wiring inductance and an operation mode in a three level inverter. IGBTターンオフ時の動作波形例である。It is an example of an operation waveform at the time of IGBT turn-off.

本発明の要点は、最も高電位側のコンデンサと最も低電位側のコンデンサとを隣接して配置し、前記高電位側のコンデンサの正端子を最高電位電極出力とし、前記最低電位側のコンデンサの負端子を最低電位電極出力とし、前記高電位側のコンデンサを基準にK個のコンデンサを電位の高いものから低いものへ順番に直列配置した第1のコンデンサ直列配置部と、前記低電位側のコンデンサを基準にK個のコンデンサを電位の低いものから高いものへ順番に直列配置した第2のコンデンサ直列配置部とを並列配置し、前記第1のコンデンサ直列配置部のK番目のコンデンサの負端子と前記第2のコンデンサ直列配置部のK番目のコンデンサの正端子との接続点を中間電位の電極とし、前記中間電位の電極は前記最も高電位側のコンデンサと前記最も低電位側のコンデンサとの間から出力する点である。   The main point of the present invention is that the capacitor on the highest potential side and the capacitor on the lowest potential side are arranged adjacent to each other, the positive terminal of the capacitor on the high potential side is the highest potential electrode output, and the capacitor on the lowest potential side is A first capacitor series arrangement section in which a negative terminal is set to the lowest potential electrode output, and K capacitors are arranged in series from the highest potential to the lowest with reference to the high potential side capacitor; A second capacitor series arrangement section in which K capacitors are arranged in series in order from a low potential to a high potential based on the capacitor is arranged in parallel, and the negative of the Kth capacitor in the first capacitor series arrangement section is arranged. A connection point between the terminal and the positive terminal of the Kth capacitor in the second capacitor series arrangement portion is an intermediate potential electrode, and the intermediate potential electrode is connected to the highest potential side capacitor and the front side. In that the output from between the lowest potential side of the capacitor.

図1に、本発明の第1の実施例を示す。図1(a)がK=2の時の構成で、図1(b)がK=3の時の構成である。図1(a)においては、最も高電位側のコンデンサCp1と最も低電位側のコンデンサCn2は隣接して配置される。コンデンサCp1とCp2は直列配置され第1のコンデンサ直列配置部を、コンデンサCn2とCn1は直列配置され第2のコンデンサ直列配置部を、それぞれ構成する。第1のコンデンサ直列配置部と第2のコンデンサ直列配置部は並列配置される。第1のコンデンサ直列配置部においては、コンデンサCp1の負端子とCP2の正端子は導体5で接続される。第2のコンデンサ直列配置部においては、コンデンサCn2の正端子とCn1の負端子は導体8で接続される。最も高電位側のコンデンサCp1の正端子は導体4で最高電位電極Pとして、最も低電位側のコンデンサCn2の負端子は導体10で最低電位電極Nとして、それぞれ出力される。第1のコンデンサ直列配置部の2(K=2)番目のコンデンサCp2の負端子と第2のコンデンサ直列配置部の2(K=2)番目のコンデンサCn1の正端子とは導体7aで接続され、中間電位電極Mとして、最も高電位側のコンデンサCp1と最も低電位側のコンデンサCn2との間から出力される。   FIG. 1 shows a first embodiment of the present invention. FIG. 1A shows a configuration when K = 2, and FIG. 1B shows a configuration when K = 3. In FIG. 1A, the capacitor Cp1 on the highest potential side and the capacitor Cn2 on the lowest potential side are arranged adjacent to each other. Capacitors Cp1 and Cp2 are arranged in series to constitute a first capacitor series arrangement part, and capacitors Cn2 and Cn1 are arranged in series to constitute a second capacitor series arrangement part. The first capacitor series arrangement unit and the second capacitor series arrangement unit are arranged in parallel. In the first capacitor series arrangement portion, the negative terminal of the capacitor Cp1 and the positive terminal of CP2 are connected by the conductor 5. In the second capacitor series arrangement portion, the positive terminal of the capacitor Cn2 and the negative terminal of Cn1 are connected by the conductor 8. The positive terminal of the capacitor Cp1 on the highest potential side is output as the highest potential electrode P on the conductor 4, and the negative terminal of the capacitor Cn2 on the lowest potential side is output as the lowest potential electrode N on the conductor 10, respectively. The negative terminal of the 2 (K = 2) th capacitor Cp2 of the first capacitor series arrangement portion and the positive terminal of the 2 (K = 2) th capacitor Cn1 of the second capacitor series arrangement portion are connected by a conductor 7a. The intermediate potential electrode M is output from between the highest potential side capacitor Cp1 and the lowest potential side capacitor Cn2.

このような構成にすると、導体4と7a、導体5と7a、導体8と7a、導体10と7aは、それぞれ磁気結合しておりインダクタンスが従来例図5(a)に比べて低減される。この構成ではそれぞれ並行平板構成となっていないため,絶縁材が不要となり構造が簡単になる。   With such a configuration, the conductors 4 and 7a, the conductors 5 and 7a, the conductors 8 and 7a, and the conductors 10 and 7a are magnetically coupled, and the inductance is reduced as compared with the conventional example shown in FIG. Since this configuration does not have a parallel plate configuration, an insulating material is unnecessary and the structure is simplified.

図1(b)はK=3の時の構成である。図1(b)においては、最も高電位側のコンデンサCp1と最も低電位側のコンデンサCn3は隣接して配置される。コンデンサCp1〜Cp3は直列配置され第1のコンデンサ直列配置部を、コンデンサCn3〜Cn1は直列配置され第2のコンデンサ直列配置部を、それぞれ構成する。第1のコンデンサ直列配置部と第2のコンデンサ直列配置部は並列配置される。第1のコンデンサ直列配置部においては、コンデンサCp1の負端子とCP2の正端子は導体5で、コンデンサCp2の負端子とCP3の正端子は導体5で、それぞれ接続される。第2のコンデンサ直列配置部においては、コンデンサCn3の正端子とCn2の負端子は導体9で、コンデンサCn2の正端子とCn1の負端子は導体8で、それぞれ接続される。最も高電位側のコンデンサCp1の正端子は導体4で最高電位電極Pとして、最も低電位側のコンデンサCn2の負端子は導体10で最低電位電極Nとして、それぞれ出力される。第1のコンデンサ直列配置部の3(K=3)番目のコンデンサCp3の負端子と第2のコンデンサ直列配置部の3(K=3)番目のコンデンサCn1の正端子とは導体7bで接続され、中間電位電極Mとして、最も高電位側のコンデンサCp1と最も低電位側のコンデンサCn3との間から出力される。   FIG. 1B shows the configuration when K = 3. In FIG. 1B, the capacitor Cp1 on the highest potential side and the capacitor Cn3 on the lowest potential side are arranged adjacent to each other. The capacitors Cp1 to Cp3 are arranged in series to constitute a first capacitor series arrangement part, and the capacitors Cn3 to Cn1 are arranged in series to constitute a second capacitor series arrangement part. The first capacitor series arrangement unit and the second capacitor series arrangement unit are arranged in parallel. In the first capacitor series arrangement portion, the negative terminal of the capacitor Cp1 and the positive terminal of CP2 are connected by the conductor 5, and the negative terminal of the capacitor Cp2 and the positive terminal of CP3 are connected by the conductor 5, respectively. In the second capacitor series arrangement portion, the positive terminal of the capacitor Cn3 and the negative terminal of Cn2 are connected by the conductor 9, and the positive terminal of the capacitor Cn2 and the negative terminal of Cn1 are connected by the conductor 8, respectively. The positive terminal of the capacitor Cp1 on the highest potential side is output as the highest potential electrode P on the conductor 4, and the negative terminal of the capacitor Cn2 on the lowest potential side is output as the lowest potential electrode N on the conductor 10, respectively. The negative terminal of the 3 (K = 3) th capacitor Cp3 of the first capacitor series arrangement part and the positive terminal of the 3 (K = 3) th capacitor Cn1 of the second capacitor series arrangement part are connected by a conductor 7b. The intermediate potential electrode M is output from between the highest potential side capacitor Cp1 and the lowest potential side capacitor Cn3.

このような構成にすると、導体4と7b、導体5と7b、導体6と7b、導体8と7b、導体9と7b、導体10と7aは、それぞれ磁気結合しておりインダクタンスが従来例図5(b)に比べて低減される。この構成ではそれぞれが絶縁材を用いた並行平板構成となっていないため,絶縁材が不要となり構造が簡単になる。また、直列配置方向の寸法が従来例図5(b)に比べて約半分となるため、配置上の制約を小さくできる。   With such a configuration, the conductors 4 and 7b, the conductors 5 and 7b, the conductors 6 and 7b, the conductors 8 and 7b, the conductors 9 and 7b, and the conductors 10 and 7a are magnetically coupled, and the inductance is the same as in the conventional example shown in FIG. Compared to (b). In this configuration, since each of them does not have a parallel plate configuration using an insulating material, an insulating material is unnecessary and the structure is simplified. In addition, since the dimension in the series arrangement direction is about half that of the conventional example shown in FIG. 5B, restrictions on arrangement can be reduced.

図2に、本発明の第2の実施例を示す。図2(a)がK=2の時の構成で、図2(b)がK=3の時の構成である。図2(a)においては、最も高電位側のコンデンサCp1と最も低電位側のコンデンサCn2は隣接して配置される。コンデンサCp1とCp2は直列配置され第1のコンデンサ直列配置部を、コンデンサCn2とCn1は直列配置され第2のコンデンサ直列配置部を、それぞれ構成する。第1のコンデンサ直列配置部と第2のコンデンサ直列配置部は並列配置される。第1のコンデンサ直列配置部においては、コンデンサCp1の負端子とCP2の正端子はL字型の導体5aで接続される。第2のコンデンサ直列配置部においては、コンデンサCn2の正端子とCn1の負端子はL字型の導体8aで接続される。最も高電位側のコンデンサCp1の正端子はL字型の導体4aで最高電位電極Pとして、最も低電位側のコンデンサCn2の負端子はL字型の導体10aで最低電位電極Nとして、それぞれ出力される。第1のコンデンサ直列配置部の2(K=2)番目のコンデンサCp2の負端子と第2のコンデンサ直列配置部の2(K=2)番目のコンデンサCn1の正端子とは導体7cで接続され、中間電位電極Mとして、最も高電位側のコンデンサCp1と最も低電位側のコンデンサCn2との間から出力される。導体7cは導体4a、5a、8a、10aと並置される部分がコの字型の形状で作製され、導体4aと5aとは絶縁材11を挟んで、導体8aと10aとは絶縁材12を、それぞれ挟んで近接配線される。絶縁材としては、絶縁フィルム、エポキシ樹脂板などが使用できる。   FIG. 2 shows a second embodiment of the present invention. FIG. 2A shows a configuration when K = 2, and FIG. 2B shows a configuration when K = 3. In FIG. 2A, the capacitor Cp1 on the highest potential side and the capacitor Cn2 on the lowest potential side are arranged adjacent to each other. Capacitors Cp1 and Cp2 are arranged in series to constitute a first capacitor series arrangement part, and capacitors Cn2 and Cn1 are arranged in series to constitute a second capacitor series arrangement part. The first capacitor series arrangement unit and the second capacitor series arrangement unit are arranged in parallel. In the first capacitor series arrangement portion, the negative terminal of the capacitor Cp1 and the positive terminal of CP2 are connected by an L-shaped conductor 5a. In the second capacitor series arrangement portion, the positive terminal of the capacitor Cn2 and the negative terminal of Cn1 are connected by an L-shaped conductor 8a. The positive terminal of the capacitor Cp1 on the highest potential side is the L-shaped conductor 4a as the highest potential electrode P, and the negative terminal of the capacitor Cn2 on the lowest potential side is the output as the lowest potential electrode N with the L-shaped conductor 10a. Is done. The negative terminal of the second (K = 2) -th capacitor Cp2 of the first capacitor series arrangement unit and the positive terminal of the second (K = 2) -th capacitor Cn1 of the second capacitor series arrangement unit are connected by a conductor 7c. The intermediate potential electrode M is output from between the highest potential side capacitor Cp1 and the lowest potential side capacitor Cn2. A portion of the conductor 7c juxtaposed with the conductors 4a, 5a, 8a, and 10a is formed in a U-shape, the conductors 4a and 5a sandwich the insulating material 11, and the conductors 8a and 10a include the insulating material 12. The adjacent wirings are sandwiched between them. As the insulating material, an insulating film, an epoxy resin plate, or the like can be used.

このような構成にすると、導体4aと7c、導体5aと7c、導体8aと7c、導体10aと7cは、それぞれ実施例1に比べて密に磁気結合しておりインダクタンスが従来例図5(a)及び実施例図1(a)に比べて低減される。この構成ではそれぞれの導体が磁気的に密結合となるため,配線インダクタンスの低減効果が大きい。   With such a configuration, the conductors 4a and 7c, the conductors 5a and 7c, the conductors 8a and 7c, and the conductors 10a and 7c are more magnetically coupled than the first embodiment, respectively, and the inductance is the same as that of the conventional example shown in FIG. ) And the embodiment is reduced as compared with FIG. In this configuration, since each conductor is magnetically tightly coupled, the effect of reducing wiring inductance is great.

図2(b)はK=3の時の構成である。図2(b)においては、最も高電位側のコンデンサCp1と最も低電位側のコンデンサCn3は隣接して配置される。コンデンサCp1〜Cp3は直列配置され第1のコンデンサ直列配置部を、コンデンサCn3〜Cn1は直列配置され第2のコンデンサ直列配置部を、それぞれ構成する。第1のコンデンサ直列配置部と第2のコンデンサ直列配置部は並列配置される。第1のコンデンサ直列配置部においては、コンデンサCp1の負端子とCP2の正端子は導体5aで、コンデンサCp2の負端子とCP3の正端子は導体6aで、それぞれ接続される。第2のコンデンサ直列配置部においては、コンデンサCn3の正端子とCn2の負端子は導体9aで、コンデンサCn2の正端子とCn1の負端子は導体8aで、それぞれ接続される。最も高電位側のコンデンサCp1の正端子は導体4aで最高電位電極Pとして、最も低電位側のコンデンサCn3の負端子は導体10aで最低電位電極Nとして、それぞれ出力される。第1のコンデンサ直列配置部の3(K=3)番目のコンデンサCp3の負端子と第2のコンデンサ直列配置部の3(K=3)番目のコンデンサCn1の正端子とは導体7dで接続され、中間電位電極Mとして、最も高電位側のコンデンサCp1と最も低電位側のコンデンサCn3との間から出力される。導体7dは導体4a〜6a、8a〜10aと並置される部分がコの字型の形状で作製され、導体4a〜6aとは絶縁材11aを挟んで、導体8a〜10aとは絶縁材12aを、それぞれ挟んで近接配線される。   FIG. 2B shows the configuration when K = 3. In FIG. 2B, the capacitor Cp1 on the highest potential side and the capacitor Cn3 on the lowest potential side are arranged adjacent to each other. The capacitors Cp1 to Cp3 are arranged in series to constitute a first capacitor series arrangement part, and the capacitors Cn3 to Cn1 are arranged in series to constitute a second capacitor series arrangement part. The first capacitor series arrangement unit and the second capacitor series arrangement unit are arranged in parallel. In the first capacitor series arrangement portion, the negative terminal of the capacitor Cp1 and the positive terminal of CP2 are connected by the conductor 5a, and the negative terminal of the capacitor Cp2 and the positive terminal of CP3 are connected by the conductor 6a. In the second capacitor series arrangement portion, the positive terminal of the capacitor Cn3 and the negative terminal of Cn2 are connected by the conductor 9a, and the positive terminal of the capacitor Cn2 and the negative terminal of Cn1 are connected by the conductor 8a. The positive terminal of the capacitor Cp1 on the highest potential side is output as the highest potential electrode P on the conductor 4a, and the negative terminal of the capacitor Cn3 on the lowest potential side is output as the lowest potential electrode N on the conductor 10a. The negative terminal of the 3 (K = 3) th capacitor Cp3 of the first capacitor series arrangement part and the positive terminal of the 3 (K = 3) th capacitor Cn1 of the second capacitor series arrangement part are connected by a conductor 7d. The intermediate potential electrode M is output from between the highest potential side capacitor Cp1 and the lowest potential side capacitor Cn3. A portion of the conductor 7d juxtaposed with the conductors 4a to 6a and 8a to 10a is formed in a U-shape, the conductors 4a to 6a sandwich the insulating material 11a, and the conductors 8a to 10a are made of the insulating material 12a. The adjacent wirings are sandwiched between them.

このような構成にすると、導体4aと7d、導体5aと7d、導体6aと7d、導体8aと7d、導体9aと7d、導体10aと7dは、それぞれ密に磁気結合しておりインダクタンスが従来例図5(b)又は第1の実施例に比べて低減される。この構成ではそれぞれの導体間が密に磁気結合されるため配線インダクタンスの低減効果が大きく、IGBTターンオフ時のサ−ジ電圧ΔVを小さく抑制できる。また、直列配置方向の寸法が従来例図5(b)に比べて約半分となるため、配置上の制約を小さくできる。   With such a configuration, the conductors 4a and 7d, the conductors 5a and 7d, the conductors 6a and 7d, the conductors 8a and 7d, the conductors 9a and 7d, and the conductors 10a and 7d are each magnetically coupled, and the inductance is the conventional example. This is reduced compared to FIG. 5B or the first embodiment. In this configuration, since the conductors are closely magnetically coupled, the effect of reducing the wiring inductance is great, and the surge voltage ΔV at the time of IGBT turn-off can be suppressed to a small value. In addition, since the dimension in the series arrangement direction is about half that of the conventional example shown in FIG. 5B, restrictions on arrangement can be reduced.

図3に、本発明の第3の実施例を示す。第2の実施例との違いは磁気結合の方法で、実施例2がL字の導体を用いているのに対して、本実施例では平板を用いている点が違う。
図3(a)がK=2の時の実施例、図3(b)がK=3の時の実施例である。図3(a)においては、最も高電位側のコンデンサCp1と最も低電位側のコンデンサCn2は隣接して配置される。コンデンサCp1とCp2は直列配置され第1のコンデンサ直列配置部を、コンデンサCn2とCn1は直列配置され第2のコンデンサ直列配置部を、それぞれ構成する。第1のコンデンサ直列配置部と第2のコンデンサ直列配置部は並列配置される。第1のコンデンサ直列配置部においては、コンデンサCp1の負端子とCP2の正端子は導体5で接続される。第2のコンデンサ直列配置部においては、コンデンサCn2の正端子とCn1の負端子は導体8で接続される。最も高電位側のコンデンサCp1の正端子は導体4で最高電位電極Pとして、最も低電位側のコンデンサCn2の負端子は導体10で最低電位電極Nとして、それぞれ出力される。第1のコンデンサ直列配置部の2(K=2)番目のコンデンサCp2の負端子と第2のコンデンサ直列配置部の2(K=2)番目のコンデンサCn1の正端子とは導体7eで接続され、中間電位電極Mとして、最も高電位側のコンデンサCp1と最も低電位側のコンデンサCn2との間から出力される。導体7eと導体4、5、8、10とは絶縁材13を挟んだラミネート構造で形成される。
FIG. 3 shows a third embodiment of the present invention. The difference from the second embodiment is the magnetic coupling method, in which the second embodiment uses an L-shaped conductor, whereas the second embodiment uses a flat plate.
FIG. 3A shows an embodiment when K = 2, and FIG. 3B shows an embodiment when K = 3. In FIG. 3A, the capacitor Cp1 on the highest potential side and the capacitor Cn2 on the lowest potential side are arranged adjacent to each other. Capacitors Cp1 and Cp2 are arranged in series to constitute a first capacitor series arrangement part, and capacitors Cn2 and Cn1 are arranged in series to constitute a second capacitor series arrangement part. The first capacitor series arrangement unit and the second capacitor series arrangement unit are arranged in parallel. In the first capacitor series arrangement portion, the negative terminal of the capacitor Cp1 and the positive terminal of CP2 are connected by the conductor 5. In the second capacitor series arrangement portion, the positive terminal of the capacitor Cn2 and the negative terminal of Cn1 are connected by the conductor 8. The positive terminal of the capacitor Cp1 on the highest potential side is output as the highest potential electrode P on the conductor 4, and the negative terminal of the capacitor Cn2 on the lowest potential side is output as the lowest potential electrode N on the conductor 10, respectively. The negative terminal of the 2 (K = 2) th capacitor Cp2 of the first capacitor series arrangement part and the positive terminal of the 2 (K = 2) th capacitor Cn1 of the second capacitor series arrangement part are connected by a conductor 7e. The intermediate potential electrode M is output from between the highest potential side capacitor Cp1 and the lowest potential side capacitor Cn2. The conductor 7e and the conductors 4, 5, 8, and 10 are formed in a laminate structure with the insulating material 13 interposed therebetween.

このような構成にすると、導体4と7e、導体5と7e、導体8と7e、導体10と7eは、それぞれ磁気結合しており、配線インダクタンスが従来例図5(a)又は第1の実施例に比べて低減される。この実施例では、ラミネート構造は、導体7e上に絶縁材13を配置し、この絶縁材13の上に導体4、5、8、10を配置する構成を示しているが、導体7eと導体4、5、8、10を入れ替えても実現可能である。また、導体7eの平板部分は導体4、5、8、10とラミネート配線される部分だけでも実現可能である。 With this configuration, the conductors 4 and 7e, the conductors 5 and 7e, the conductors 8 and 7e, and the conductors 10 and 7e are magnetically coupled, and the wiring inductance is the same as that shown in FIG. Compared to examples. In this embodiment, the laminate structure shows a configuration in which the insulating material 13 is arranged on the conductor 7e and the conductors 4, 5, 8, and 10 are arranged on the insulating material 13, but the conductor 7e and the conductor 4 are shown. It is also possible to replace 5, 8, 10 with each other. Further, the flat portion of the conductor 7e can be realized only by the portion laminated with the conductors 4, 5, 8, and 10.

図3(b)においては、最も高電位側のコンデンサCp1と最も低電位側のコンデンサCn2は隣接して配置される。コンデンサCp1〜Cp3は直列配置され第1のコンデンサ直列配置部を、コンデンサCn3〜Cn1は直列配置され第2のコンデンサ直列配置部を、それぞれ構成する。第1のコンデンサ直列配置部と第2のコンデンサ直列配置部は並列配置される。第1のコンデンサ直列配置部においては、コンデンサCp1の負端子とCP2の正端子は導体5で、コンデンサCp2の負端子とCP3の正端子は導体6で、それぞれ接続される。第2のコンデンサ直列配置部においては、コンデンサCn3の正端子とCn2の負端子は導体9で、コンデンサCn2の正端子とCn1の負端子は導体8で、それぞれ接続される。最も高電位側のコンデンサCp1の正端子は導体4で最高電位電極Pとして、最も低電位側のコンデンサCn3の負端子は導体10で最低電位電極Nとして、それぞれ出力される。第1のコンデンサ直列配置部の3(K=3)番目のコンデンサCp3の負端子と第2のコンデンサ直列配置部の3(K=3)番目のコンデンサCn1の正端子とは導体7fで接続され、中間電位電極Mとして、最も高電位側のコンデンサCp1と最も低電位側のコンデンサCn3との間から出力される。導体7fと導体4〜6、8〜10とは絶縁材13aを挟んだラミネート構造で形成される。   In FIG. 3B, the capacitor Cp1 on the highest potential side and the capacitor Cn2 on the lowest potential side are arranged adjacent to each other. The capacitors Cp1 to Cp3 are arranged in series to constitute a first capacitor series arrangement part, and the capacitors Cn3 to Cn1 are arranged in series to constitute a second capacitor series arrangement part. The first capacitor series arrangement unit and the second capacitor series arrangement unit are arranged in parallel. In the first capacitor series arrangement portion, the negative terminal of the capacitor Cp1 and the positive terminal of CP2 are connected by the conductor 5, and the negative terminal of the capacitor Cp2 and the positive terminal of CP3 are connected by the conductor 6, respectively. In the second capacitor series arrangement portion, the positive terminal of the capacitor Cn3 and the negative terminal of Cn2 are connected by the conductor 9, and the positive terminal of the capacitor Cn2 and the negative terminal of Cn1 are connected by the conductor 8, respectively. The positive terminal of the capacitor Cp1 on the highest potential side is output as the highest potential electrode P on the conductor 4, and the negative terminal of the capacitor Cn3 on the lowest potential side is output as the lowest potential electrode N on the conductor 10, respectively. The negative terminal of the 3 (K = 3) th capacitor Cp3 of the first capacitor series arrangement part and the positive terminal of the 3 (K = 3) th capacitor Cn1 of the second capacitor series arrangement part are connected by a conductor 7f. The intermediate potential electrode M is output from between the highest potential side capacitor Cp1 and the lowest potential side capacitor Cn3. The conductor 7f and the conductors 4-6, 8-10 are formed in a laminate structure with an insulating material 13a interposed therebetween.

このような構成にすると、導体4と7f、導体5と7f、導体6と7f、導体8と7f、導体9と7f、導体10と7fは、それぞれ磁気結合しておりインダクタンスが従来例図5(b)又は第1の実施例に比べて低減される。尚、この実施例では、ラミネート構造は、導体7f上に絶縁材13aを配置し、この絶縁材13aの上に導体4〜6、8〜9を配置する構成を示しているが、導体7fと導体4〜6、8〜9を入れ替えても実現可能である。また、導体7fの平板部分は導体4〜6、8〜9とラミネート配線される部分だけでも実現可能である。   With such a configuration, the conductors 4 and 7f, the conductors 5 and 7f, the conductors 6 and 7f, the conductors 8 and 7f, the conductors 9 and 7f, and the conductors 10 and 7f are magnetically coupled, and the inductance is the same as in the conventional example shown in FIG. It is reduced as compared with (b) or the first embodiment. In this embodiment, the laminate structure shows a configuration in which the insulating material 13a is disposed on the conductor 7f, and the conductors 4-6 and 8-9 are disposed on the insulating material 13a. This can be realized by replacing the conductors 4 to 6 and 8 to 9. Further, the flat portion of the conductor 7f can be realized only by the portion laminated with the conductors 4-6 and 8-9.

尚、本実施例では,円筒形のコンデンサと半導体デバイスとしてIGBTを用いた例を示したが,本発明は立方体形のコンデンサや,MOSFETなどの他のパワー半導体デバイスを用いる場合にも適用できる。またプリント基板実装形のコンデンサやパワー半導体を用いる場合にも適用できる。また、以上の実施例は電力変換回路の直流部分に適用するコンデンサとしたが,多直列接続されたコンデンサ間の配線インダクタンスの低減が必要となる全てのシステム(共振回路,スナバ回路,フィルタ回路など)にも適用可能である。 In this embodiment, an example is shown in which an IGBT is used as a cylindrical capacitor and a semiconductor device. However, the present invention can also be applied to a case where a cubic capacitor or another power semiconductor device such as a MOSFET is used. The present invention can also be applied when using a printed circuit board mounting type capacitor or a power semiconductor. In the above embodiment, the capacitor is applied to the DC portion of the power conversion circuit. However, all systems (resonance circuit, snubber circuit, filter circuit, etc.) that require a reduction in wiring inductance between capacitors connected in series. ) Is also applicable.

本発明は、コンデンサを複数個直列接続する場合の配線インダクタンスの低減に関する提案であり、マルチレベル電力変換回路を使用する電動機駆動用インバータ、無停電電源装置、直流電源装置などへの適用が可能である。   The present invention is a proposal for reducing wiring inductance when a plurality of capacitors are connected in series, and can be applied to an inverter for driving a motor using a multilevel power conversion circuit, an uninterruptible power supply, a DC power supply, and the like. is there.

1・・・直流電源回路 2・・・負荷 3・・・インバータ回路
4〜10、4a〜10a、7a〜7f・・・導体
11〜13、11a〜13a・・・絶縁材
Cp1〜Cp3、Cn1〜Cn3・・・コンデンサ
TU1〜TU4、TV1〜TV4、TW1〜TW4・・・IGBT
DU1〜DU4、DV1〜DV4、DW1〜DW4・・・ダイオード
CDU1、CDU2、CDV1、CDV2、CDW1、CDW2・・・ダイオード
DESCRIPTION OF SYMBOLS 1 ... DC power supply circuit 2 ... Load 3 ... Inverter circuits 4-10, 4a-10a, 7a-7f ... Conductor
11-13, 11a-13a ... Insulating materials Cp1-Cp3, Cn1-Cn3 ... Capacitors TU1-TU4, TV1-TV4, TW1-TW4 ... IGBT
DU1 to DU4, DV1 to DV4, DW1 to DW4 ... Diodes CDU1, CDU2, CDV1, CDV2, CDW1, CDW2 ... Diodes

Claims (4)

2K(Kは2以上の整数)個のコンデンサを直列接続し、かつ最高電位と最低電位と中間電位との3つの電位を出力とするコンデンサの配置及び配線構造において、最も高電位側のコンデンサと最も低電位側のコンデンサとを隣接して配置し、前記最も高電位側のコンデンサの正端子を最高電位電極出力とし、前記最も低電位側のコンデンサの負端子を最低電位電極出力とし、前記最も高電位側のコンデンサを基準にK個のコンデンサを電位の高いものから低いものへ順番に直列配置した第1のコンデンサ直列配置部と、前記最も低電位側のコンデンサを基準にK個のコンデンサを電位の低いものから高いものへ順番に直列配置した第2のコンデンサ直列配置部とを並列配置し、前記第1及び第2のコンデンサ直列配置部内で隣り合ったコンデンサの同電位となる端子同士をそれぞれ直列接続配線材で短絡配線し、前記第1のコンデンサ直列配置部のK番目のコンデンサの負端子と前記第2のコンデンサ直列配置部のK番目のコンデンサの正端子との接続点を中間電位の電極とし、前記中間電位の電極は前記最も高電位側のコンデンサと前記最も低電位側のコンデンサとの間から出力することを特徴とする直列接続コンデンサの配置配線構造。 2K (K is an integer of 2 or more) capacitors connected in series, and in the capacitor arrangement and wiring structure that outputs three potentials of the highest potential, the lowest potential, and the intermediate potential, The capacitor on the lowest potential side is disposed adjacent to the positive terminal of the capacitor on the highest potential side as the highest potential electrode output, and the negative terminal of the capacitor on the lowest potential side is set as the lowest potential electrode output. A first capacitor series arrangement unit in which K capacitors are arranged in order from a higher potential to a lower one with reference to a capacitor on the high potential side, and K capacitors on the basis of the capacitor on the lowest potential side. A second capacitor series arrangement section arranged in series in order from a low potential to a high potential is arranged in parallel, and the adjacent capacitors in the first and second capacitor series arrangement sections are arranged. The terminals having the same potential of the sensor are short-circuited with a serial connection wiring material, and the negative terminal of the Kth capacitor in the first capacitor series arrangement section and the Kth capacitor of the second capacitor series arrangement section are connected. A series-connected capacitor arrangement characterized in that a connection point with a positive terminal is an intermediate potential electrode, and the intermediate potential electrode outputs from between the highest potential side capacitor and the lowest potential side capacitor. Wiring structure. 請求項1に記載の直列接続コンデンサの配置配線構造において、前記中間電位の電極の出力用の配線材と前記第1及び第2のコンデンサ直列配置部内の直列接続配線材とを絶縁材を挟んだ並行平板配線構造とすることを特徴とする直列接続コンデンサの配置配線構造。   The series connection capacitor arrangement wiring structure according to claim 1, wherein an insulating material is sandwiched between the wiring material for output of the intermediate potential electrode and the series connection wiring material in the first and second capacitor series arrangement portions. An arrangement wiring structure of series-connected capacitors, characterized by a parallel plate wiring structure. 請求項2に記載の直列接続コンデンサの配置配線構造において、前記絶縁材を挟んだ並行平板配線構造は、前記第1及び第2のコンデンサ直列配置部内の直列接続配線材としてL字型の導体を用い、前記中間電位の電極の出力用の配線材としてコの字型の導体を用い、前記コンデンサ端子と並立方向に前記絶縁材を挟む構造とすることを特徴とする直列接続コンデンサの配置配線構造。   The parallel connection wiring structure of the serial connection capacitor according to claim 2, wherein the parallel plate wiring structure sandwiching the insulating material is an L-shaped conductor as a serial connection wiring material in the first and second capacitor serial arrangement portions. A series-connected capacitor arrangement wiring structure characterized by using a U-shaped conductor as a wiring material for output of the intermediate potential electrode and sandwiching the insulating material in parallel with the capacitor terminal . 請求項2に記載の直列接続コンデンサの配置配線構造において、前記絶縁材を挟んだ並行平板配線構造は、前記中間電位の電極の出力用の配線材及び前記第1及び第2のコンデンサ直列配置部内の直列接続配線材として平板部分を含む導体を用い、前記平板部分に前記コンデンサ端子と直交する方向に前記絶縁材を挟む構造とすることを特徴とする直列接続コンデンサの配置配線構造。   3. The series-connected capacitor arrangement wiring structure according to claim 2, wherein the parallel plate wiring structure sandwiching the insulating material is provided in the wiring material for output of the intermediate potential electrode and the first and second capacitor series arrangement portions. An arrangement wiring structure of series connection capacitors, wherein a conductor including a flat plate portion is used as the serial connection wiring material, and the insulating material is sandwiched between the flat plate portions in a direction orthogonal to the capacitor terminals.
JP2014106013A 2014-05-22 2014-05-22 Series connection capacitor placement and wiring structure Active JP6344054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014106013A JP6344054B2 (en) 2014-05-22 2014-05-22 Series connection capacitor placement and wiring structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014106013A JP6344054B2 (en) 2014-05-22 2014-05-22 Series connection capacitor placement and wiring structure

Publications (2)

Publication Number Publication Date
JP2015223019A true JP2015223019A (en) 2015-12-10
JP6344054B2 JP6344054B2 (en) 2018-06-20

Family

ID=54785772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014106013A Active JP6344054B2 (en) 2014-05-22 2014-05-22 Series connection capacitor placement and wiring structure

Country Status (1)

Country Link
JP (1) JP6344054B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10201249A (en) * 1996-12-27 1998-07-31 Shinko Electric Co Ltd Power module stack for 3-level inverter
JPH1189249A (en) * 1997-09-08 1999-03-30 Mitsubishi Electric Corp 3-leve power converter
JP2002153078A (en) * 2000-11-09 2002-05-24 Hitachi Ltd 3-level power conversion device
JP2008193779A (en) * 2007-02-02 2008-08-21 Fuji Electric Systems Co Ltd Semiconductor module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10201249A (en) * 1996-12-27 1998-07-31 Shinko Electric Co Ltd Power module stack for 3-level inverter
JPH1189249A (en) * 1997-09-08 1999-03-30 Mitsubishi Electric Corp 3-leve power converter
JP2002153078A (en) * 2000-11-09 2002-05-24 Hitachi Ltd 3-level power conversion device
JP2008193779A (en) * 2007-02-02 2008-08-21 Fuji Electric Systems Co Ltd Semiconductor module

Also Published As

Publication number Publication date
JP6344054B2 (en) 2018-06-20

Similar Documents

Publication Publication Date Title
CN104054245B (en) Power conversion device
US10153708B2 (en) Three-level power converter
JP5369922B2 (en) 3-level power converter
CN102214644B (en) Power semiconductor device and power conversion system using the device
JP6597549B2 (en) Semiconductor module
JP6164667B2 (en) Power conversion circuit and device
CN102214984A (en) Power semiconductor device and power conversion system using the device
JP6288769B2 (en) Semiconductor power module, power conversion device, and moving body using the same
US10951128B2 (en) Main circuit wiring member and power conversion device
JP2009022062A (en) Wiring structure of 3-level power conversion circuit
WO2017168860A1 (en) Electric power conversion device
JP2016220356A (en) Power converter
JP6665456B2 (en) Power semiconductor device
JP2011254672A (en) Power semiconductor module and power conversion device using the same
CN105593989B (en) Semiconductor stack for a converter with buffer-capacitors
JP5906313B2 (en) Power converter
JPWO2018109884A1 (en) Power converter
JP6206090B2 (en) 3-level power converter
JP6344054B2 (en) Series connection capacitor placement and wiring structure
JP6720601B2 (en) Power converter
JP6268939B2 (en) 3-level power converter
JP4487682B2 (en) Capacitor and installation method
JP5488244B2 (en) Power semiconductor module
AU2016217603B2 (en) Circuit module and inverter device using same
JP6338543B2 (en) 3-level power converter

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20151005

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20151005

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180507

R150 Certificate of patent or registration of utility model

Ref document number: 6344054

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250