JP2015221728A - Method of manufacturing glass material and device of manufacturing glass material - Google Patents

Method of manufacturing glass material and device of manufacturing glass material Download PDF

Info

Publication number
JP2015221728A
JP2015221728A JP2014105922A JP2014105922A JP2015221728A JP 2015221728 A JP2015221728 A JP 2015221728A JP 2014105922 A JP2014105922 A JP 2014105922A JP 2014105922 A JP2014105922 A JP 2014105922A JP 2015221728 A JP2015221728 A JP 2015221728A
Authority
JP
Japan
Prior art keywords
glass
raw material
glass raw
lump
material lump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014105922A
Other languages
Japanese (ja)
Other versions
JP6364950B2 (en
Inventor
朋子 山田
Tomoko Yamada
朋子 山田
佐藤 史雄
Fumio Sato
史雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2014105922A priority Critical patent/JP6364950B2/en
Publication of JP2015221728A publication Critical patent/JP2015221728A/en
Application granted granted Critical
Publication of JP6364950B2 publication Critical patent/JP6364950B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a glass material having superior homogeneity by a containerless floating method.SOLUTION: A process of obtaining a glass material by cooling molten glass is carried out after the molten glass is obtained by heating and melting a glass raw material ingot 12 by irradiation with laser light in a state in which the glass raw material ingot 12 is floated and held over a molding surface 10a of a molding tool 10 by jetting a gass from a gas jet hole 10b opened in the molding surface 10a. While the attitude of the glass raw material ingot 12 is changed relatively to the laser light, the glass raw material ingot 12 is irradiated with the laser light.

Description

本発明は、ガラス材の製造方法及びガラス材の製造装置に関する。   The present invention relates to a glass material manufacturing method and a glass material manufacturing apparatus.

近年、ガラス材の製造方法として、無容器浮遊法に関する研究がなされている。例えば、特許文献1には、ガス浮遊炉で浮遊させたバリウムチタン系強誘電体の試料にレーザービームを照射して加熱溶融した後に、冷却することにより、バリウムチタン系強誘電体の試料をガラス化させる方法が記載されている。容器を用いてガラスを溶融する従来の方法では、溶融ガラスが容器の壁面に接触することによって、結晶が析出することがあるが、無容器浮遊法では、容器の壁面との接触に起因する結晶化の進行を抑制できる。そのため、従来の容器を用いた製造方法ではガラス化させることができなかった材料であっても、無容器浮遊法ではガラス化し得る場合がある。従って、無容器浮遊法は、新規な組成を有するガラス材を製造し得る方法として注目に値すべき方法である。   In recent years, research on a containerless floating method has been made as a method for producing a glass material. For example, in Patent Document 1, a barium titanium ferroelectric sample suspended in a gas floating furnace is irradiated with a laser beam, heated and melted, and then cooled, whereby the barium titanium ferroelectric sample is cooled to glass. Is described. In the conventional method of melting glass using a container, crystals may precipitate when the molten glass comes into contact with the wall surface of the container, but in the containerless floating method, crystals caused by contact with the wall surface of the container The progress of conversion can be suppressed. For this reason, even a material that could not be vitrified by a conventional manufacturing method using a container may be vitrified by a containerless floating method. Therefore, the containerless floating method is a method that should be noted as a method capable of producing a glass material having a novel composition.

特開2006−248801号公報JP 2006-248801 A

無容器浮遊法の課題は、ガラス材の均質性の向上である。そこで、特許文献1では、複数のレーザーを用いてガラス原料塊の広い範囲にレーザーを照射することが行われている。しかしながら、この方法においても、十分に均質なガラスを得ることは難しい。   The problem of the containerless floating method is to improve the homogeneity of the glass material. Therefore, in Patent Document 1, a plurality of lasers are used to irradiate a wide area of a glass raw material lump with a laser. However, even in this method, it is difficult to obtain a sufficiently homogeneous glass.

本発明の主な目的は、無容器浮遊法により、優れた均質性を有するガラス材を製造し得る方法を提供することにある。   A main object of the present invention is to provide a method capable of producing a glass material having excellent homogeneity by a containerless floating method.

本発明に係るガラス材の製造方法では、成形型の成形面に開口するガス噴出孔からガスを噴出させることにより、成形面の上方にガラス原料塊を浮遊させて保持した状態で、ガラス原料塊にレーザー光を照射することにより加熱融解させて溶融ガラスを得た後に、溶融ガラスを冷却することによりガラス材を得る工程を行う。ガラス原料塊の姿勢をレーザー光に対して相対的に変化させながら、ガラス原料塊にレーザー光を照射する。   In the method for producing a glass material according to the present invention, a glass material lump is floated and held above the molding surface by ejecting gas from a gas ejection hole opened on the molding surface of the mold. A process of obtaining a glass material by cooling the molten glass is performed after the molten glass is heated and melted by irradiation with laser light to obtain molten glass. The glass raw material lump is irradiated with laser light while changing the posture of the glass raw material lump relative to the laser beam.

本発明に係るガラス材の製造方法では、ガラス原料塊を振動又は揺動させながら、ガラス原料塊にレーザー光を照射してもよい。   In the method for producing a glass material according to the present invention, the glass raw material lump may be irradiated with laser light while the glass raw material lump is vibrated or swung.

本発明に係るガラス材の製造方法では、ガラス原料塊を回転させながら、ガラス原料塊にレーザー光を照射してもよい。   In the manufacturing method of the glass material which concerns on this invention, you may irradiate a laser beam to a glass raw material lump, rotating a glass raw material lump.

本発明に係るガラス材の製造方法では、レーザー光のガラス原料塊に対する照射位置を変化させながら、ガラス原料塊にレーザー光を照射してもよい。   In the manufacturing method of the glass material which concerns on this invention, you may irradiate a laser beam to a glass raw material lump, changing the irradiation position with respect to the glass raw material lump of a laser beam.

本発明に係るガラス材の製造方法では、溶融工程において、溶融ガラスが冷却されて固化するまで、ガラス原料塊及び溶融ガラスの姿勢を変化させることが好ましい。   In the manufacturing method of the glass material which concerns on this invention, it is preferable to change the attitude | position of a glass raw material lump and a molten glass until a molten glass is cooled and solidified in a melting process.

本発明に係るガラス材の製造方法では、ガラス原料塊として、下記式(1)の関係を満たす形状を有するガラス原料塊を用いることが好ましい。   In the manufacturing method of the glass material which concerns on this invention, it is preferable to use the glass raw material lump which has a shape which satisfy | fills the relationship of following formula (1) as a glass raw material lump.

A1/A2≦1 ・・・(1)
A1=前記ガラス原料塊の厚み
A2=前記ガラス原料塊の投影像の長径
本発明に係るガラス材の製造装置は、成形型の成形面に開口するガス噴出孔からガスを噴出させることにより、成形面の上方にガラス原料塊を浮遊させて保持した状態で、ガラス原料塊を加熱融解させて溶融ガラスを得た後に、溶融ガラスを冷却することによりガラス材を製造する装置である。本発明に係るガラス材の製造装置は、ガラス原料塊にレーザー光を照射するときにガラス原料塊の姿勢をレーザー光に対して相対的に変化させる姿勢変化機構を備えている。
A1 / A2 ≦ 1 (1)
A1 = Thickness of the glass raw material block A2 = Long diameter of the projected image of the glass raw material block The glass material manufacturing apparatus according to the present invention is formed by jetting gas from a gas jetting hole opened in the molding surface of the molding die. In a state where the glass raw material lump is suspended and held above the surface, the glass raw material lump is heated and melted to obtain molten glass, and then the molten glass is cooled to produce a glass material. The apparatus for producing a glass material according to the present invention includes an attitude changing mechanism that changes the attitude of the glass raw material lump relative to the laser light when the glass raw material lump is irradiated with laser light.

本発明によれば、無容器浮遊法により、優れた均質性を有するガラス材を製造し得る方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the method which can manufacture the glass material which has the outstanding homogeneity by the containerless floating method can be provided.

第1の実施形態に係るガラス材の製造装置の模式的断面図である。It is typical sectional drawing of the manufacturing apparatus of the glass material which concerns on 1st Embodiment. 第1の実施形態における成形面の一部分の略図的平面図である。It is a schematic plan view of a part of the molding surface in the first embodiment. 第2の実施形態に係るガラス材の製造装置の模式的断面図である。It is typical sectional drawing of the manufacturing apparatus of the glass material which concerns on 2nd Embodiment. 第3の実施形態に係るガラス材の製造装置の模式的断面図である。It is typical sectional drawing of the manufacturing apparatus of the glass material which concerns on 3rd Embodiment. 第4の実施形態に係るガラス材の製造装置の模式的断面図である。It is typical sectional drawing of the manufacturing apparatus of the glass material which concerns on 4th Embodiment. 第5の実施形態に係るガラス材の製造装置の模式的断面図である。It is typical sectional drawing of the manufacturing apparatus of the glass material which concerns on 5th Embodiment.

以下、本発明を実施した好ましい形態のについて説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。   Hereinafter, preferred embodiments of the present invention will be described. However, the following embodiment is merely an example. The present invention is not limited to the following embodiments.

また、実施形態等において参照する各図面において、実質的に同一の機能を有する部材は同一の符号で参照することとする。また、実施形態等において参照する図面は、模式的に記載されたものである。図面に描画された物体の寸法の比率などは、現実の物体の寸法の比率などとは異なる場合がある。図面相互間においても、物体の寸法比率等が異なる場合がある。具体的な物体の寸法比率等は、以下の説明を参酌して判断されるべきである。   Moreover, in each drawing referred in embodiment etc., the member which has a substantially the same function shall be referred with the same code | symbol. The drawings referred to in the embodiments and the like are schematically described. A ratio of dimensions of an object drawn in a drawing may be different from a ratio of dimensions of an actual object. The dimensional ratio of the object may be different between the drawings. The specific dimensional ratio of the object should be determined in consideration of the following description.

(第1の実施形態)
本実施形態では、通常のガラス材をはじめ、例えば、網目形成酸化物を含まないような、容器を用いた溶融法によってはガラス化しない組成を有するガラス材であっても好適に製造し得る。具体的には、例えば、チタン酸バリウム系ガラス材、ランタン−ニオブ複合酸化物系ガラス材、ランタン−ニオブ−アルミニウム複合酸化物系ガラス材、ランタン−ニオブ−タンタル複合酸化物系ガラス材、ランタン−タングステン複合酸化物系ガラス材等を好適に製造し得る。
(First embodiment)
In the present embodiment, not only a normal glass material, but also a glass material having a composition that does not vitrify by a melting method using a container, for example, that does not include a network-forming oxide can be suitably manufactured. Specifically, for example, barium titanate glass material, lanthanum-niobium composite oxide glass material, lanthanum-niobium-aluminum composite oxide glass material, lanthanum-niobium-tantalum composite oxide glass material, lanthanum- A tungsten composite oxide glass material or the like can be suitably produced.

図1は、第1の実施形態に係るガラス材の製造装置1の模式的断面図である。図1に示すように、ガラス材の製造装置1は、成形型10を有する。成形型10は、曲面の成形面10aを備える。具体的には、成形面10aは、球面状である。   FIG. 1 is a schematic cross-sectional view of a glass material manufacturing apparatus 1 according to the first embodiment. As shown in FIG. 1, the glass material manufacturing apparatus 1 includes a mold 10. The molding die 10 includes a curved molding surface 10a. Specifically, the molding surface 10a has a spherical shape.

成形型10は、成形面10aに開口しているガス噴出孔10bを有する。図2に示すように、本実施形態では、ガス噴出孔10bが複数設けられている。具体的には、複数のガス噴出孔10bは、成形面10aの中心から放射状に配列されている。   The molding die 10 has a gas ejection hole 10b opened in the molding surface 10a. As shown in FIG. 2, in this embodiment, a plurality of gas ejection holes 10b are provided. Specifically, the plurality of gas ejection holes 10b are arranged radially from the center of the molding surface 10a.

なお、成形型10は、連続気泡を有する多孔質体により構成されていてもよい。その場合、ガス噴出孔10bは、連続気泡により構成される。   In addition, the shaping | molding die 10 may be comprised with the porous body which has an open cell. In that case, the gas ejection hole 10b is constituted by continuous bubbles.

ガス噴出孔10bは、ガスボンベなどのガス供給機構11に接続されている。このガス供給機構11からガス噴出孔10bを経由して、成形面10aにガスが供給される。   The gas ejection hole 10b is connected to a gas supply mechanism 11 such as a gas cylinder. Gas is supplied from the gas supply mechanism 11 to the molding surface 10a via the gas ejection hole 10b.

ガスの種類は、特に限定されない。ガスは、例えば、空気や酸素であってもよいし、窒素ガスやアルゴンガス、ヘリウムガス等の不活性ガスであってもよい。   The type of gas is not particularly limited. The gas may be, for example, air or oxygen, or an inert gas such as nitrogen gas, argon gas, or helium gas.

製造装置1を用いて、ガラス材を製造するに際しては、まず、ガラス原料塊12を成形面10a上に配置する。ガラス原料塊12は、例えば、ガラス材の原料粉末をプレス成形等により一体化したものであってもよい。ガラス原料塊12は、ガラス材の原料粉末をプレス成形等により一体化した後に焼結させた焼結体であってもよい。また、ガラス原料塊12は、目標ガラス組成と同等の組成を有する結晶の集合体であってもよい。   When manufacturing a glass material using the manufacturing apparatus 1, first, the glass raw material lump 12 is arrange | positioned on the molding surface 10a. The glass raw material lump 12 may be, for example, a glass material raw material powder integrated by press molding or the like. The glass raw material lump 12 may be a sintered body that is sintered after integrating the raw material powder of the glass material by press molding or the like. Moreover, the glass raw material lump 12 may be an aggregate of crystals having a composition equivalent to the target glass composition.

ガラス原料塊12の形状は、特に限定されない。ガラス原料塊12は、例えば、レンズ状、球状、円柱状、多角柱状、直方体状、楕球状等であってもよい。   The shape of the glass raw material lump 12 is not particularly limited. The glass raw material block 12 may be, for example, a lens shape, a spherical shape, a cylindrical shape, a polygonal column shape, a rectangular parallelepiped shape, an elliptical shape, or the like.

次に、ガス噴出孔10bからガスを噴出させることにより、ガラス原料塊12を成形面10a上で浮遊させる。すなわち、ガラス原料塊12が成形面10aに接触していない状態で、ガラス原料塊12を空中で保持する。その状態で、レーザー照射装置13からレーザー光をガラス原料塊12に照射する。これによりガラス原料塊12を加熱溶融してガラス化させ、溶融ガラスを得る。その後、溶融ガラスを冷却することにより、ガラス材を得ることができる。ガラス原料塊12を加熱溶融する工程と、溶融ガラス、さらにはガラス材の温度が少なくとも軟化点以下となるまで冷却する工程において、少なくともガスの噴出を継続し、ガラス原料塊12、溶融ガラスまたはガラス材と成形面10aとが接触することを抑制することが好ましい。   Next, the glass raw material block 12 is floated on the molding surface 10a by ejecting gas from the gas ejection holes 10b. That is, the glass raw material block 12 is held in the air in a state where the glass raw material block 12 is not in contact with the molding surface 10a. In this state, the glass material block 12 is irradiated with laser light from the laser irradiation device 13. Thereby, the glass raw material lump 12 is heated and melted to be vitrified to obtain molten glass. Thereafter, the glass material can be obtained by cooling the molten glass. In the step of heating and melting the glass raw material lump 12 and the step of cooling until the temperature of the molten glass and further the glass material becomes at least the softening point or less, at least gas ejection is continued, and the glass raw material lump 12, molten glass or glass It is preferable to suppress contact between the material and the molding surface 10a.

ところで、ガラス原料塊12の一部にレーザー光が照射されると、ガラス原料塊12の一部が他の部分よりも高温になる。また、ガラス原料塊12の全体にレーザー光を照射したとしても、レーザー光がエネルギー分布を有するため、ガラス原料塊12に温度むらが生じる。ガラス原料塊12の全体を融解させるためには、ガラス原料塊12の加熱されにくい部分の温度が所定の温度になるまで加熱する必要がある。このため、ガラス原料塊12の一部は、必要以上に高い温度にまで加熱されることとなる。その結果、揮発等が生じやすくなり、得られるガラス材の均質性が低下しやすくなる。また、ガラス原料塊12の溶融に要する時間が長くなりやすい。   By the way, when a part of the glass raw material lump 12 is irradiated with laser light, a part of the glass raw material lump 12 becomes hotter than the other part. Even if the entire glass raw material block 12 is irradiated with laser light, the laser light has an energy distribution, and thus the temperature unevenness occurs in the glass raw material block 12. In order to melt the whole glass raw material lump 12, it is necessary to heat until the temperature of the portion of the glass raw material lump 12 that is difficult to be heated reaches a predetermined temperature. For this reason, a part of the glass raw material lump 12 is heated to a temperature higher than necessary. As a result, volatilization or the like tends to occur, and the homogeneity of the obtained glass material tends to decrease. Further, the time required for melting the glass raw material mass 12 tends to be long.

本実施形態の製造装置1は、姿勢変化機構14を備えている。この姿勢変化機構14は、少なくとも、ガラス原料塊12にレーザー光を照射するときに、ガラス原料塊12の姿勢をレーザー光に対して相対的に変化させる。このため、ガラス原料塊12を融解させる工程において、ガラス原料塊12へのレーザー光の照射位置が変化する。よって、ガラス原料塊12の一部が過剰に加熱されることを抑制でき、ガラス原料塊12を均一に加熱することができる。従って、揮発等が生じることを抑制できる。その結果、高い均質性を有するガラス材を製造することができる。   The manufacturing apparatus 1 according to the present embodiment includes a posture change mechanism 14. The attitude changing mechanism 14 changes the attitude of the glass raw material mass 12 relative to the laser light at least when the glass raw material mass 12 is irradiated with laser light. For this reason, in the process of melting the glass raw material mass 12, the irradiation position of the laser beam to the glass raw material mass 12 changes. Therefore, it can suppress that a part of glass raw material lump 12 is heated excessively, and can heat the glass raw material lump 12 uniformly. Therefore, the occurrence of volatilization or the like can be suppressed. As a result, a glass material having high homogeneity can be produced.

なお、揮発等は、ガラス原料塊12を融解させるときのみならず、溶融ガラスになってからも生じる。このため、より高い均質性を有するガラス材を得る観点からは、溶融ガラスが冷却されて固化するまでの間にわたってガラス原料塊12及び溶融ガラスの姿勢を変化させることが好ましい。   Note that volatilization or the like occurs not only when the glass raw material mass 12 is melted but also when it becomes molten glass. For this reason, from the viewpoint of obtaining a glass material having higher homogeneity, it is preferable to change the postures of the glass raw material block 12 and the molten glass until the molten glass is cooled and solidified.

本発明において、「姿勢を変化させる」とは、ガラス原料塊を振動させる、揺動させる等の変位させることのみならず、変位させることなく、回転させることも意味する。   In the present invention, “changing the attitude” means not only oscillating and oscillating the glass raw material block, but also rotating it without displacing it.

すなわち、姿勢変化機構14は、例えば、ガラス原料塊12を振動又は揺動させる機構であってもよい。また、姿勢変化機構14は、ガラス原料塊12を回転させる機構であってもよい。姿勢変化機構14は、ガラス原料塊12を振動又は揺動させながら回転させる機構であってもよい。   That is, the posture changing mechanism 14 may be a mechanism that vibrates or swings the glass raw material block 12, for example. Further, the posture changing mechanism 14 may be a mechanism that rotates the glass raw material block 12. The posture changing mechanism 14 may be a mechanism that rotates the glass raw material mass 12 while vibrating or swinging.

このような姿勢変化機構14は、例えば、ガラス原料塊12に気体を吹き付ける気体吹付機構により構成することができる。   Such a posture change mechanism 14 can be configured by, for example, a gas blowing mechanism that blows gas onto the glass raw material block 12.

姿勢変化機構14を気体吹付機構により構成する場合、ガラス原料塊12として、下記式(1)の関係を満たす形状を有するガラス原料塊を用いることが好ましい。   When the posture change mechanism 14 is configured by a gas blowing mechanism, it is preferable to use a glass raw material lump having a shape that satisfies the relationship of the following formula (1) as the glass raw material lump 12.

A1/A2≦1 ・・・(1)
A1=ガラス原料塊12の厚み
A2=ガラス原料塊12の投影像の長径
例えば、ガラス原料塊12が楕円体の場合は、A1は短径、A2は長径を指す。ガラス原料塊12が直方体の場合は、A1は最短の辺の長さ、A2は最短の辺と垂直な面の対角線の長さを指す。ガラス原料塊12が円柱状の場合は、A1は高さ、A2は底面の直径を指す。
A1 / A2 ≦ 1 (1)
A1 = Thickness of the glass raw material block 12 A2 = Long diameter of the projected image of the glass raw material block 12 For example, when the glass raw material block 12 is an ellipsoid, A1 indicates a short diameter and A2 indicates a long diameter. When the glass raw material block 12 is a rectangular parallelepiped, A1 indicates the length of the shortest side, and A2 indicates the length of the diagonal line of the surface perpendicular to the shortest side. When the glass raw material block 12 is cylindrical, A1 indicates the height and A2 indicates the diameter of the bottom surface.

ガラス原料塊12が上記の関係を満たす場合、ガラス原料塊12の姿勢が変化しやすくなる。A1/A2は0.7以下であることがより好ましい。なお、A1/A2が小さすぎると、ガラス原料塊12が上下方向に回転しにくくなり、かえって姿勢変化が小さくなる傾向がある。よって、A1/A2は0.2以上であることが好ましい。 以下、本発明の好ましい実施形態の他の例について説明する。以下の説明において、上記第1の実施形態と実質的に共通の機能を有する部材を共通の符号で参照し、説明を省略する。   When the glass raw material lump 12 satisfies the above relationship, the posture of the glass raw material lump 12 is likely to change. A1 / A2 is more preferably 0.7 or less. In addition, when A1 / A2 is too small, the glass raw material lump 12 is difficult to rotate in the vertical direction, and on the contrary, the posture change tends to be small. Therefore, A1 / A2 is preferably 0.2 or more. Hereinafter, other examples of preferred embodiments of the present invention will be described. In the following description, members having substantially the same functions as those of the first embodiment are referred to by the same reference numerals, and description thereof is omitted.

(第2及び第3の実施形態)
図3は、第2の実施形態に係るガラス材の製造装置1aの模式的断面図である。図4は、第3の実施形態に係るガラス材の製造装置1bの模式的断面図である。
(Second and third embodiments)
FIG. 3 is a schematic cross-sectional view of the glass material manufacturing apparatus 1a according to the second embodiment. FIG. 4 is a schematic cross-sectional view of a glass material manufacturing apparatus 1b according to the third embodiment.

第1の実施形態では、ガラス原料塊12を動かす例について説明した。但し、本発明は、これに限定されない。例えば、ガラス原料塊12を動かさず、またはガラス原料塊12を動かしながら、レーザー照射装置13の姿勢を変化させてもよい。   In the first embodiment, the example in which the glass raw material block 12 is moved has been described. However, the present invention is not limited to this. For example, the posture of the laser irradiation device 13 may be changed without moving the glass raw material block 12 or while moving the glass raw material block 12.

具体的には、図3に示すように、第2の実施形態のガラス材の製造装置1aは、レーザー照射装置13の姿勢を変化させる姿勢変化機構15を備えている。この姿勢変化機構15によりレーザー照射装置13が揺動される。これにより、レーザー光のガラス原料塊12に対する照射位置が変化する。そうすることにより、ガラス原料塊12の姿勢をレーザー光に対して相対的に変化させてもよい。   Specifically, as shown in FIG. 3, the glass material manufacturing apparatus 1 a according to the second embodiment includes a posture changing mechanism 15 that changes the posture of the laser irradiation device 13. The laser irradiation device 13 is swung by the posture changing mechanism 15. Thereby, the irradiation position with respect to the glass raw material lump 12 of a laser beam changes. By doing so, you may change the attitude | position of the glass raw material lump 12 relatively with respect to a laser beam.

また、図4に示すように、第3の実施形態のガラス材の製造装置1bは、レーザー照射装置13から出射されたレーザー光をガラス原料塊12に導くミラー16と、そのミラー16の姿勢を変化させる姿勢変化機構17を備えている。この姿勢変化機構17によりミラー16が揺動される。これにより、レーザー光のガラス原料塊12に対する照射位置が変化する。そうすることにより、ガラス原料塊12の姿勢をレーザー光に対して相対的に変化させてもよい。   As shown in FIG. 4, the glass material manufacturing apparatus 1 b of the third embodiment has a mirror 16 that guides the laser light emitted from the laser irradiation device 13 to the glass raw material block 12, and the posture of the mirror 16. A posture changing mechanism 17 for changing is provided. The mirror 16 is swung by the posture changing mechanism 17. Thereby, the irradiation position with respect to the glass raw material lump 12 of a laser beam changes. By doing so, you may change the attitude | position of the glass raw material lump 12 relatively with respect to a laser beam.

これらの場合であっても、第1の実施形態と実質的に同様の効果が奏される。   Even in these cases, substantially the same effects as those of the first embodiment can be obtained.

(第4の実施形態)
図5は、第4の実施形態に係るガラス材の製造装置の模式的断面図である。
(Fourth embodiment)
FIG. 5 is a schematic cross-sectional view of a glass material manufacturing apparatus according to the fourth embodiment.

本実施形態の製造装置1cは、成形型10を揺動させる揺動装置18を有する。本実施形態では、成形型10を動かすことにより、成形型10に形成されたガス噴出孔10bのガラス原料塊12に対する相対的な位置が変化する。それにより、ガラス原料塊12と成形面10aとの間におけるガスの気流が乱れ、それに伴いガラス原料塊12の姿勢がレーザー光に対して相対的に変化する。このようにすることで、第1の実施形態等と同様の効果が得られる。   The manufacturing apparatus 1c according to the present embodiment includes a rocking device 18 that rocks the mold 10. In the present embodiment, by moving the mold 10, the relative position of the gas ejection holes 10 b formed in the mold 10 with respect to the glass raw material block 12 changes. As a result, the gas flow between the glass raw material mass 12 and the molding surface 10a is disturbed, and the posture of the glass raw material mass 12 changes relative to the laser light accordingly. By doing in this way, the effect similar to 1st Embodiment etc. is acquired.

(第5の実施形態)
図6は、第5の実施形態に係るガラス材の製造装置1dの模式的断面図である。
(Fifth embodiment)
FIG. 6 is a schematic cross-sectional view of a glass material manufacturing apparatus 1d according to the fifth embodiment.

第1〜第4の実施形態では、複数のガス噴出孔10bが成形面10aに開口している例について説明した。但し、本発明は、この構成に限定されない。例えば、図5に示されるガラス材の製造装置1cのように、成形面10aの中央に開口しているひとつのガス噴出孔10bが設けられていてもよい。   In the first to fourth embodiments, the example in which the plurality of gas ejection holes 10b are opened on the molding surface 10a has been described. However, the present invention is not limited to this configuration. For example, like the glass material manufacturing apparatus 1c shown in FIG. 5, one gas ejection hole 10b opened at the center of the molding surface 10a may be provided.

1,1a,1b,1c,1d 製造装置
10 成形型
10a 成形面
10b ガス噴出孔
11 ガス供給機構
12 ガラス原料塊
13 レーザー照射装置
14,15,17 姿勢変化機構
16 ミラー
18 揺動機構
1, 1a, 1b, 1c, 1d Manufacturing apparatus 10 Mold 10a Molding surface 10b Gas ejection hole 11 Gas supply mechanism 12 Glass raw material lump 13 Laser irradiation apparatus 14, 15, 17 Attitude change mechanism 16 Mirror 18 Oscillation mechanism

Claims (7)

成形型の成形面に開口するガス噴出孔からガスを噴出させることにより、前記成形面の上方にガラス原料塊を浮遊させて保持した状態で、前記ガラス原料塊にレーザー光を照射することにより加熱融解させて溶融ガラスを得た後に、前記溶融ガラスを冷却することによりガラス材を得る工程を含み、
前記ガラス原料塊の姿勢を前記レーザー光に対して相対的に変化させながら、前記ガラス原料塊にレーザー光を照射する、ガラス材の製造方法。
The glass raw material lump is heated by irradiating the glass raw material lump with a laser beam in a state where the glass raw material lump is suspended and held above the forming surface by jetting gas from a gas ejection hole opened on the molding surface of the mold. After obtaining molten glass by melting, including a step of obtaining a glass material by cooling the molten glass,
A method for producing a glass material, wherein the glass raw material lump is irradiated with laser light while changing the posture of the glass raw material lump relative to the laser beam.
前記ガラス原料塊を振動又は揺動させながら、前記ガラス原料塊にレーザー光を照射する、請求項1に記載のガラス材の製造方法。   The manufacturing method of the glass material of Claim 1 which irradiates a laser beam to the said glass raw material lump, vibrating the said glass raw material lump. 前記ガラス原料塊を回転させながら、前記ガラス原料塊にレーザー光を照射する、請求項1または2に記載のガラス材の製造方法。   The manufacturing method of the glass material of Claim 1 or 2 which irradiates a laser beam to the said glass raw material lump, rotating the said glass raw material lump. 前記レーザー光の前記ガラス原料塊に対する照射位置を変化させながら、前記ガラス原料塊にレーザー光を照射する、請求項1〜3のいずれか一項に記載のガラス材の製造方法。   The manufacturing method of the glass material as described in any one of Claims 1-3 which irradiates a laser beam to the said glass raw material lump, changing the irradiation position with respect to the said glass raw material lump of the said laser beam. 前記溶融工程において、前記溶融ガラスが冷却されて固化するまで、前記ガラス原料塊及び前記溶融ガラスの姿勢を変化させる、請求項1〜4のいずれか一項に記載のガラス材の製造方法。   The manufacturing method of the glass material as described in any one of Claims 1-4 which changes the attitude | position of the said glass raw material lump and the said molten glass until the said molten glass is cooled and solidified in the said melting process. 前記ガラス原料塊として、下記式(1)の関係を満たす形状を有するガラス原料塊を用いる、請求項1〜5のいずれか一項に記載のガラス材の製造方法。
A1/A2≦1 ・・・(1)
A1=前記ガラス原料塊の厚み
A2=前記ガラス原料塊の投影像の長径
The manufacturing method of the glass material as described in any one of Claims 1-5 which uses the glass raw material lump which has the shape which satisfy | fills the relationship of following formula (1) as said glass raw material lump.
A1 / A2 ≦ 1 (1)
A1 = thickness of the glass raw material block A2 = major axis of the projected image of the glass raw material block
成形型の成形面に開口するガス噴出孔からガスを噴出させることにより、前記成形面の上方にガラス原料塊を浮遊させて保持した状態で、前記ガラス原料塊を加熱融解させて溶融ガラスを得た後に、前記溶融ガラスを冷却することによりガラス材を製造する装置であって、
前記ガラス原料塊にレーザー光を照射するときに前記ガラス原料塊の姿勢を前記レーザー光に対して相対的に変化させる姿勢変化機構を備える、ガラス材の製造装置。
The glass raw material lump is heated and melted to obtain molten glass in a state where the glass raw material lump is suspended and held above the molding surface by ejecting gas from a gas ejection hole opened on the molding surface of the mold. After that, an apparatus for producing a glass material by cooling the molten glass,
An apparatus for manufacturing a glass material, comprising an attitude changing mechanism that changes the attitude of the glass raw material lump relative to the laser light when the glass raw material lump is irradiated with laser light.
JP2014105922A 2014-05-22 2014-05-22 Glass material manufacturing method and glass material manufacturing apparatus Active JP6364950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014105922A JP6364950B2 (en) 2014-05-22 2014-05-22 Glass material manufacturing method and glass material manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014105922A JP6364950B2 (en) 2014-05-22 2014-05-22 Glass material manufacturing method and glass material manufacturing apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018080695A Division JP2018111645A (en) 2018-04-19 2018-04-19 Manufacturing method of glass material and manufacturing apparatus of glass material

Publications (2)

Publication Number Publication Date
JP2015221728A true JP2015221728A (en) 2015-12-10
JP6364950B2 JP6364950B2 (en) 2018-08-01

Family

ID=54784993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014105922A Active JP6364950B2 (en) 2014-05-22 2014-05-22 Glass material manufacturing method and glass material manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP6364950B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018012636A (en) * 2016-07-06 2018-01-25 キヤノン株式会社 Production method of glass, production method of lens, and melting apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018111645A (en) * 2018-04-19 2018-07-19 日本電気硝子株式会社 Manufacturing method of glass material and manufacturing apparatus of glass material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259242A (en) * 1995-03-24 1996-10-08 Hooya Precision Kk Flotation softening method for glass material, manufacture of optical device and optical device
JP2006248801A (en) * 2005-03-08 2006-09-21 Japan Aerospace Exploration Agency Method of manufacturing barium titanium-based oxide glass by levitation solidification process
JP2008105876A (en) * 2006-10-24 2008-05-08 Ohara Inc Method of manufacturing glass molding, control program for executing method of manufacturing glass molding by computor, and storage medium
JP2012017254A (en) * 2010-06-11 2012-01-26 Nippon Sheet Glass Co Ltd Optical glass
JP2012116689A (en) * 2010-11-30 2012-06-21 Hoya Corp Method of manufacturing glass preform for precise press molding, and method of manufacturing optical device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259242A (en) * 1995-03-24 1996-10-08 Hooya Precision Kk Flotation softening method for glass material, manufacture of optical device and optical device
JP2006248801A (en) * 2005-03-08 2006-09-21 Japan Aerospace Exploration Agency Method of manufacturing barium titanium-based oxide glass by levitation solidification process
JP2008105876A (en) * 2006-10-24 2008-05-08 Ohara Inc Method of manufacturing glass molding, control program for executing method of manufacturing glass molding by computor, and storage medium
JP2012017254A (en) * 2010-06-11 2012-01-26 Nippon Sheet Glass Co Ltd Optical glass
JP2012116689A (en) * 2010-11-30 2012-06-21 Hoya Corp Method of manufacturing glass preform for precise press molding, and method of manufacturing optical device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018012636A (en) * 2016-07-06 2018-01-25 キヤノン株式会社 Production method of glass, production method of lens, and melting apparatus

Also Published As

Publication number Publication date
JP6364950B2 (en) 2018-08-01

Similar Documents

Publication Publication Date Title
WO2015190323A1 (en) Method for manufacturing glass material and device for manufacturing glass material
US11059735B2 (en) Glass material manufacturing method and glass material manufacturing device
JP6274042B2 (en) Glass material manufacturing method and glass material manufacturing apparatus
JP6364950B2 (en) Glass material manufacturing method and glass material manufacturing apparatus
JP6127868B2 (en) Glass material manufacturing method and glass material manufacturing apparatus
US11319237B2 (en) Glass material manufacturing method and glass material manufacturing device
JP2018111645A (en) Manufacturing method of glass material and manufacturing apparatus of glass material
JP6094427B2 (en) Glass material manufacturing method and glass material manufacturing apparatus
JP2015129061A (en) Production method of glass material and production apparatus of glass material
JP6699293B2 (en) Glass material manufacturing method and manufacturing apparatus
JP6631380B2 (en) Manufacturing method and manufacturing apparatus for glass material
JP6485169B2 (en) Manufacturing method of glass material
JP6179309B2 (en) Manufacturing method of glass material
JP6273549B2 (en) Glass material manufacturing method, glass material manufacturing apparatus and glass material
WO2017090471A1 (en) Method for producing glass material and apparatus for producing glass material
JP6447361B2 (en) Manufacturing method of glass material
WO2016199239A1 (en) Method for producing glass material, device for producing glass material, and glass material
JP6578906B2 (en) Glass material manufacturing method and glass material manufacturing apparatus
WO2016199240A1 (en) Glass material production method
JP2015129060A (en) Production method of glass material
JP6610405B2 (en) Manufacturing method of glass material
JP6519947B2 (en) Method of manufacturing glass material and manufacturing apparatus of glass material
JP2022030579A (en) Glass material manufacturing method and gas channel member
JP2019059671A (en) Method of manufacturing glass material and device of manufacturing glass material
JP6111946B2 (en) Manufacturing method of glass material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180206

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20180402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180419

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180618

R150 Certificate of patent or registration of utility model

Ref document number: 6364950

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150