JP2008105876A - Method of manufacturing glass molding, control program for executing method of manufacturing glass molding by computor, and storage medium - Google Patents

Method of manufacturing glass molding, control program for executing method of manufacturing glass molding by computor, and storage medium Download PDF

Info

Publication number
JP2008105876A
JP2008105876A JP2006288618A JP2006288618A JP2008105876A JP 2008105876 A JP2008105876 A JP 2008105876A JP 2006288618 A JP2006288618 A JP 2006288618A JP 2006288618 A JP2006288618 A JP 2006288618A JP 2008105876 A JP2008105876 A JP 2008105876A
Authority
JP
Japan
Prior art keywords
temperature
glass
molten glass
mold
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006288618A
Other languages
Japanese (ja)
Inventor
Ichiro Hasegawa
一郎 長谷川
Nobuaki Sakai
伸昭 酒井
Tatsuya Senoo
龍也 妹尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Original Assignee
Ohara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc filed Critical Ohara Inc
Priority to JP2006288618A priority Critical patent/JP2008105876A/en
Publication of JP2008105876A publication Critical patent/JP2008105876A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Glass Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a glass molding by which devitrification and striae can be suppressed by controlling the temperature and the viscosity of molten glass when molding the molten glass. <P>SOLUTION: In the method of manufacturing the glass molding by which glass is continuously molded by continuously making the molten glass flow down from a flow-out port to one end part of a mold having a prescribed width and drawing out the molten glass from another end of the moldie, the molten glass is controlled so that its temperature is the devitrification temperature or below and is controlled to the tempeture that the viscosity logη of the molten glass is ≤2.0 in one end, and is controlled to keep the softening temperatureor above in another end, thereby manufacturing the glass molding suppressive in devitrification and striae. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、溶融ガラスの温度や粘度を調整することによって溶融ガラスを成形する板ガラス等のガラス成形体の製造方法、この製造方法をコンピュータに実行させるための制御プログラムおよび記憶媒体に関する。   The present invention relates to a method for manufacturing a glass molded body such as a plate glass that forms molten glass by adjusting the temperature and viscosity of the molten glass, a control program for causing a computer to execute the manufacturing method, and a storage medium.

通常、溶融ガラスを板状或いは棒状に連続して成形する場合、溶融ガラスを成形ロール間に流してその周速度と同じ速度で成形ガラスを送り出す方法(複ロール法)や予め用意された成形型の一端に溶融ガラスを引き出し速度に合わせて成形ガラスを引き出す方法等が知られている。   Usually, when molten glass is continuously formed into a plate shape or rod shape, a method (multi-roll method) in which the molten glass is flowed between forming rolls and the formed glass is sent out at the same speed as its peripheral speed or a previously prepared forming die A method is known in which molten glass is drawn to one end of the glass and drawn glass is drawn in accordance with the drawing speed.

例えば、特許文献1には、溶融ガラスをパイプで成形型の近くまで導いて、成形型の一端に溶融ガラス流出口と鋳込面との距離をできる限り近づけて溶融ガラスを流し込み、成形型は固定されたままガラスを連続的に引き出して成形する方法について記載されている。そして、成形型は、ガラスとの融着、成形されたガラスの肌の伸び、冷却によるひび割れ等を考慮して温度調整がなされるが、この温度調整は成形型全体を冷却するという一方的な冷却操作で行われる。   For example, in Patent Document 1, molten glass is guided to the vicinity of a molding die with a pipe, and the molten glass is poured into one end of the molding die as close as possible to the distance between the molten glass outlet and the casting surface. It describes a method for continuously drawing glass while it is fixed. The mold is temperature-adjusted in consideration of fusion with the glass, elongation of the formed glass skin, cracks due to cooling, etc. This temperature adjustment is a one-sided cooling of the entire mold. Performed by cooling operation.

また、特許文献2には、特許文献1に記載された方法において、成形型内の流出管の背部位置に堰を設け、堰に高周波振動を与え溶融ガラスを連続的に成形することについて記載されている。
特公昭45−19987号公報 特開昭50−51516号公報
Patent Document 2 describes that in the method described in Patent Document 1, a weir is provided at the back position of the outflow pipe in the mold, and high-frequency vibration is applied to the weir to continuously mold the molten glass. ing.
Japanese Patent Publication No. 45-19987 JP-A-50-51516

しかし、成形型を利用したこれらの方法では、成形温度および成形時間の調整が困難であるため、溶融ガラスの表面と成形型の側面付近に位置する溶融ガラスの温度分布およびそれに伴う熱履歴を均一とすることが困難であった。結果として、失透や脈理等の不良を抑えつつ、成形型に要求された所望の形状に適切に成形することは困難であった。   However, in these methods using a mold, it is difficult to adjust the molding temperature and molding time, so the temperature distribution of the molten glass located near the surface of the molten glass and the side of the mold and the thermal history associated therewith are uniform. It was difficult to do. As a result, it has been difficult to appropriately form the desired shape required for the mold while suppressing defects such as devitrification and striae.

したがって、溶融ガラスを連続して成形型に流下しながら、ガラスを成形する方法において、熱履歴が均一化され、内部歪等が少なく、分相を生じず、所望の形状を容易に成形できるガラス成形体の製造方法が求められている。   Therefore, in a method of forming glass while continuously flowing molten glass into a forming mold, glass having a uniform thermal history, little internal distortion, etc., no phase separation, and easily forming a desired shape There is a need for a method for producing a molded body.

本発明は上述した課題を解決するためになされたものであり、溶融ガラスを成形する時点で溶融ガラスの温度を測定し、その結果に基づいて粘度を調整することによって、ガラスにかかる熱履歴の均一性を向上させ、失透、脈理等を抑えるガラス成形体の製造方法等を提供することを目的とする。   The present invention has been made in order to solve the above-described problems. By measuring the temperature of the molten glass at the time of forming the molten glass and adjusting the viscosity based on the result, the heat history of the glass is measured. It aims at providing the manufacturing method etc. of the glass molded object which improves uniformity and suppresses devitrification, striae, etc.

本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、成形型の溶融ガラスの流出部付近の一端部での急冷条件、並びに中央部および他端部での温度保持条件を厳密に規定することにより、ガラスに失透や脈理等の不良を生じず、かつ成形型の成形部の形状を十分に反映した所望の形状に成形できることを見出した。より具体的には、本発明は以下のようなものを提供する。   As a result of intensive studies to solve the above problems, the present inventors have rigorously set the quenching condition at one end near the outflow part of the molten glass of the mold and the temperature holding condition at the center part and the other end part. It has been found that the glass can be molded into a desired shape that does not cause defects such as devitrification and striae and that sufficiently reflects the shape of the molding part of the mold. More specifically, the present invention provides the following.

(1) 所定の幅を有する成形型の一端部に、溶融ガラスを流出口から連続的に流下しながら、前記成形型の他端部から前記溶融ガラスを引き出すことによりガラスを連続的に成形するガラス成形体の製造方法において、前記一端部において、前記溶融ガラスの温度が失透消失温度以下であって、かつ、前記溶融ガラスの粘度η(dPa・s)の対数logηが2.0以下となる範囲の温度に冷却し、前記成形型上において、前記溶融ガラスの温度を軟化点以上に保持することを特徴とするガラス成形体の製造方法。   (1) The glass is continuously formed by drawing the molten glass from the other end of the mold while continuously flowing the molten glass from the outlet to one end of the mold having a predetermined width. In the method for producing a glass molded body, at the one end, the temperature of the molten glass is not higher than the devitrification disappearance temperature, and the logarithmic log η of the viscosity η (dPa · s) of the molten glass is 2.0 or less. The glass molding is produced by cooling to a temperature within a certain range, and maintaining the temperature of the molten glass above the softening point on the mold.

(1)の発明におけるガラス成形体の製造方法によれば、流出された溶融ガラスを流出口から一端部に流下させ他端部から溶融ガラスを引き出す際、失透を生じさせることなく、容易に成形できる。   According to the method for producing a glass molded body in the invention of (1), when the molten glass that has flowed out flows down from the outlet to one end and draws out the molten glass from the other end, it easily occurs without causing devitrification. Can be molded.

本明細書中において「失透消失温度」とは、溶融状態にある溶融ガラスを0.1〜0.5℃/secで所定の温度まで冷却(急冷)し、次いで、その所定の温度にて30分間保持した場合に失透が生じる温度の下限を意味する。すなわち、「失透消失温度」より低い温度まで冷却(急冷)すれば、一定時間保持してもガラスには失透が生じない。なお、溶融される溶融ガラスによっては、いずれの温度まで冷却し、保持しても失透を生じない極めて安定なガラスもある。「失透消失温度」の本質的な意味は、ガラス成形工程において当該温度以下で成形しても失透を生じないことを保証する温度であるから、かかる安定なガラスに限っては、「失透消失温度」を規定する必要がない。したがって、説明の便宜上、このような場合は、任意の温度で成形しても「失透消失温度」以下で成形したことに含めるものとする。   In this specification, the “devitrification disappearance temperature” means that the molten glass in a molten state is cooled (rapidly cooled) to a predetermined temperature at 0.1 to 0.5 ° C./sec, and then at the predetermined temperature. It means the lower limit of the temperature at which devitrification occurs when held for 30 minutes. That is, if the glass is cooled (rapidly cooled) to a temperature lower than the “devitrification disappearance temperature”, the glass does not devitrify even if it is held for a certain time. Depending on the molten glass to be melted, there is an extremely stable glass that does not cause devitrification even if it is cooled to any temperature and held. The essential meaning of “devitrification loss temperature” is a temperature that guarantees that devitrification does not occur even if it is molded at or below that temperature in the glass forming process. There is no need to define the “transmission temperature”. Therefore, for convenience of description, in such a case, even if the molding is performed at an arbitrary temperature, it is included in the molding below the “devitrification loss temperature”.

本明細書中において、「成形型の一端部」とは、成形型において溶融ガラスが流下される箇所を意味し、具体的には図1中の(A)付近を示す。また、本明細書において、「成形型の他端部」とは、成形型において一端部と逆側の端を意味し、具体的には図1中の(C)付近を示す。すなわち、溶融ガラスは、一端部にて流出され、他端部から引き出される。   In the present specification, the “one end portion of the mold” means a portion where the molten glass flows down in the mold, and specifically shows the vicinity of (A) in FIG. 1. Further, in this specification, “the other end portion of the mold” means an end opposite to the one end portion in the mold, and specifically indicates the vicinity of (C) in FIG. 1. That is, the molten glass flows out at one end and is drawn out from the other end.

また、保持温度を「軟化点」以上としたのは、溶融ガラスが軟化点を下回ると、その成形が困難になり、成形型の成形部の形状を忠実に再現しにくくなるからである。   The reason why the holding temperature is set to the “softening point” or more is that when the molten glass falls below the softening point, the molding becomes difficult and it becomes difficult to faithfully reproduce the shape of the molding part of the mold.

(2) 前記溶融ガラスが流下する前記流出口から前記一端部において、前記成形型内に包含される冷却手段により前記溶融ガラスを急冷する(1)に記載のガラス成形体の製造方法。   (2) The method for producing a glass molded body according to (1), wherein the molten glass is rapidly cooled by a cooling means included in the mold at the one end from the outlet from which the molten glass flows down.

(2)の発明におけるガラス成形体の製造方法によれば、前記冷却手段により、成形型を介して流出直後の溶融ガラスを所望の温度および粘度まで効果的に冷却できる。   According to the method for producing a glass molded body in the invention of (2), the cooling means can effectively cool the molten glass immediately after flowing out to the desired temperature and viscosity through the mold.

(3) 前記成形型の中央部および他端部において、前記溶融ガラスは、軟化点以上失透析出温度以下の温度範囲に保持される(1)〜(2)のガラス成形体の製造方法。   (3) The manufacturing method of the glass molded body of (1)-(2) in which the said molten glass is hold | maintained in the temperature range below a de-dialysis temperature below a softening point in the center part and other end part of the said shaping | molding die.

(3)の発明におけるガラス成形体の製造方法によれば、一端部以外(中央部および他端部)においても、ガラス成形体に失透が生じることを防止しつつ容易に成形をすることができる。   According to the method for producing a glass molded body in the invention of (3), molding can be easily performed while preventing devitrification from occurring in the glass molded body even at one end portion (central portion and the other end portion). it can.

なお、本明細書において、「成形型の中央部」とは、一端部と他端部との間の中間部分付近を示し、成形型をガラスの引き出し方向に見た場合に、前記一端部と他端部との略中間に位置する部位を意味し、具体的には図1中の(B)付近を示す。   In the present specification, the “center portion of the mold” refers to the vicinity of an intermediate portion between the one end and the other end, and when the mold is viewed in the glass drawing direction, This means a part located approximately in the middle of the other end, and specifically shows the vicinity of (B) in FIG.

本明細書において、「失透析出温度」とは、常温のガラス片(3mm角程度)を、5.0×10−3〜40.0×10−3℃/secで所定の温度まで昇温させ、当該温度にて30分間保持した場合、失透が生じる温度の下限をいう。すなわち、固体のガラスを昇温および保温しても、「失透析出温度」以下である限り失透は生じない。なお、前述の失透消失温度と失透析出温度の冷却速度が異なるのは、実際の光学ガラスの成形における冷却速度の差異に対応させたものである。 In the present specification, the “dialysis exit temperature” means that a glass piece at room temperature (about 3 mm square) is heated to a predetermined temperature at 5.0 × 10 −3 to 40.0 × 10 −3 ° C./sec. The lower limit of the temperature at which devitrification occurs when held at that temperature for 30 minutes. That is, even when the temperature of the solid glass is raised and kept, devitrification does not occur as long as it is equal to or lower than the “dialysis-out temperature”. The cooling rate of the devitrification disappearance temperature and the dedialysis temperature is different from the cooling rate in actual optical glass molding.

(4) 前記成形型の少なくとも一方の側面或いは底面を加熱することにより、前記溶融ガラスを軟化点以上失透析出温度以下の温度範囲に保持する(1)〜(3)のガラス成形体の製造方法。   (4) Production of a glass molded body according to (1) to (3), wherein the molten glass is maintained in a temperature range not lower than the softening point and not higher than the undialysis temperature by heating at least one side surface or bottom surface of the mold. Method.

(4)の発明におけるガラス成形体の製造方法によれば、溶融ガラス成形時に比較的温度が低下しやすい側面或いは底面を加熱することにより、急激な温度低下を防止し、ガラス成形体を所望の範囲の温度に容易に保持することができる。   According to the method for producing a glass molded body in the invention of (4), by heating the side surface or the bottom surface, the temperature of which is relatively low during molten glass molding, a rapid temperature drop is prevented, and a glass molded body is obtained as desired. Can be easily maintained at a range of temperatures.

(5) 前記成形型の一端部における前記溶融ガラスの冷却速度が0.1〜0.5℃/secであり、前記成形型の中央部から他端部において、前記溶融ガラスの冷却速度が5.0×10−3〜40.0×10−3℃/secである(1)から(4)のガラス成形体の製造方法。 (5) The cooling rate of the molten glass at one end of the mold is 0.1 to 0.5 ° C./sec, and the cooling rate of the molten glass is 5 from the center to the other end of the mold. method for producing a glass shaped material from the .0 is a × 10 -3 ~40.0 × 10 -3 ℃ / sec (1) (4).

(5)の発明におけるガラス成形体の製造方法によれば、適切な冷却速度にて冷却するので、ガラス成形体の失透や脈理を防止しつつ、効果的にガラス成形体を製造することができる。   According to the method for producing a glass molded body in the invention of (5), since cooling is performed at an appropriate cooling rate, the glass molded body is effectively produced while preventing devitrification and striae of the glass molded body. Can do.

(6) 前記溶融ガラスの温度を調整することで前記溶融ガラスの粘度η(dPa・s)の対数logηを調整する(1)から(5)のいずれかに記載のガラス成形体の製造方法。   (6) The method for producing a glass molded body according to any one of (1) to (5), wherein the logarithm log η of the viscosity η (dPa · s) of the molten glass is adjusted by adjusting the temperature of the molten glass.

(7) 前記一端部および前記他端部の前記溶融ガラスの温度が、それぞれ予め設定された温度になるように前記成形型を冷却、加熱する(1)から(6)のガラス成形体の製造方法。   (7) Manufacturing the glass molded body of (1) to (6), wherein the mold is cooled and heated so that the temperature of the molten glass at the one end and the other end becomes a preset temperature, respectively. Method.

(6)および(7)の発明におけるガラス成形体の製造方法によれば、溶融ガラスの粘度η(dPa・s)の対数logηを調整するために、溶融ガラスの温度を測定し、或いは成形型の温度を測定することにより間接的に溶融ガラスの温度を測定し、制御することにより、溶融ガラスを所望の粘度範囲に保持することが容易になる。   According to the method for producing a glass molded body in the inventions of (6) and (7), in order to adjust the logarithmic log η of the viscosity η (dPa · s) of the molten glass, the temperature of the molten glass is measured, or the mold By measuring and controlling the temperature of the molten glass indirectly, it becomes easy to maintain the molten glass in a desired viscosity range.

(8) 前記成形型の側面に第一温度検出手段を設け、前記第一温度検出手段により前記溶融ガラス側面の温度を測定する(7)に記載のガラス成形体の製造方法。   (8) The method for producing a glass molded body according to (7), wherein a first temperature detection unit is provided on a side surface of the mold, and the temperature of the molten glass side surface is measured by the first temperature detection unit.

(9) さらに前記成形型の一端部の上方、背面、側面または底面に第二温度検出手段を設け、前記第二温度検出手段により前記溶融ガラスの一端部周囲の温度を測定する(7)のガラス成形体の製造方法。   (9) Further, a second temperature detecting means is provided above, on the back, side or bottom of the one end of the mold, and the temperature around one end of the molten glass is measured by the second temperature detecting means. A method for producing a glass molded body.

(8)および(9)の発明におけるガラス成形体の製造方法よれば、成形型に温度検出手段を設けることにより、的確に溶融ガラスの温度を知ることができ、溶融ガラスの温度、粘度を適宜調整することができる。   According to the method for producing a glass molded body in the inventions of (8) and (9), the temperature of the molten glass can be accurately known by providing the mold with a temperature detecting means, and the temperature and viscosity of the molten glass are appropriately determined. Can be adjusted.

(10) 前記第一温度検出手段および前記第二温度検出手段により検出された前記溶融ガラス温度に基づき、前記溶融ガラスの引き出し速度、前記溶融ガラスが流下する前記一端部での冷却速度、前記成形型側面の加熱強度を連続的または断続的に変更可能に調整する(8)または(9)に記載のガラス成形体の製造方法。   (10) Based on the molten glass temperature detected by the first temperature detecting means and the second temperature detecting means, the drawing speed of the molten glass, the cooling speed at the one end where the molten glass flows down, the molding The manufacturing method of the glass molded object as described in (8) or (9) which adjusts the heating intensity of a mold side surface so that change is possible continuously or intermittently.

(10)の発明におけるガラス成形体の製造方法よれば、温度検出手段により検出した温度をフィードバックして、温度制御に反映させることで、脈理や失透を有する不良品の発生を最小限に抑えることが可能となる。   According to the method for producing a glass molded body in the invention of (10), the temperature detected by the temperature detecting means is fed back and reflected in the temperature control, thereby minimizing the occurrence of defective products having striae and devitrification. It becomes possible to suppress.

(11) (1)から(10)のいずれかに記載のガラス成形体の製造方法をコンピュータに実行させるための制御プログラム。   (11) A control program for causing a computer to execute the glass molded body manufacturing method according to any one of (1) to (10).

(11)の発明におけるコンピュータに実行させるための制御プログラムにおいて、予めプログラムしたコードを読み出して実行するようにしてもよい。   In the control program to be executed by the computer in the invention of (11), a preprogrammed code may be read and executed.

(12) (1)から(10)のいずれかに記載のガラス成形体の製造方法をコンピュータに実行させるための制御プログラムを格納した記憶媒体。   (12) A storage medium storing a control program for causing a computer to execute the glass molded body manufacturing method according to any one of (1) to (10).

(12)の発明における制御プログラムを格納した記憶媒体において、予めプログラムしたコードを読み出して実行するようにしてもよい。   In the storage medium storing the control program according to the invention of (12), a preprogrammed code may be read and executed.

本発明によれば、成形型での溶融ガラスの温度および粘度η(dPa・s)の対数logηを調整することにより、ガラス成形体に失透が生じたり、脈理が生じることを防止することができ、所望の形状を有するガラス成形体を製造することができるようになった。   According to the present invention, by adjusting the logarithm log η of the temperature and viscosity η (dPa · s) of the molten glass in the mold, it is possible to prevent devitrification or striae from occurring in the glass molded body. Thus, a glass molded body having a desired shape can be produced.

本発明は、所定の幅を有する成形型の一端部に、溶融ガラスを流出口から連続的に流下しながら、成形型の他端部から溶融ガラスを引き出すことによりガラスを連続的に成形するガラス成形体の製造方法において、一端部において、溶融ガラスの温度が失透消失温度以下であって、かつ、溶融ガラスの粘度η(dPa・s)の対数logηが2.0以下となる範囲の温度にし、他端部において、溶融ガラスの温度を軟化点以上に保持することを特徴とする。   The present invention is a glass for continuously forming glass by drawing molten glass from the other end of the mold while continuously flowing the molten glass from the outlet to one end of the mold having a predetermined width. In the method for producing a molded body, at one end, a temperature in a range where the temperature of the molten glass is equal to or lower than the devitrification disappearance temperature and the logarithmic log η of the viscosity η (dPa · s) of the molten glass is 2.0 or less. The temperature of the molten glass is maintained at the softening point or higher at the other end.

以下、本発明のガラス成形体の製造方法、ガラス成形体の製造方法をコンピュータに実行させるための制御プログラムおよび記憶媒体の実施形態について詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。なお、説明が重複する箇所については、適宜説明を省略する場合があるが、発明の趣旨を限定するものではない。   Hereinafter, embodiments of a glass molded body manufacturing method and a control program for causing a computer to execute the glass molded body manufacturing method and a storage medium according to the present invention will be described in detail. However, the present invention is not limited to the following embodiments. The present invention is not limited, and can be implemented with appropriate modifications within the scope of the object of the present invention. In addition, although description may be abbreviate | omitted suitably about the location where description overlaps, the meaning of invention is not limited.

[ガラス成形体の製造方法に使用する装置の全体構成]
図1および図2は、本発明のガラス成形体の製造方法に使用する装置の概略を示す。この装置は、溶融ガラスGを成形する所定の幅を有する成形型2と、成形型2の上部に位置し、溶融ガラスGを成形型2上に流下させる流出口1とを有する。
[Overall configuration of apparatus used for glass molding production method]
1 and 2 schematically show an apparatus used in the method for producing a glass molded body of the present invention. This apparatus has a mold 2 having a predetermined width for molding the molten glass G, and an outlet 1 that is located above the mold 2 and flows down the molten glass G onto the mold 2.

さらに、場合によっては溶融ガラスGを引き出した後に、アニール(徐冷)するためにアニール装置4を成形型2の他端部付近に接続させてもよい。   Further, in some cases, after the molten glass G is drawn out, the annealing device 4 may be connected to the vicinity of the other end of the mold 2 for annealing (slow cooling).

また、成形型2の側部または底部にはヒーター3を備えてもよい。   A heater 3 may be provided on the side or bottom of the mold 2.

成形型2の中央部および他端部付近の側面および成形型2に溶融ガラスGが流下される付近(例えば一端部の背面)にそれぞれ第一温度検出手段21、第二温度検出手段22を有し、溶融ガラスGの温度を間接的に測定することができる。   The first temperature detecting means 21 and the second temperature detecting means 22 are respectively provided on the side surface in the vicinity of the center and the other end of the mold 2 and in the vicinity of the molten glass G flowing down to the mold 2 (for example, the back surface of the one end). In addition, the temperature of the molten glass G can be indirectly measured.

[ガラス成形体の製造方法]
まず、溶融ガラスGは、流出口1から成形型2の一端部へ連続的に流下される。
[Method for producing glass molded body]
First, the molten glass G is continuously flowed from the outlet 1 to one end of the mold 2.

成形型2の一端部付近に流下された溶融ガラスGは、溶融ガラスGの温度を失透消失温度以下であって、かつ、溶融ガラスGの粘度η(dPa・s)の対数logη(以下、「溶融ガラスGの粘度」とする)を2.0以下となる範囲内の温度に調整される。溶融ガラスGの粘度と温度は、通常、図3に示すような曲線の関係にあり、溶融ガラスGの温度を調整すれば、同時に粘度を調整したことになる。溶融ガラスGの温度を失透消失温度以下とすることにより、ガラス成形体が失透することが防止することができる。また、粘度を2.0以下とすることにより、溶融ガラスGを引き出す過程において、脈理等の不利益を引き起こすことなく容易に、そして成形型2の内面形状をより高く反映した形状に成形することができる。   The molten glass G flowing down near one end of the mold 2 has a temperature of the molten glass G equal to or lower than the devitrification disappearance temperature, and a logarithm log η (hereinafter, referred to as viscosity η (dPa · s) of the molten glass G). The “viscosity of molten glass G” is adjusted to a temperature within a range of 2.0 or less. The viscosity and temperature of the molten glass G are generally in a curve relationship as shown in FIG. 3. If the temperature of the molten glass G is adjusted, the viscosity is adjusted at the same time. By making the temperature of the molten glass G below the devitrification disappearance temperature, it is possible to prevent the glass molded body from devitrifying. Further, by setting the viscosity to 2.0 or less, in the process of drawing out the molten glass G, it is easily formed without causing disadvantages such as striae and in a shape that reflects the inner shape of the mold 2 higher. be able to.

一端部付近の溶融ガラスGの温度および粘度を所望の範囲にするために、流出口1付近の成形型2の底部には、冷却手段(図示せず)が包含されており、流出口1から成形型2の一端部に流下した溶融ガラスGを急冷する。   In order to bring the temperature and viscosity of the molten glass G near one end into a desired range, a cooling means (not shown) is included at the bottom of the mold 2 near the outlet 1, The molten glass G flowing down to one end of the mold 2 is rapidly cooled.

冷却手段による冷却方法(急冷方法)は、溶融ガラスGの組成等に応じて適宜変更することができるが、例えば、空冷、油冷、水冷等公知の種々の冷却方法が挙げられる。   Although the cooling method (rapid cooling method) by a cooling means can be suitably changed according to the composition of the molten glass G etc., well-known various cooling methods, such as air cooling, oil cooling, and water cooling, are mentioned, for example.

冷却手段により一端部付近の溶融ガラスGを急冷する冷却速度は、溶融ガラスGの成分等に応じて適宜変更することができるが、0.1〜0.5℃/secとすることが好ましい。この範囲で一端部付近の溶融ガラスGを急冷することが効率的であり、ガラス成形体が失透することを防止することができる。冷却速度が小さすぎると、一端部付近の溶融ガラスGに失透が生じてしまうことがある。一方、冷却速度が大きすぎると、ガラス成形体に外観不良や脈理等が発生してしまう場合がある。   The cooling rate at which the molten glass G near one end is rapidly cooled by the cooling means can be appropriately changed according to the components of the molten glass G, but is preferably 0.1 to 0.5 ° C./sec. In this range, it is efficient to rapidly cool the molten glass G near one end, and the glass molded body can be prevented from devitrifying. If the cooling rate is too low, devitrification may occur in the molten glass G near one end. On the other hand, if the cooling rate is too high, appearance defects or striae may occur in the glass molded body.

したがって、一端部付近の冷却速度は、好ましくは0.1℃/sec、より好ましくは0.12℃/sec、最も好ましくは0.14℃/secを下限とし、好ましくは0.5℃/sec、より好ましくは0.48℃/sec、最も好ましくは0.46℃/secを上限とする。   Therefore, the cooling rate in the vicinity of one end is preferably 0.1 ° C./sec, more preferably 0.12 ° C./sec, most preferably 0.14 ° C./sec, preferably 0.5 ° C./sec. More preferably, the upper limit is 0.48 ° C./sec, and most preferably 0.46 ° C./sec.

一端部付近にて所望の温度および粘度に調整された溶融ガラスGは、中央部および他端部において溶融ガラスGの温度を軟化点以上失透析出温度以下となるように温度範囲を調整する。このような温度範囲を調整することにより、ガラス成形体に失透や脈理が発生することを防止することができる。   The temperature range of the molten glass G adjusted to a desired temperature and viscosity near one end is adjusted so that the temperature of the molten glass G is not less than the softening point and not more than the dialyzing temperature at the center and the other end. By adjusting such a temperature range, devitrification and striae can be prevented from occurring in the glass molded body.

ここで、溶融ガラスGの温度が軟化点未満であると、溶融ガラスGが硬すぎて成形型2による成形が困難となりやすく、成形型2の内面形状をより高く反映した形状に成形しにくくなる。また、溶融ガラスGの成形が困難となり、成形型2の内面形状を忠実に再現しにくくなる。一方、溶融ガラスGの温度が失透析出温度を超えると、ガラス成形体の成形中に失透が発生する場合がある。   Here, when the temperature of the molten glass G is lower than the softening point, the molten glass G is too hard to be easily molded by the mold 2 and difficult to be molded into a shape that reflects the shape of the inner surface of the mold 2 higher. . Moreover, it becomes difficult to mold the molten glass G, and it becomes difficult to faithfully reproduce the inner shape of the mold 2. On the other hand, when the temperature of the molten glass G exceeds the dedialysis temperature, devitrification may occur during the molding of the glass molded body.

一端部付近にて溶融ガラスGの温度を失透消失温度以下、溶融ガラスGの粘度η(dPa・s)の対数logηを2.0以下と調整された溶融ガラスGは、他端部において溶融ガラスGの温度を軟化点以上失透析出温度以下となるように温度範囲を調整する。溶融ガラスGの温度を軟化点以上失透析出温度以下となるように温度範囲を調整することにより、ガラス成形体に失透が発生したり脈理が発生することを防止することができる。溶融ガラスGの温度が軟化点未満であると、溶融ガラスGの成形が困難となり、成形型2の成形部の形状を忠実に再現しにくくなる。一方、溶融ガラスGの温度が失透析出温度を超えると、ガラス成形体に失透が発生する場合がある。   The molten glass G in which the temperature of the molten glass G is adjusted to be equal to or lower than the devitrification disappearance temperature and the logarithm log η of the viscosity η (dPa · s) of the molten glass G is 2.0 or less is melted at the other end. The temperature range is adjusted so that the temperature of the glass G is not lower than the softening point and not higher than the dialysis temperature. By adjusting the temperature range so that the temperature of the molten glass G is not less than the softening point and not more than the dedialysis temperature, it is possible to prevent devitrification or striae from occurring in the glass molded body. When the temperature of the molten glass G is lower than the softening point, it becomes difficult to mold the molten glass G, and it becomes difficult to faithfully reproduce the shape of the molded part of the mold 2. On the other hand, when the temperature of the molten glass G exceeds the dedialysis temperature, devitrification may occur in the glass molded body.

他端部の溶融ガラスGの温度を軟化点以上失透析出温度以下となるように温度を調整するために、成形型2の少なくとも一方の側面或いは底面にヒーター3を備えてもよい。なお、ヒーター3は、図1および図2では、両側面に図示しているが、一方の側面に有していてもよく、成形型2の底面に備えるようにしてもよい。また、必要に応じてヒーター3は省略してもよい。ヒーター3はガスバーナー、電熱器、高周波加熱器等の公知の加熱手段が使用できる。   In order to adjust the temperature so that the temperature of the molten glass G at the other end is not less than the softening point and not more than the dialyzing temperature, a heater 3 may be provided on at least one side or bottom of the mold 2. 1 and 2, the heater 3 is illustrated on both side surfaces, but may be provided on one side surface or provided on the bottom surface of the mold 2. Moreover, you may abbreviate | omit the heater 3 as needed. The heater 3 can be a known heating means such as a gas burner, an electric heater or a high frequency heater.

ヒーター3により、溶融ガラスGを適宜加熱することにより、中央部および他端部における溶融ガラスGの冷却速度を5.0×10−3〜40.0×10−3℃/secとすることが好ましい。冷却速度をこのような範囲内にすることにより、成形型2上で失透を生じさせずに容易に成形型2の内面形状をより高く反映した形状に成形することができる。溶融ガラスGの冷却速度が前記範囲外になると、ガラスの温度を所望の範囲に維持することが難しい。 By appropriately heating the molten glass G with the heater 3, the cooling rate of the molten glass G at the center and the other end may be 5.0 × 10 −3 to 40.0 × 10 −3 ° C./sec. preferable. By setting the cooling rate within such a range, it is possible to easily form the shape of the inner surface of the mold 2 that reflects the shape higher without causing devitrification on the mold 2. When the cooling rate of the molten glass G is out of the above range, it is difficult to maintain the glass temperature within a desired range.

したがって、前記中央部および/または他端部における溶融ガラスGの冷却速度は、好ましくは5.0×10−3℃/sec、より好ましくは6.0×10−3℃/sec、最も好ましくは7.0×10−3℃/secを下限とし、好ましくは40.0×10−3℃/sec、より好ましくは38.0×10−3℃/sec、最も好ましくは36.0×10−3℃/secを上限とする。 Therefore, the cooling rate of the molten glass G at the central portion and / or the other end is preferably 5.0 × 10 −3 ° C./sec, more preferably 6.0 × 10 −3 ° C./sec, most preferably The lower limit is 7.0 × 10 −3 ° C./sec, preferably 40.0 × 10 −3 ° C./sec, more preferably 38.0 × 10 −3 ° C./sec, and most preferably 36.0 × 10 − The upper limit is 3 ° C / sec.

成形型2の中央部および他端部付近の側面には、第一温度検出手段21を設けられている。第一温度検出手段21により測定された他端部付近の溶融ガラスGの温度に基づき、溶融ガラスGの引き出し速度、ヒーター3による加熱強度等を適宜調整することができる。これにより、他端部付近の溶融ガラスGの温度が軟化点以上失透析出温度以下に調整することができる。なお、溶融ガラスGの引き出し速度、ヒーター3による加熱強度等は、連続的に変化させてもよく、断続的に変化させてもよい。   First temperature detection means 21 is provided on the side surface near the center and the other end of the mold 2. Based on the temperature of the molten glass G in the vicinity of the other end measured by the first temperature detection means 21, the drawing speed of the molten glass G, the heating intensity by the heater 3, and the like can be adjusted as appropriate. Thereby, the temperature of the molten glass G in the vicinity of the other end can be adjusted to the softening point or higher and the dialysate discharge temperature or lower. Note that the drawing speed of the molten glass G, the heating intensity by the heater 3, and the like may be changed continuously or may be changed intermittently.

本発明の方法において、溶融ガラスGの温度情報を取得する方法は特に制限されるものではなく、放射温度計等の非接触式および熱伝対等の接触式のいずれも使用できる。   In the method of the present invention, the method for obtaining the temperature information of the molten glass G is not particularly limited, and any of a non-contact type such as a radiation thermometer and a contact type such as a thermocouple can be used.

また、必要に応じて、成形型2の中央部および他端部付近の側面に第一温度検出手段21および溶融ガラスGが流出される一端部付近の上方、背面、側面または底面に第二温度検出手段22を設置してもよい(図1および図2では、一端部の背面付近に第二温度検出手段22を有している。)。第一温度検出手段21および第二温度検出手段22は、成形型2に接続された熱伝対であることが好ましい。これらの温度検出手段を用いて成形型2の温度を測ることにより、間接的に溶融ガラスGの温度情報を取得することができる。   Further, if necessary, the first temperature detecting means 21 and the second temperature on one side near the one end where the molten glass G flows out to the side near the center and the other end of the mold 2 may be set at the second temperature. The detection means 22 may be installed (in FIG. 1 and FIG. 2, it has the 2nd temperature detection means 22 near the back surface of one end part). The first temperature detection means 21 and the second temperature detection means 22 are preferably thermocouples connected to the mold 2. By measuring the temperature of the mold 2 using these temperature detection means, the temperature information of the molten glass G can be acquired indirectly.

第一温度検出手段21および第二温度検出手段22により間接的に溶融ガラスGの温度を管理することにより、溶融ガラスGの温度が、予め設定された温度になるように成形型2を加熱・冷却するように制御することができる。また、第一温度検出手段21および第二温度検出手段22により間接的に溶融ガラスGの温度を管理することにより、溶融ガラスGの引き出し速度、冷却手段による溶融ガラスGの冷却速度、ヒーター3による加熱(加熱強度)を連続的、断続的に変更することもできる。   By indirectly controlling the temperature of the molten glass G by the first temperature detecting means 21 and the second temperature detecting means 22, the mold 2 is heated and heated so that the temperature of the molten glass G becomes a preset temperature. It can be controlled to cool. Further, by indirectly managing the temperature of the molten glass G by the first temperature detecting means 21 and the second temperature detecting means 22, the drawing speed of the molten glass G, the cooling speed of the molten glass G by the cooling means, and the heater 3 are used. The heating (heating intensity) can be changed continuously or intermittently.

[ガラス成形体の製造方法をコンピュータに実行させるための制御プログラムおよび記憶媒体]
上述した実施形態を実現するソフトウェアのプログラムコードを記録した記憶媒体を、システム或いは装置に供給し、そのシステム或いはガラス成形体の製造装置のコンピュータやCPU等が記憶媒体に格納されたプログラムコードを読出し実行するようにしてもよい。
[Control program and storage medium for causing computer to execute manufacturing method of glass molded body]
A storage medium storing software program codes for realizing the above-described embodiments is supplied to a system or apparatus, and the system or the computer or CPU of the glass molded body manufacturing apparatus reads the program codes stored in the storage medium. You may make it perform.

この場合、記憶媒体から読出されたプログラムコード自体が上述した実施形態の機能を実現することになり、そのプログラムコードを記憶した記憶媒体は本発明のガラス成形体の製造方法を構成することになる。   In this case, the program code itself read from the storage medium realizes the functions of the above-described embodiment, and the storage medium storing the program code constitutes the glass molded body manufacturing method of the present invention. .

プログラムコードを供給するための記憶媒体としては、例えば、フレキシブルディスク、ハードディスク、光ディスク、光磁気ディスク、CD−ROM、CD−R、磁気テープ、不揮発性のメモリカード、ROM等公知の種々の記憶媒体を用いることができる。   Examples of the storage medium for supplying the program code include various known storage media such as a flexible disk, a hard disk, an optical disk, a magneto-optical disk, a CD-ROM, a CD-R, a magnetic tape, a nonvolatile memory card, and a ROM. Can be used.

また、コンピュータが読出したプログラムコードを実行することにより、上述した実施形態の機能が実現されるだけでなく、そのプログラムコードの指示に基づき、コンピュータ上で稼働しているOS(オペレーティングシステム)等が実際の処理の一部または全部を行い、その処理によって上述した実施形態の機能が実現されるようにしてもよい。   Further, by executing the program code read by the computer, not only the functions of the above-described embodiments are realized, but also an OS (operating system) or the like running on the computer based on an instruction of the program code. The functions of the above-described embodiment may be realized by performing part or all of the actual processing.

さらに、記憶媒体から読出されたプログラムコードが、コンピュータに挿入された機能拡張ボードやコンピュータに接続された機能拡張ユニットに備わるメモリに書き込まれた後、そのプログラムコードの指示に基づき、その機能拡張ボードや機能拡張ユニットに備わるCPU等が実際の処理の一部または全部を行い、その処理によって上述した実施形態の機能が実現されるようにしてもよい。   Further, after the program code read from the storage medium is written in a memory provided in a function expansion board inserted into the computer or a function expansion unit connected to the computer, the function expansion board is based on the instruction of the program code. Alternatively, a CPU or the like provided in the function expansion unit may perform part or all of the actual processing, and the functions of the above-described embodiments may be realized by the processing.

以下、本発明の実施例を説明するが、これら実施例は、本発明を好適に説明するための例示に過ぎず、なんら本発明を限定するものではない。   Examples of the present invention will be described below. However, these examples are merely examples for suitably explaining the present invention, and do not limit the present invention.

およびBiを主成分とする溶融ガラスG(以下、光学ガラスaとする)を溶解し、図1および図2に示す装置にて板状ガラス(ガラス成形体)を成形した。 Molten glass G (hereinafter referred to as optical glass a) containing B 2 O 3 and Bi 2 O 3 as main components is melted, and a sheet glass (glass molded body) is formed using the apparatus shown in FIGS. did.

光学ガラスaの軟化点570℃、失透析出温度は690℃であるが、失透消失温度は測定できなかった。すなわち光学ガラスaは溶融時の安定性に優れるため、冷却した際の失透傾向が小さく、いかなる温度まで冷却し、かつ、30分間保持しても失透は生じなかった。
光学ガラスaを流出口1から成形型2の一端部に流下させた。なお、流出時の光学ガラスaの温度は945℃であり、その際の粘度は1.0であった。光学ガラスaは前記一端部にて、成形型2に包含された冷却手段により冷却した。そして成形型2の他端部より引き出されることにより板状ガラスとして成形した。
The optical glass a had a softening point of 570 ° C. and a dedialysis temperature of 690 ° C., but the loss of devitrification temperature could not be measured. That is, since the optical glass a is excellent in stability at the time of melting, the tendency to devitrification is small when cooled, and no devitrification occurred even if it was cooled to any temperature and held for 30 minutes.
The optical glass a was allowed to flow from the outlet 1 to one end of the mold 2. In addition, the temperature of the optical glass a at the time of outflow was 945 degreeC, and the viscosity in that case was 1.0. The optical glass a was cooled by the cooling means included in the mold 2 at the one end. And it was shape | molded from the other end part of the shaping | molding die 2 as a sheet glass.

板状ガラスの引き出しの過程において、前記成形型2の中央部および他端部付近の温度が軟化点以上、失透析出温度以下となるように、ヒーター3を用いて成形型2側面を連続的に加熱し、溶融ガラスGの温度を調整した。   In the process of drawing out the sheet glass, the side surface of the mold 2 is continuously formed using the heater 3 so that the temperature near the center and the other end of the mold 2 is not less than the softening point and not more than the dialyzing temperature. And the temperature of the molten glass G was adjusted.

なお、前記冷却手段の冷却強度およびヒーター3の加熱強度は、成形型2内に接続された第一温度検出装置および第二温度検出装置の検出温度に基づき、適宜調節された。   The cooling intensity of the cooling means and the heating intensity of the heater 3 were appropriately adjusted based on the detected temperatures of the first temperature detecting device and the second temperature detecting device connected in the mold 2.

成形型2上(A)〜(C)点における溶融ガラスの温度を表1に示す。表中測定箇所(A)は一端部、(B)は中央部、および(C)は他端部に位置する。なお、下記(A)〜(C)の温度は第一温度検出手段21および第二温度検出手段22とは別の放射温度計により光学ガラスa自体を直接測定した結果である。   Table 1 shows the temperature of the molten glass at points (A) to (C) on the mold 2. In the table, the measurement location (A) is located at one end, (B) is located at the center, and (C) is located at the other end. In addition, the temperature of following (A)-(C) is the result of having measured the optical glass a itself with the radiation thermometer different from the 1st temperature detection means 21 and the 2nd temperature detection means 22. FIG.

Figure 2008105876
Figure 2008105876

表1より、測定箇所(A)での測定温度は945℃であり、前述のとおり粘度は2.0以下であった。また中央部(B)および他端部(C)における光学ガラスaの温度は軟化点以上で失透析出温度以下に調節することができた。このような条件で製造された光学ガラスaの板状成形品は、脈理や失透等の不良は全く発生していなかった。   From Table 1, the measurement temperature in a measurement location (A) was 945 degreeC, and the viscosity was 2.0 or less as above-mentioned. Moreover, the temperature of the optical glass a in the center part (B) and the other end part (C) was able to be adjusted below the dedialysis temperature below the softening point. The plate-like molded product of the optical glass “a” manufactured under such conditions had no defects such as striae and devitrification.

[比較例]
比較例では、他端部において、ヒーター3により成形型2を連続的に加熱せず、溶融ガラスGの温度を軟化点以上失透析出温度以下となるように調整しなかった以外は、実施例と同様に行った。結果を表2に示す。
[Comparative example]
In the comparative example, in the other end portion, the mold 2 was not continuously heated by the heater 3, and the temperature of the molten glass G was not adjusted so as to be equal to or higher than the softening point and equal to or lower than the dialyzing temperature. As well as. The results are shown in Table 2.

Figure 2008105876
Figure 2008105876

表2より、他端部である測定箇所(B)および(C)は、光学ガラスAの温度が軟化点を下回ってしまった。この結果、ガラス成形体は、板状ガラスの角が丸くなってしまい、成形型2の内面形状を適切に反映した板状ガラスが成形できなかった。   From Table 2, the temperature of the optical glass A has fallen below the softening point in the measurement locations (B) and (C) which are the other end portions. As a result, in the glass molded body, the corners of the plate glass were rounded, and the plate glass reflecting the shape of the inner surface of the mold 2 could not be molded.

本発明のガラス成形体の製造方法の製造装置を上から見た図である。It is the figure which looked at the manufacturing apparatus of the manufacturing method of the glass forming body of this invention from the top. 本発明のガラス成形体の製造方法の製造装置の立体図である。It is a three-dimensional view of the manufacturing apparatus of the manufacturing method of the glass forming body of this invention. 溶融ガラスの温度と粘度η(dPa・s)の対数logηとの関係を示したグラフである。It is the graph which showed the relationship between the temperature of a molten glass, and logarithm log (eta) of viscosity (eta) (dPa * s).

符号の説明Explanation of symbols

1 流出口
2 成形型
21 第一温度計測手段
22 第二温度計測手段
3 ヒーター
4 アニール装置
DESCRIPTION OF SYMBOLS 1 Outflow port 2 Mold 21 First temperature measurement means 22 Second temperature measurement means 3 Heater 4 Annealing apparatus

Claims (12)

所定の幅を有する成形型の一端部に、溶融ガラスを流出口から連続的に流下しながら、前記成形型の他端部から前記溶融ガラスを引き出すことによりガラスを連続的に成形するガラス成形体の製造方法において、
前記一端部において、前記溶融ガラスの温度が失透消失温度以下であって、かつ、前記溶融ガラスの粘度η(dPa・s)の対数logηが2.0以下となる範囲の温度に冷却し、
前記成形型上において、前記溶融ガラスの温度を軟化点以上に保持することを特徴とするガラス成形体の製造方法。
A glass molded body for continuously molding glass by drawing the molten glass from the other end of the mold while continuously flowing the molten glass from the outlet to one end of the mold having a predetermined width. In the manufacturing method of
At the one end, the temperature of the molten glass is not higher than the devitrification disappearance temperature, and the logarithm log η of the viscosity η (dPa · s) of the molten glass is cooled to a temperature in the range of 2.0 or less,
A method for producing a glass molded body, wherein the temperature of the molten glass is maintained at a temperature equal to or higher than a softening point on the mold.
前記溶融ガラスが流下する前記流出口から前記一端部において、前記成形型内に包含される冷却手段により前記溶融ガラスを急冷する請求項1に記載のガラス成形体の製造方法。   2. The method for producing a glass molded body according to claim 1, wherein the molten glass is rapidly cooled by a cooling means included in the mold at the one end from the outlet from which the molten glass flows down. 前記成形型の中央部および前記他端部において、前記溶融ガラスは、軟化点以上失透析出温度以下の温度範囲に保持される請求項1または2に記載のガラス成形体の製造方法。   3. The method for producing a glass molded body according to claim 1, wherein the molten glass is maintained in a temperature range not less than a softening point and not more than a dedialysis temperature at a center portion and the other end portion of the mold. 前記成形型の少なくとも一方の側面あるいは底面を加熱することにより、前記溶融ガラスを軟化点以上失透析出温度以下の温度範囲に保持する請求項1から3のいずれかに記載のガラス成形体の製造方法。   The glass molded body according to any one of claims 1 to 3, wherein the molten glass is maintained in a temperature range not lower than the softening point and not higher than the dialyzing temperature by heating at least one side surface or bottom surface of the mold. Method. 前記成形型の一端部における前記溶融ガラスの冷却速度が0.1〜0.5℃/secであり、前記成形型の中央部から他端部において、ガラスの冷却速度が5.0×10−3〜40.0×10−3℃/secである請求項1から4のいずれかに記載のガラス成形体の製造方法。 The cooling rate of the molten glass at one end portion of the mold is the 0.1 to 0.5 ° C. / sec, at the other end from the center of the mold, the cooling rate of the glass is 5.0 × 10 - It is 3-40.0 * 10 < -3 > degreeC / sec, The manufacturing method of the glass forming body in any one of Claim 1 to 4. 前記溶融ガラスの温度を調整することで前記溶融ガラスの粘度η(dPa・s)の対数logηを調整する請求項1から5のいずれかに記載のガラス成形体の製造方法。   The method for producing a glass molded body according to any one of claims 1 to 5, wherein the logarithm log η of the viscosity η (dPa · s) of the molten glass is adjusted by adjusting the temperature of the molten glass. 前記一端部および前記他端部の前記溶融ガラスの温度が、それぞれ予め設定された温度になるように前記成形型を冷却、加熱する請求項1から6のいずれかに記載のガラス成形体の製造方法。   The manufacturing method of the glass molded object in any one of Claim 1 to 6 which cools and heats the said shaping | molding die so that the temperature of the said molten glass of the said one end part and the said other end part may respectively become preset temperature. Method. 前記成形型の側面に第一温度検出手段を設け、前記第一温度検出手段により前記溶融ガラス側面の温度を測定する請求項7に記載のガラス成形体の製造方法。   The manufacturing method of the glass molded object of Claim 7 which provides a 1st temperature detection means in the side surface of the said shaping | molding die, and measures the temperature of the said molten glass side surface by the said 1st temperature detection means. さらに前記成形型の一端部の上方、背面、側面または底面に第二温度検出手段を設け、前記第二温度検出手段により前記溶融ガラスの一端部周囲の温度を測定する請求項7に記載のガラス成形体の製造方法。   Furthermore, the glass of Claim 7 which provides a 2nd temperature detection means in the upper direction, back surface, side surface, or bottom face of the one end part of the said shaping | molding die, and measures the temperature around the one end part of the said molten glass by the said 2nd temperature detection means. Manufacturing method of a molded object. 前記第一温度検出手段および前記第二温度検出手段により検出された前記溶融ガラスの温度に基づき、前記溶融ガラスの引き出し速度、前記溶融ガラスが流下する前記一端部での冷却速度、前記成形型側面の加熱強度を連続的または断続的に変更可能に調整する請求項8または9に記載のガラス成形体の製造方法。   Based on the temperature of the molten glass detected by the first temperature detection means and the second temperature detection means, the drawing speed of the molten glass, the cooling speed at the one end where the molten glass flows down, the side surface of the mold The manufacturing method of the glass forming body of Claim 8 or 9 adjusted so that the heating intensity of can be changed continuously or intermittently. 請求項1から10のいずれかに記載のガラス成形体の製造方法をコンピュータに実行させるための制御プログラム。   The control program for making a computer perform the manufacturing method of the glass forming body in any one of Claim 1 to 10. 請求項1から10のいずれかに記載のガラス成形体の製造方法をコンピュータに実行させるための制御プログラムを格納した記憶媒体。   The storage medium which stored the control program for making a computer perform the manufacturing method of the glass forming body in any one of Claim 1 to 10.
JP2006288618A 2006-10-24 2006-10-24 Method of manufacturing glass molding, control program for executing method of manufacturing glass molding by computor, and storage medium Pending JP2008105876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006288618A JP2008105876A (en) 2006-10-24 2006-10-24 Method of manufacturing glass molding, control program for executing method of manufacturing glass molding by computor, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006288618A JP2008105876A (en) 2006-10-24 2006-10-24 Method of manufacturing glass molding, control program for executing method of manufacturing glass molding by computor, and storage medium

Publications (1)

Publication Number Publication Date
JP2008105876A true JP2008105876A (en) 2008-05-08

Family

ID=39439547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006288618A Pending JP2008105876A (en) 2006-10-24 2006-10-24 Method of manufacturing glass molding, control program for executing method of manufacturing glass molding by computor, and storage medium

Country Status (1)

Country Link
JP (1) JP2008105876A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012025643A (en) * 2010-07-27 2012-02-09 Ohara Inc Method for producing glass molded body, and optical element and optical device
JP2015221728A (en) * 2014-05-22 2015-12-10 日本電気硝子株式会社 Method of manufacturing glass material and device of manufacturing glass material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08337427A (en) * 1995-04-19 1996-12-24 Corning Inc Apparatus and method for forming rod of glassy material and glass rod formed thereby

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08337427A (en) * 1995-04-19 1996-12-24 Corning Inc Apparatus and method for forming rod of glassy material and glass rod formed thereby

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012025643A (en) * 2010-07-27 2012-02-09 Ohara Inc Method for producing glass molded body, and optical element and optical device
JP2015221728A (en) * 2014-05-22 2015-12-10 日本電気硝子株式会社 Method of manufacturing glass material and device of manufacturing glass material

Similar Documents

Publication Publication Date Title
JP2004523452A (en) Thin glass sheet manufacturing method and apparatus
CN105307988B (en) Method and apparatus for producing glass tape
CN101189193A (en) Process for producing glass bar
JP2007269500A (en) Method and apparatus for forming glass
US20070271963A1 (en) Apparatus and Process for Producing Tubes or Rods
JP2008105876A (en) Method of manufacturing glass molding, control program for executing method of manufacturing glass molding by computor, and storage medium
KR102459796B1 (en) Manufacturing method for glass plate and manufacturing apparatus for glass plate
JP2015074574A (en) Method of manufacturing plate glass
JP4227018B2 (en) Method and apparatus for non-contact molding of molten glass melt mass
JP2021505508A (en) How to mold a thin glass sheet
US20100107695A1 (en) Process for producing a thin-plate form glass molded body, and process for producing a disc form magnetic recording medium
RU2007136689A (en) METHOD FOR PRODUCING GLASS AND DEVICE FOR FORMING GLASS
JPWO2009133761A1 (en) One press manufacturing method for glass containers
JP2008100876A (en) Glass manufacturing method and glass manufacturing apparatus
JP5429561B2 (en) Glass rod manufacturing apparatus and manufacturing method
JP2010105879A (en) Cutting device and apparatus for producing glass molding
JP2012001391A (en) Apparatus for manufacturing glass plate and method for manufacturing each of glass plate, glass material for press molding, optical element and thin sheet glass
JP2002265229A (en) Manufacturing method for glass sheet, manufacturing method for blank for press forming, and manufacturing method for optical component
CN110171922A (en) A kind of hot bending shape method of slide
JP2005089275A (en) Method for producing glass formed body, method for producing glass material for press molding and method for producing optical element
TW202124069A (en) Metal three-dimensional printing method with variable sintering thermal energy
JPS61146721A (en) Production of glass gob
JP5619508B2 (en) Method for producing glass molded body, optical element and optical apparatus
JP6431686B2 (en) Sheet glass cutting method
JP2008050215A (en) Manufacturing method and device of glass molded product

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090708

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090708

A977 Report on retrieval

Effective date: 20110224

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110927