JP2015215365A - Thermal resistance measurement method - Google Patents

Thermal resistance measurement method Download PDF

Info

Publication number
JP2015215365A
JP2015215365A JP2015171712A JP2015171712A JP2015215365A JP 2015215365 A JP2015215365 A JP 2015215365A JP 2015171712 A JP2015171712 A JP 2015171712A JP 2015171712 A JP2015171712 A JP 2015171712A JP 2015215365 A JP2015215365 A JP 2015215365A
Authority
JP
Japan
Prior art keywords
semiconductor element
temperature coefficient
thermal resistance
measuring
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015171712A
Other languages
Japanese (ja)
Inventor
貴章 吉岡
Takaaki Yoshioka
貴章 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2015171712A priority Critical patent/JP2015215365A/en
Publication of JP2015215365A publication Critical patent/JP2015215365A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a thermal resistance measurement method which allows for accurately measuring thermal resistance of semiconductor elements.SOLUTION: A thermal resistance measurement method includes: a step for measuring a temperature coefficient of forward gate-source voltage of a semiconductor element; a step for measuring the forward gate-source voltage before applying drain voltage to the semiconductor element, measuring the forward gate-source voltage after a rise in channel temperature caused by applying the drain voltage to the semiconductor element, and obtaining a difference between the forward gate-source voltage levels before and after the application of the drain voltage; and a step for computing thermal resistance of the semiconductor element using power applied to the semiconductor element during the step for obtaining the difference, the temperature coefficient, and the difference. A dummy temperature coefficient measurement is made under same conditions as in the step for measuring the temperature coefficient before proceeding to the temperature coefficient measurement step.

Description

本発明は、半導体素子の順方向ゲートソース間電圧の温度依存を利用した半導体素子の熱抵抗測定方法に関する。   The present invention relates to a method for measuring the thermal resistance of a semiconductor device using the temperature dependence of the forward gate-source voltage of the semiconductor device.

特許文献1には、半導体素子の順方向ゲートソース間電圧(以後、Vgsという)が半導体素子の温度に依存することを利用して半導体素子の熱抵抗を測定する方法が開示されている。この熱抵抗測定方法は、Vgsが温度のみによって変化することを前提としている。   Patent Document 1 discloses a method for measuring the thermal resistance of a semiconductor element by utilizing the fact that the forward gate-source voltage (hereinafter referred to as Vgs) of the semiconductor element depends on the temperature of the semiconductor element. This thermal resistance measurement method is based on the premise that Vgs changes only with temperature.

特開平05−203698号公報Japanese Patent Laid-Open No. 05-203698 特開2007−093335号公報JP 2007-093335 A 特開2007−225505号公報JP 2007-225505 A

しかしながら、半導体素子のVgsは、温度以外の要因で変動することがある。具体的には、Vgsは半導体素子へのバイアス印加や高周波電力の入力等で変動することがある。この場合、Vgsが温度のみによって変化することを前提とした熱抵抗測定方法では、正確に熱抵抗を測定できないことがあった。   However, the Vgs of the semiconductor element may vary due to factors other than temperature. Specifically, Vgs may fluctuate due to bias application to the semiconductor element, input of high frequency power, or the like. In this case, the thermal resistance measurement method based on the premise that Vgs changes only with temperature sometimes fails to accurately measure the thermal resistance.

本発明は、上述のような課題を解決するためになされたもので、半導体素子の熱抵抗を正確に測定できる熱抵抗測定方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a thermal resistance measurement method capable of accurately measuring the thermal resistance of a semiconductor element.

本願の発明にかかる熱抵抗測定方法は、半導体素子の順方向ゲートソース間電圧の温度係数を測定する工程と、該半導体素子へのドレイン電圧印加前に該順方向ゲートソース間電圧を測定し、該半導体素子へのドレイン電圧印加によるチャネル温度上昇後に該順方向ゲートソース間電圧を測定し、該ドレイン電圧印加前の該順方向ゲートソース間電圧と該ドレイン電圧印加後の該順方向ゲートソース間電圧との差分を求める工程と、該差分を求める工程における該半導体素子への印加電力、該温度係数、及び該差分から、該半導体素子の熱抵抗値を算出する工程と、を有し、該温度係数を測定する工程の前に、該温度係数を測定する工程と同一条件でダミー温度係数測定を行うことを特徴とする。
本願の発明にかかる他の熱抵抗測定方法は、半導体素子の順方向ゲートソース間電圧の温度係数を測定する工程と、該半導体素子へのドレイン電圧印加前に該順方向ゲートソース間電圧を測定し、該半導体素子へのドレイン電圧印加によるチャネル温度上昇後に該順方向ゲートソース間電圧を測定し、該ドレイン電圧印加前の該順方向ゲートソース間電圧と該ドレイン電圧印加後の該順方向ゲートソース間電圧との差分を求める工程と、該差分を求める工程における該半導体素子への印加電力、該温度係数、及び該差分から、該半導体素子の熱抵抗値を算出する工程と、を有し、該差分を求める工程の前に、該差分を求める工程と同一条件でダミー差分測定を行うことを特徴とする。
The thermal resistance measurement method according to the present invention includes a step of measuring a temperature coefficient of a forward gate-source voltage of a semiconductor element, and measuring the forward gate-source voltage before applying a drain voltage to the semiconductor element, The forward gate-source voltage is measured after the channel temperature rises due to the drain voltage application to the semiconductor element, and the forward gate-source voltage before the drain voltage application and the forward gate-source voltage after the drain voltage application. A step of obtaining a difference from the voltage, and a step of calculating a thermal resistance value of the semiconductor element from the applied power to the semiconductor element, the temperature coefficient, and the difference in the step of obtaining the difference, Before the step of measuring the temperature coefficient, dummy temperature coefficient measurement is performed under the same conditions as the step of measuring the temperature coefficient.
Another thermal resistance measurement method according to the present invention includes a step of measuring a temperature coefficient of a forward gate-source voltage of a semiconductor element, and measuring the forward gate-source voltage before applying a drain voltage to the semiconductor element. The forward gate-source voltage is measured after the channel temperature rises due to the drain voltage application to the semiconductor element, and the forward gate-source voltage before the drain voltage is applied and the forward gate after the drain voltage is applied. A step of obtaining a difference from a source voltage, and a step of calculating a thermal resistance value of the semiconductor element from the applied power to the semiconductor element, the temperature coefficient, and the difference in the step of obtaining the difference. The dummy difference measurement is performed under the same conditions as the step of obtaining the difference before the step of obtaining the difference.

本発明によれば、半導体素子の電気特性を安定化させた後に熱抵抗測定のための測定を実施するので、半導体素子の熱抵抗を正確に測定できる。   According to the present invention, since the measurement for measuring the thermal resistance is performed after stabilizing the electrical characteristics of the semiconductor element, the thermal resistance of the semiconductor element can be accurately measured.

本発明の実施の形態1に係る熱抵抗測定方法を示すフローチャートである。It is a flowchart which shows the thermal resistance measuring method which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る熱抵抗測定方法を示すフローチャートである。It is a flowchart which shows the thermal resistance measuring method which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る熱抵抗測定方法の変形例を示すフローチャートである。It is a flowchart which shows the modification of the thermal resistance measuring method which concerns on Embodiment 2 of this invention.

実施の形態1.
図1は、本発明の実施の形態1に係る熱抵抗測定方法を示すフローチャートである。本発明の実施の形態1に係る熱抵抗測定方法はGaNで形成されたHEMT(以後、半導体素子という)の熱抵抗を測定するものである。以後、図1に沿って説明を進める。まず、半導体素子のエージングを実施する(ステップ10)。エージングは、半導体素子に対し3dB利得圧縮点にて高周波電力入力を30秒程度実施するものである。
Embodiment 1 FIG.
FIG. 1 is a flowchart showing a thermal resistance measurement method according to Embodiment 1 of the present invention. The thermal resistance measurement method according to the first embodiment of the present invention measures the thermal resistance of a HEMT (hereinafter referred to as a semiconductor element) formed of GaN. Hereinafter, the description will be made with reference to FIG. First, aging of the semiconductor element is performed (step 10). In aging, high frequency power is input to a semiconductor element at a 3 dB gain compression point for about 30 seconds.

次いで、Vgsの温度係数を測定する(ステップ12)。Vgsの温度係数は、各温度においてVgsとIgsの相関を測定して得る。次いで、Vd・Id印加条件を決定する(ステップ14)。ここでいうVd・Id印加条件とは、半導体素子が発熱する程度のVd・Idである。次いで、半導体素子のエージングを実施する(ステップ16)。このエージングは、前述のステップ10のエージングと同条件で実施するものである。   Next, the temperature coefficient of Vgs is measured (step 12). The temperature coefficient of Vgs is obtained by measuring the correlation between Vgs and Igs at each temperature. Next, Vd · Id application conditions are determined (step 14). The Vd · Id application condition referred to here is Vd · Id enough to generate heat in the semiconductor element. Next, aging of the semiconductor element is performed (step 16). This aging is performed under the same conditions as the aging in Step 10 described above.

次いで、ドレイン電圧印加(Vd・Id印加)によるチャネル温度上昇前後のVgsの差分(以後、ΔVfという)を求める(ステップ18)。この工程では、半導体素子へのドレイン電圧印加前にVgsを測定し、半導体素子へのドレイン電圧印加によるチャネル温度上昇後にVgsを測定し、ドレイン電圧印加前のVgsとドレイン電圧印加後のVgsとの差分を求める。そして、ステップ18では、ステップ14で決定したVd・Idが印加される。よってこのVd・Idを印加すると半導体素子の温度、即ち半導体素子のチャネル温度が上昇する。   Next, a difference in Vgs before and after the channel temperature rise due to drain voltage application (Vd · Id application) (hereinafter referred to as ΔVf) is obtained (step 18). In this step, Vgs is measured before the drain voltage is applied to the semiconductor element, Vgs is measured after the channel temperature is increased by applying the drain voltage to the semiconductor element, and Vgs before the drain voltage is applied and Vgs after the drain voltage is applied. Find the difference. In step 18, Vd · Id determined in step 14 is applied. Therefore, when this Vd · Id is applied, the temperature of the semiconductor element, that is, the channel temperature of the semiconductor element rises.

次いで、熱抵抗値を算出する(ステップ20)。半導体素子の熱抵抗値は、差分を求める工程における半導体素子への印加電力、温度係数、前述の差分(ΔVf)から求める。本発明の実施の形態1に係る熱抵抗測定方法は上述の工程を備える。   Next, a thermal resistance value is calculated (step 20). The thermal resistance value of the semiconductor element is obtained from the applied power to the semiconductor element, the temperature coefficient, and the difference (ΔVf) described above in the step of obtaining the difference. The thermal resistance measurement method according to Embodiment 1 of the present invention includes the above-described steps.

本発明の実施の形態1に係る熱抵抗測定方法によれば、Vgsの温度係数を測定する前にエージング工程を実施する。エージング工程により半導体素子の電気特性が安定化し、Vgsはほぼ温度のみによって変化するようになる。これにより正確なVgsが測定できるので、正確な温度係数を測定できる。また、Vgsの差分を求める工程の前にもエージング工程を実施する。このエージング工程により半導体素子の電気特性を安定化させることができる。これにより正確なVgsが測定できるので、正確なΔVfを求めることができる。このように、Vgsの温度係数測定前、及びΔVfを求める前にエージング工程を実施することで、各工程におけるVgsが温度以外の要因で変動することを抑制できる。ゆえに、半導体素子の熱抵抗を正確に測定できる。   According to the thermal resistance measurement method according to the first embodiment of the present invention, the aging process is performed before the temperature coefficient of Vgs is measured. The electrical characteristics of the semiconductor element are stabilized by the aging process, and Vgs is changed only by temperature. As a result, accurate Vgs can be measured, so that an accurate temperature coefficient can be measured. The aging process is also performed before the process of obtaining the difference in Vgs. The electrical characteristics of the semiconductor element can be stabilized by this aging process. Thereby, since accurate Vgs can be measured, accurate ΔVf can be obtained. In this way, by performing the aging process before measuring the temperature coefficient of Vgs and before obtaining ΔVf, it is possible to suppress fluctuations in Vgs in each process due to factors other than temperature. Therefore, the thermal resistance of the semiconductor element can be accurately measured.

本発明の実施の形態ではVgsの温度係数測定前、及びΔVfを求める前にエージング工程を実施した。しかしながらVgsの温度係数を測定する前のエージングにより半導体素子の電気特性が安定化し、ΔVf測定前のエージング工程が必要ない場合にはそれを省略してもよい。また、不要であればVgsの温度係数を測定する前のエージングを省略してもよい。   In the embodiment of the present invention, the aging process was performed before measuring the temperature coefficient of Vgs and before obtaining ΔVf. However, if the electrical characteristics of the semiconductor element are stabilized by aging before measuring the temperature coefficient of Vgs, and the aging process before measuring ΔVf is not necessary, it may be omitted. Further, if unnecessary, aging before measuring the temperature coefficient of Vgs may be omitted.

本発明の実施の形態1に係る熱抵抗測定方法では、ステップ14にて半導体素子が発熱する程度のVd・Id印加条件を決定した。しかしながら、半導体素子は通常動作時のVd・Idで発熱するものなので、ステップ14を省略して、ステップ18にて通常動作時のVd・Idを印加することとしてもよい。   In the thermal resistance measurement method according to the first embodiment of the present invention, the Vd · Id application condition is determined in step 14 to such an extent that the semiconductor element generates heat. However, since the semiconductor element generates heat at Vd · Id during normal operation, step 14 may be omitted and Vd · Id during normal operation may be applied at step 18.

本発明の実施の形態に係る半導体素子はGaNで形成されたHEMTであるとしたがこれに限定されない。半導体素子は、Vgsがバイアス印加や高周波電力の入力等で変化し得るものであれば特に限定されない。   Although the semiconductor element according to the embodiment of the present invention is a HEMT formed of GaN, the present invention is not limited to this. The semiconductor element is not particularly limited as long as Vgs can be changed by bias application, high-frequency power input, or the like.

実施の形態2.
図2は、本発明の実施の形態2に係る熱抵抗測定方法を示すフローチャートである。以後、図2に沿って説明を進める。まず、ダミー温度係数測定(以後、ダミー測定1という)を実施する(ステップ20)。ダミー測定1は、前述の「Vgsの温度係数を測定する工程」と同一条件で行う。次いで、12、14、18及び20を実施する。これらの工程は実施の形態1にて説明したとおりである。
Embodiment 2. FIG.
FIG. 2 is a flowchart showing a thermal resistance measurement method according to Embodiment 2 of the present invention. Hereinafter, the description will be made with reference to FIG. First, dummy temperature coefficient measurement (hereinafter referred to as dummy measurement 1) is performed (step 20). The dummy measurement 1 is performed under the same conditions as the above-described “step of measuring the temperature coefficient of Vgs”. Then 12, 14, 18 and 20 are performed. These steps are as described in the first embodiment.

Vgsの温度係数を測定する工程の前にダミー測定1を行うことにより、半導体素子の電気特性を安定化させることができる。つまり、Vgsが温度以外の要因で変動することを抑制して、正確な温度係数を測定できる。   By performing the dummy measurement 1 before the step of measuring the temperature coefficient of Vgs, the electrical characteristics of the semiconductor element can be stabilized. That is, an accurate temperature coefficient can be measured by suppressing Vgs from fluctuating due to factors other than temperature.

図3は本発明の実施の形態2に係る熱抵抗測定方法の変形例を示すフローチャートである。変形例の熱抵抗測定方法はΔVfを求める工程の前に、ダミー差分(ΔVf)測定工程(以後、ダミー測定2という)を実施する。ダミー測定2は、前述の「ΔVfを求める工程」と同一条件で行う。   FIG. 3 is a flowchart showing a modification of the thermal resistance measurement method according to Embodiment 2 of the present invention. In the thermal resistance measurement method of the modification, a dummy difference (ΔVf) measurement step (hereinafter referred to as dummy measurement 2) is performed before the step of obtaining ΔVf. The dummy measurement 2 is performed under the same conditions as the above-mentioned “step for obtaining ΔVf”.

ΔVfを求める工程の前にダミー測定2を行うことにより、半導体素子の電気特性を安定化させることができる。つまり、Vgsが温度以外の要因で変動することを抑制して、正確なΔVfを測定できる。   By performing the dummy measurement 2 before the step of obtaining ΔVf, the electrical characteristics of the semiconductor element can be stabilized. That is, accurate ΔVf can be measured by suppressing Vgs from fluctuating due to factors other than temperature.

本発明の実施の形態1及び2により、温度係数を測定する工程の前にエージング又はダミー測定1を行うことを説明した。ここで本発明は、温度係数を測定する工程の前に「昇温工程」を実施し、半導体素子の電気特性を安定化させてから温度係数を測定することを特徴の1つとする。つまり、温度係数を測定する工程の前に行う工程はエージング工程やダミー測定工程に限定されず、昇温工程であればよい。同様に、ΔVfを求める工程の前のエージング又はダミー測定2についても、これらに限定されず、昇温工程であればよい。   According to the first and second embodiments of the present invention, the aging or dummy measurement 1 is performed before the step of measuring the temperature coefficient. One feature of the present invention is that the temperature coefficient is measured after performing the “temperature raising step” before the step of measuring the temperature coefficient to stabilize the electrical characteristics of the semiconductor element. That is, the process performed before the process of measuring the temperature coefficient is not limited to the aging process or the dummy measurement process, and may be a temperature raising process. Similarly, the aging or dummy measurement 2 before the step of obtaining ΔVf is not limited to these and may be a temperature raising step.

ダミー測定1及びダミー測定2は複数回実施して半導体素子の電気特性をさらに安定化させてもよい。なお、本発明の実施の形態2に係る熱抵抗測定方法は、少なくとも実施の形態1と同程度の変形は可能である。   The dummy measurement 1 and the dummy measurement 2 may be performed a plurality of times to further stabilize the electrical characteristics of the semiconductor element. Note that the thermal resistance measurement method according to the second embodiment of the present invention can be modified at least as much as the first embodiment.

10 エージング工程、 12 Vgsの温度係数測定工程、 16 エージング工程、 18 ΔVfを求める工程、 20 熱抵抗を算出する工程   10 aging process, 12 Vgs temperature coefficient measuring process, 16 aging process, 18 calculating ΔVf, 20 calculating thermal resistance

Claims (3)

半導体素子の順方向ゲートソース間電圧の温度係数を測定する工程と、
前記半導体素子へのドレイン電圧印加前に前記順方向ゲートソース間電圧を測定し、前記半導体素子へのドレイン電圧印加によるチャネル温度上昇後に前記順方向ゲートソース間電圧を測定し、前記ドレイン電圧印加前の前記順方向ゲートソース間電圧と前記ドレイン電圧印加後の前記順方向ゲートソース間電圧との差分を求める工程と、
前記差分を求める工程における前記半導体素子への印加電力、前記温度係数、及び前記差分から、前記半導体素子の熱抵抗値を算出する工程と、を有し、
前記温度係数を測定する工程の前に、前記温度係数を測定する工程と同一条件でダミー温度係数測定を行うことを特徴とする熱抵抗測定方法。
Measuring a temperature coefficient of a forward gate-source voltage of a semiconductor element;
The forward gate-source voltage is measured before applying the drain voltage to the semiconductor element, the forward gate-source voltage is measured after the channel temperature rises due to the drain voltage application to the semiconductor element, and before the drain voltage is applied. Obtaining a difference between the forward gate-source voltage and the forward gate-source voltage after applying the drain voltage;
Calculating the thermal resistance value of the semiconductor element from the applied power to the semiconductor element in the step of obtaining the difference, the temperature coefficient, and the difference, and
Before the step of measuring the temperature coefficient, a dummy temperature coefficient measurement is performed under the same conditions as the step of measuring the temperature coefficient.
半導体素子の順方向ゲートソース間電圧の温度係数を測定する工程と、
前記半導体素子へのドレイン電圧印加前に前記順方向ゲートソース間電圧を測定し、前記半導体素子へのドレイン電圧印加によるチャネル温度上昇後に前記順方向ゲートソース間電圧を測定し、前記ドレイン電圧印加前の前記順方向ゲートソース間電圧と前記ドレイン電圧印加後の前記順方向ゲートソース間電圧との差分を求める工程と、
前記差分を求める工程における前記半導体素子への印加電力、前記温度係数、及び前記差分から、前記半導体素子の熱抵抗値を算出する工程と、を有し、
前記差分を求める工程の前に、前記差分を求める工程と同一条件でダミー差分測定を行うことを特徴とする熱抵抗測定方法。
Measuring a temperature coefficient of a forward gate-source voltage of a semiconductor element;
The forward gate-source voltage is measured before applying the drain voltage to the semiconductor element, the forward gate-source voltage is measured after the channel temperature rises due to the drain voltage application to the semiconductor element, and before the drain voltage is applied. Obtaining a difference between the forward gate-source voltage and the forward gate-source voltage after applying the drain voltage;
Calculating the thermal resistance value of the semiconductor element from the applied power to the semiconductor element in the step of obtaining the difference, the temperature coefficient, and the difference, and
Prior to the step of obtaining the difference, a dummy difference measurement is performed under the same conditions as the step of obtaining the difference.
前記半導体素子はGaNHEMTであることを特徴とする請求項1又は2に記載の熱抵抗測定方法。   The thermal resistance measurement method according to claim 1, wherein the semiconductor element is a GaN HEMT.
JP2015171712A 2015-09-01 2015-09-01 Thermal resistance measurement method Pending JP2015215365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015171712A JP2015215365A (en) 2015-09-01 2015-09-01 Thermal resistance measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015171712A JP2015215365A (en) 2015-09-01 2015-09-01 Thermal resistance measurement method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011001899A Division JP2012145354A (en) 2011-01-07 2011-01-07 Measurement method of thermal resistance

Publications (1)

Publication Number Publication Date
JP2015215365A true JP2015215365A (en) 2015-12-03

Family

ID=54752335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015171712A Pending JP2015215365A (en) 2015-09-01 2015-09-01 Thermal resistance measurement method

Country Status (1)

Country Link
JP (1) JP2015215365A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05203698A (en) * 1992-01-27 1993-08-10 Oki Electric Ind Co Ltd Method for measuring heat resistance of mesfet
JP2000171519A (en) * 1998-12-08 2000-06-23 Nec Corp Device temperature-stabilizing system and semiconductor- testing apparatus provided with the system
JP2001208798A (en) * 2000-01-26 2001-08-03 Mitsubishi Electric Corp Testing method of and testing device for semiconductor circuit
JP2007225505A (en) * 2006-02-24 2007-09-06 Nec Corp Device for measuring channel temperature and thermal resistance of transistor, and measurement method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05203698A (en) * 1992-01-27 1993-08-10 Oki Electric Ind Co Ltd Method for measuring heat resistance of mesfet
JP2000171519A (en) * 1998-12-08 2000-06-23 Nec Corp Device temperature-stabilizing system and semiconductor- testing apparatus provided with the system
JP2001208798A (en) * 2000-01-26 2001-08-03 Mitsubishi Electric Corp Testing method of and testing device for semiconductor circuit
JP2007225505A (en) * 2006-02-24 2007-09-06 Nec Corp Device for measuring channel temperature and thermal resistance of transistor, and measurement method therefor

Similar Documents

Publication Publication Date Title
US9601404B2 (en) Thermal resistance measuring method and thermal resistance measuring device
JP2012145354A (en) Measurement method of thermal resistance
US9696371B2 (en) Test method and system for cut-in voltage
TWI420123B (en) A circuit used for indicating process corner and extreme temperature
US9929073B2 (en) Semiconductor device
US20100214007A1 (en) Microprocessor performance improvement by dynamic nbti compensation through transistor forward biasing
US20210325257A1 (en) System and method for estimating junction temperatures of a power semiconductor module
US20210325258A1 (en) System and method for determining the thermal resistance of a power semiconductor device
KR20100037807A (en) Method for producing overshoot voltage supplied at transistor and gate insulation degradation analysis used the same
CN111368490B (en) Circuit system of lateral double-diffusion transistor and modeling method thereof
Rescher et al. Threshold voltage instabilities of present SiC-power MOSFETs under positive bias temperature stress
Zhuang et al. An investigation into the causes of C OSS Losses in GaN-on-Si HEMTs
CN111381139B (en) Semiconductor device testing method and semiconductor device testing system
JP5045325B2 (en) Transistor inspection method and inspection apparatus
CN102004218A (en) Chip acceptability testing method
Benvegnù et al. Non-linear electro-thermal AlGaN/GaN model including large-signal dynamic thermal-trapping effects
JP2007225505A (en) Device for measuring channel temperature and thermal resistance of transistor, and measurement method therefor
JP5131846B2 (en) Thin film transistor source-drain current modeling method and apparatus
JP2010205882A (en) Method and device for testing reliability of semiconductor device
JP2015215365A (en) Thermal resistance measurement method
CN111051903B (en) Charge trapping evaluation method and semiconductor device
JP2015002242A (en) Life assessment method for semiconductor element
US9791879B2 (en) MOS-based voltage reference circuit
Chaibi et al. Nonlinear modeling of trapping and thermal effects on GaAs and GaN MESFET/HEMT devices
US20150234961A1 (en) Method and apparatus for circuit reliability aging

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161220