JP2015215055A - Control device of vehicular drive device - Google Patents

Control device of vehicular drive device Download PDF

Info

Publication number
JP2015215055A
JP2015215055A JP2014098708A JP2014098708A JP2015215055A JP 2015215055 A JP2015215055 A JP 2015215055A JP 2014098708 A JP2014098708 A JP 2014098708A JP 2014098708 A JP2014098708 A JP 2014098708A JP 2015215055 A JP2015215055 A JP 2015215055A
Authority
JP
Japan
Prior art keywords
transmission
motor
gear
speed
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014098708A
Other languages
Japanese (ja)
Other versions
JP6402331B2 (en
Inventor
嘉博 内山
Yoshihiro Uchiyama
嘉博 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ACR Co Ltd
Original Assignee
ACR Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ACR Co Ltd filed Critical ACR Co Ltd
Priority to JP2014098708A priority Critical patent/JP6402331B2/en
Publication of JP2015215055A publication Critical patent/JP2015215055A/en
Application granted granted Critical
Publication of JP6402331B2 publication Critical patent/JP6402331B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Control Of Transmission Device (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively use the system efficiency and reduce the energy consumption in a drive device by using a rotation-controllable motor as a drive source and accurately controlling an input rotation speed of a transmission when shifting gears to allow gear shifting by meshing engagement of a transmission.SOLUTION: A drive device is equipped with a motor 1 of a drive source and a transmission 4 having gear shift stages by meshing engagement. A controller 6 comprises target rotation speed setting means to control the rotation speed of the motor 1 and to set a target input rotation speed of the transmission 4 during gear shifting when shifting gears, and controls the rotation speed of the motor 1 such that an actual input rotation speed of the transmission 4 traces the set target input rotation speed. The controller 6 selects gears by calculation of the whole efficiency when shifting gears in the transmission 4 and selectively controls a most efficient reduction gear ratio on the basis of required drive power.

Description

この発明は,駆動源として回転制御可能なモータ,及びモータの回転を複数の変速段を有する変速機を介して車軸へ出力する車両用駆動装置の制御装置に関する。   The present invention relates to a motor that can be rotationally controlled as a drive source, and a control device for a vehicle drive device that outputs the rotation of the motor to an axle via a transmission having a plurality of shift stages.

従来,駆動源としてモータを電気自動車(EV)等の車両に用いる場合に,モータの優れた動作特性を考慮すると,モータの変速比は,一定の変速比で用いることが一般的である。従来の変速機に関しては,手動・自動変速機が知られているが,手動変速機では,シンクロ・ノンシンクロの変速機が存在し,いずれも変速時には,次段変速比に合うように,回転調整を行う機構や,動力源との回転を切断して回転調整を行えるようにクラッチ機構を必要としているため,機構が複雑になり,大型化する傾向があった。,また,自動変速機の場合には,変速機の動作に油圧を用いているため,動力源において絶えず油圧を発生させるエネルギーを消費することになり,効率面で問題があると思料される。自動変速機で油圧を用いない場合でも,手動変速機と同様の動作を自動化したものが多く,変速機を作動するアクチュエータは,それに見合って大型化したものが必要とされていた。この変速機をモータと組み合わせて用いる場合には,モータに内燃機関の特性を模擬させる必要があり,モータの特性を十分に活かしきることができない。   Conventionally, when a motor is used as a drive source in a vehicle such as an electric vehicle (EV), considering the excellent operation characteristics of the motor, the motor gear ratio is generally used at a constant gear ratio. As for conventional transmissions, manual and automatic transmissions are known. However, manual transmissions have synchro and non-synchronous transmissions. Since a mechanism that performs adjustment and a clutch mechanism that can adjust the rotation by cutting off the rotation with the power source is required, the mechanism becomes complicated and tends to increase in size. Also, in the case of an automatic transmission, since hydraulic pressure is used for the operation of the transmission, energy that constantly generates hydraulic pressure is consumed in the power source, which seems to be a problem in terms of efficiency. Even when the automatic transmission does not use hydraulic pressure, many of the automatic operations are the same as those of the manual transmission, and the actuator that operates the transmission is required to be larger in size. When this transmission is used in combination with a motor, it is necessary to make the motor simulate the characteristics of the internal combustion engine, and the characteristics of the motor cannot be fully utilized.

また,電気自動車用駆動装置として,高速型電動モータを動力源として採用するものが知られている。該電気自動車用駆動装置は,高回転型の電動モータの回転出力が減速機構により所定の減速比にて減速された後,自動変速機へ入力される。自動変速機の入力回転速度は,内燃機関を動力源とする自動車の自動変速機と同様に最大でも7000r.p.m.程度以下とされるので,従来の内燃機関搭載車両に用いられていた自動変速機を流用しても,耐久性や動力伝達効率が従来と同様に得られる(例えば,特許文献1参照)。   In addition, as a drive device for an electric vehicle, one that employs a high-speed electric motor as a power source is known. In the electric vehicle drive device, the rotation output of the high-rotation type electric motor is decelerated at a predetermined reduction ratio by the reduction mechanism and then input to the automatic transmission. The input rotation speed of the automatic transmission is set to about 7000 rpm or less at the maximum as in the case of an automatic transmission of an automobile using an internal combustion engine as a power source. Therefore, the automatic transmission used in a conventional vehicle equipped with an internal combustion engine is used. Even if diverted, durability and power transmission efficiency can be obtained in the same manner as before (see, for example, Patent Document 1).

また,電気自動車用減速装置として,電気自動車のモータ出力軸から差動歯車機構に至る減速装置を径方向に小型化するものが知られている。該電気自動車用減速装置は,モータ出力軸と出力軸との間を遊星ローラ式減速機構により結合し,出力軸に形成したギヤと差動歯車機構に結合したギヤとを直接噛合させる。モータ出力軸の回転は遊星ローラ式減速機構により減速されて出力軸に至り,その後,ギヤを順次経て差動歯車機構に達する(例えば,特許文献2参照)。   As a reduction device for an electric vehicle, there is known a reduction device that radially reduces a reduction device that extends from a motor output shaft of an electric vehicle to a differential gear mechanism. In the electric vehicle reduction gear, the motor output shaft and the output shaft are coupled by a planetary roller type deceleration mechanism, and the gear formed on the output shaft and the gear coupled to the differential gear mechanism are directly meshed with each other. The rotation of the motor output shaft is decelerated by the planetary roller type reduction mechanism to reach the output shaft, and then reaches the differential gear mechanism through the gears sequentially (for example, see Patent Document 2).

また,電気自動車用駆動装置として,小型化と生産コストの低減を図るとともに,駆動モータの耐久性を向上させるものが知られている。該電気自動車用駆動装置は,車体に固定されたハウジング内には回転ケースが回転自在に装着され,回転ケースによってモータ収容室と減速機構室に区画されている。回転ケースの外側にはロータが固定され,ハウジングの内側にはステータが固定され,該ステータはロータとにより電動モータを構成している。回転ケースの内部には,サンギヤとリングギヤとキャリアとを備えた遊星歯車機構が組み込まれている。遊星歯車機構の入力要素は,回転ケースに連結され,出力要素はハウジングに固定されている(例えば,特許文献3参照)。   In addition, as a drive device for an electric vehicle, there is known a device for reducing the size and reducing the production cost and improving the durability of the drive motor. In the electric vehicle drive device, a rotation case is rotatably mounted in a housing fixed to the vehicle body, and is divided into a motor housing chamber and a speed reduction mechanism chamber by the rotation case. A rotor is fixed to the outside of the rotating case, and a stator is fixed to the inside of the housing. The stator constitutes an electric motor by the rotor. A planetary gear mechanism including a sun gear, a ring gear, and a carrier is incorporated in the rotating case. The input element of the planetary gear mechanism is connected to the rotating case, and the output element is fixed to the housing (see, for example, Patent Document 3).

特開平5−330352号公報JP-A-5-330352 特開平8−2266号公報JP-A-8-2266 特開2006−15785号公報JP 2006-15785 A

しかしながら,車両の駆動力の必要性能をモータ特性で確保する場合には,モータは,高トルクで高回転を必要とし,モータが大型化したり,駆動装置の高出力化が要求されることになる。従来,低トルクモータを用いたシステムの伝達装置として,変速機を備えたものが存在するが,該システムの伝達装置は,内燃機関用の既存の変速機を用いるのが一般的である。自動車用駆動装置では,駆動システムの効率点を有効に利用して運転するには,変速機の存在が不可欠である。通常の自動変速機では,歯車の選択や駆動伝達のための摩擦係合にも油圧を用いているので,油圧発生のためのエネルギー損失が発生する。手動変速機を自動化する手法も考えられるが,装置の複雑化や大型化等が課題となる。変速機の変速について,駆動力の切断を行うことで,歯車の接触圧力を無くし,歯車の変速を行う必要がある。   However, in order to ensure the required performance of the driving force of the vehicle with the motor characteristics, the motor requires high torque and high rotation, and the motor is required to increase in size or increase the output of the driving device. . Conventionally, there is a transmission device having a transmission as a transmission device of a system using a low torque motor, but the transmission device of the system generally uses an existing transmission for an internal combustion engine. In the drive system for automobiles, the existence of a transmission is indispensable in order to operate effectively using the efficiency point of the drive system. In ordinary automatic transmissions, oil pressure is also used for friction selection for gear selection and drive transmission, so energy loss occurs due to oil pressure generation. Although a method of automating a manual transmission is conceivable, the complexity and size of the device are problematic. With regard to the speed change of the transmission, it is necessary to eliminate the contact pressure of the gear by cutting the driving force and to change the speed of the gear.

しかしながら,変速機の入力軸の回転が制御可能な場合には,必ずしも駆動力を切断する必要がなく,変速機の入力軸の制御によって歯車の歯面にかかる接触圧力を無くすことが可能である。それ故に,駆動源の制御を的確に行えば,駆動源と変速機間に配置されたクラッチ,トルクコンバータ等の駆動力を切断する切断装置を廃止することができると考えられる。また,変速機に設けた歯車を動作させるアクチュエータに関しては,歯車にかかる接触圧力を無くすことが可能であるため,小型のものを用いることが可能になる。また,モータ特性については,一般的に,発生するトルクがモータに流す電流に依存し,回転数の範囲がモータにかける電圧に依存している。そこで,本出願人は,モータに連結する伝達装置に変速機を用いて変速比を制御すれば,伝達装置が固定変速比での駆動システムに比べて,モータには少ない電流・電圧でも同様の駆動力を得ることが可能になり,銅損・鉄損を低下させることによって,効率的な運転を行うことができると着眼した。   However, when the rotation of the input shaft of the transmission is controllable, it is not always necessary to cut the driving force, and the contact pressure applied to the gear teeth can be eliminated by controlling the input shaft of the transmission. . Therefore, if the drive source is accurately controlled, it is considered that a cutting device for cutting the drive force such as a clutch and a torque converter arranged between the drive source and the transmission can be eliminated. Further, regarding the actuator for operating the gear provided in the transmission, it is possible to eliminate the contact pressure applied to the gear, and therefore it is possible to use a small-sized actuator. As for the motor characteristics, generally, the generated torque depends on the current flowing through the motor, and the rotation speed range depends on the voltage applied to the motor. Therefore, when the transmission ratio is controlled by using a transmission as a transmission device connected to the motor, the applicant of the present invention is the same even if the transmission device has a smaller current and voltage than a drive system with a fixed transmission ratio. It became possible to obtain driving force, and it was noted that efficient operation could be performed by reducing copper loss and iron loss.

この発明の目的は,上記の問題を解決することであり,モータと変速機とを1つの車両用駆動装置のシステムに構成するものであって,必要な駆動力を高効率で出力伝達し,変速機の同期を駆動源のモータで行うことによって,シンプルでコンパクトで,しかも安価に高効率の変速駆動システムを提供したものであり,駆動源としてのモータを回転制御可能なタイプを用い,有段の変速段を有する変速機により複数の変速段を達成するため,変速時に複雑な機構・油圧を用いずに変速機の入力回転数をモータの回転速度を高精度に制御し,変速機の歯車の噛み合い係合等を単純な構造で切り換えて変速を可能にし,システム効率を有効に活用し,エネルギー消費量を低減し,また,変速時に選択する変速比について有段の変速機であれば,予め各変速比での駆動システム効率ををマップ化してそれを記録することが可能であり,必要駆動力から最も効率のよい変速比を算出し,効率を改善するための変速比の選択をシステム化することにより高効率の駆動システムを確保することを特徴とする車両用駆動装置の制御装置を提供することである。   An object of the present invention is to solve the above-described problem, and the motor and the transmission are configured in one vehicle drive system, which transmits the necessary driving force with high efficiency, By synchronizing the transmission with the motor of the drive source, a simple, compact and inexpensive high-efficiency shift drive system is provided. A type that can control the rotation of the motor as the drive source is used. In order to achieve multiple shift speeds with a transmission having multiple shift speeds, the rotational speed of the motor is controlled with a high degree of accuracy and the rotational speed of the motor can be controlled with high accuracy without using complicated mechanisms and hydraulic pressures. If the gear meshing engagement etc. is switched with a simple structure, gear shifting is possible, system efficiency is effectively utilized, energy consumption is reduced, and the gear ratio to be selected during gear shifting is a stepped transmission. , Pre It is possible to map the drive system efficiency at each gear ratio and record it, calculate the most efficient gear ratio from the required driving force, and systematize the selection of the gear ratio to improve efficiency Thus, it is an object to provide a control device for a vehicle drive device that ensures a highly efficient drive system.

この発明は,駆動源として回転制御可能なモータ,前記モータの回転速度・トルクを制御することが可能なインバータ,エネルギー源としてバッテリ,前記モータの回転を所定の変速比の変速段に噛み合い係合,いわゆるドグクラッチ又はドグミッションの係合によって変速する変速機,及び前記変速機の前記変速段にシフトするアクチュエータから成る車両用駆動装置の制御装置において,
前記変速機の変速時に,前記変速機の入力回転数の目標回転数を設定する目標回転数設定手段,及び前記変速機の前記入力回転数が設定された前記目標回転数になるように前記インバータを付勢して前記インバータからの前記モータの前記回転数・トルクの情報から前記アクチュエータを制御するコントローラを有しており,
前記コントローラは,前記モータの作動領域と前記変速機の前記変速段の各々のモータ作動ポイントにおける前記インバータの効率と前記モータの効率,前記バッテリの充放電効率から成る総合効率の情報を保有しており,前記モータの作動状況,現在使用中の前記変速機の減速比から演算した現在の前記総合効率と,前記変速機の使用中以外の前記変速段を用いたときの前記総合効率を比較して高い効率の前記変速段を仮に選定し,変速後の前記モータの必要トルク・回転数が合致しているか否かを判断し,車両の加速減速を判断して他の前記変速段に変速した場合の前記モータの作動領域の余裕量を勘案して前記変速段を仮に選定して変速の必要性を判断し,前記変速機を変速する場合は最適な前記変速段を決定して変速を行うことを特徴とする車両用駆動装置の制御装置に関する。
The present invention relates to a motor capable of controlling rotation as a drive source, an inverter capable of controlling the rotation speed and torque of the motor, a battery as an energy source, and meshing engagement of rotation of the motor with a gear stage having a predetermined gear ratio. , A control device for a vehicle drive device comprising a transmission that shifts by engagement of a so-called dog clutch or dog mission, and an actuator that shifts to the shift stage of the transmission.
Target speed setting means for setting a target speed of the input speed of the transmission at the time of shifting the transmission, and the inverter so that the input speed of the transmission becomes the set target speed And a controller for controlling the actuator from information on the rotation speed and torque of the motor from the inverter,
The controller has information on the total efficiency including the efficiency of the inverter, the efficiency of the motor, and the charge / discharge efficiency of the battery at the motor operating point of each of the operating range of the motor and the shift stage of the transmission. The current overall efficiency calculated from the operating status of the motor and the reduction ratio of the transmission currently in use is compared with the overall efficiency when the gears other than the transmission being used are used. The gear stage with high efficiency is temporarily selected, it is judged whether the required torque and the rotational speed of the motor after the gear shift match, the acceleration / deceleration of the vehicle is judged, and the gear is shifted to another gear stage. In consideration of the margin of the operating area of the motor, the shift stage is temporarily selected to determine the necessity of shift, and when shifting the transmission, the optimum shift stage is determined and the shift is performed. Specially A control device for a vehicular drive system according to.

また,この車両用駆動装置の制御装置は,前記コントローラが変速が必要と判断した際に,前記変速機における噛み合いの歯車の接触圧力をなくすように,前記コントローラと前記インバータにより前記モータの前記回転速度・トルクを制御し,前記変速機における噛み合い係合を解除してニュートラル状態を作り出すことを可能とし,任意の係合すべきモータ側の歯車の基礎円直径の周速と,係合させるべき車軸側の歯車の基礎円直径の周速をほぼ同じになるよう前記モータの前記回転速度・トルクを制御し,前記変速機を係合させるものである。   Further, the control device for the vehicle drive device is configured such that when the controller determines that a shift is necessary, the rotation of the motor is performed by the controller and the inverter so as to eliminate the contact pressure of the meshing gear in the transmission. It is possible to control the speed and torque, release the meshing engagement in the transmission to create a neutral state, and engage with the peripheral speed of the basic circle diameter of the gear on the motor side to be engaged. The rotational speed / torque of the motor is controlled so that the peripheral speed of the basic circle diameter of the gear on the axle side is substantially the same, and the transmission is engaged.

また,前記コントローラは, 前記変速機の歯車係合時に,前記変速機の前記モータ側歯車周速と車軸側歯車回転速度に, 50r.p.m.〜200r.p.m.の範囲の速度差を与えるように前記モータの回転速度を制御するものである。具体的には,前記コントローラは, 前記変速機の歯車係合時に, 前記変速機の歯車回転速度差を車両加速時であるシフトアップ時は,前記変速機の前記モータ側歯車回転速度を50r.p.m.〜200r.p.m.速く,車両減速時であるシフトダウン時は前記変速機の前記モータ側歯車回転速度を50r.p.m.〜200r.p.m.遅くなるように制御するものである。   Further, the controller gives the speed difference in the range of 50 rpm to 200 rpm to the motor side gear circumferential speed and the axle side gear rotation speed of the transmission when the gear of the transmission is engaged. It controls the rotational speed of the motor. Specifically, the controller sets the gear-side gear rotation speed of the transmission to 50 r. pm to 200 rpm, and at the time of downshifting when the vehicle is decelerated, the motor side gear rotation speed of the transmission is controlled to be reduced by 50 rpm to 200 rpm.

また,この車両用駆動装置の制御装置については,具体的には,前記コントローラは,前記変速機の前記入力回転数の変化に応答して,前記入力回転数が設定された前記目標回転数になるように前記モータの前記回転数を制御するものであり,前記目標回転数は,前記変速機の変速前の前記入力回転数,変速後の前記変速比から決定される変速後の前記変速機の前記入力回転数,及び前記変速機の出力回転数に基づいて設定されている。また,前記コントローラは,前記モータの出力特性を記録する出力特性記録手段を有し,アクセル開度と車両走行状態から算出された必要駆動力に応答して,前記変速機の前記変速比を選択制御するように設定されており,また,前記変速機の前記各変速比と各動作条件でのシステム効率を記録しており,前記必要駆動力から前記変速機の前記各変速比での前記システム効率を算出して,前記各変速比から高効率の前記変速比を選択制御するものであり,更に,前記変速機の前記必要駆動力と前記変速機の前記出力回転数から車両負荷状態を算出して,前記車両負荷状態に応答して前記変速機の前記変速比を選択制御するものである。   In addition, regarding the control device for the vehicle drive device, specifically, the controller sets the input rotational speed to the set target rotational speed in response to a change in the input rotational speed of the transmission. The rotation speed of the motor is controlled so that the target rotation speed is determined from the input rotation speed before shifting of the transmission and the transmission gear ratio after shifting. Is set on the basis of the input rotational speed and the output rotational speed of the transmission. The controller has output characteristic recording means for recording the output characteristic of the motor, and selects the speed ratio of the transmission in response to the required driving force calculated from the accelerator opening and the vehicle running state. The system is set to control and records the system efficiency at each transmission ratio and each operating condition of the transmission, and the system at each transmission ratio of the transmission from the required driving force. The efficiency is calculated, and the high-efficiency gear ratio is selected and controlled from the respective gear ratios. Further, the vehicle load state is calculated from the required driving force of the transmission and the output rotational speed of the transmission. Thus, the speed ratio of the transmission is selectively controlled in response to the vehicle load state.

また,前記コントローラは,変速時に,前記モータの回転数を制御して前記変速機の前記各変速段の歯車の接触圧力が無いことに応答して,前記アクチュエータを作動して前記変速段の前記歯車の噛み合いを切り離し,前記変速段の入力軸がフリーになった後に,前記モータは次段の前記変速段の歯車に噛み合うため回転数を変化させ,前記変速機の前記次段の前記変速段に同期した回転数で前記次段の歯車に噛み合うように制御されるものであり,また,前記モータの出力を車速である前記回転数と駆動力であるトルクに応答して制御する。更に,前記コントローラは,前記駆動力,前記車速,又は前記システム効率を判断して前記変速機の変速が必要であることに応答して,前記変速段における次段での前記モータの前記回転数を算出して変速制御するものである。   In addition, the controller controls the number of rotations of the motor at the time of shifting, and operates the actuator to respond to the absence of contact pressure of the gears of the gears of the transmission to After the meshing of the gear is cut off and the input shaft of the gear shift stage becomes free, the motor changes the rotational speed to mesh with the gear of the gear stage of the next stage, and the gear stage of the next stage of the transmission is changed. The output of the motor is controlled in response to the rotational speed that is the vehicle speed and the torque that is the driving force. Further, the controller determines the driving force, the vehicle speed, or the system efficiency, and responds to the need for shifting of the transmission to respond to the rotation speed of the motor at the next stage in the shift stage. Is calculated and shift control is performed.

この車両用駆動装置の制御装置は,上記のように構成したので,簡易的な変速機であっても駆動源のモータが積極的に有段の変速段を持つ変速機の同期作用を行うことができ,スムーズな変速が可能になるものであり,モータによって変速機の回転数とトルクを制御して,変速段の歯車の噛み合い時の接触圧力をなくし,変速のアクチュエータを小型化することを可能にし,同時に変速によるショックを発生することなく瞬時に変速を可能とする。従って,動力源としてモータを用いた駆動システムであるので,モータの回転数制御が内燃機関に比べて容易であって正確に行うことができる。また,この車両用駆動装置の制御装置は,回転制御可能なモータによって変速機内の各歯車に生じる歯面接触圧力や回転速度を制御することによって,変速機内部での回転同期機構やその際に必要となる動力軸とのクラッチ機構を簡略化することが可能になる。また,モータの回転を制御する機構を有し,変速時に複雑な機構・油圧を用いずに,変速機の入力回転数を精度良く制御して歯車の噛み合い係合等の単純な構造によって変速を可能にし,システム効率を有効に活用し,エネルギー消費量を低減することができる。コントローラ即ち電子制御装置は,目標回転数設定手段と回転数制御手段を有し,変速時に,変速機の変速中の目標入力回転数を設定し,変速機の実際の入力回転数が,設定された目標入力回転数をトレースするように,モータの回転数を制御することができる。コントローラは,変速時の歯車の選定を,全体効率の演算により行い,必要な駆動力をベースに最も効率のよい減速比を選択することができる。   Since the control device for this vehicle drive device is configured as described above, even if it is a simple transmission, the motor of the drive source actively performs the synchronization action of the transmission having a stepped gear stage. The speed of the transmission and the torque can be controlled by a motor to eliminate the contact pressure when the gears of the gears are meshed and to reduce the size of the gear shifting actuator. At the same time, and can be shifted instantly without shock caused by shifting. Therefore, since the drive system uses a motor as a power source, the rotational speed control of the motor is easier and more accurate than an internal combustion engine. In addition, the control device for the vehicle drive device controls the rotation synchronization mechanism in the transmission and the speed by controlling the tooth surface contact pressure and the rotation speed generated in each gear in the transmission by a rotation controllable motor. It becomes possible to simplify the clutch mechanism with the required power shaft. In addition, it has a mechanism to control the rotation of the motor, and without using a complicated mechanism or hydraulic pressure at the time of shifting, the input rotation speed of the transmission can be controlled with high accuracy and the gear can be shifted by a simple structure such as meshing engagement. It is possible to effectively use system efficiency and reduce energy consumption. The controller, that is, the electronic control unit has a target rotational speed setting means and a rotational speed control means, sets the target input rotational speed during transmission of the transmission at the time of shifting, and sets the actual input rotational speed of the transmission. The motor speed can be controlled to trace the target input speed. The controller selects gears during gear shifting by calculating the overall efficiency, and can select the most efficient reduction ratio based on the required driving force.

この発明による車両用駆動装置の制御装置を適用した車両用駆動装置の一実施例を概念的に示すブロック図である。1 is a block diagram conceptually showing an embodiment of a vehicle drive device to which a control device for a vehicle drive device according to the present invention is applied. 図1の車両用駆動装置に用いる変速機を概念的に示すブロック図である。It is a block diagram which shows notionally the transmission used for the vehicle drive device of FIG. この発明による車両用駆動装置の制御装置における制御工程を説明する処理フロー図である。It is a processing flowchart explaining the control process in the control apparatus of the vehicle drive device by this invention. この発明による車両用駆動装置の制御装置による効率化制御を説明する処理フロー図である。It is a processing flowchart explaining the efficiency control by the control apparatus of the vehicle drive device by this invention. 効率算出に用いたシステム効率図である。It is a system efficiency figure used for efficiency calculation. 従来の車両用駆動装置の制御装置における効率算出に用いたシステム効率図である。It is the system efficiency figure used for the efficiency calculation in the control apparatus of the conventional vehicle drive device. この発明による車両用駆動装置の制御装置における効率算出に用いたシステム効率図である。It is a system efficiency figure used for the efficiency calculation in the control apparatus of the vehicle drive device by this invention. この発明による車両用駆動装置の制御装置の操作性向上の制御工程を説明する処理フロー図である。It is a processing flowchart explaining the control process of the operativity improvement of the control apparatus of the vehicle drive device by this invention.

以下,図面を参照して,この発明による車両用駆動装置の制御装置の実施例を説明する。この車両用駆動装置の制御装置は,図1に示すように,動力源としてモータ1を用いており,モータ1はその回転が変速機4を介して車両用駆動装置における変速機4の出力軸13へ伝達される。例えば,モータ1の出力軸(図示せず)は,変速機4の入力軸12に連結され,変速機4の出力軸13は,差動歯車の傘歯車19を介してタイヤ21が取り付けられる車軸20に連結されている。車両用駆動装置では,入力軸12に対して回転センサ14が設けられ,出力軸13に対して回転センサ8が設けられ,アクセルペダル18に対してアクセルセンサ7が設けられている。回転センサ8,14,及びアクセルセンサ7で検出された情報は,コントローラ6にそれぞれ入力される。コントローラ6は,それらの情報に応じて,モータ1の回転・トルクを制御すると共に,電動アクチュエータ即ちアクチュエータ5を作動してシフトドラム10及びシフトフォーク11によって変速機4の変速段を構成する歯車列15,16,17のドグ歯9の噛み合いを変更し,変速機4の変速段をシフト制御する。この車両用駆動装置の制御装置では,制御装置(ECU)即ちコントローラ6は,操作者によるアクセルペダル18の踏込み量を検出するアクセルセンサ7の信号を受けて必要な駆動力(トルク)と変速状態即ち結合している変速段は演算して判断し,バッテリ3から電力が供給されるインバータ2を介してモータ1を駆動制御する。変速機4は,コントローラ6からの指令によってアクチュエータ5を作動して歯車列15,16,17の所定の変速段へと変速制御される。   Embodiments of a control device for a vehicle drive device according to the present invention will be described below with reference to the drawings. As shown in FIG. 1, the control device for the vehicle drive device uses a motor 1 as a power source, and the motor 1 rotates through the transmission 4 and the output shaft of the transmission 4 in the vehicle drive device. 13 is transmitted. For example, the output shaft (not shown) of the motor 1 is connected to the input shaft 12 of the transmission 4, and the output shaft 13 of the transmission 4 is an axle to which a tire 21 is attached via a bevel gear 19 of a differential gear. 20 is connected. In the vehicle drive device, a rotation sensor 14 is provided for the input shaft 12, a rotation sensor 8 is provided for the output shaft 13, and an accelerator sensor 7 is provided for the accelerator pedal 18. Information detected by the rotation sensors 8, 14 and the accelerator sensor 7 is input to the controller 6, respectively. The controller 6 controls the rotation / torque of the motor 1 according to the information, and operates the electric actuator, that is, the actuator 5 to form a gear train of the transmission 4 by the shift drum 10 and the shift fork 11. The meshing of the dog teeth 9 of 15, 16 and 17 is changed, and the shift stage of the transmission 4 is shift-controlled. In this control device for a vehicle drive device, the control device (ECU), that is, the controller 6 receives a signal from the accelerator sensor 7 that detects the amount of depression of the accelerator pedal 18 by the operator, and a necessary driving force (torque) and a shift state. That is, the coupled gears are calculated and determined, and the motor 1 is driven and controlled via the inverter 2 to which power is supplied from the battery 3. The transmission 4 is controlled to shift to predetermined gears of the gear trains 15, 16, and 17 by operating the actuator 5 in response to a command from the controller 6.

変速機4は,図2に示すように,歯車伝達機構を構成する各歯車列15,16,17は,噛み合い係合のドグ歯9によって断接されるように構成されている。変速機4の変速操作は,アクチュエータ5によってシフトドラム10が回転され,シフトドラム10の回転によってシフトフォーク11が移動し,歯車列15,16,17のドグ歯9の噛み合いが変更され,変速段が変更してシフトされる。また,車両用駆動装置は,モータ1をインバータ2を介して,更に,変速機4の各噛み合い要素,例えば,ドグクラッチ又はドグミッションであるドグ歯9をシフトフォーク11,シフトドラム10,電動アクチュエータ5を介して制御するコントローラ6を主体とし,モータ1を駆動するための電力を供給すると共に,モータ1により回収即ち回生されるエネルギーを電力として蓄えるバッテリ3と,モータ1の制御手段を構成するインバータ2とから構成されている。更に,車両を作動する制御のための情報検出手段として,アクセルペダル18の踏込み量即ちアクセル開度を検出するアクセルセンサ7,変速機4の出力軸13の回転数(即ち車両速度即ち車速)を検出する回転センサ8,及び変速機4の入力軸12の回転数を検出する回転センサ14を備えている。   As shown in FIG. 2, the transmission 4 is configured such that the gear trains 15, 16, and 17 constituting the gear transmission mechanism are connected and disconnected by dog teeth 9 that are meshingly engaged. In the shifting operation of the transmission 4, the shift drum 10 is rotated by the actuator 5, the shift fork 11 is moved by the rotation of the shift drum 10, the meshing of the dog teeth 9 of the gear trains 15, 16, and 17 is changed, and the shift stage Is changed and shifted. Further, the vehicle drive device further includes a motor 1 through an inverter 2, a meshing element of the transmission 4, for example, a dog tooth 9 which is a dog clutch or a dog mission, a shift fork 11, a shift drum 10, and an electric actuator 5. A battery 6 for supplying power for driving the motor 1 and storing energy recovered or regenerated by the motor 1 as power, and an inverter constituting control means for the motor 1 2. Further, as information detection means for controlling the operation of the vehicle, the accelerator sensor 7 for detecting the depression amount of the accelerator pedal 18, that is, the accelerator opening, and the rotation speed of the output shaft 13 of the transmission 4 (that is, the vehicle speed, that is, the vehicle speed) A rotation sensor 8 for detecting and a rotation sensor 14 for detecting the rotation speed of the input shaft 12 of the transmission 4 are provided.

この車両用駆動装置の制御装置は,モータ1の目標回転数を変速機4の出力軸13と同期させる運転を行うものである。この車両用駆動装置の制御装置は,インバータ2の能力を活用し,速度制御による回転同期,又は電流制御と回転数のフィードバックによる制御によって回転同期を行い,車両加速時即ちシフトアップ時には,モータ1の回転数が目標回転数より50〜200r.p.m.だけ速くなった時点,言い換えれば,目標回転数より50〜200r.p.m.速く,変速機4の変速段の1速から2速に変速する場合に,現在の回転数が5000r.p.m.であって,目標回転数を3000r.p.m.とすると,3200〜3050r.p.m.の範囲内でアクチュエータ5を作動させることが好ましい。また,車両減速時即ちシフトダウン時には,モータ1の回転数が目標回転数より200〜50r.p.m.遅くになった時点で,2速から1速に変速する場合,現在の回転数が3000r.p.m.であって,目標回転数を5000r.p.m.とすると,4800〜4950r.p.m.の回転数の時にアクチュエータ5を作動させることが好ましい。上記のように,コントローラ6は, 変速機4の歯車,即ちドグ歯9の係合時に,変速機4のモータ側歯車周速と車軸側歯車回転速度に, 50r.p.m.〜200r.p.m.の範囲の速度差を与えるようにモータ1の回転速度を制御し,その時に,アクチュエータ5を作動して変速機4の歯車列15,16,17の噛み合い係合要素のドグ歯9を係合させる。モータ1の回転数が車両加減速状態によって異なることについては,制御のオーバーシュートを考慮していることと,噛み合い係合の構造上,完全に回転数が一致して噛み合いが正しく行われないことを防止するためである。変速機4の噛み合い係合,即ち,ドグクラッチ又はドグミッションであるドグ歯9の係合が完了した後に,モータ1に駆動力を目標値に上昇させる。特に,変速機4では,歯車列15,16,17の歯車は噛み合い係合を行うため,変速機4のシフトフォーク11及びシフトドラム10の位置を保持する必要がないため,変速状態の保持にエネルギーを必要とせず,効率的といえる。この実施例では,アクチュエータ5の動作時間とモータ1の単独での回転同期以外に,時間を必要としないため非常に短時間で変速を完了することができる。この車両用駆動装置の制御装置では,コントローラ6が最適変速段の変速比を判断選択する場合でも,変速時間は,実質的に略0.1secである。   The control device for the vehicle drive device performs an operation of synchronizing the target rotational speed of the motor 1 with the output shaft 13 of the transmission 4. This control device for a vehicle drive device utilizes the capability of the inverter 2 to perform rotation synchronization by speed control or rotation control by current control and feedback of rotation speed. When the speed of the gear 4 is 50 to 200 rpm faster than the target speed, in other words, 50 to 200 rpm faster than the target speed and when shifting from the first speed to the second speed of the transmission 4. If the current rotational speed is 5000 rpm and the target rotational speed is 3000 rpm, it is preferable to operate the actuator 5 within the range of 3200-3050 rpm. In addition, when the vehicle is decelerated, that is, when the gear is downshifted, when the speed of the motor 1 is changed from the second speed to the first speed when the speed of the motor 1 becomes 200 to 50 rpm slower than the target speed, the current speed is set to 3000 rpm. If the target rotational speed is 5000 rpm, it is preferable to operate the actuator 5 when the rotational speed is 4800-4950 rpm. As described above, when the gear of the transmission 4, that is, the dog tooth 9 is engaged, the controller 6 can set the motor-side gear peripheral speed and the axle-side gear rotation speed of the transmission 4 in the range of 50 rpm to 200 rpm. The rotational speed of the motor 1 is controlled so as to give this speed difference. At that time, the actuator 5 is operated to engage the dog teeth 9 of the meshing engagement elements of the gear trains 15, 16, 17 of the transmission 4. Regarding the fact that the rotational speed of the motor 1 varies depending on the vehicle acceleration / deceleration state, the overshoot of the control is taken into consideration, and the meshing engagement structure makes the rotational speed completely coincide and the meshing is not performed correctly. It is for preventing. After the meshing engagement of the transmission 4, that is, the engagement of the dog tooth 9, which is a dog clutch or dog mission, is completed, the driving force of the motor 1 is raised to the target value. In particular, in the transmission 4, the gears of the gear trains 15, 16, and 17 are engaged with each other, so that it is not necessary to maintain the positions of the shift fork 11 and the shift drum 10 of the transmission 4. It does not require energy and can be said to be efficient. In this embodiment, since the time is not required other than the operation time of the actuator 5 and the rotation synchronization of the motor 1 alone, the shift can be completed in a very short time. In this control device for a vehicle drive device, even when the controller 6 determines and selects the gear ratio of the optimum gear stage, the shift time is substantially about 0.1 sec.

次に,この発明による車両用駆動装置の制御装置の作動制御について,図3〜図5を参照して説明する。
まず,図3の処理フロー図を参照して,この発明による車両用駆動装置の制御装置についての作動ルーチンを説明する。アクセルセンサ7によってアクセル開度の情報を検出し,検出値をコントローラ6に読み込む(ステップS1)。変速機4の出力軸13に設けた回転センサ8によって車両の車速を検出し,検出値をコントローラ6に読み込む(ステップS2)。コントローラ6は,これらの情報を受けて,車両の目標駆動力を演算し算出する(ステップS3)。コントローラ6は,算出した目標駆動力を確保するため車両が変速の必要性があるか否かを判断する(ステップS4)。車速が必要でない場合には,モータ1の駆動力即ちトルク又は回転を制御し(ステップS6),車速が必要であると判断した場合には,モータ1の目標回転数を算出する(ステップS5)。次いで,変速機4の歯車列15,16,17の噛み合い係合を解除するため,歯車の噛み合い荷重を0にする必要があるが,この実施例の手順では,モータ1のトルクを無くすように制御し,噛み合い係合を小さな力で解除することを可能にする。即ち,モータ1の0トルク制御を行うか,又は低電流による変速機4の入出力軸12,13の回転同期制御により歯車噛み合い荷重を0にする制御を行う(ステップS7)。変速機4のアクチュエータ5を動作して噛み合い係合を解除し(ステップS8),コントローラ6の指令でモータ1を目標回転数へ同期運転する(ステップS9)。モータ1の回転数の制御としては,変速機4の入力軸12の回転数と変速機4の出力軸13の回転数とを比較し(ステップS10),入力軸12の回転と出力軸13の回転とが同期していない時には処理工程のステップS9を繰り返し,同期した時には,変速機4のアクチュエータ5を作動して変速機4の変速段の歯車を噛み合わせて係合させ(ステップS11),出力軸13を予め決められた所定の変速比で作動するように,モータ1の駆動力即ちトルク又は回転数を制御する(ステップS12)。
Next, the operation control of the control device for a vehicle drive device according to the present invention will be described with reference to FIGS.
First, with reference to the process flow diagram of FIG. 3, the operation routine for the control device for the vehicle drive device according to the present invention will be described. Information on the accelerator opening is detected by the accelerator sensor 7, and the detected value is read into the controller 6 (step S1). The vehicle speed of the vehicle is detected by the rotation sensor 8 provided on the output shaft 13 of the transmission 4, and the detected value is read into the controller 6 (step S2). The controller 6 receives these pieces of information and calculates and calculates the target driving force of the vehicle (step S3). The controller 6 determines whether or not the vehicle needs to be shifted in order to secure the calculated target driving force (step S4). When the vehicle speed is not necessary, the driving force, that is, the torque or the rotation of the motor 1 is controlled (step S6). When it is determined that the vehicle speed is necessary, the target rotational speed of the motor 1 is calculated (step S5). . Next, in order to release the meshing engagement of the gear trains 15, 16, and 17 of the transmission 4, it is necessary to reduce the meshing load of the gears. However, in the procedure of this embodiment, the torque of the motor 1 is eliminated. It is possible to control and release the meshing engagement with a small force. That is, 0 torque control of the motor 1 is performed, or the gear meshing load is controlled to 0 by the rotation synchronous control of the input / output shafts 12 and 13 of the transmission 4 with a low current (step S7). The actuator 5 of the transmission 4 is operated to release the meshing engagement (step S8), and the motor 1 is synchronously operated to the target rotational speed by a command from the controller 6 (step S9). In order to control the rotational speed of the motor 1, the rotational speed of the input shaft 12 of the transmission 4 is compared with the rotational speed of the output shaft 13 of the transmission 4 (step S10), and the rotation of the input shaft 12 and the output shaft 13 are compared. When the rotation is not synchronized, step S9 of the processing step is repeated. When the rotation is synchronized, the actuator 5 of the transmission 4 is operated to engage and engage the gears of the shift stage of the transmission 4 (step S11). The driving force, that is, the torque or the rotational speed of the motor 1 is controlled so that the output shaft 13 operates at a predetermined speed ratio (step S12).

次に,図4は,図3の処理フロー図にシステム効率算出機能を挿入した処理フロー図である。図4では,モータ1の目標駆動力を算出する際に,コントローラ6に記録されている変速比のデータから変速比でのモータ動作点即ち回転トルクを算出する。この時,過回転やトルク不足による変速比を除外し,運転可能なモータ動作点について,同じくコントローラ6に記録されている回転,トルク毎のシステム効率マップを用いて変速した際の駆動システム効率を算出する。このシステム効率が最大になる変速比を選択制御することで,駆動システム全体の効率を改善することが可能である。
まず,車両のアクセル開度の情報をアクセルセンサ7で検出し,その情報をコントローラ6に読み込む(ステップS21)。車両の車速を読み込む(ステップS22)。コントローラ6は,駆動源となるモータ1の目標駆動力を算出する(ステップS23)。コントローラ6は,蓄積されていたマップにある変速比をアップ化されたコントローラ6の記録から読み込む(ステップS24)。各変速比ごとにモータ1の動作点を算出する(ステップS25)。コントローラ6は,目標駆動力がモータ1の動作可能な回転数とトルクの範囲内であることを確認し(ステップS26),コントローラ6は,動作可能な各変速比ごとにシステム効率,即ち,マップ化してコントローラ6に記録してあるシステム効率を読み込む(ステップS27)。コントローラ6は,システム効率が最大と成る変速比を決定する(ステップS28)。コントローラ6は,変速機4の上記変速比への変速が必要であるか否かを判断する(ステップS29)。変速機4の変速が必要でない場合には,モータ1の駆動力即ちトルク又は回転数をその状態に維持する制御をする(ステップS30)。変速機4の変速比を変えるため変速が必要な場合には,モータ1の目標回転数を算出する(ステップS31)。モータ1の目標回転数を算出する時には,モータ1の0トルク制御を行うか,又は低電流による変速機4の入出力軸12,13の回転同期制御により歯車噛み合い荷重を0にする制御を行う(ステップS32)。その状態になった時に,変速機4のアクチュエータ5を動作して噛み合い係合を解除し(ステップS33),コントローラ6の指令でモータ1を目標回転数へ同期するように制御する(ステップS34)。モータ1の回転数の制御としては,変速機4における回転センサ14で検出された入力軸12の回転数と回転センサ8で検出された出力軸13の回転数とを比較し(ステップS35),入力軸12の回転数と出力軸13の回転数とが同期していない時には,処理工程のステップS34を繰り返し,同期した時には,変速機4のアクチュエータ5を作動して変速機4の変速段の歯車即ちドグ歯9を噛み合わせて係合させ(ステップS36),モータ1を予め決められた所定の変速比で作動し,モータ1の駆動力即ちトルク又は回転数を制御する(ステップS37)。
Next, FIG. 4 is a processing flowchart in which a system efficiency calculation function is inserted into the processing flowchart of FIG. In FIG. 4, when calculating the target driving force of the motor 1, the motor operating point at the gear ratio, that is, the rotational torque is calculated from the gear ratio data recorded in the controller 6. At this time, the gear ratio due to over-rotation or torque shortage is excluded, and the drive system efficiency at the time of shifting using the system efficiency map for each rotation and torque recorded in the controller 6 is also obtained for the operable motor operating point. calculate. By selectively controlling the gear ratio that maximizes the system efficiency, the efficiency of the entire drive system can be improved.
First, information on the accelerator opening of the vehicle is detected by the accelerator sensor 7, and the information is read into the controller 6 (step S21). The vehicle speed of the vehicle is read (step S22). The controller 6 calculates a target driving force of the motor 1 serving as a driving source (step S23). The controller 6 reads the gear ratio in the accumulated map from the increased record of the controller 6 (step S24). The operating point of the motor 1 is calculated for each gear ratio (step S25). The controller 6 confirms that the target driving force is within the range of the rotational speed and torque at which the motor 1 is operable (step S26), and the controller 6 determines the system efficiency, that is, the map for each operable speed ratio. The system efficiency recorded in the controller 6 is read (step S27). The controller 6 determines the gear ratio that maximizes the system efficiency (step S28). The controller 6 determines whether or not it is necessary to shift the transmission 4 to the gear ratio (step S29). If no shift of the transmission 4 is necessary, control is performed to maintain the driving force, that is, the torque or the rotational speed of the motor 1 in that state (step S30). If a shift is required to change the transmission ratio of the transmission 4, the target rotational speed of the motor 1 is calculated (step S31). When calculating the target rotational speed of the motor 1, zero torque control of the motor 1 is performed, or control to reduce the gear meshing load to zero is performed by rotation synchronous control of the input / output shafts 12 and 13 of the transmission 4 with a low current. (Step S32). In this state, the actuator 5 of the transmission 4 is operated to release the meshing engagement (Step S33), and the motor 1 is controlled to synchronize with the target rotational speed by a command from the controller 6 (Step S34). . As the control of the rotation speed of the motor 1, the rotation speed of the input shaft 12 detected by the rotation sensor 14 in the transmission 4 is compared with the rotation speed of the output shaft 13 detected by the rotation sensor 8 (step S35). When the rotation speed of the input shaft 12 and the rotation speed of the output shaft 13 are not synchronized, step S34 of the processing step is repeated. When the rotation speed is synchronized, the actuator 5 of the transmission 4 is operated to change the gear position of the transmission 4. The gears or dog teeth 9 are engaged and engaged (step S36), the motor 1 is operated at a predetermined speed ratio, and the driving force, that is, the torque or the rotational speed of the motor 1 is controlled (step S37).

モータ1は,回転制御可能なタイプであり,内燃機関に比べて高効率であり,中回転で中負荷の領域が良い効率を示している。このことは,モータ1が高負荷では電流による発熱があり,モータ1の高回転では渦電流や器械損失が発生するためである。また,インバータ2では,電流を多く必要とする高負荷では損失が発生し,スイッチングによる損失が大きくなる低負荷では効率が低下するという特性がある。   The motor 1 is of a type that can be rotationally controlled, has a higher efficiency than an internal combustion engine, and exhibits a high efficiency in the middle rotation and medium load regions. This is because the motor 1 generates heat due to current when the load is high, and eddy current and instrument loss occur when the motor 1 rotates at high speed. Further, the inverter 2 has a characteristic that a loss occurs at a high load that requires a large amount of current, and an efficiency decreases at a low load where the loss due to switching becomes large.

図5には駆動システムを用いて車両を運転する場合であり,システム効率とモータ出力を示す線図であり,縦軸にモータトルク(Nm)をプロットし,横軸にモータ回転数(rpm)をプロットしている。図5では,モータ1とインバータ2を合わせた効率を示しており,低回転で高負荷の領域は,効率が低下している。具体的には,モータ1の低回転の領域ではインバータ効率が悪く,また,モータ1の高負荷の領域及び低回転の領域ではモータ効率が悪いことが分る。また,モータ1の中回転で中負荷の領域では,高効率の範囲が広く存在しており,コントローラ6による制御が容易であることが分る。   FIG. 5 is a diagram showing the system efficiency and the motor output when the vehicle is driven using a drive system. The vertical axis represents motor torque (Nm), and the horizontal axis represents motor rotation speed (rpm). Is plotted. FIG. 5 shows the combined efficiency of the motor 1 and the inverter 2, and the efficiency decreases in the low rotation and high load region. Specifically, it can be seen that the inverter efficiency is low in the low rotation region of the motor 1 and that the motor efficiency is low in the high load region and low rotation region of the motor 1. Further, it can be seen that there is a wide range of high efficiency in the middle rotation and middle load region of the motor 1, and control by the controller 6 is easy.

図6は固定変速を用いた場合の車両速度と駆動力・効率の関係を示す線図である。縦軸にモータ1の駆動力(kN)をプロットし,横軸に車速(km/h)をプロットしている。固定変速を用いた場合は,車速が低速で,駆動力が高負荷の領域では,効率が低下しており,また,車速が中速で駆動力が中負荷の領域でも高効率になる範囲が狭くなっている。従って,変速機4が固定変速を用いた場合にはシステム効率を期待できないことになる。   FIG. 6 is a diagram showing the relationship between the vehicle speed and the driving force / efficiency when the fixed shift is used. The driving force (kN) of the motor 1 is plotted on the vertical axis, and the vehicle speed (km / h) is plotted on the horizontal axis. When fixed speed change is used, the efficiency decreases when the vehicle speed is low and the driving force is high, and there is a range where the vehicle speed is medium and the driving force is medium load. It is narrower. Accordingly, system efficiency cannot be expected when the transmission 4 uses a fixed speed change.

特に,図7は3速変速機を用いた本駆動システムで運用した場合の車両速度と駆動力,効率の関係を示す線図である。図7の線図では,縦軸に駆動力(kN)をプロットし,横軸に車速(km/h)をプロットしている。この駆動システムでは,低車速の領域は,駆動力が上昇し,効率も確保されている。モータ1の中回転即ち中車速で,中駆動力の領域では,高効率の範囲が広く存在しており,コントローラ6による制御が容易であることが分る。しかも,このシステムでは,高車速でも高効率を確保することができることが分る。3速変速機を用いた本駆動システムで運用した場合は,固定変速を用いた場合に比較して,高効率の領域は広くなっていることが分る。上記のことから,本発明による車両用駆動装置の制御装置は,高効率部分を広くすることができるので,各変速段の効率の良いところを選択制御することができる。また,この車両用駆動装置の制御装置では,駆動力範囲,即ち,低速トルク増大や高速化が可能になる。また,状況に応じて,効率が良いギヤ即ち変速比を選択制御することができ,駆動,エネルギー回生を含めて変速機を備えていない従来の車両用駆動装置に比べてJCO08モードで20%のエネルギー消費を抑えることができる。   In particular, FIG. 7 is a diagram showing the relationship between vehicle speed, driving force, and efficiency when operated in the present driving system using a three-speed transmission. In the diagram of FIG. 7, the driving force (kN) is plotted on the vertical axis, and the vehicle speed (km / h) is plotted on the horizontal axis. In this drive system, the driving force is increased and the efficiency is secured in the low vehicle speed region. It can be seen that there is a wide range of high efficiency in the region of the middle rotation of the motor 1, that is, the middle vehicle speed and the middle driving force, and the control by the controller 6 is easy. Moreover, it can be seen that this system can ensure high efficiency even at high vehicle speeds. It can be seen that when operating with this drive system using a three-speed transmission, the high-efficiency area is wider than when using a fixed transmission. From the above, the control device for a vehicle drive device according to the present invention can widen the high-efficiency portion, so that it is possible to selectively control a place where each gear stage is efficient. Further, in this vehicle drive device control device, it becomes possible to increase the drive force range, that is, increase the low speed torque and increase the speed. Also, according to the situation, it is possible to select and control an efficient gear, that is, a gear ratio, 20% in the JCO08 mode as compared with a conventional vehicle drive device that does not include a transmission including drive and energy regeneration. Energy consumption can be reduced.

次に,図8を参照して,車両用駆動装置の制御装置の操作性向上の制御ルーチンを説明する。
まず,モータ1の動作駆動力を,変速時にコントローラ6の備えているマップから読み込み(ステップS41)。コントローラ6に設定されている車両の重量を,コントローラ6に指定車両の重量によるマップから読み込む(ステップS42)。コントローラ6に車速の変化を読み込み(ステップS43)。コントローラ6は,駆動力と車速の変化から実際の車両負荷を算出する(ステップS44)。車両状態からトルク及び車速について演算する(ステップS45)。車両の積載量を予測し(ステップS46),その積載量における車両の傾斜状態を予測する(ステップS47)。補償した車両状態に駆動力マップを補正する(ステップS48)。車両が必要としている駆動力を補償する(ステップS49)。トルク型運転をする必要があるか否かを判断し(ステップS50),トルク型運転をする必要があれば,変速タイミングの遅延運転(即ち,低速運転)をするため変速比の大きい歯車を選択制御してシフトし(ステップS51),トルク型運転をする必要がなければ,効率型運転にする(ステップS52)。
Next, a control routine for improving the operability of the control device for the vehicle drive device will be described with reference to FIG.
First, the operation driving force of the motor 1 is read from a map provided in the controller 6 at the time of shifting (step S41). The weight of the vehicle set in the controller 6 is read from the map based on the weight of the designated vehicle in the controller 6 (step S42). A change in the vehicle speed is read into the controller 6 (step S43). The controller 6 calculates the actual vehicle load from changes in driving force and vehicle speed (step S44). The torque and vehicle speed are calculated from the vehicle state (step S45). The loading amount of the vehicle is predicted (step S46), and the inclination state of the vehicle at the loading amount is predicted (step S47). The driving force map is corrected to the compensated vehicle state (step S48). The driving force required by the vehicle is compensated (step S49). It is determined whether or not torque type operation is necessary (step S50). If torque type operation is necessary, a gear having a large gear ratio is selected to perform delay operation (ie, low speed operation). Control is shifted (step S51), and if it is not necessary to perform torque type operation, efficient type operation is performed (step S52).

この発明による車両用駆動装置の制御装置は,例えば,電気自動車の駆動装置に適用して好ましいものである。   The control device for a vehicle drive device according to the present invention is preferably applied to a drive device for an electric vehicle, for example.

1 モータ
2 インバータ
3 バッテリ
4 変速機
5 アクチュエータ
6 コントローラ
9 ドグ歯
15,16,17 歯車列
DESCRIPTION OF SYMBOLS 1 Motor 2 Inverter 3 Battery 4 Transmission 5 Actuator 6 Controller 9 Dog tooth 15, 16, 17 Gear train

Claims (4)

駆動源として回転制御可能なモータ,前記モータの回転速度・トルクを制御することが可能なインバータ,エネルギー源としてバッテリ,前記モータの回転を所定の変速比の変速段に噛み合い係合によって変速する変速機,及び前記変速機の前記変速段にシフトするアクチュエータから成る車両用駆動装置の制御装置において,
前記変速機の変速時に,前記変速機の入力回転数の目標回転数を設定する目標回転数設定手段,及び前記変速機の前記入力回転数が設定された前記目標回転数になるように前記インバータを付勢して前記インバータからの前記モータの前記回転数・トルクの情報から前記アクチュエータを制御するコントローラを有しており,
前記コントローラは,前記モータの作動領域と前記変速機の前記変速段の各々のモータ作動ポイントにおける前記インバータの効率と前記モータの効率,前記バッテリの充放電効率から成る総合効率の情報を保有しており,前記モータの作動状況,現在使用中の前記変速機の減速比から演算した現在の前記総合効率と,前記変速機の使用中以外の前記変速段を用いたときの前記総合効率を比較して高い効率の前記変速段を仮に選定し,変速後の前記モータの必要トルク・回転数が合致しているか否かを判断し,車両の加速減速を判断して他の前記変速段に変速した場合の前記モータの作動領域の余裕量を勘案して前記変速段を仮に選定して変速の必要性を判断し,前記変速機を変速する場合は最適な前記変速段を決定して変速を行うことを特徴とする車両用駆動装置の制御装置。
A motor capable of controlling rotation as a drive source, an inverter capable of controlling the rotation speed / torque of the motor, a battery as an energy source, and a gear that shifts the rotation of the motor by meshing engagement with a gear stage of a predetermined gear ratio. And a control device for a vehicle drive device comprising an actuator that shifts to the shift stage of the transmission,
Target speed setting means for setting a target speed of the input speed of the transmission at the time of shifting the transmission, and the inverter so that the input speed of the transmission becomes the set target speed And a controller for controlling the actuator from information on the rotation speed and torque of the motor from the inverter,
The controller has information on the total efficiency including the efficiency of the inverter, the efficiency of the motor, and the charge / discharge efficiency of the battery at the motor operating point of each of the operating range of the motor and the shift stage of the transmission. The current overall efficiency calculated from the operating status of the motor and the reduction ratio of the transmission currently in use is compared with the overall efficiency when the gears other than the transmission being used are used. The gear stage with high efficiency is temporarily selected, it is judged whether the required torque and the rotational speed of the motor after the gear shift match, the acceleration / deceleration of the vehicle is judged, and the gear is shifted to another gear stage. In consideration of the margin of the operating area of the motor, the shift stage is temporarily selected to determine the necessity of shift, and when shifting the transmission, the optimum shift stage is determined and the shift is performed. Specially Control device for a vehicular drive system according to.
前記コントローラが変速が必要と判断した際に,前記変速機における噛み合いの歯車の接触圧力をなくすように,前記コントローラと前記インバータにより前記モータの前記回転速度・トルクを制御し,前記変速機における噛み合い係合を解除してニュートラル状態を作り出すことを可能とし,任意の係合すべきモータ側の歯車の基礎円直径の周速と,係合させるべき車軸側の歯車の基礎円直径の周速をほぼ同じになるよう前記モータの前記回転速度・トルクを制御し,前記変速機を係合させることを特徴とする請求項1に記載の車両用駆動装置の制御装置。   When the controller determines that shifting is necessary, the controller and the inverter control the rotational speed and torque of the motor so as to eliminate the contact pressure of the meshing gear in the transmission, and the meshing in the transmission It is possible to create a neutral state by releasing the engagement, and the peripheral speed of the basic circle diameter of the gear on the motor side to be engaged and the peripheral speed of the basic circle diameter of the gear on the axle side to be engaged are determined. 2. The control device for a vehicle drive device according to claim 1, wherein the rotation speed and torque of the motor are controlled so as to be substantially the same, and the transmission is engaged. 前記コントローラは, 前記変速機の歯車係合時に,前記変速機の前記モータ側歯車周速と車軸側歯車回転速度に, 50r.p.m.〜200r.p.m.の範囲の速度差を与えるように前記モータの回転速度を制御することを特徴とする請求項1又は2に記載の車両用駆動装置の制御装置。   The controller is configured to give a speed difference in a range of 50 rpm to 200 rpm to the motor side gear circumferential speed and the axle side gear rotation speed of the transmission when the gear of the transmission is engaged. The control device for a vehicle drive device according to claim 1, wherein the control device controls a rotation speed. 前記コントローラは, 前記変速機の歯車係合時に, 前記変速機の歯車回転速度差を車両加速時であるシフトアップ時は,前記変速機の前記モータ側歯車回転速度を50r.p.m.〜200r.p.m.速く,車両減速時であるシフトダウン時は前記変速機の前記モータ側歯車回転速度を50r.p.m.〜200r.p.m.遅くなるように制御することを特徴とする請求項3に車両用駆動装置の制御装置。   When the gear of the transmission is engaged, the controller changes the gear-side gear rotation speed of the transmission from 50 rpm to 200 rpm when shifting the gear rotation speed difference of the transmission during vehicle acceleration. 4. The control of a vehicle drive device according to claim 3, wherein the motor side gear rotation speed of the transmission is controlled to be slow by 50 rpm to 200 rpm when the vehicle is decelerated, ie, when the vehicle is decelerated. apparatus.
JP2014098708A 2014-05-12 2014-05-12 Control device for vehicle drive device Active JP6402331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014098708A JP6402331B2 (en) 2014-05-12 2014-05-12 Control device for vehicle drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014098708A JP6402331B2 (en) 2014-05-12 2014-05-12 Control device for vehicle drive device

Publications (2)

Publication Number Publication Date
JP2015215055A true JP2015215055A (en) 2015-12-03
JP6402331B2 JP6402331B2 (en) 2018-10-10

Family

ID=54752114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014098708A Active JP6402331B2 (en) 2014-05-12 2014-05-12 Control device for vehicle drive device

Country Status (1)

Country Link
JP (1) JP6402331B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181557A1 (en) * 2017-03-30 2018-10-04 アイシン・エィ・ダブリュ株式会社 Vehicle drive device
KR20220022262A (en) * 2020-08-18 2022-02-25 (주)엠피에스코리아 A Pneumatic actuating controlling method for actuation to based Dog clutch in manual transmission
JP7481292B2 (en) 2021-04-14 2024-05-10 トヨタ自動車株式会社 Motor Control Device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05168109A (en) * 1991-12-12 1993-07-02 Toyota Motor Corp Automatic speed change controller for electric automobile
JPH10248113A (en) * 1997-03-05 1998-09-14 Meidensha Corp Method for improving traveling distance in one charge of electric automobile having automatic transmission
JPH11257472A (en) * 1998-01-08 1999-09-21 Motor Jidosha Kk Gear shift control device for prime mover
JP2000104815A (en) * 1998-09-28 2000-04-11 Mitsubishi Motors Corp Speed change control device for electric vehicle
JP2013052802A (en) * 2011-09-05 2013-03-21 Honda Motor Co Ltd Hybrid vehicle control device and control method
JP2013052798A (en) * 2011-09-05 2013-03-21 Honda Motor Co Ltd Control device and control method of hybrid vehicle
WO2013065525A1 (en) * 2011-11-01 2013-05-10 日産自動車株式会社 Motor control device for electric vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05168109A (en) * 1991-12-12 1993-07-02 Toyota Motor Corp Automatic speed change controller for electric automobile
JPH10248113A (en) * 1997-03-05 1998-09-14 Meidensha Corp Method for improving traveling distance in one charge of electric automobile having automatic transmission
JPH11257472A (en) * 1998-01-08 1999-09-21 Motor Jidosha Kk Gear shift control device for prime mover
JP2000104815A (en) * 1998-09-28 2000-04-11 Mitsubishi Motors Corp Speed change control device for electric vehicle
JP2013052802A (en) * 2011-09-05 2013-03-21 Honda Motor Co Ltd Hybrid vehicle control device and control method
JP2013052798A (en) * 2011-09-05 2013-03-21 Honda Motor Co Ltd Control device and control method of hybrid vehicle
WO2013065525A1 (en) * 2011-11-01 2013-05-10 日産自動車株式会社 Motor control device for electric vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181557A1 (en) * 2017-03-30 2018-10-04 アイシン・エィ・ダブリュ株式会社 Vehicle drive device
KR20220022262A (en) * 2020-08-18 2022-02-25 (주)엠피에스코리아 A Pneumatic actuating controlling method for actuation to based Dog clutch in manual transmission
KR102459125B1 (en) 2020-08-18 2022-10-26 (주)엠피에스코리아 A Pneumatic actuating controlling method for actuation to based Dog clutch in manual transmission
JP7481292B2 (en) 2021-04-14 2024-05-10 トヨタ自動車株式会社 Motor Control Device

Also Published As

Publication number Publication date
JP6402331B2 (en) 2018-10-10

Similar Documents

Publication Publication Date Title
EP1541900B1 (en) Vehicular drive system and driving method
US7931555B2 (en) Hybrid drive device
JP4400690B2 (en) Power transmission device for hybrid vehicle
JP5083638B2 (en) Control device
JP5429563B2 (en) Vehicle control device and vehicle drive system
JPH10243502A (en) Device of controlling vehicle driving gear
WO2014162631A1 (en) Vehicle control device
JP4095059B2 (en) Control device for hybrid vehicle
JP6402331B2 (en) Control device for vehicle drive device
JP6061039B2 (en) Automatic transmission for vehicles
JP5376154B2 (en) Shift control device for hybrid electric vehicle
JP4055804B2 (en) Lock-up clutch control device
JP4297120B2 (en) Hybrid automatic transmission for vehicles
JP5821492B2 (en) Vehicle transmission
JP2014177251A (en) Control unit for speed change gear
JP2008189243A (en) Control apparatus and control method for power train, program for implementing the method, and recording medium with the program recorded thereon
JP2003207038A (en) Automatic transmission
JP2015090197A (en) Control device for parking actuator
CN209762149U (en) Gear box
JP4909134B2 (en) Powertrain control device, control method, program for realizing the method, and recording medium recording the program
JP2013216285A (en) Control device of vehicle drive device
JP4161999B2 (en) Electric vehicle drive control device and electric vehicle drive control method
JP4845780B2 (en) Powertrain control device, control method, program for realizing the method, and recording medium recording the program
WO2020026858A1 (en) Control device
JP4390814B2 (en) Powertrain control device, control method, program for realizing the method, and recording medium recording the program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180803

R150 Certificate of patent or registration of utility model

Ref document number: 6402331

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250