JP2015213580A - Curved tube part - Google Patents

Curved tube part Download PDF

Info

Publication number
JP2015213580A
JP2015213580A JP2014097222A JP2014097222A JP2015213580A JP 2015213580 A JP2015213580 A JP 2015213580A JP 2014097222 A JP2014097222 A JP 2014097222A JP 2014097222 A JP2014097222 A JP 2014097222A JP 2015213580 A JP2015213580 A JP 2015213580A
Authority
JP
Japan
Prior art keywords
pipe member
shape memory
wire guide
neutral surface
bending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014097222A
Other languages
Japanese (ja)
Inventor
英哉 北川
Hideya Kitagawa
英哉 北川
猛 日高
Takeshi Hidaka
猛 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2014097222A priority Critical patent/JP2015213580A/en
Priority to PCT/JP2015/060349 priority patent/WO2015170532A1/en
Publication of JP2015213580A publication Critical patent/JP2015213580A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Astronomy & Astrophysics (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a curved tube part and manufacturing method of the curved tube parts, when a superelastic pipe member is used as a curved tube part, capable of preventing damage of a wire guide part by subjecting the pipe member to proper shape-memory treatment.SOLUTION: A curved tube part 10 is formed by molding a wire guide part 30 on a pipe member 20 formed of a NiTi alloy, by shape-memory treatment. The wire guide part 30 is molded on a neutral plane 20c in the width direction of the pipe member 20 such that a perimeter in the cross section of the neutral plate 20c after the shape-memory treatment is not changed substantially with respect to the perimeter in the cross section of the neutral plane before the shape-memory treatment.

Description

本発明は、湾曲管部及び湾曲管部の製造方法に関する。   The present invention relates to a bending tube portion and a manufacturing method of the bending tube portion.

例えば特許文献1は、湾曲部の筒状の節輪に、ワイヤガイド部をプレス加工によって成形している。このような節輪の材料には、例えば、塑性加工が容易なステンレスやスチールが用いられている。   For example, in Patent Document 1, a wire guide portion is formed by press working on a cylindrical node ring having a curved portion. As the material of such a node ring, for example, stainless steel or steel that can be easily plastically processed is used.

一方、NiTi合金などの超弾性のパイプ部材が湾曲管部として用いられることもある。この場合、前記したような塑性加工が冷間状態でパイプ部材に用いられ、塑性加工によってワイヤガイド部を成形しようとしても、超弾性の特性によって、パイプ部材はワイヤガイド部が形成される前の元の形状に戻ってしまう。このため、超弾性のパイプ部材に対して、塑性加工によってワイヤガイド部を成形することは困難となる。そこで、超弾性のパイプ部材にワイヤガイド部を成形する場合には、例えば特許文献2に開示されているような形状記憶処理を施す必要がある。この場合、所定の環境下において、ワイヤガイド部を形成する切曲げ形状転写部を有する金型によってパイプ部材を加圧し、切曲げ形状がパイプ部材に転写されることによって、ワイヤガイド部がパイプ部材に形成される。転写時において、円弧状のパイプ部材の周面の一部は、切曲げ形状転写部が一部に押し付けられるために、U字状に変形する。この変形部分がワイヤガイド部として機能する。   On the other hand, a superelastic pipe member such as a NiTi alloy may be used as the curved pipe portion. In this case, the plastic processing as described above is used for the pipe member in a cold state, and even if an attempt is made to form the wire guide portion by plastic processing, the pipe member is formed before the wire guide portion is formed due to the superelastic characteristics. It will return to its original shape. For this reason, it becomes difficult to form a wire guide portion by plastic working on a superelastic pipe member. Therefore, when the wire guide portion is formed on the superelastic pipe member, it is necessary to perform a shape memory process as disclosed in Patent Document 2, for example. In this case, in a predetermined environment, the pipe member is pressurized by a die having a cut and bent shape transfer portion that forms the wire guide portion, and the cut and bent shape is transferred to the pipe member, whereby the wire guide portion is moved to the pipe member. Formed. At the time of transfer, a part of the peripheral surface of the arc-shaped pipe member is deformed into a U-shape because the cut-shaped transfer part is pressed against the part. This deformed portion functions as a wire guide portion.

特開平9−122786号公報JP-A-9-122786 特公平6−65741号公報Japanese Examined Patent Publication No. 6-65741

周面の一部が変形する際に、変形部分に伸びが加わると、歪みの最大値が超弾性の限界である8%付近を超えやすくなる。この結果、U字のワイヤガイド部の最深部付近におけるワイヤガイド部の内周面側は、割れるといったように破損してしまう。   When a part of the peripheral surface is deformed and elongation is applied to the deformed portion, the maximum value of the distortion tends to exceed the superelastic limit of about 8%. As a result, the inner peripheral surface side of the wire guide portion in the vicinity of the deepest portion of the U-shaped wire guide portion is broken and damaged.

本発明は、これらの事情に鑑みてなされたものであり、超弾性のパイプ部材が湾曲管部として用いられる場合において、適切な形状記憶処理をパイプ部材に施すことによって、ワイヤガイド部の破損を防止できる湾曲管部及び湾曲管部の製造方法を提供することを目的とする。   The present invention has been made in view of these circumstances, and when a superelastic pipe member is used as a curved pipe portion, the wire guide portion can be damaged by applying an appropriate shape memory process to the pipe member. It is an object of the present invention to provide a bending tube portion that can be prevented and a method for manufacturing the bending tube portion.

本発明は目的を達成するために、NiTi合金によって形成されるパイプ部材に、ワイヤガイド部が形状記憶処理によって成形される湾曲管部であって、前記パイプ部材の厚み方向における中立面において、形状記憶処理後の中立面の横断面における周長が形状記憶処理前の中立面の横断面における周長に対して略変化しないように、前記ワイヤガイド部が形状記憶処理によって成形されることを特徴とする湾曲管部を提供する。   In order to achieve the object of the present invention, a pipe member formed of a NiTi alloy is a curved pipe part in which a wire guide part is formed by a shape memory process, and in a neutral surface in the thickness direction of the pipe member, The wire guide portion is formed by shape memory processing so that the circumference in the cross section of the neutral surface after the shape memory process does not substantially change with respect to the circumference in the cross section of the neutral surface before the shape memory process. There is provided a bent tube portion characterized by the above.

本発明は目的を達成するために、NiTi合金によって形成されるパイプ部材を金型に拘束し、前記金型に配設される切曲げ形状転写部によって切曲げ形状を前記パイプ部材の外周面側から前記パイプ部材に転写させつつ、前記パイプ部材を加熱及び冷却し、前記パイプ部材が形状記憶されることによって、ワイヤガイド部を前記パイプ部材に成形する湾曲管部の製造方法であって、前記パイプ部材の厚み方向における中立面において、形状記憶処理後の中立面の横断面における周長が形状記憶処理前の中立面の横断面における周長に対して略変化しないように、前記ワイヤガイド部を形状記憶処理によって成形することを特徴とする湾曲管部の製造方法を提供する。   In order to achieve the object, the present invention constrains a pipe member formed of a NiTi alloy to a mold, and changes the cutting shape to the outer peripheral surface side of the pipe member by a cutting shape transfer portion disposed in the mold. The pipe member is heated and cooled while being transferred to the pipe member, and the shape of the pipe member is memorized to form a wire guide portion into the pipe member. In the neutral surface in the thickness direction of the pipe member, the circumferential length in the cross section of the neutral surface after the shape memory treatment is not substantially changed with respect to the circumferential length in the cross section of the neutral surface before the shape memory treatment. Provided is a method for manufacturing a bent tube part, wherein a wire guide part is formed by a shape memory process.

本発明によれば、超弾性のパイプ部材が湾曲管部として用いられる場合において、適切な形状記憶処理をパイプ部材に施すことによって、ワイヤガイド部の破損を防止できる湾曲管部及び湾曲管部の製造方法を提供することができる。   According to the present invention, when a superelastic pipe member is used as a bending pipe part, the bending pipe part and the bending pipe part can be prevented from being damaged by applying an appropriate shape memory process to the pipe member. A manufacturing method can be provided.

図1Aは、本発明の第1,2の実施形態に係る湾曲管部の斜視図である。FIG. 1A is a perspective view of a bending tube portion according to first and second embodiments of the present invention. 図1Bは、第1,2の実施形態に係るパイプ部材の横断面図である。FIG. 1B is a cross-sectional view of the pipe member according to the first and second embodiments. 図2Aは、第1の実施形態における中立面の状態を示す図である。FIG. 2A is a diagram illustrating a state of a neutral surface in the first embodiment. 図2Bは、第1の実施形態のベース状態におけるパイプ部材の寸法を示す図である。FIG. 2B is a diagram illustrating dimensions of the pipe member in the base state according to the first embodiment. 図2Cは、第1の実施形態の当初状態と改善状態とにおける各位置の寸法を示す図である。FIG. 2C is a diagram illustrating dimensions of each position in the initial state and the improved state of the first embodiment. 図2Dは、第1の実施形態の各状態における中立面の周長と変化率とを示す図である。FIG. 2D is a diagram illustrating the circumference of the neutral surface and the rate of change in each state of the first embodiment. 図3Aは、第2の実施形態における中立面の状態を示す図である。FIG. 3A is a diagram illustrating a state of a neutral surface in the second embodiment. 図3Bは、第2の実施形態のベース状態におけるパイプ部材の寸法を示す図である。FIG. 3B is a diagram illustrating dimensions of the pipe member in the base state according to the second embodiment. 図3Cは、第2の実施形態の当初状態と改善状態とにおける各位置の寸法を示す図である。FIG. 3C is a diagram illustrating dimensions of each position in the initial state and the improved state according to the second embodiment. 図3Dは、第2の実施形態の各状態における中立面の周長と変化率とを示す図である。FIG. 3D is a diagram illustrating the circumference of the neutral surface and the rate of change in each state of the second embodiment.

以下、図面を参照して本発明の実施形態について詳細に説明する。
[第1の実施形態]
図1Aと図1Bと図2Aと図2Bと図2Cと図2Dとを参照して第1の実施形態について説明する。なお一部の図面では、図示の明瞭化のために、一部の部材の図示を省略している。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[First Embodiment]
The first embodiment will be described with reference to FIGS. 1A, 1B, 2A, 2B, 2C, and 2D. Note that in some drawings, illustration of some members is omitted for clarity of illustration.

図1Aに示すような湾曲管部10は、例えば、内視鏡の挿入部に配設されている。本実施形態の湾曲管部10は、筒状の環状部材同士が回動可能に連結されることによって、構成されているのではない。図1Aに示すように、本実施形態の湾曲管部10には、切欠部11を有するパイプ部材20が用いられている。パイプ部材20は、例えば、円筒形状を有している。切欠部11は、湾曲管部10(パイプ部材20)が湾曲するために、配設されている。切欠部11は、後述する形状記憶処理の前の状態において、予めパイプ部材20に形成されている。   A bending tube portion 10 as shown in FIG. 1A is disposed, for example, in an insertion portion of an endoscope. The bending tube portion 10 of the present embodiment is not configured by connecting cylindrical annular members so as to be rotatable. As shown in FIG. 1A, a pipe member 20 having a notch portion 11 is used in the bending tube portion 10 of the present embodiment. The pipe member 20 has, for example, a cylindrical shape. The notch portion 11 is disposed in order for the bending tube portion 10 (pipe member 20) to bend. The notch 11 is formed in the pipe member 20 in advance in a state before the shape memory process described later.

そして図1Bに示すように、本実施形態の湾曲管部10は、NiTi合金によって形成される筒状のパイプ部材20にワイヤガイド部30が形状記憶処理によって成形されることによって、構成される。ワイヤガイド部30は、湾曲管部10を湾曲操作する図示しない操作ワイヤをガイドする。言い換えると、ワイヤガイド部30は、操作ワイヤを保持するワイヤ受けとして機能する。ワイヤガイド部30は、パイプ部材20の外周面20b側から内周面20a側に向かって陥入している切曲げ状陥入部であり、パイプ部材20の一部となっている。このようなワイヤガイド部30は、例えばU字形状を有している。ワイヤガイド部30は、パイプ部材20の周方向において少なくとも1つ配設されていればよい。なお、湾曲管部10が上下方向といった2方向に湾曲する場合、ワイヤガイド部30は、通常2つ配設されている。湾曲管部10が上下左右方向といった4方向に湾曲する場合、ワイヤガイド部30は、通常4つ配設されている。この場合、ワイヤガイド部30同士は、湾曲管部10の周方向において互いに離れて配設されている。また湾曲管部10の中心軸方向においても、ワイヤガイド部30同士は、互いに離れて配設されている。   As shown in FIG. 1B, the bending tube portion 10 of the present embodiment is configured by forming a wire guide portion 30 on a cylindrical pipe member 20 formed of a NiTi alloy by shape memory processing. The wire guide unit 30 guides an operation wire (not shown) for bending the bending tube unit 10. In other words, the wire guide portion 30 functions as a wire receiver that holds the operation wire. The wire guide portion 30 is a cut-out indented portion that is recessed from the outer peripheral surface 20 b side of the pipe member 20 toward the inner peripheral surface 20 a side, and is a part of the pipe member 20. Such a wire guide portion 30 has, for example, a U shape. It is sufficient that at least one wire guide portion 30 is disposed in the circumferential direction of the pipe member 20. Note that when the bending tube portion 10 bends in two directions such as the vertical direction, two wire guide portions 30 are usually provided. When the bending tube portion 10 bends in four directions such as up, down, left, and right directions, usually four wire guide portions 30 are provided. In this case, the wire guide portions 30 are arranged apart from each other in the circumferential direction of the bending tube portion 10. Also in the central axis direction of the bending tube portion 10, the wire guide portions 30 are arranged apart from each other.

ワイヤガイド部30の成形において、パイプ部材20は、予め切欠部11を有する状態で、図示しない金型によって挟み込まれ、金型によって拘束される。金型は、ワイヤガイド部30を形成する例えば凸型のパンチとして機能する図示しない切曲げ形状転写部を有している。パイプ部材20が金型に拘束された状態で、切曲げ形状がパイプ部材20の外周面20b側から内周面20a側に向かってパイプ部材20に転写されつつ、パイプ部材20が加熱及び冷却され、加熱・冷却工程中においてパイプ部材20が形状記憶されることによって、ワイヤガイド部30がパイプ部材20に成形される。転写時において、円弧状のパイプ部材20の周面の一部は、切曲げ形状転写部を押し付けられるために、パイプ部材20の横断面において例えばU字状に変形する。この変形部分が、図1Bに示すような、2つの第1の曲げ部31と第2の曲げ部33とを有するワイヤガイド部30として機能する。   In forming the wire guide portion 30, the pipe member 20 is sandwiched by a mold (not shown) with the notch 11 in advance, and is restrained by the mold. The mold has a not-shown cut shape transfer portion that functions as, for example, a convex punch that forms the wire guide portion 30. In a state where the pipe member 20 is constrained by the mold, the cut and bent shape is transferred to the pipe member 20 from the outer peripheral surface 20b side to the inner peripheral surface 20a side, and the pipe member 20 is heated and cooled. The shape of the pipe member 20 is memorized during the heating / cooling process, whereby the wire guide portion 30 is formed into the pipe member 20. At the time of transfer, a part of the peripheral surface of the arc-shaped pipe member 20 is deformed into, for example, a U shape in the cross section of the pipe member 20 because the cut-shaped transfer portion is pressed. This deformed portion functions as a wire guide portion 30 having two first bent portions 31 and a second bent portion 33 as shown in FIG. 1B.

本実施形態では、図1Bに示すパイプ部材20の横断面において、第1の曲げ部31は、パイプ部材20の径方向において、パイプ部材20の中心部から外に向かって凸設されるものと称する。またパイプ部材20の横断面において、第2の曲げ部33は、パイプ部材20の径方向において、外からパイプ部材20の中心部に向かって凸設されるものと称する。第1の曲げ部31の径と第2の曲げ部33の径とは、パイプ部材20の径よりも小さくなっている。パイプ部材20の横断面において、パイプ部材20の中心部からみて、第1の曲げ部31は凸部として機能し、第2の曲げ部33は凹部として機能する。パイプ部材20の横断面且つ周方向において、第1の曲げ部31、第2の曲げ部33、第1の曲げ部31がこの順に配設されている。つまり、第2の曲げ部33は、第1の曲げ部31に挟まれている。第2の曲げ部33は一方の第1の曲げ部31と連接している一端と、他方の第1の曲げ部31と連接している他端とを有している。   In the present embodiment, in the cross section of the pipe member 20 shown in FIG. 1B, the first bent portion 31 is projected outward from the center portion of the pipe member 20 in the radial direction of the pipe member 20. Called. In the cross section of the pipe member 20, the second bent portion 33 is referred to as being protruded from the outside toward the center of the pipe member 20 in the radial direction of the pipe member 20. The diameter of the first bent portion 31 and the diameter of the second bent portion 33 are smaller than the diameter of the pipe member 20. In the cross section of the pipe member 20, the first bent portion 31 functions as a convex portion and the second bent portion 33 functions as a concave portion when viewed from the center of the pipe member 20. In the cross section and the circumferential direction of the pipe member 20, the first bent portion 31, the second bent portion 33, and the first bent portion 31 are arranged in this order. That is, the second bent portion 33 is sandwiched between the first bent portions 31. The second bent portion 33 has one end connected to one first bent portion 31 and the other end connected to the other first bent portion 31.

次に、図2Aと図2Bと図2Cと図2Dとを参照して、形状記憶処理の設計要件について説明する。
まず図1Bと図2Bとに示すように、形状記憶処理前を示すベース状態における円筒状のパイプ部材20の寸法を、例えば、以下のように予め規定する。
内径D=2.451mm
肉厚T=0.114mm
この場合、内周面20aの半径IRと外周面20bの半径ORとは、内径Dと肉厚Tとを基に以下のように算出される。
IR=D/2=2.451/2=1.226mm
OR=IR+T=1.226+0.114=1.340mm
ここで、パイプ部材20の横断面において、パイプ部材20の厚み方向におけるパイプ部材20の内周面20aと外周面20bとの間の中間の平面を中立面20cと定義する。なお中立面20cは、パイプ部材20の厚み方向においてパイプ部材20の内周面20aと外周面20bとの間に位置するものであればよい。
この場合、中立面20cの半径MRは、半径IRと半径ORとの平均であるため、
MR=(IR+OR)/2 となり、
=(1.226+1.340)/2=1.283mm となる。
Next, design requirements for the shape memory process will be described with reference to FIGS. 2A, 2B, 2C, and 2D.
First, as shown in FIGS. 1B and 2B, the dimensions of the cylindrical pipe member 20 in the base state before the shape memory processing are defined in advance as follows, for example.
Inner diameter D = 2.451 mm
Thickness T = 0.114mm
In this case, the radius IR of the inner peripheral surface 20a and the radius OR of the outer peripheral surface 20b are calculated based on the inner diameter D and the wall thickness T as follows.
IR = D / 2 = 2.451 / 2 = 1.226 mm
OR = IR + T = 1.226 + 0.114 = 1.340 mm
Here, in the cross section of the pipe member 20, an intermediate plane between the inner peripheral surface 20a and the outer peripheral surface 20b of the pipe member 20 in the thickness direction of the pipe member 20 is defined as a neutral surface 20c. In addition, the neutral surface 20c should just be located between the internal peripheral surface 20a and the outer peripheral surface 20b of the pipe member 20 in the thickness direction of the pipe member 20.
In this case, since the radius MR of the neutral surface 20c is an average of the radius IR and the radius OR,
MR = (IR + OR) / 2
= (1.226 + 1.340) /2=1.283 mm.

次に、図2Aと図2Bと図2Cとを参照して、当初の形状記憶処理の設計要件について説明する。
ここでは、形状記憶処理によって、ベース状態のパイプ部材20に対して成形が実施され、第1の曲げ部31と第2の曲げ部33とを有するワイヤガイド部30が成形される。
Next, with reference to FIG. 2A, FIG. 2B, and FIG. 2C, the design requirements of the initial shape memory processing will be described.
Here, the shape of the pipe member 20 in the base state is formed by the shape memory process, and the wire guide portion 30 having the first bent portion 31 and the second bent portion 33 is formed.

第1の曲げ部31における内周面20aの半径IR1の設定結果は、以下の通りになる。
IR1=0.254mm
この場合、半径IR1と肉厚Tとを基に、第1の曲げ部31における外周面20bの半径OR1は、以下のように算出される。
OR1=IR1+T=0.254+0.114=0.368mm
この場合、第1の曲げ部31における中立面20cの半径MR1は、半径IR1と半径OR1との平均であるため、
MR1=(IR1+OR1)/2 となり、
=(0.254+0.368)/2=0.311mm となる。
The setting result of the radius IR1 of the inner peripheral surface 20a in the first bent portion 31 is as follows.
IR1 = 0.254mm
In this case, based on the radius IR1 and the wall thickness T, the radius OR1 of the outer peripheral surface 20b in the first bent portion 31 is calculated as follows.
OR1 = IR1 + T = 0.254 + 0.114 = 0.368 mm
In this case, the radius MR1 of the neutral surface 20c in the first bent portion 31 is an average of the radius IR1 and the radius OR1,
MR1 = (IR1 + OR1) / 2
= (0.254 + 0.368) / 2 = 0.311 mm.

また第2の曲げ部33における外周面20bの半径OR2の設定結果は、以下の通りになる。
OR2=0.381mm
OR2は、第1の曲げ部31とは異なり、パイプ部材20の外周側を示す。
この場合、半径OR2と肉厚Tとを基に、第2の曲げ部33における内周面20aの半径IR2は、以下のように算出される。
IR2=OR2+T=0.381+0.114=0.495mm となる。
IR2は、第1の曲げ部31とは異なり、パイプ部材20の内周側を示す。
この場合、第2の曲げ部33における中立面20cの半径MR2は、半径OR2と半径IR2との平均であるため、
MR2=(OR2+IR2)/2 となり、
=(0.381+0.495)/2=0.438mm となる。
The setting result of the radius OR2 of the outer peripheral surface 20b in the second bending portion 33 is as follows.
OR2 = 0.381mm
Unlike the first bending portion 31, OR2 indicates the outer peripheral side of the pipe member 20.
In this case, based on the radius OR2 and the wall thickness T, the radius IR2 of the inner peripheral surface 20a in the second bent portion 33 is calculated as follows.
IR2 = OR2 + T = 0.382 + 0.114 = 0.495 mm
IR2 indicates the inner peripheral side of the pipe member 20, unlike the first bent portion 31.
In this case, since the radius MR2 of the neutral surface 20c in the second bent portion 33 is an average of the radius OR2 and the radius IR2,
MR2 = (OR2 + IR2) / 2
= (0.381 + 0.495) /2=0.438 mm

前記長さと厚みとを有し、第1の曲げ部31と第2の曲げ部33とを有するワイヤガイド部30が成形され、形状記憶処理後のパイプ部材20の状態を、当初状態と称する。   The state of the pipe member 20 having the length and the thickness and having the first bent portion 31 and the second bent portion 33 is formed and the shape of the pipe member 20 after the shape memory processing is referred to as an initial state.

この当初状態では、歪が大きくなってしまい、詳細には歪みの最大値が超弾性の限界である8%付近を超えてしまい、ワイヤガイド部30は割れてしまった。これは、ワイヤガイド部30が成形される際に、それぞれの曲げ部の外側が伸び、それぞれの曲げ部の内側が縮むことを考慮したとしても、例えば、中立面20cの周長が伸びてしまったことが一因として考えられる。   In this initial state, the strain becomes large. Specifically, the maximum value of the strain exceeds 8%, which is the limit of superelasticity, and the wire guide portion 30 is broken. For example, when the wire guide portion 30 is formed, the outer side of each bent portion extends and the inner side of each bent portion shrinks. For example, the peripheral length of the neutral surface 20c increases. One reason may be that it has stopped.

そこで図2Dに示すように、ベース状態と当初状態とにおける中立面20cの周長の長さを対比してみることとする。ここでは、周長の一例として、1/4円の周長を基に対比を行う。さらに、成形されずにベース状態の形状を維持する円弧状部における中立面20cの周長CLと、第1の曲げ部31における中立面20cの周長CL1と、第2の曲げ部33における中立面20cの周長CL2との合計である合計値CTを対比する。
つまり、CT=CL+CL1+CL2 となる。
Therefore, as shown in FIG. 2D, the length of the circumference of the neutral surface 20c in the base state and the initial state will be compared. Here, as an example of the circumference, a comparison is made based on a circumference of 1/4 circle. Furthermore, the circumferential length CL of the neutral surface 20c in the arc-shaped portion that maintains the shape of the base state without being formed, the circumferential length CL1 of the neutral surface 20c in the first bending portion 31, and the second bending portion 33. The total value CT which is the sum with the circumference CL2 of the neutral surface 20c is compared.
That is, CT = CL + CL1 + CL2.

ベース状態では、第1の曲げ部31と第2の曲げ部33とが形成されないため、
CL1=CL2=0となる。
このためベース状態では、 CT=CL となる。
In the base state, the first bent portion 31 and the second bent portion 33 are not formed.
CL1 = CL2 = 0.
Therefore, CT = CL in the base state.

そしてベース状態では、第1の曲げ部31と第2の曲げ部33とが形成されないため、CLは1/4円弧状となり、理論上は以下のような周長となる。
CL=2.015mm
なお前記したように、CL1=CL2=0であるため、
CT=CL+CL1+CL2=CL=2.015mmとなる。
In the base state, since the first bent portion 31 and the second bent portion 33 are not formed, CL has a ¼ arc shape and theoretically has the following circumference.
CL = 2.015mm
As described above, since CL1 = CL2 = 0,
CT = CL + CL1 + CL2 = CL = 2.015 mm.

前記に対して当初状態では、CL=1.213mm、CL1=0.462mm、CL2=0.377mmが理論上の周長となる。
このため、CT=CL+CL1+CL2
=1.213+0.462+0.377
=2.053mm となる。
On the other hand, in the initial state, CL = 1.213 mm, CL1 = 0.462 mm, and CL2 = 0.377 mm are theoretical perimeters.
Therefore, CT = CL + CL1 + CL2
= 1.213 + 0.462 + 0.377
= 2.053 mm.

合計値CTにおいて、ベース状態に対する当初状態の変化率は、以下のように算出される。
変化率 = 当初状態の合計値CT / ベース状態の合計値CT
= 2.053 / 2.015
= 101.89%
つまり、当初状態の中立面20cの周長がベース状態の中立面20cの周長に対して1.89%伸びることによって、歪みの最大値が超弾性の限界である8%付近を超え易くなり、ワイヤガイド部30は割れてしまう可能性が高い。
In the total value CT, the change rate of the initial state with respect to the base state is calculated as follows.
Rate of change = Total value CT in the initial state / Total value CT in the base state
= 2.053 / 2.015
= 101.89%
That is, when the circumference of the neutral surface 20c in the initial state extends 1.89% with respect to the circumference of the neutral surface 20c in the base state, the maximum value of the strain exceeds the superelastic limit of about 8%. It becomes easy and the wire guide part 30 has a high possibility of breaking.

そこで図2Aと図2Bと図2Cと図2Dとを参照して、歪みの最大値が超弾性の限界である8%付近を超えることが防止され、ワイヤガイド部30の割れが防止されるように、前記を改善した形状記憶処理の設計要件について説明する。
ここでは、第1の曲げ部31における内周面20aの半径IR1を以下のように改善する。このパイプ部材20の状態を、改善状態と称する。なお本実施形態では、第1の曲げ部31は当初状態と改善状態とでは異なる寸法となっているが、第2の曲げ部33は当初状態と改善状態とで同じ寸法となっている。このため、第2の曲げ部33の深さ寸法は、改善状態であっても当初状態であっても同一となっている。また第1の曲げ部31と第2の曲げ部33の連接箇所において、第1の曲げ部31と第2の曲げ部33とは、S字状を形成するように、曲線状に連接している。よって、第1の曲げ部31と第2の曲げ部33との間には、直線部分は存在していない。
2A, FIG. 2B, FIG. 2C, and FIG. 2D, the maximum value of the strain is prevented from exceeding about 8%, which is the limit of superelasticity, and the wire guide portion 30 is prevented from cracking. Next, the design requirements for the shape memory processing improved from the above will be described.
Here, the radius IR1 of the inner peripheral surface 20a in the first bent portion 31 is improved as follows. This state of the pipe member 20 is referred to as an improved state. In the present embodiment, the first bent portion 31 has different dimensions in the initial state and the improved state, but the second bent portion 33 has the same size in the initial state and the improved state. For this reason, the depth dimension of the 2nd bending part 33 is the same even if it is an improved state and an initial state. Moreover, in the connection location of the 1st bending part 31 and the 2nd bending part 33, the 1st bending part 31 and the 2nd bending part 33 are connected in a curve shape so that S-shape may be formed. Yes. Therefore, no linear portion exists between the first bent portion 31 and the second bent portion 33.

IR1=0.381mm
前記のために、OR1とMR1とIR2とMR2とが以下のように算出される。
OR1=IR1+T=0.381+0.114=0.495mm
MR1=(IR1+OR1)/2=(0.381+0.495)/2=0.438mm
第2の曲げ部33は当初状態と同一であるため、前記同様下記のようになっている。
OR2=0.381mm
IR2=OR2+T=0.381+0.114=0.495mm
MR2=(OR2+IR2)/2=(0.381+0.495)/2=0.438mm。
IR1 = 0.381mm
For this purpose, OR1, MR1, IR2, and MR2 are calculated as follows.
OR1 = IR1 + T = 0.382 + 0.114 = 0.495 mm
MR1 = (IR1 + OR1) / 2 = (0.381 + 0.495) /2=0.438 mm
Since the 2nd bending part 33 is the same as the initial state, it is as follows like the above.
OR2 = 0.381mm
IR2 = OR2 + T = 0.382 + 0.114 = 0.495 mm
MR2 = (OR2 + IR2) / 2 = (0.381 + 0.495) /2=0.438 mm.

また改善状態では、CL=1.050mm、CL1=0.644mm、CL2=0.315mmが理論上の周長となる。
このため、CT=CL+CL1+CL2
=1.050+0.644+0.315
=2.009mm となる。
In the improved state, CL = 1.050 mm, CL1 = 0.644 mm, and CL2 = 0.315 mm are theoretical perimeters.
Therefore, CT = CL + CL1 + CL2
= 1.050 + 0.644 + 0.315
= 2.009 mm.

合計値CTにおいて、ベース状態に対する改善状態の変化率は、以下のように算出される。
変化率 = 改善状態の合計値CT / ベース状態の合計値CT
= 2.009 / 2.015
= 99.73%
つまり、改善状態の中立面20cの周長は、ベース状態の中立面20cの周長に対して0.27%縮む。これによって、歪みの最大値が超弾性の限界である8%付近を超えることを抑制し、ワイヤガイド部30の割れが防止される。
In the total value CT, the change rate of the improved state with respect to the base state is calculated as follows.
Rate of change = Total value CT in improved state / Total value CT in base state
= 2.009 / 2.015
= 99.73%
That is, the circumferential length of the neutral surface 20c in the improved state is reduced by 0.27% with respect to the circumferential length of the neutral surface 20c in the base state. As a result, the maximum strain value is prevented from exceeding about 8%, which is the limit of superelasticity, and cracking of the wire guide portion 30 is prevented.

このようにパイプ部材20の中立面20cにおいて、形状記憶処理後の中立面20cの横断面における周長(以下、周長Aと称する)が形状記憶処理前の中立面20cの横断面における周長(以下、周長Bと称する)に対して略変化しないように、ワイヤガイド部30が形状記憶処理によって成形される。形状記憶処理後の中立面20cの横断面における周長は、例えば改善状態を示す。形状記憶処理前の中立面20cの横断面における周長は、例えばベース状態を示す。また本実施形態では、詳細には周長Aが周長Bに対して微小に縮むように、ワイヤガイド部30が形状記憶処理によって成形される。本実施形態では、これにより、歪みの最大値が超弾性の限界である8%付近を超えることを抑制し、ワイヤガイド部30の割れが防止される。   Thus, in the neutral surface 20c of the pipe member 20, the circumferential length (hereinafter referred to as the circumferential length A) of the neutral surface 20c after the shape memory process is the transverse cross section of the neutral surface 20c before the shape memory process. The wire guide portion 30 is formed by shape memory processing so that it does not substantially change with respect to the circumferential length (hereinafter referred to as circumferential length B). The circumference in the cross section of the neutral surface 20c after the shape memory process indicates, for example, an improved state. The circumference in the cross section of the neutral surface 20c before the shape memory process indicates, for example, a base state. Further, in the present embodiment, in detail, the wire guide portion 30 is formed by shape memory processing so that the circumferential length A is slightly reduced with respect to the circumferential length B. In the present embodiment, this suppresses the maximum strain value from exceeding about 8%, which is the limit of superelasticity, and prevents the wire guide portion 30 from cracking.

このように、本実施形態では、NiTi合金によって形成されるパイプ部材20に、ワイヤガイド部30が形状記憶処理によって成形される際に、改善状態に示すように、円弧状部における中立面20cの周長CLを1.050mmと規定し、第1の曲げ部31における中立面20cの周長CL1を0.644mmと規定し、第2の曲げ部33における中立面20cの周長CL2を0.315mmと規定するように、ワイヤガイド部30の設計要件が明確となっている。これにより本実施形態では、周長Aを周長Bに対して微小に縮ませることができ、歪みの最大値が超弾性の限界である8%付近を超えることを抑制でき、ワイヤガイド部30の割れを防止できる。よって本実施形態では、超弾性のパイプ部材20が湾曲管部10として用いられる場合において、前記した設計要件の形状記憶処理によって、ワイヤガイド部30の破損を防止できる。   Thus, in this embodiment, when the wire guide part 30 is shape | molded by the shape memory process in the pipe member 20 formed with a NiTi alloy, as shown in an improved state, the neutral surface 20c in an arc-shaped part is shown. Is defined as 1.050 mm, the circumferential length CL1 of the neutral surface 20c in the first bending portion 31 is defined as 0.644 mm, and the circumferential length CL2 of the neutral surface 20c in the second bending portion 33. Is defined as 0.315 mm, the design requirements of the wire guide portion 30 are clear. Accordingly, in the present embodiment, the circumferential length A can be slightly reduced with respect to the circumferential length B, and the maximum strain value can be prevented from exceeding about 8%, which is the limit of superelasticity. Can be prevented from cracking. Therefore, in the present embodiment, when the superelastic pipe member 20 is used as the bending tube portion 10, the wire guide portion 30 can be prevented from being damaged by the shape memory processing of the design requirements described above.

また本実施形態では、前記した設計要件の形状記憶処理によって、湾曲管部10の品質を安定でき、製造における無駄を省くことができる。なお本実施形態では、変化率99.73%であるが、変化率100%付近であれば微小に異なっていてもよい。   Further, in the present embodiment, the quality of the bending tube portion 10 can be stabilized by the shape memory processing of the design requirements described above, and waste in manufacturing can be eliminated. In this embodiment, the rate of change is 99.73%, but may be slightly different as long as the rate of change is near 100%.

また本実施形態では、改善状態の第1の曲げ部31のみ当初状態に対して変形させている。このため本実施形態では、湾曲管部10の内面における第1の曲げ部31周辺のデッドスペースを改善できる。また本実施形態では、第2の曲げ部33は当初状態と改善状態とで同じ寸法となっている。このため、操作ワイヤが配設されるワイヤガイド部30の第2の曲げ部33を従来通りに容易に設計できる。   In the present embodiment, only the first bent portion 31 in the improved state is deformed with respect to the initial state. For this reason, in this embodiment, the dead space around the 1st bending part 31 in the inner surface of the bending pipe part 10 can be improved. In the present embodiment, the second bent portion 33 has the same dimensions in the initial state and the improved state. For this reason, the 2nd bending part 33 of the wire guide part 30 by which an operation wire is arrange | positioned can be designed easily as usual.

[第2の実施形態]
本実施形態における、図3Aと図3Bと図3Cと図3Dとを参照して、形状記憶処理の設計要件について説明する。
まず図3Aと図3Bとに示すように、形状記憶処理前を示すベース状態における円筒状のパイプ部材20の寸法を、例えば、以下のように予め規定する。
肉厚D=3.01mm
肉厚T=0.13mm
この場合、内周面20aの半径IRと外周面20bの半径ORとは、内径Dと肉厚Tとを基に以下のように算出される。
IR=D/2 =3.01/2=1.505mm
OR=IR+T=1.505+0.13=1.635mm
この場合、中立面20cの半径MRは、半径IRと半径ORとの平均であるため、
MR=(IR+OR)/2 となり、
=(1.505+1.635)/2=1.57mm となる。
前記長さや厚みを有し、形状記憶処理前の円筒状のパイプ部材20の状態を、ベース状態と称する。
[Second Embodiment]
With reference to FIG. 3A, FIG. 3B, FIG. 3C, and FIG. 3D in this embodiment, the design requirement of a shape memory process is demonstrated.
First, as shown in FIGS. 3A and 3B, the dimensions of the cylindrical pipe member 20 in the base state before the shape memory processing are defined in advance as follows, for example.
Thickness D = 3.01mm
Thickness T = 0.13mm
In this case, the radius IR of the inner peripheral surface 20a and the radius OR of the outer peripheral surface 20b are calculated based on the inner diameter D and the wall thickness T as follows.
IR = D / 2 = 3.01 / 2 = 1.505 mm
OR = IR + T = 1.505 + 0.13 = 1.635 mm
In this case, since the radius MR of the neutral surface 20c is an average of the radius IR and the radius OR,
MR = (IR + OR) / 2
= (1.505 + 1.635) /2=1.57 mm.
The state of the cylindrical pipe member 20 having the length and thickness and before the shape memory process is referred to as a base state.

次に、図3Aと図3Bと図3Cとを参照して、当初の形状記憶処理の設計要件について説明する。
ここでは、形状記憶処理によって、ベース状態のパイプ部材20に対して成形が実施され、第1の曲げ部31と第2の曲げ部33とを有するワイヤガイド部30が成形される。
Next, the design requirements for the initial shape memory processing will be described with reference to FIGS. 3A, 3B, and 3C.
Here, the shape of the pipe member 20 in the base state is formed by the shape memory process, and the wire guide portion 30 having the first bent portion 31 and the second bent portion 33 is formed.

第1の曲げ部31における内周面20aの半径IR1の設定結果は、以下の通りになる。
IR1=0.2mm
この場合、半径IR1と肉厚Tとを基に、第1の曲げ部31における外周面20bの半径OR1は、以下のように算出される。
OR1=IR1+T=0.2+0.13=0.33mm
この場合、第1の曲げ部31における中立面20cの半径MR1は、半径IR1と半径OR1との平均であるため、
MR1=(IR1+OR1)/2 となり、
=(0.2+0.33)/2=0.265mm となる。
The setting result of the radius IR1 of the inner peripheral surface 20a in the first bent portion 31 is as follows.
IR1 = 0.2mm
In this case, based on the radius IR1 and the wall thickness T, the radius OR1 of the outer peripheral surface 20b in the first bent portion 31 is calculated as follows.
OR1 = IR1 + T = 0.2 + 0.13 = 0.33 mm
In this case, the radius MR1 of the neutral surface 20c in the first bent portion 31 is an average of the radius IR1 and the radius OR1,
MR1 = (IR1 + OR1) / 2
= (0.2 + 0.33) /2=0.265 mm

また第2の曲げ部33における外周面20bの半径OR2の設定結果は、以下の通りになる。
OR2=0.25mm
OR2は、第1の曲げ部31とは異なり、パイプ部材20の外周側を示す。
この場合、半径OR2と肉厚Tとを基に、第2の曲げ部33における内周面20aの半径IR2は、以下のように算出される。
IR2=OR2+T=0.25+0.13=0.38mm
IR2は、第1の曲げ部31とは異なり、パイプ部材20の内周側を示す。
この場合、第2の曲げ部33における中立面20cの半径MR2は、半径OR2と半径IR2との平均であるため、
MR2=(OR2+IR2)/2 となり、
=(0.25+0.38)/2=0.315mm となる。
The setting result of the radius OR2 of the outer peripheral surface 20b in the second bending portion 33 is as follows.
OR2 = 0.25mm
Unlike the first bending portion 31, OR2 indicates the outer peripheral side of the pipe member 20.
In this case, based on the radius OR2 and the wall thickness T, the radius IR2 of the inner peripheral surface 20a in the second bent portion 33 is calculated as follows.
IR2 = OR2 + T = 0.25 + 0.13 = 0.38 mm
IR2 indicates the inner peripheral side of the pipe member 20, unlike the first bent portion 31.
In this case, since the radius MR2 of the neutral surface 20c in the second bent portion 33 is an average of the radius OR2 and the radius IR2,
MR2 = (OR2 + IR2) / 2
= (0.25 + 0.38) /2=0.315 mm

また当初状態の第2の曲げ部33では、中立面20cの深さdは、0.425mmとなっている。   In the second bent portion 33 in the initial state, the depth d of the neutral surface 20c is 0.425 mm.

前記長さと厚みと深さとを有し、第1の曲げ部31と第2の曲げ部33とを有するワイヤガイド部30が成形され、形状記憶処理後のパイプ部材20の状態を、当初状態と称する。   The wire guide part 30 having the length, the thickness, and the depth and having the first bent part 31 and the second bent part 33 is formed, and the state of the pipe member 20 after the shape memory process is changed to the initial state. Called.

この当初状態では、歪が大きくなってしまい、詳細には歪みの最大値が超弾性の限界である8%付近を超えてしまい、ワイヤガイド部30は割れてしまった。これは、ワイヤガイド部30が成形される際に、それぞれの曲げ部の外側が伸び、それぞれの曲げ部の内側が縮むことを考慮したとしても、例えば、中立面20cの周長が伸びてしまったことが一因として考えられる。   In this initial state, the strain becomes large. Specifically, the maximum value of the strain exceeds 8%, which is the limit of superelasticity, and the wire guide portion 30 is broken. For example, when the wire guide portion 30 is formed, the outer side of each bent portion extends and the inner side of each bent portion shrinks. For example, the peripheral length of the neutral surface 20c increases. One reason may be that it has stopped.

そこで図3Dに示すように、ベース状態と当初状態とにおける中立面20cの周長の長さを対比してみることとする。ここでは、周長の一例として、1/4円の周長を基に対比を行う。さらに、成形されずにベース状態の形状を維持する円弧状部における中立面20cの周長CLと、第1の曲げ部31における中立面20cの周長CL1と、第2の曲げ部33における中立面20cの周長CL2との合計である合計値CTを対比する。   Therefore, as shown in FIG. 3D, the length of the circumference of the neutral surface 20c in the base state and the initial state will be compared. Here, as an example of the circumference, a comparison is made based on a circumference of 1/4 circle. Furthermore, the circumferential length CL of the neutral surface 20c in the arc-shaped portion that maintains the shape of the base state without being formed, the circumferential length CL1 of the neutral surface 20c in the first bending portion 31, and the second bending portion 33. The total value CT which is the sum with the circumference CL2 of the neutral surface 20c is compared.

つまり、CT=CL+CL1+CL2 となる。   That is, CT = CL + CL1 + CL2.

ベース状態では、第1の曲げ部31と第2の曲げ部33とが形成されないため、
CL1=CL2=0となる。
このためベース状態では、 CT=CL となる。
In the base state, the first bent portion 31 and the second bent portion 33 are not formed.
CL1 = CL2 = 0.
Therefore, CT = CL in the base state.

そしてベース状態では、第1の曲げ部31と第2の曲げ部33とが形成されないため、CLは1/4円弧状となり、理論上は以下のような周長となる。
CL=2.46615mm
なお前記したように、CL1=CL2=0であるため、
CT=CL+CL1+CL2=CL=2.46615mmとなる。
In the base state, since the first bent portion 31 and the second bent portion 33 are not formed, CL has a ¼ arc shape and theoretically has the following circumference.
CL = 2.46615mm
As described above, since CL1 = CL2 = 0,
CT = CL + CL1 + CL2 = CL = 2.46615 mm.

前記に対して当初状態では、CL=1.82602mm、CL1=0.400115、CL2=0.347175が理論上の周長となる。
このため、CT=CL+CL1+CL2
=1.82602+0.440115+0.347175
=2.57331mm となる。
On the other hand, in the initial state, CL = 1.82602 mm, CL1 = 0.400115, and CL2 = 0.347175 are theoretical circumferences.
Therefore, CT = CL + CL1 + CL2
= 1.826002 + 0.440115 + 0.347175
= 2.57331 mm.

合計値CTにおいて、ベース状態に対する当初状態の変化率は、以下のように算出される。
変化率 = 当初状態の合計値CT / ベース状態の合計値CT
= 104.35%
つまり、当初状態の中立面20cがベース状態の中立面20cに対して4.35%伸びることによって、歪みの最大値が超弾性の限界である8%付近を超え易くなり、ワイヤガイド部30は割れてしまう可能性が高い。
In the total value CT, the change rate of the initial state with respect to the base state is calculated as follows.
Rate of change = Total value CT in the initial state / Total value CT in the base state
= 104.35%
That is, when the neutral surface 20c in the initial state extends by 4.35% with respect to the neutral surface 20c in the base state, the maximum value of the distortion easily exceeds about 8%, which is the limit of superelasticity, and the wire guide portion. 30 is likely to break.

そこで図3Aと図3Bと図3Cと図3Dとを参照して、歪みの最大値が超弾性の限界である8%付近を超えることが防止され、ワイヤガイド部30の割れが防止されるように、前記を改善した形状記憶処理の設計要件について説明する。
ここでは、第1の曲げ部31における内周面20aの半径IR1と、第2の曲げ部33における外周面20bの半径OR2の大きさを以下のように改善する。このパイプ部材20の状態を、改善状態と称する。本実施形態では、第1の曲げ部31は当初状態と改善状態とでは異なる寸法となっており、第2の曲げ部33も当初状態と改善状態とで異なる寸法となっている。このため改善状態の第2の曲げ部33では、中立面20cの深さDは、0.4mmとなっており、当初状態よりも浅くなっている。また第1の曲げ部31と第2の曲げ部33の連接箇所において、第1の曲げ部31と第2の曲げ部33とは、S字状を形成するように、曲線状に連接している。よって、第1の曲げ部31と第2の曲げ部33との間には、直線部分は存在していない。
Therefore, referring to FIG. 3A, FIG. 3B, FIG. 3C, and FIG. 3D, it is possible to prevent the maximum value of strain from exceeding about 8%, which is the limit of superelasticity, and to prevent the wire guide portion 30 from cracking. Next, the design requirements for the shape memory processing improved from the above will be described.
Here, the sizes of the radius IR1 of the inner peripheral surface 20a in the first bent portion 31 and the radius OR2 of the outer peripheral surface 20b in the second bent portion 33 are improved as follows. This state of the pipe member 20 is referred to as an improved state. In the present embodiment, the first bent portion 31 has different dimensions in the initial state and the improved state, and the second bent portion 33 also has different dimensions in the initial state and the improved state. For this reason, in the improved 2nd bending part 33, the depth D of the neutral surface 20c is 0.4 mm, and is shallower than the initial state. Moreover, in the connection location of the 1st bending part 31 and the 2nd bending part 33, the 1st bending part 31 and the 2nd bending part 33 are connected in a curve shape so that S-shape may be formed. Yes. Therefore, no linear portion exists between the first bent portion 31 and the second bent portion 33.

IR1=0.45mm
OR2=0.45mm
前記のために、OR1とMR1とIR2とMR2とが以下のように算出される。
IR1 = 0.45mm
OR2 = 0.45mm
For this purpose, OR1, MR1, IR2, and MR2 are calculated as follows.

OR1=IR1+T=0.45+0.13=0.58mm
MR1=(IR1+OR1)/2=(0.45+0.58)/2=0.515mm
IR2=OR2+T=0.45+0.13=0.58mm
MR2=(OR2+IR2)/2=(0.45+0.58)/2=0.515mm。
OR1 = IR1 + T = 0.45 + 0.13 = 0.58 mm
MR1 = (IR1 + OR1) / 2 = (0.45 + 0.58) /2=0.515 mm
IR2 = OR2 + T = 0.45 + 0.13 = 0.58 mm
MR2 = (OR2 + IR2) / 2 = (0.45 + 0.58) /2=0.515 mm.

また改善状態では、CL=1.46008mm、CL1=0.669421、CL2=0.339404が理論上の周長となる。
このため、CT=CL+CL1+CL2
=1.46008+0.669421+0.339404
=2.46891mmとなる。
In the improved state, CL = 1.46008 mm, CL1 = 0.694421, and CL2 = 0.339404 are theoretical circumferences.
Therefore, CT = CL + CL1 + CL2
= 1.460008 + 0.669421 + 0.339404
= 2.46891 mm.

合計値CTにおいて、ベース状態に対する改善状態の変化率は、以下のように算出される。
変化率 = 改善状態の合計値CT / ベース状態の合計値CT
= 2.46891 / 2.46615
= 100.11%
つまり、改善状態の中立面20cの周長は、ベース状態の中立面20cの周長に対して0.11%伸びる。これによって、歪みの最大値が超弾性の限界である8%付近を超えることが抑制され、ワイヤガイド部30の割れが防止される。
In the total value CT, the change rate of the improved state with respect to the base state is calculated as follows.
Rate of change = Total value CT in improved state / Total value CT in base state
= 2.46891 / 2.46615
= 100.11%
That is, the circumferential length of the neutral surface 20c in the improved state extends 0.11% with respect to the circumferential length of the neutral surface 20c in the base state. As a result, the maximum strain value is prevented from exceeding about 8%, which is the limit of superelasticity, and cracking of the wire guide portion 30 is prevented.

このようにパイプ部材20の中立面20cにおいて、形状記憶処理後の中立面20cの横断面における周長(以下、周長Aと称する)が形状記憶処理前の中立面20cの横断面における周長(以下、周長Bと称する)に対して略変化しないように、ワイヤガイド部30が形状記憶処理によって成形される。本実施形態では、詳細には周長Aが周長Bに対してほとんど伸びないように、詳細には極微小に伸びるように、ワイヤガイド部30が形状記憶処理によって成形される。この場合、本実施形態では、周長Bに対する周長Aの変化率が略100.11%以下となるように、ワイヤガイド部30が形状記憶処理によって成形される。これにより、歪みの最大値が超弾性の限界である8%付近を超えることが抑制され、ワイヤガイド部30の割れが防止される。   Thus, in the neutral surface 20c of the pipe member 20, the circumferential length (hereinafter referred to as the circumferential length A) of the neutral surface 20c after the shape memory process is the transverse cross section of the neutral surface 20c before the shape memory process. The wire guide portion 30 is formed by shape memory processing so that it does not substantially change with respect to the circumferential length (hereinafter referred to as circumferential length B). In the present embodiment, in detail, the wire guide portion 30 is formed by shape memory processing so that the circumferential length A hardly extends with respect to the circumferential length B in detail, and in detail, it extends extremely finely. In this case, in this embodiment, the wire guide part 30 is shape | molded by a shape memory process so that the change rate of the circumference A with respect to the circumference B may be about 100.11% or less. Thereby, it is suppressed that the maximum value of distortion exceeds about 8% which is the limit of superelasticity, and the crack of the wire guide part 30 is prevented.

このように、本実施形態では、NiTi合金によって形成されるパイプ部材20に、ワイヤガイド部30が形状記憶処理によって成形される際に、改善状態に示すように、円弧状部における中立面20cの周長CLを1.46008mmと規定し、第1の曲げ部31における中立面20cの周長CL1を0.669421mmと規定し、第2の曲げ部33における中立面20cの周長CL2を0.339404mmと規定するように、ワイヤガイド部30の設計要件が明確となっている。これにより本実施形態では、周長Aを周長Bに対して極微小に伸ばすことができ、歪みの最大値が超弾性の限界である8%付近を超えることを抑制でき、ワイヤガイド部30の割れを防止できる。よって本実施形態では、超弾性のパイプ部材20が湾曲管部10として用いられる場合において、前記した設計要件の形状記憶処理によって、ワイヤガイド部30の破損を防止できる。   Thus, in this embodiment, when the wire guide part 30 is shape | molded by the shape memory process in the pipe member 20 formed with a NiTi alloy, as shown in an improved state, the neutral surface 20c in an arc-shaped part is shown. Is defined as 1.46008 mm, the circumferential length CL1 of the neutral surface 20c in the first bent portion 31 is defined as 0.669421 mm, and the circumferential length CL2 of the neutral surface 20c in the second bent portion 33 is defined. Is defined as 0.339404 mm, the design requirements of the wire guide 30 are clear. Thereby, in this embodiment, the perimeter A can be extended very minutely with respect to the perimeter B, and the maximum value of the strain can be suppressed from exceeding about 8%, which is the limit of superelasticity. Can be prevented from cracking. Therefore, in the present embodiment, when the superelastic pipe member 20 is used as the bending tube portion 10, the wire guide portion 30 can be prevented from being damaged by the shape memory processing of the design requirements described above.

本発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。   The present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment.

10…湾曲管部、20…パイプ部材、20a…内周面、20b…外周面、20c…中立面、30…ワイヤガイド部、31…第1の曲げ部、33…第2の曲げ部。   DESCRIPTION OF SYMBOLS 10 ... Curve pipe part, 20 ... Pipe member, 20a ... Inner peripheral surface, 20b ... Outer peripheral surface, 20c ... Neutral surface, 30 ... Wire guide part, 31 ... 1st bending part, 33 ... 2nd bending part.

Claims (5)

NiTi合金によって形成されるパイプ部材に、ワイヤガイド部が形状記憶処理によって成形される湾曲管部であって、
前記パイプ部材の厚み方向における中立面において、形状記憶処理後の中立面の横断面における周長が形状記憶処理前の中立面の横断面における周長に対して略変化しないように、前記ワイヤガイド部が形状記憶処理によって成形されることを特徴とする湾曲管部。
A pipe member formed of a NiTi alloy is a curved tube part in which a wire guide part is formed by shape memory processing,
In the neutral surface in the thickness direction of the pipe member, so that the circumferential length in the cross section of the neutral surface after the shape memory treatment does not substantially change with respect to the circumferential length in the cross section of the neutral surface before the shape memory treatment, The bending tube part, wherein the wire guide part is formed by a shape memory process.
形状記憶処理後の中立面の前記周長は、形状記憶処理前の中立面の前記周長に対して略伸びないように、前記ワイヤガイド部が形状記憶処理によって成形されることを特徴とする請求項1に記載の湾曲管部。   The wire guide portion is formed by shape memory processing so that the peripheral length of the neutral surface after shape memory processing does not substantially extend relative to the peripheral length of the neutral surface before shape memory processing. The bending tube part according to claim 1. 形状記憶処理前の中立面の前記周長に対する形状記憶処理後の中立面の前記周長の変化率は、略100.11%以下となるように、前記ワイヤガイド部が形状記憶処理によって成形されることを特徴とする請求項2に記載の湾曲管部。   The wire guide portion is subjected to shape memory processing so that the rate of change of the circumference of the neutral surface after shape memory processing with respect to the circumference of the neutral surface before shape memory processing is approximately 100.11% or less. The bending pipe part according to claim 2, wherein the bending pipe part is formed. 前記ワイヤガイド部は、周方向少なくとも1つ配設されており、
前記ワイヤガイド部は、2つの第1の曲げ部と、前記第1の曲げ部に挟まれ、一方の前記第1の曲げ部と連接している一端と他方の前記第1の曲げ部と連接している他端とを有する第2の曲げ部とを有し、
前記第1の曲げ部は、前記パイプ部材の径方向において、前記パイプ部材の中心部から外に向かって凸設され、前記パイプ部材よりも小径で、
前記第2の曲げ部は、前記パイプ部材の径方向において、外から前記中心部に向かって凸設され、前記パイプ部材よりも小径であることを特徴とする請求項3に記載の湾曲管部。
At least one of the wire guide portions is disposed in the circumferential direction,
The wire guide portion is sandwiched between two first bent portions, one end connected to one of the first bent portions, and connected to the other first bent portion. A second bend having the other end of the
The first bent portion is protruded outward from the center of the pipe member in the radial direction of the pipe member, and has a smaller diameter than the pipe member.
4. The bending pipe portion according to claim 3, wherein the second bending portion is provided so as to protrude from the outside toward the center portion in the radial direction of the pipe member and has a smaller diameter than the pipe member. .
NiTi合金によって形成されるパイプ部材を金型に拘束し、前記金型に配設される切曲げ形状転写部によって切曲げ形状を前記パイプ部材の外周面側から前記パイプ部材に転写させつつ、前記パイプ部材を加熱及び冷却し、前記パイプ部材が形状記憶されることによって、ワイヤガイド部を前記パイプ部材に成形する湾曲管部の製造方法であって、
前記パイプ部材の厚み方向における中立面において、形状記憶処理後の中立面の横断面における周長が形状記憶処理前の中立面の横断面における周長に対して略変化しないように、前記ワイヤガイド部を形状記憶処理によって成形することを特徴とする湾曲管部の製造方法。
The pipe member formed of the NiTi alloy is constrained to the mold, and the cut and bent shape is transferred from the outer peripheral surface side of the pipe member to the pipe member by the cut and bent shape transfer portion disposed in the mold. Heating and cooling a pipe member, and a shape of the pipe member is memorized, whereby a wire guide part is formed into the pipe member.
In the neutral surface in the thickness direction of the pipe member, so that the circumferential length in the cross section of the neutral surface after the shape memory treatment does not substantially change with respect to the circumferential length in the cross section of the neutral surface before the shape memory treatment, A method of manufacturing a bending tube part, wherein the wire guide part is formed by a shape memory process.
JP2014097222A 2014-05-08 2014-05-08 Curved tube part Pending JP2015213580A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014097222A JP2015213580A (en) 2014-05-08 2014-05-08 Curved tube part
PCT/JP2015/060349 WO2015170532A1 (en) 2014-05-08 2015-04-01 Curved tube section and production method for curved tube section

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014097222A JP2015213580A (en) 2014-05-08 2014-05-08 Curved tube part

Publications (1)

Publication Number Publication Date
JP2015213580A true JP2015213580A (en) 2015-12-03

Family

ID=54392385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014097222A Pending JP2015213580A (en) 2014-05-08 2014-05-08 Curved tube part

Country Status (2)

Country Link
JP (1) JP2015213580A (en)
WO (1) WO2015170532A1 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8967204B2 (en) * 2012-08-24 2015-03-03 Olympus Medical Systems Corporation Curved pipe for endoscopes

Also Published As

Publication number Publication date
WO2015170532A1 (en) 2015-11-12

Similar Documents

Publication Publication Date Title
JP5114688B2 (en) Method of forming metal member with excellent shape freezing property
US10799094B2 (en) Connection structure for wire protective sheath, connection member, wire protective sheath structure, and connection method for wire protective sheath
JP6721108B2 (en) Method for manufacturing press die and steel pipe
JP2010036217A (en) Manufacturing method of center pillar outer panel, and blank for center pillar outer panel
JP7054057B2 (en) Bend pipe and its manufacturing method
JP2016078089A (en) Elbow manufacturing device and manufacturing method
JP2013220447A (en) Method of manufacturing coil spring and coil spring
JP6242363B2 (en) Molding material manufacturing method
JP2010142869A (en) Forging method, device for forming forged product, and tripod-shape constant-velocity universal joint
JP2015213580A (en) Curved tube part
JP2014028382A (en) Bending method of metal pipe
JP5921229B2 (en) Pipe bending method, bent pipe and pipe bending apparatus
JP2012135797A (en) Method of bending work of metal pipe, roll block of pipe bender used for the method, and metal pipe worked with the method
JP4914962B2 (en) Pipe manufacturing method
JP4680652B2 (en) Method for manufacturing metal bent pipe having cross-sectional shape for parts
JP5783598B2 (en) Pipe-shaped bending apparatus
JP4746655B2 (en) Pipe bending apparatus and pipe bending method
CN103025448B (en) Method for forming undercut and method for manufacturing molded article having undercut
JP2010142868A (en) Forging method, closed forging die, and tripod-shape constant-velocity universal joint
JP6295175B2 (en) Roll forming roll and roll forming method using the same
KR101547088B1 (en) Tolerance Ring Molding Apparatus And Method
JP5861965B2 (en) Sizing mold
KR101547086B1 (en) Tolerance Ring Molding Apparatus And Method
JP2008073697A (en) Method for designing die for two-stage press forming excellent in shape fixability
JP2019051532A (en) Rotary draw-bending method of metal pipe