JP2015212583A - Boiler having water-supply preheating device - Google Patents

Boiler having water-supply preheating device Download PDF

Info

Publication number
JP2015212583A
JP2015212583A JP2014094337A JP2014094337A JP2015212583A JP 2015212583 A JP2015212583 A JP 2015212583A JP 2014094337 A JP2014094337 A JP 2014094337A JP 2014094337 A JP2014094337 A JP 2014094337A JP 2015212583 A JP2015212583 A JP 2015212583A
Authority
JP
Japan
Prior art keywords
boiler
feed water
heat transfer
water
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014094337A
Other languages
Japanese (ja)
Inventor
直正 大畑
Naomasa Ohata
直正 大畑
拓志 前田
Takushi Maeda
拓志 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAMSON CO Ltd
Nicca Chemical Co Ltd
Original Assignee
SAMSON CO Ltd
Nicca Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAMSON CO Ltd, Nicca Chemical Co Ltd filed Critical SAMSON CO Ltd
Priority to JP2014094337A priority Critical patent/JP2015212583A/en
Publication of JP2015212583A publication Critical patent/JP2015212583A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To further reduce energy consumption in a boiler by further increasing the recovery amount of heat by means of water supply in the boiler which performs preheating of supply water by means of drain recovery concurrently with the preheating of supply water by means of an economizer.SOLUTION: In a boiler having a drain recovery device, an economizer 8 and a supply water tank 6, the economizer 8 is installed so as to be divided into a high temperature heat transfer pipe group 4 as the upstream side in an exhaust gas flow and a low temperature heat transfer pipe group 5 as the downstream side, the supply water tank 6 is installed between the low temperature heat transfer pipe group 5 and the high temperature heat transfer pipe group 4, recovered drain is not caused to pass through the low temperature heat transfer pipe group 5, but is directly introduced to the supply water tank 6, thereby, boiler replenishment water subjected to preheating of a first step and recovery drain are mixed in the supply water tank 6 and boiler supply water is supplied to the high temperature heat transfer pipe group 4 from the supply water tank 6 in which the replenishment water performing preheating in the low temperature heat transfer pipe group 5 and the recovered drain are mixed.

Description

本発明は、ボイラから排出される排気ガスからの熱回収と、ボイラで発生させた蒸気からドレン回収を行うことによって、ボイラへの給水を予熱するようにした給水予熱装置を持ったボイラに関するものである。 The present invention relates to a boiler having a feed water preheating device that preheats feed water to a boiler by recovering heat from exhaust gas discharged from the boiler and drain recovery from steam generated by the boiler. It is.

熱を供給する装置として蒸気ボイラが広く用いられており、ボイラでは特開2000−121003号公報に記載があるように、ボイラからの蒸気を熱源として使用する負荷機器からのドレンを回収することも広く行われている。特開2000−121003号公報に記載の発明では、給水タンクへの蒸気導入、ボイラからの排気ガスによって給水を加熱するエコノマイザ(節炭器)、ボイラのドレンを給水タンクに回収して給水として再利用するドレン回収装置を設けている。ボイラは高温の蒸気を発生して負荷機器へ蒸気を送り、負荷機器で蒸気の熱を使用すると、蒸気は温度が低下して液体に戻る。蒸気が凝縮したドレンは多くの熱を保有しており、ドレンを回収してボイラの給水に混合すると、給水温度が上昇する。ドレンを廃棄せずに回収し、回収ドレンによって給水温度を上昇させれば、ボイラで必要となるエネルギー量が少なくなるため、省エネルギーとなる。さらにドレンを回収して再利用することで、水の使用量を削減することもできる。 A steam boiler is widely used as an apparatus for supplying heat. In the boiler, as described in Japanese Patent Application Laid-Open No. 2000-112003, it is also possible to collect drain from load equipment that uses steam from the boiler as a heat source. Widely done. In the invention described in Japanese Patent Application Laid-Open No. 2000-112003, the introduction of steam into a water supply tank, an economizer (heating economizer) that heats the water supply by exhaust gas from the boiler, and the boiler drain are recovered in the water supply tank and reused as water supply. A drain recovery device is provided. The boiler generates high-temperature steam and sends the steam to the load equipment, and when the heat of the steam is used in the load equipment, the steam drops in temperature and returns to liquid. The drain condensed steam has a lot of heat, and when the drain is collected and mixed with the boiler feed water, the feed water temperature rises. If the drain is recovered without being discarded and the feed water temperature is raised by the recovered drain, the amount of energy required in the boiler is reduced, and thus energy is saved. Furthermore, the amount of water used can be reduced by collecting and reusing the drain.

例えば、給水量の2/3に相当する量のドレンを回収しており、回収してきたドレンの温度が80℃、残り1/3は新規の補給水であって補給水温度が20℃であったとする。この場合、ドレン回収を行うことでボイラ給水として新規に供給しなければならない水の量は1/3となり、ドレンの混合を行うことで給水温度は60℃となる。給水のすべてを新規の水で行っていた場合に比べ、給水の準備段階で温度を40℃分上昇させておくことができるので、ボイラでは40℃分の温度上昇が不要となり、その分エネルギーの使用量を削減することができる。 For example, an amount of drain corresponding to 2/3 of the amount of water supply is recovered, the recovered drain temperature is 80 ° C., the remaining 1/3 is new makeup water, and the makeup water temperature is 20 ° C. Suppose. In this case, the amount of water that must be newly supplied as boiler feed water by performing drain recovery is 1/3, and the feed water temperature is 60 ° C. by mixing the drain. Compared to the case where all of the water supply is performed with new water, the temperature can be increased by 40 ° C in the water supply preparation stage, so the boiler does not need to increase the temperature by 40 ° C, and energy consumption is increased accordingly. The amount used can be reduced.

またエコノマイザは、ボイラから排出されている排気ガスによって給水を予熱する。ボイラの排気経路に、排気ガスとボイラ給水との間で熱交換を行うエコノマイザを設置しておき、ボイラへの給水はエコノマイザを経由して行い、エコノマイザの外側表面を流れる排気ガスとの間で熱交換を行うことで給水を予熱する。例えばボイラからは240℃の排気ガスが排出されており、ボイラへの給水温度は20℃であったとして、エコノマイザにて給水の予熱を行うことで75℃まで予熱することができたとする。その場合、エコノマイザにて55℃分の予熱を行ったことになるため、ボイラでは55℃分の温度上昇が不要となり、その分エネルギーの使用量を削減することができる。 The economizer preheats the water supply with the exhaust gas discharged from the boiler. An economizer that exchanges heat between exhaust gas and boiler feedwater is installed in the exhaust path of the boiler, and water supply to the boiler is performed via the economizer and between the exhaust gas flowing on the outer surface of the economizer The water supply is preheated by heat exchange. For example, it is assumed that the exhaust gas of 240 ° C. is discharged from the boiler and the feed water temperature to the boiler is 20 ° C., and preheating to 75 ° C. can be performed by preheating the feed water with an economizer. In that case, since preheating for 55 ° C. is performed by the economizer, the boiler does not need to increase the temperature by 55 ° C., and the amount of energy used can be reduced accordingly.

ドレン回収による予熱と、エコノマイザによる予熱は併用可能である。特開2000−121003号公報に記載の発明でも、ボイラ給水はドレン回収による予熱を行い、エコノマイザによる予熱を行っている。新規の給水温度が20℃であったものが、ドレン回収で60℃まで上昇し、さらにエコノマイザで100℃まで上昇させる予熱を行うとすれば、ボイラでは合計で80℃分の加熱に要する熱が不要となるため、その分だけボイラでのエネルギー使用量を削減することができる。 Preheating by drain recovery and preheating by an economizer can be used in combination. Also in the invention described in Japanese Patent Application Laid-Open No. 2000-112003, boiler feed water is preheated by drain recovery and preheated by an economizer. If the new feed water temperature was 20 ° C, it would rise to 60 ° C by drain recovery, and if it was preheated to 100 ° C by an economizer, the heat required for heating in a total of 80 ° C would be required in the boiler. Since it becomes unnecessary, the amount of energy used in the boiler can be reduced accordingly.

特開2000−12103号公報の発明では、さらに給水タンク内に蒸気を導入することによる給水予熱も行っている。ただし、ドレン回収や排気ガスによる予熱は、廃棄していた熱を利用するものであってエネルギー使用量の削減に役立つものであったが、蒸気を使用して予熱を行う場合は、蒸気の使用量が増加するものであるために省エネルギーの効果は得られない。逆に、給水タンクの給水温度を高めると、エコノマイザで吸収することのできる熱量が減少するため、全体的なエネルギーの使用量は多くなる。 In the invention of Japanese Patent Laid-Open No. 2000-12103, water supply preheating is also performed by introducing steam into the water supply tank. However, drain recovery and preheating with exhaust gas use waste heat and help reduce energy consumption. However, when preheating using steam, use steam. Since the amount increases, the energy saving effect cannot be obtained. Conversely, when the water supply temperature of the water supply tank is increased, the amount of heat that can be absorbed by the economizer is reduced, so the overall amount of energy used is increased.

また、ドレン回収による給水温度の上昇後に、さらにエコノマイザにて予熱を行う場合、最終的な給水温度は、ドレン回収のみ、あるいはエコノマイザのみの場合よりは高くなるが、二つの予熱での温度上昇を合計した値とはならない。上記の例では、エコノマイザ単独の場合はエコノマイザ部分で55℃の温度上昇が行えたが、ドレン回収後にエコノマイザで予熱を行う場合のエコノマイザ部分での温度上昇は40℃となっており、エコノマイザ単独での予熱に比べると低くなっている。これは、ドレン回収によって60℃まで温度が上昇したボイラ給水をエコノマイザへ供給した場合、エコノマイザではボイラ給水温度と排気ガスとの温度差が小さくなるため、ボイラ給水で吸収することのできる熱量が低下することによる。また、エコノマイザ内を流れる給水温度が低いと、排気ガスはより低い温度になるまで熱交換することができ、排気ガスを凝縮させることで排気ガスの潜熱も回収することができる。しかしエコノマイザ内を流れる給水温度が高いと、排気ガスの最終温度はあまり低くならず、潜熱回収も行えないため、エコノマイザにおける熱回収量は低下することになる。 In addition, if the economizer is further preheated after the feedwater temperature rises due to drain recovery, the final feedwater temperature will be higher than in the case of only drain recovery or only the economizer, but the temperature rise due to two preheats. It is not the total value. In the above example, the economizer alone could increase the temperature by 55 ° C in the economizer part, but the temperature rise in the economizer part when preheating with the economizer after drain recovery was 40 ° C. It is lower than the preheating of. This is because, when boiler feed water whose temperature has risen to 60 ° C. due to drain recovery is supplied to the economizer, the economizer reduces the temperature difference between the boiler feed water temperature and the exhaust gas, so the amount of heat that can be absorbed by the boiler feed water decreases. By doing. In addition, when the temperature of the water supply flowing through the economizer is low, the exhaust gas can be heat exchanged to a lower temperature, and the exhaust gas can be condensed to recover the latent heat of the exhaust gas. However, if the temperature of the feed water flowing through the economizer is high, the final temperature of the exhaust gas is not so low and the latent heat cannot be recovered, so the amount of heat recovered in the economizer decreases.

上記のように廃棄されていた熱を使用して給水を予熱することで、ボイラでのエネルギー使用量を削減させることができるが、予熱を行うことでボイラ給水の温度が上昇すると、ボイラ給水がエコノマイザで吸収することのできる熱量は減少していく。そのため、より効率的に給水を予熱することが望まれていた。 Preheating feed water using the heat that was discarded as described above can reduce the amount of energy used in the boiler, but if the boiler feed water temperature rises due to preheating, the boiler feed water The amount of heat that can be absorbed by the economizer decreases. Therefore, it has been desired to preheat the water supply more efficiently.

特開2000−121003号公報JP 2000-121033 A

本発明が解決しようとする課題は、ドレン回収による給水の予熱と、エコノマイザによる給水の予熱を併用しているボイラにおいて、給水による熱の回収量をさらに増加することで、ボイラでのエネルギー使用量をさらに削減することのできる給水予熱装置を持ったボイラを提供することにある。 The problem to be solved by the present invention is to further increase the amount of heat recovered by water supply in a boiler that uses both preheating of water supplied by drain recovery and preheating of water supplied by an economizer. It is providing the boiler with the feed water preheating apparatus which can further reduce this.

請求項1に記載の発明は、高温ガスによってボイラ水を加熱して蒸気を発生させるボイラ、ボイラから負荷機器へ供給した蒸気が凝縮したドレンを回収してボイラ給水として再利用するためのドレン回収装置、ボイラへ供給するボイラ給水とボイラから排出される排気ガスの間で熱交換を行うエコノマイザを持ち、ドレン回収と排気ガスによる給水予熱を行っている給水予熱装置を持ったボイラにおいて、前記のエコノマイザは、排気ガス流において上流側となる高温伝熱管群と、排気ガス流において下流側となる低温伝熱管群に分割して設置しており、ボイラ補給水はまず低温伝熱管群内を通すことで一段目の予熱を行い、回収してきたドレンは低温伝熱管群には通さずに一段目の予熱を行ったボイラ補給水と混合するようにしており、高温伝熱管群には、低温伝熱管群で予熱を行った補給水と回収ドレンを混合したボイラ給水を供給するようにしていることを特徴とする。 The invention according to claim 1 is a boiler for generating steam by heating boiler water with a high-temperature gas, and drain recovery for recovering drain condensed by steam supplied to the load equipment from the boiler and reusing it as boiler feed water. A boiler having an economizer for exchanging heat between boiler feed water supplied to a boiler and exhaust gas exhausted from the boiler, and having a water supply preheating device that performs drain recovery and feed water preheating with exhaust gas, The economizer is divided into a high-temperature heat transfer tube group that is upstream in the exhaust gas flow and a low-temperature heat transfer tube group that is downstream in the exhaust gas flow, and boiler makeup water first passes through the low-temperature heat transfer tube group. The first stage of preheating is performed, and the recovered drain is not passed through the low-temperature heat transfer tube group, but is mixed with the boiler replenishment water that has undergone the first stage of heating. The heat transfer tube group, characterized in that it is adapted to supply boiler feedwater of a mixture of a collection drain makeup water was preheated at a low temperature heat transfer tube group.

請求項2に記載の発明は、前記の給水予熱装置を持ったボイラにおいて、ボイラへ供給するボイラ給水を一時的にためる給水タンクを低温伝熱管群と高温伝熱管群の間に設置することで、一段目の予熱を行ったボイラ補給水を給水タンクに貯水するとともに、回収してきたドレンを給水タンクに導入し、給水タンクで一段目の予熱を行ったボイラ補給水と回収ドレンを混合するようにしており、高温伝熱管群には給水タンクからボイラ給水を供給するようにし、さらに前記給水タンクには、ボイラから排出している濃縮ブロー水と給水タンクにためているボイラ給水との間で熱交換を行うブロー熱交換器を設けていることを特徴とする。請求項3に記載の発明は、請求項2に記載の給水予熱装置を持ったボイラにおいて、ブロー熱交換器の設置位置は、給水タンクと低温伝熱管群との間としていることを特徴とする。請求項4に記載の発明は、請求項1に記載の給水予熱装置を持ったボイラにおいて、回収ドレンを混合するところと低温伝熱管群との間に、低温伝熱管群で一段目の予熱を行った後の給水と濃縮ブロー水との間で熱交換を行うブロー熱交換器を設けていることを特徴とする。 The invention according to claim 2 is a boiler having the feed water preheating device, wherein a feed water tank for temporarily storing boiler feed water supplied to the boiler is installed between the low temperature heat transfer tube group and the high temperature heat transfer tube group. The first stage preheated boiler makeup water is stored in the water supply tank, and the recovered drain is introduced into the water supply tank so that the first stage preheated boiler makeup water and the collected drain are mixed. The high-temperature heat transfer tube group is supplied with boiler feed water from a feed water tank, and the feed water tank is further connected between the concentrated blow water discharged from the boiler and the boiler feed water stored in the feed water tank. A blow heat exchanger for performing heat exchange is provided. The invention according to claim 3 is the boiler having the feed water preheating device according to claim 2, wherein the blow heat exchanger is installed between the feed water tank and the low-temperature heat transfer tube group. . According to a fourth aspect of the present invention, in the boiler having the feed water preheating device according to the first aspect, the first stage preheating is performed in the low temperature heat transfer tube group between the place where the recovered drain is mixed and the low temperature heat transfer tube group. A blow heat exchanger is provided that performs heat exchange between the supplied water and the concentrated blow water.

エコノマイザで給水の予熱を行うということは、排気ガスの熱を給水に移動させるというものであるため、排気ガスの温度は下流側ほど低くなる。そのため、エコノマイザの排気ガス流出口に近い部分では、温度の低下した排気ガスで給水の予熱を行うことになる。その際、エコノマイザに入る前の段階でボイラ給水の予熱を行っていると、温度の上昇したボイラ給水と、温度の低下した排気ガスとの間で熱交換することになり、給水温度と排気ガス温度の差が小さくなることで、ボイラ給水が取り込むことのできる熱量は少なくなっていた。また、エコノマイザで予熱した後の給水温度は、ドレン温度より高くなるため、エコノマイザで予熱後の給水にドレンを混合しても給水温度は上昇しない。 Preheating water supply with an economizer means that the heat of the exhaust gas is transferred to the water supply, so the temperature of the exhaust gas becomes lower as it goes downstream. For this reason, in the portion close to the exhaust gas outlet of the economizer, the feed water is preheated with the exhaust gas whose temperature has decreased. At that time, if the boiler feed water is preheated before entering the economizer, heat exchange is performed between the boiler feed water whose temperature has risen and the exhaust gas whose temperature has fallen. As the temperature difference is reduced, the amount of heat that the boiler feed water can take in has been reduced. Further, since the feed water temperature after preheating with the economizer is higher than the drain temperature, the feed water temperature does not rise even if drain is mixed with the preheated water with the economizer.

本発明では、エコノマイザは低温伝熱管群と高温伝熱管群に分けて設置している。ボイラ給水流上流側であって、排気ガス流下流側となる低温伝熱管群には、予熱を行っていないボイラ給水を供給すると、ボイラ給水の温度は低いため、排気ガスがより低い温度になるまで熱の回収が行え、排気ガスから潜熱の回収も行うことができる。さらに回収したドレンの給水への混合は、低温伝熱管群による予熱後であって、高温伝熱管群による予熱前の給水に対して行うので、ボイラ給水の保有する熱量が増加し、給水温度を上昇することができる。そして、回収ドレンの混合によって温度が上昇した給水であっても、排気ガス流の上流側に設けている高温伝熱管群では排気ガス温度がさらに高いため、高温伝熱管群でも給水の予熱を行うことができる。その結果、総合的な熱吸収量が増加するため、ボイラでのエネルギー使用量を削減することができる。 In the present invention, the economizer is divided into a low temperature heat transfer tube group and a high temperature heat transfer tube group. When boiler feed water that has not been preheated is supplied to the low-temperature heat transfer tube group that is upstream of the boiler feed water flow and downstream of the exhaust gas flow, the temperature of the boiler feed water is low, so the exhaust gas becomes a lower temperature. It is possible to recover the heat up to the exhaust gas, and it is possible to recover the latent heat from the exhaust gas. Furthermore, since the collected drain is mixed into the feed water after preheating by the low temperature heat transfer tube group and before preheating by the high temperature heat transfer tube group, the amount of heat held by the boiler feed water increases, and the feed water temperature is reduced. Can rise. Even in the case of feed water whose temperature has risen due to the mixing of the collected drain, the exhaust gas temperature is higher in the high-temperature heat transfer tube group provided upstream of the exhaust gas flow, so the high-temperature heat transfer tube group also preheats the feed water. be able to. As a result, the total amount of heat absorption increases, so that the amount of energy used in the boiler can be reduced.

本発明を実施することで、ボイラ給水ではドレン及び排気ガスから回収することのできる熱量が増加するため、ボイラでのエネルギー使用量を削減させることができる。 By carrying out the present invention, the amount of heat that can be recovered from the drain and the exhaust gas in the boiler feed water increases, so that the amount of energy used in the boiler can be reduced.

本発明を実施しているボイラの給水経路説明図Water supply route explanatory diagram of a boiler implementing the present invention 本発明の第2の実施例でのボイラの給水経路説明図Water supply route explanatory drawing of the boiler in the 2nd example of the present invention 本発明の第3の実施例でのボイラの給水経路説明図Boiler water supply route explanatory diagram in the third embodiment of the present invention 本発明の第4の実施例でのボイラの給水経路説明図Boiler water supply route explanatory diagram in the fourth embodiment of the present invention 比較のための従来ボイラでの給水経路説明図Water supply route explanatory diagram in a conventional boiler for comparison

本発明の実施例を図面を用いて説明する。図1は本発明を実施しているボイラの給水経路を説明するための図である。ボイラ1は、内部で燃焼を行うことでボイラ水を加熱し、負荷機器2へ蒸気を供給するものである。ボイラ1には、軟水器(図示せず)によって水中の硬度成分を除去し、薬品を注入することによってボイラに適した水質に調節した水を補給水として供給するようにしている。また、負荷機器2で発生したドレンを回収し、ボイラ給水として使用するためのドレン回収装置を設けておく。負荷機器2と給水タンク6の間は、ドレン回収配管で接続し、ドレン回収配管途中には蒸気トラップを設けている。ボイラ1で発生して負荷機器2へ供給した蒸気のうち、負荷機器で凝縮して液体となったドレンはドレン回収配管を通して給水タンク6へ回収し、ボイラへの給水に混合することで再利用するようにしている。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram for explaining a water supply path of a boiler implementing the present invention. The boiler 1 heats boiler water by performing combustion inside and supplies steam to the load device 2. The boiler 1 is supplied with water adjusted to a water quality suitable for the boiler by removing the hardness component in water with a water softener (not shown) and injecting chemicals as makeup water. In addition, a drain recovery device for recovering the drain generated in the load device 2 and using it as boiler feed water is provided. The load device 2 and the water supply tank 6 are connected by a drain recovery pipe, and a steam trap is provided in the middle of the drain recovery pipe. Of the steam generated in the boiler 1 and supplied to the load device 2, the condensate drained into the liquid by the load device is collected into the feed water tank 6 through the drain collection pipe and reused by mixing with the feed water to the boiler. Like to do.

ボイラは、内部に設けている燃焼装置によってボイラ水を加熱して蒸気を発生し、ボイラ水の加熱に使用した後の排気ガスは、排気通路3を通して排出する。この排気ガスは、まだ高温であるため、ボイラ給水の予熱に利用する。排気通路3には、ボイラへ供給しているボイラ給水と、排気通路内を流れる排気ガスの間で熱交換を行うためのエコノマイザ8を設ける。エコノマイザ8は、排気通路内を流れる排気ガスに対して交差するように多数の伝熱管を設置しており、連結することで長い流路を形成している。伝熱管の外側表面には、伝熱面積を増加するための熱吸収用フィンを多数設けている。エコノマイザ8の伝熱管は、排ガス流の上流側となる高温伝熱管群4と、排ガス流の下流側となる低温伝熱管群5に分割して設置しておく。 The boiler heats the boiler water by a combustion device provided therein to generate steam, and the exhaust gas after being used for heating the boiler water is discharged through the exhaust passage 3. Since this exhaust gas is still hot, it is used for preheating boiler feed water. The exhaust passage 3 is provided with an economizer 8 for exchanging heat between the boiler feed water supplied to the boiler and the exhaust gas flowing in the exhaust passage. The economizer 8 is provided with a large number of heat transfer tubes so as to cross the exhaust gas flowing in the exhaust passage, and a long flow path is formed by connecting them. Many heat absorption fins for increasing the heat transfer area are provided on the outer surface of the heat transfer tube. The heat transfer tubes of the economizer 8 are divided into a high temperature heat transfer tube group 4 on the upstream side of the exhaust gas flow and a low temperature heat transfer tube group 5 on the downstream side of the exhaust gas flow.

ボイラへの給水は、給水流においては上流側となる低温伝熱管群5へまず導入し、その次に高温伝熱管群4へ導入するように接続しておく。高温伝熱管群4と低温伝熱管群5の間では、給水配管を排気通路3の外側へ出ており、排気通路3の外に設けている給水タンク6に接続している。給水タンク6は、低温伝熱管群5で一段目の予熱を行ったボイラ給水を一時的にためておくものであり、高温伝熱管群4へ給水する場合は、給水タンク6と高温伝熱管群4を結んでいる経路上に設けている給水ポンプを作動することで給水を加圧して供給する。また、給水タンク6には、ボイラ1から負荷機器2へ供給した蒸気が、負荷機器2で熱を使用したことによって凝縮し、そこで発生したドレンを回収してくるようにしており、給水タンク6において、回収してきたドレンをボイラ給水と混合する。 The water supply to the boiler is connected so that it is first introduced into the low-temperature heat transfer tube group 5 on the upstream side in the feed water flow and then introduced into the high-temperature heat transfer tube group 4. Between the high-temperature heat transfer tube group 4 and the low-temperature heat transfer tube group 5, the water supply pipe goes out of the exhaust passage 3 and is connected to a water supply tank 6 provided outside the exhaust passage 3. The water supply tank 6 temporarily stores the boiler feed water that has been preheated by the first stage in the low temperature heat transfer tube group 5. When supplying water to the high temperature heat transfer tube group 4, the water supply tank 6 and the high temperature heat transfer tube group The water supply is pressurized and supplied by operating a water supply pump provided on the path connecting the four. Further, the steam supplied from the boiler 1 to the load device 2 is condensed in the water supply tank 6 by using heat in the load device 2, and the generated drain is recovered. , The recovered drain is mixed with boiler feed water.

本実施例での給水予熱の例を、数値を当てはめながら説明する。まず、予熱を行っていない新規補給水の低温伝熱管群5に入る前の温度は20℃、補給水の供給量は700L/Hであるとしている。そして負荷機器2から回収してくるドレンの温度は80℃、ドレンの回収量は1400L/Hとしている。また、ボイラから排出されてくる排気ガスの温度は240℃としている。 An example of water supply preheating in the present embodiment will be described with numerical values applied. First, it is assumed that the temperature before entering the low-temperature heat transfer tube group 5 of new makeup water that has not been preheated is 20 ° C. and the supply amount of makeup water is 700 L / H. The temperature of the drain collected from the load device 2 is 80 ° C., and the collected amount of drain is 1400 L / H. The temperature of the exhaust gas discharged from the boiler is 240 ° C.

排気通路3を流れる排気ガスは、エコノマイザ8よりも上流の段階では240℃であるが、エコノマイザ8で熱交換を行うことで温度は低下していくため、排気通路3の下流ほど温度は低くなる。排気ガス温度は、高温伝熱管群4を通過した部分での137℃、低温伝熱管群5を通過した部分では102℃となっている。この状態で補給水を低温伝熱管群5の中に通すと、補給水は排ガスの熱を受けて温度が上昇する。低温伝熱管群5で排気ガスからの熱を受けた補給水は、低温伝熱管群5の出口では60℃まで上昇している。この場合低温伝熱管群5では、給水流で最も上流側となり、排ガス流では最も下流側となる伝熱管では、102℃の排気ガスと20℃の補給水によって熱交換を行い、給水流で最も下流側となり、排ガス流では最も上流側となる伝熱管では、137℃の排気ガスと60℃の補給水によって熱交換を行うことになる。 The exhaust gas flowing through the exhaust passage 3 is 240 ° C. in the stage upstream of the economizer 8, but the temperature decreases as heat exchange is performed in the economizer 8, so the temperature becomes lower as the downstream of the exhaust passage 3. . The exhaust gas temperature is 137 ° C. in the portion that has passed through the high-temperature heat transfer tube group 4, and 102 ° C. in the portion that has passed through the low-temperature heat transfer tube group 5. When makeup water is passed through the low-temperature heat transfer tube group 5 in this state, the temperature of the makeup water rises due to the heat of the exhaust gas. The makeup water that has received heat from the exhaust gas in the low-temperature heat transfer tube group 5 rises to 60 ° C. at the outlet of the low-temperature heat transfer tube group 5. In this case, in the low-temperature heat transfer tube group 5, the heat transfer tube that is the most upstream side in the feed water flow and the most downstream side in the exhaust gas flow performs heat exchange with the exhaust gas at 102 ° C. and the makeup water at 20 ° C. In the heat transfer tube which is on the downstream side and is the most upstream side in the exhaust gas flow, heat exchange is performed by exhaust gas at 137 ° C. and makeup water at 60 ° C.

エコノマイザ8内を流れるボイラ給水よりも、外側を流れる排気ガスの温度が高いと、排気ガスの熱がボイラ給水に移動し、ボイラ給水の温度は上昇するが、排気ガスの温度がボイラ給水の温度よりも十分に高い温度でないと、ボイラ給水で吸収することのできる熱量は少なくなる。本実施例の低温伝熱管群5では、排気ガス流の最下流の伝熱管における排気ガスとボイラ給水の温度差は82℃、排気ガス流の最上流の伝熱管における排気ガスとボイラ給水の温度差は77℃となっており、ボイラ給水は低温伝熱管群5の全体で熱の吸収を行うことができる。 If the temperature of the exhaust gas flowing outside the boiler feed water flowing inside the economizer 8 is higher, the heat of the exhaust gas moves to the boiler feed water and the temperature of the boiler feed water rises, but the temperature of the exhaust gas is the temperature of the boiler feed water If the temperature is not sufficiently higher than that, the amount of heat that can be absorbed by the boiler feed water is reduced. In the low-temperature heat transfer tube group 5 of the present embodiment, the temperature difference between the exhaust gas and the boiler feed water in the most downstream heat transfer tube in the exhaust gas flow is 82 ° C., and the temperature of the exhaust gas and the boiler feed water in the most upstream heat transfer tube in the exhaust gas flow The difference is 77 ° C., and the boiler feed water can absorb heat in the entire low-temperature heat transfer tube group 5.

なお、低温伝熱管群5の下流側での排気ガス温度は、伝熱管部分での温度のバラツキが均されたものである。伝熱管から離れた部分を流れてきた排気ガス温度は上記温度より高くなるが、伝熱管表面に沿って流れてきた排気ガス温度は上記温度より低くなり、伝熱管の表面では排気ガスの凝縮が発生する。そのために低温伝熱管群5では潜熱回収も行うことができる。 The exhaust gas temperature on the downstream side of the low-temperature heat transfer tube group 5 is obtained by leveling the temperature variation in the heat transfer tube portion. The temperature of the exhaust gas that has flowed away from the heat transfer tube is higher than the above temperature, but the temperature of the exhaust gas that has flowed along the surface of the heat transfer tube is lower than the above temperature, and condensation of the exhaust gas occurs on the surface of the heat transfer tube. Occur. Therefore, latent heat recovery can also be performed in the low-temperature heat transfer tube group 5.

低温伝熱管群5を通過した補給水は、排気通路3の外に設けている給水タンク6内に入る。給水タンク6では、低温伝熱管群5で予熱した補給水と、負荷機器2から回収してきたドレンを混合する。回収してきたドレンは、温度80℃、回収量1400L/Hであったとすると、低温伝熱管群5で予熱した補給水の温度より高いものであるため、ドレンを混合すると、混合水の温度は上昇する。本実施例では、回収したドレンと予熱した補給水を混合した混合水温度は73℃となっている。 The makeup water that has passed through the low-temperature heat transfer tube group 5 enters a water supply tank 6 provided outside the exhaust passage 3. In the water supply tank 6, the makeup water preheated by the low-temperature heat transfer tube group 5 and the drain recovered from the load device 2 are mixed. If the recovered drain is 80 ° C. and the recovery amount is 1400 L / H, it is higher than the temperature of the supplementary water preheated in the low-temperature heat transfer tube group 5, and therefore when the drain is mixed, the temperature of the mixed water increases. To do. In this embodiment, the mixed water temperature obtained by mixing the recovered drain and preheated makeup water is 73 ° C.

次にこの混合水は、高温伝熱管群4へ送り、高温伝熱管群4で再び排気ガスによる予熱を行う。高温伝熱管群4の排気ガス流上流側からは240℃の排気ガスが送られており、この排気ガスで高温伝熱管群4内ボイラ給水の加熱を行うと、ボイラ給水はさらに温度が上昇する。ボイラ給水の温度は、高温伝熱管群4で2回目の予熱を行うことで、73℃から107℃まで上昇している。そのためこの給水予熱装置全体では、ボイラ給水温度を20℃から107℃まで温度を上昇させることができている。 Next, this mixed water is sent to the high-temperature heat transfer tube group 4 and preheated with exhaust gas again in the high-temperature heat transfer tube group 4. Exhaust gas of 240 ° C. is sent from the upstream side of the exhaust gas flow of the high temperature heat transfer tube group 4. When the boiler feed water in the high temperature heat transfer tube group 4 is heated with this exhaust gas, the temperature of the boiler feed water further increases. . The temperature of the boiler feed water is increased from 73 ° C. to 107 ° C. by performing the second preheating in the high-temperature heat transfer tube group 4. Therefore, in this feed water preheating apparatus as a whole, the boiler feed water temperature can be increased from 20 ° C. to 107 ° C.

この場合のエコノマイザ8における回収熱量を計算すると、低温伝熱管群5での回収熱量は、潜熱回収量3.6kWを含めて26.0kW、高温伝熱管群4では65.9kW、合計で91.9kWとなった。そしてこの場合でのエコノマイザにおけるボイラ効率のアップ幅は、7.2%となる。 When the amount of recovered heat in the economizer 8 in this case is calculated, the amount of recovered heat in the low-temperature heat transfer tube group 5 is 26.0 kW including the latent heat recovery amount 3.6 kW, the high-temperature heat transfer tube group 4 is 65.9 kW, and a total of 91. It became 9kW. In this case, the increase in boiler efficiency in the economizer is 7.2%.

図5は、比較のための従来ボイラでの給水経路説明図である。比較例で使用している補給水や回収ドレンの温度と流量、ボイラから排出されている排気ガスの温度、さらにはエコノマイザ8の伝熱面積といった各条件は、上記実施例の場合と同じであるとしている。実施例との違いは、実施例では補給水を回収ドレンと混合していない状態で、低温伝熱管群5にて排気ガスによる予熱を行い、低温伝熱管群5での予熱後に回収ドレンとの混合を行って、更に高温伝熱管群4で排気ガスによる予熱を行っているのに対し、比較例の場合は最初の段階で補給水と回収ドレンの混合を行っておき、その後に高温伝熱管群4と低温伝熱管群5の両方と同じだけの伝熱面積を持ったエコノマイザ8で予熱しているという部分である。 FIG. 5 is an explanatory diagram of a water supply path in a conventional boiler for comparison. The conditions such as the temperature and flow rate of the makeup water and recovered drain used in the comparative example, the temperature of the exhaust gas discharged from the boiler, and the heat transfer area of the economizer 8 are the same as those in the above embodiment. It is said. The difference from the embodiment is that in the embodiment, makeup water is not mixed with the collected drain, preheating with the exhaust gas is performed in the low temperature heat transfer tube group 5, and after the preheating in the low temperature heat transfer tube group 5, In the case of the comparative example, makeup water and recovered drain are mixed in the first stage, and then the high-temperature heat transfer tubes are mixed. This is a part in which preheating is performed by an economizer 8 having the same heat transfer area as both the group 4 and the low-temperature heat transfer tube group 5.

比較例では、給水タンク6で20℃の補給水と80℃の回収ドレンを混合することで60℃の混合水としており、温度が上昇した混合水をエコノマイザ8へ送る。排気通路3内を流れる排気ガスは、エコノマイザ8の上流では240℃であるが、エコノマイザ8部分で給水の予熱を行うことで温度が低下し、エコノマイザ8の下流では106℃となっている。そのため、エコノマイザ8の給水流において最も上流側となる伝熱管では、106℃の排気ガスと60℃の補給水とによって熱交換することになり、ここでの温度差は46℃となる。先に説明した実施例では、この温度差は82℃であったが、比較例では半分近くまで減少している。この温度差が小さいと、ここでボイラ給水が取り込むことのできる熱量は減少することになる。つまり、上記実施例では排気ガス流の最下流まで効率的に熱の吸収を行っており、全体での熱の回収量は多くなっているが、比較例の場合には、排気ガス流の最下流では熱の吸収が低下しており、全体での熱の回収量は少なくなっている。 In the comparative example, the water supply tank 6 mixes 20 ° C. makeup water and 80 ° C. recovered drain to form 60 ° C. mixed water, and the mixed water whose temperature has risen is sent to the economizer 8. The exhaust gas flowing in the exhaust passage 3 is 240 ° C. upstream of the economizer 8, but the temperature is lowered by preheating water supply in the economizer 8 portion, and is 106 ° C. downstream of the economizer 8. For this reason, in the heat transfer pipe located on the most upstream side in the water supply flow of the economizer 8, heat exchange is performed between the exhaust gas at 106 ° C. and the makeup water at 60 ° C., and the temperature difference here is 46 ° C. In the example described above, this temperature difference was 82 ° C., but in the comparative example, it decreased to nearly half. If this temperature difference is small, the amount of heat that can be taken in by the boiler feed water will decrease. In other words, in the above embodiment, heat is efficiently absorbed to the most downstream side of the exhaust gas flow, and the overall heat recovery amount is large. In the downstream, heat absorption is reduced, and the overall heat recovery amount is small.

さらに、比較例での最終の排気ガス温度は106℃であり、伝熱管表面部分でも排気ガスの凝縮は発生しておらず、潜熱回収も行われていない。最終の排気ガス温度は低い方が排気ガスの熱を多く吸収したことになるが、実施例では102℃に対し、比較例では106℃であるため、実施例の方がより多くの熱を回収していることになる。そのため、熱吸収量が少なくなっている比較例では、エコノマイザ8の出口におけるボイラ給水温度は104℃となっており、上記実施例での107℃よりも低い値になっている。 Further, the final exhaust gas temperature in the comparative example is 106 ° C., no condensation of exhaust gas occurs on the surface of the heat transfer tube, and no latent heat recovery is performed. The lower the final exhaust gas temperature, the more the heat of the exhaust gas was absorbed, but in the example, it was 106 ° C compared to 102 ° C, so the example recovered more heat. Will be. Therefore, in the comparative example in which the heat absorption amount is small, the boiler feed water temperature at the outlet of the economizer 8 is 104 ° C., which is lower than 107 ° C. in the above embodiment.

この場合のエコノマイザ8での回収熱量を計算すると、潜熱回収量は0であり、顕熱回収のみで85.8kWとなった。上記実施例では合計が91.9kWであったため、実施例では比較例と比べて6.1kW多くなるということになる。そしてこの場合でのエコノマイザにおけるボイラ効率のアップ幅は6.7%であった。上記実施例でのエコノマイザにおけるボイラ効率のアップ幅は7.2%であったため、実施例の方が0.5%分多いということになる。 When the amount of heat recovered by the economizer 8 in this case was calculated, the amount of latent heat recovered was 0, and it was 85.8 kW only by sensible heat recovery. In the above example, the total was 91.9 kW, so that in the example, the amount was 6.1 kW higher than the comparative example. In this case, the increase in boiler efficiency in the economizer was 6.7%. Since the increase in the boiler efficiency in the economizer in the above embodiment was 7.2%, the embodiment is 0.5% more.

図2は本発明の第2の実施例でのボイラの給水経路説明図である。図2の実施例は、図1の実施例から濃縮ブローによる給水予熱を追加した場合のものである。ボイラでは、蒸気を発生させることでボイラ水が濃縮していくため、濃縮しすぎることを防止する目的で定期的にボイラ水を排出する濃縮ブローを行っている。図2の実施例では、低温伝熱管群5で予熱した給水をためる給水タンク6に、ボイラ1から排出する濃縮ブロー水との熱交換を行うブロー熱交換器7を設置している。ボイラから排出している濃縮ブロー水量は、ドレン回収量に比べると少ないが、排出されるのはボイラ水であるために高温であり、ブロー熱交換器7に通すことで給水タンク6内の給水を予熱することができる。この場合も、回収したドレンを混合するのと、濃縮ブロー水による給水予熱を行うのは、二段目の給水予熱部である高温伝熱管群4の手前であり、一段目の給水予熱部である低温伝熱管群5には温度の低い水を供給するようにしている。そのため、この場合も低温伝熱管群5では、温度の低下した排気ガスからも給水の予熱を行うことができ、エコノマイザ8での熱回収量は比較例の場合よりも多くすることができる。さらに図2の実施例では、濃縮ブロー水による予熱を行っているため、図1の実施例よりも給水の予熱量を多くすることができる。 FIG. 2 is an explanatory view of a water supply path of the boiler in the second embodiment of the present invention. The embodiment of FIG. 2 is a case where feed water preheating by concentration blow is added to the embodiment of FIG. In the boiler, since the boiler water is concentrated by generating steam, a concentration blow for periodically discharging the boiler water is performed for the purpose of preventing the boiler water from being excessively concentrated. In the embodiment of FIG. 2, a blow heat exchanger 7 that performs heat exchange with the concentrated blow water discharged from the boiler 1 is installed in a feed water tank 6 that accumulates water preheated by the low-temperature heat transfer tube group 5. The amount of concentrated blow water discharged from the boiler is smaller than the amount of drain recovered, but since it is boiler water that is discharged, it is hot, and it is passed through the blow heat exchanger 7 to supply water in the water supply tank 6. Can be preheated. Also in this case, the collected drain is mixed and the feed water preheating with the concentrated blow water is performed before the high-temperature heat transfer tube group 4 which is the second stage feed water preheating section, and in the first stage feed water preheating section. A certain low temperature heat transfer tube group 5 is supplied with water having a low temperature. Therefore, also in this case, the low-temperature heat transfer tube group 5 can preheat the water supply from the exhaust gas whose temperature has decreased, and the amount of heat recovered by the economizer 8 can be made larger than that in the comparative example. Furthermore, in the embodiment of FIG. 2, since preheating is performed with concentrated blow water, the amount of preheated water can be increased as compared with the embodiment of FIG.

図3及び図4も本発明の他の実施例でのボイラの給水経路説明図である。図3及び図4の実施例は、ブロー熱交換器7を、一段目の予熱を行った後の給水と回収したドレンとを混合するところと、低温伝熱管群5との間に設置して、回収したドレンと混合する前に、低温伝熱管群5で一段目の予熱を行った後の給水に対して、濃縮ブローによる給水予熱を行った場合の実施例である。さらに図4は、給水タンク6を使用しない場合の実施例である。図3及び図4の実施例では、一段目の予熱を行った後の給水と回収したドレンとを混合する前に、濃縮ブローと熱交換を行うため、一段目の予熱を行った後の給水に対してより効率的に予熱を行うことができ、総合的に図2の実施例よりも給水の予熱量を多くすることができる。ただし、ボイラ本体に対する給水の安定化のためには給水タンク6を設置しておいた方がよく、図3の実施例は図2に比べ装置が大掛かりになり設備費が多くかかるといった問題点もあることより、総合的に見て図2の実施例がもっとも良好である。また本発明においては、低温伝熱管群の下流側に給水タンクを設けることで、缶水が逆流した場合でも給水タンクで止めることができ、低温伝熱管群に缶水が流れ込むことがなくなる。そのため、給水タンクより上流側の配管や低温伝熱管群をオールアルミ合金とすることが可能となり、低温伝熱管群の熱効率アップ(熱吸収率アップ)やコンパクト化につながる。 3 and 4 are also diagrams for explaining the water supply path of the boiler in another embodiment of the present invention. 3 and 4, the blow heat exchanger 7 is installed between the place where the feed water after the first stage preheating and the collected drain are mixed and the low temperature heat transfer tube group 5. In this embodiment, the feed water after the first stage pre-heating in the low-temperature heat transfer tube group 5 is pre-heated by the concentration blow before being mixed with the recovered drain. Further, FIG. 4 shows an embodiment in which the water supply tank 6 is not used. 3 and FIG. 4, in order to perform concentration blow and heat exchange before mixing the feed water after the first stage preheating and the collected drain, the feed water after the first stage preheating is performed. Therefore, preheating can be performed more efficiently, and the preheating amount of the water supply can be increased more than the embodiment of FIG. However, it is better to install a water supply tank 6 in order to stabilize the water supply to the boiler body, and the embodiment of FIG. 3 has a problem that the apparatus is larger than that of FIG. Therefore, the embodiment shown in FIG. 2 is the best when viewed comprehensively. Further, in the present invention, by providing a water supply tank on the downstream side of the low temperature heat transfer tube group, even when the can water flows backward, the water supply tank can be stopped, and the can water does not flow into the low temperature heat transfer tube group. Therefore, it becomes possible to use all-aluminum alloy for the piping and the low temperature heat transfer tube group upstream from the water supply tank, leading to an increase in thermal efficiency (heat absorption rate increase) and downsizing of the low temperature heat transfer tube group.

なお、本発明は以上説明した実施例に限定されるものではなく、多くの変形が本発明の技術的思想内で当分野において通常の知識を有する者により可能である。 The present invention is not limited to the embodiments described above, and many modifications can be made by those having ordinary knowledge in the art within the technical idea of the present invention.

1 ボイラ
2 負荷機器
3 排気通路
4 高温伝熱管群
5 低温伝熱管群
6 給水タンク
7 ブロー熱交換器
8 エコノマイザ
1 boiler
2 Load equipment 3 Exhaust passage 4 High temperature heat transfer tube group
5 Low temperature heat transfer tube group 6 Water supply tank 7 Blow heat exchanger 8 Economizer

Claims (4)

高温ガスによってボイラ水を加熱して蒸気を発生させるボイラ、ボイラから負荷機器へ供給した蒸気が凝縮したドレンを回収してボイラ給水として再利用するためのドレン回収装置、ボイラへ供給するボイラ給水とボイラから排出される排気ガスの間で熱交換を行うエコノマイザを持ち、ドレン回収と排気ガスによる給水予熱を行っている給水予熱装置を持ったボイラにおいて、前記のエコノマイザは、排気ガス流において上流側となる高温伝熱管群と、排気ガス流において下流側となる低温伝熱管群に分割して設置しており、ボイラ補給水はまず低温伝熱管群内を通すことで一段目の予熱を行い、回収してきたドレンは低温伝熱管群には通さずに一段目の予熱を行ったボイラ補給水と混合するようにしており、高温伝熱管群には、低温伝熱管群で予熱を行った補給水と回収ドレンを混合したボイラ給水を供給するようにしていることを特徴とする給水予熱装置を持ったボイラ。 A boiler that generates steam by heating boiler water with high-temperature gas, a drain recovery device that collects drain condensed steam supplied to the load equipment from the boiler and reuses it as boiler feed water, boiler feed water supplied to the boiler, In a boiler having a water supply preheating device that has an economizer that exchanges heat between exhaust gases discharged from the boiler, and that performs drain recovery and water supply preheating with exhaust gas, the economizer is located upstream in the exhaust gas flow. It is divided into a high-temperature heat transfer tube group that becomes and a low-temperature heat transfer tube group that is downstream in the exhaust gas flow, and the boiler make-up water first passes through the low-temperature heat transfer tube group to perform the first stage preheating, The recovered drain is not passed through the low-temperature heat transfer tube group, but is mixed with boiler makeup water that has been preheated at the first stage. Boiler having a water preheating device, characterized in that so as to supply the boiler feed water of a mixture of make-up water and recovered drainage was preheated in a group. 請求項1に記載の給水予熱装置を持ったボイラにおいて、ボイラへ供給するボイラ給水を一時的にためる給水タンクを低温伝熱管群と高温伝熱管群の間に設置することで、一段目の予熱を行ったボイラ補給水を給水タンクに貯水するとともに、回収してきたドレンを給水タンクに導入し、給水タンクで一段目の予熱を行ったボイラ補給水と回収ドレンを混合するようにしており、高温伝熱管群には給水タンクからボイラ給水を供給するようにし、さらに前記給水タンクには、ボイラから排出している濃縮ブロー水と給水タンクにためているボイラ給水との間で熱交換を行うブロー熱交換器を設けていることを特徴とする給水予熱装置を持ったボイラ。 A boiler having the feed water preheating device according to claim 1, wherein a first stage preheating is performed by installing a feed water tank for temporarily storing boiler feed water supplied to the boiler between the low temperature heat transfer tube group and the high temperature heat transfer tube group. In addition to storing the boiler makeup water that has been used in the feed water tank, the drain that has been collected is introduced into the feed water tank, and the boiler feed water that has been preheated in the first stage in the feed water tank is mixed with the collected drain. Boiler feed water is supplied to the heat transfer tube group from the feed water tank, and the feed water tank is a blower for exchanging heat between the concentrated blow water discharged from the boiler and the boiler feed water stored in the feed water tank. A boiler having a feed water preheating device, characterized in that a heat exchanger is provided. 請求項2に記載の給水予熱装置を持ったボイラにおいて、ブロー熱交換器の設置位置は給水タンクと低温伝熱管群との間としていることを特徴とする給水予熱装置を持ったボイラ。 The boiler with the feed water preheating device according to claim 2, wherein the blow heat exchanger is installed between the feed water tank and the low temperature heat transfer tube group. 請求項1に記載の給水予熱装置を持ったボイラにおいて、回収ドレンを混合するところと低温伝熱管群との間に、低温伝熱管群で一段目の予熱を行った後の給水と濃縮ブロー水との間で熱交換を行うブロー熱交換器を設けていることを特徴とする給水予熱装置を持ったボイラ。

The boiler with the feed water preheating device according to claim 1, wherein the feed water and the concentrated blow water after the first stage preheating is performed in the low temperature heat transfer tube group between the place where the recovered drain is mixed and the low temperature heat transfer tube group. A boiler having a feed water preheating device, characterized in that a blow heat exchanger is provided for exchanging heat with each other.

JP2014094337A 2014-05-01 2014-05-01 Boiler having water-supply preheating device Pending JP2015212583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014094337A JP2015212583A (en) 2014-05-01 2014-05-01 Boiler having water-supply preheating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014094337A JP2015212583A (en) 2014-05-01 2014-05-01 Boiler having water-supply preheating device

Publications (1)

Publication Number Publication Date
JP2015212583A true JP2015212583A (en) 2015-11-26

Family

ID=54696944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014094337A Pending JP2015212583A (en) 2014-05-01 2014-05-01 Boiler having water-supply preheating device

Country Status (1)

Country Link
JP (1) JP2015212583A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105546515A (en) * 2016-02-05 2016-05-04 无锡市沈能节能锅炉股份有限公司 Steam-gas boiler and skid-mounted assembly for deep recovery of exhaust heat
CN105546513A (en) * 2016-02-05 2016-05-04 无锡市沈能节能锅炉股份有限公司 Steam-gas boiler and assembly for deep recovery of exhaust heat
CN106439778A (en) * 2016-08-31 2017-02-22 中国大唐集团科学技术研究院有限公司 Supercritical/ultra-supercritical unit cold air stair heating system and method
CN107035445A (en) * 2017-04-27 2017-08-11 华电电力科学研究院 A kind of steam-driven induced draft fan and the united backheat therrmodynamic system of steam air heater
CN112413698A (en) * 2020-11-24 2021-02-26 厦门烟草工业有限责任公司 Heating system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105546515A (en) * 2016-02-05 2016-05-04 无锡市沈能节能锅炉股份有限公司 Steam-gas boiler and skid-mounted assembly for deep recovery of exhaust heat
CN105546513A (en) * 2016-02-05 2016-05-04 无锡市沈能节能锅炉股份有限公司 Steam-gas boiler and assembly for deep recovery of exhaust heat
CN106439778A (en) * 2016-08-31 2017-02-22 中国大唐集团科学技术研究院有限公司 Supercritical/ultra-supercritical unit cold air stair heating system and method
CN107035445A (en) * 2017-04-27 2017-08-11 华电电力科学研究院 A kind of steam-driven induced draft fan and the united backheat therrmodynamic system of steam air heater
CN107035445B (en) * 2017-04-27 2023-04-14 华电电力科学研究院有限公司 Regenerative thermal system combining steam-driven induced draft fan and air heater
CN112413698A (en) * 2020-11-24 2021-02-26 厦门烟草工业有限责任公司 Heating system

Similar Documents

Publication Publication Date Title
JP6303836B2 (en) Chemical cleaning method for boiler
JP2015212583A (en) Boiler having water-supply preheating device
JP5510111B2 (en) Drain collection facility
TWI646286B (en) Thermally integrated coal-fired oxygen plant
CN103216818B (en) For the heating system of thermal power station water loop
KR20010042118A (en) Heat recovery steam generator
JP2011058486A (en) Heat recovery device of power plant using heat pump
CN105358909B (en) Method for coupling the supplement water in output pre-heating steam power plant by process steam
CA2947574A1 (en) Remote preheat and pad steam generation
CN107208888A (en) The control method of heat exchanger and heat exchanger
CN106439778B (en) The straight unit cold wind step heating system of ultra supercritical and method
JP6394699B2 (en) Heat pump steam generation system
JP7183639B2 (en) Boiler chemical cleaning method
WO2014064949A1 (en) Boiler system
JP2008256279A (en) Condensing facility
JP5733822B2 (en) boiler
CN103303876A (en) Waste-heat recovery method in making acid by using pyrite
JP6207086B2 (en) Absorption heat pump apparatus with heat supply means for regeneration of amine absorption liquid
CN103968366A (en) Biomass boiler blow-down waste heat recycling system
JP2015212585A (en) Boiler having water-supplying and degasifying device
CN207907205U (en) A kind of large size combined cycle unit waste heat boiler
CN205014337U (en) A water supply equipment for improving waste heat power generation system heat exchange efficiency
KR100787811B1 (en) A gas-water fluidized-bed heat recovery system with rapid cooling of the incinerator gases
CN102942967A (en) Blast furnace gas preprocessing method and device
CN106287655A (en) A kind of steam heat recovery technique