JP2008256279A - Condensing facility - Google Patents

Condensing facility Download PDF

Info

Publication number
JP2008256279A
JP2008256279A JP2007099512A JP2007099512A JP2008256279A JP 2008256279 A JP2008256279 A JP 2008256279A JP 2007099512 A JP2007099512 A JP 2007099512A JP 2007099512 A JP2007099512 A JP 2007099512A JP 2008256279 A JP2008256279 A JP 2008256279A
Authority
JP
Japan
Prior art keywords
condenser
condensers
cooling water
pipe
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007099512A
Other languages
Japanese (ja)
Inventor
Hiroshi Tsuji
寛 辻
Akira Nemoto
晃 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007099512A priority Critical patent/JP2008256279A/en
Priority to PCT/JP2008/056704 priority patent/WO2008126769A1/en
Priority to CN2008800107529A priority patent/CN101652620B/en
Priority to US12/594,217 priority patent/US20100115949A1/en
Priority to DE112008000892T priority patent/DE112008000892B4/en
Publication of JP2008256279A publication Critical patent/JP2008256279A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/02Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using water or other liquid as the cooling medium

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a condensing facility capable of making the length of a circulation water pipe of condensers short and equivalent, and thereby, capable of preventing complication of a drain recovery pipe, and capable of securing a space without excessively enlarging the condenser by securing a drain recovery pipe connecting space to the condenser. <P>SOLUTION: A plurality of condensers 1, 2 and 3 having different length of a condenser barrel are arranged in parallel, the condensers are connected in series by the circulation water pipe, barrel longitudinal center positions of the condensers are different in the longitudinal direction, and the lengths of inlet side circulation water pipes and outlet side circulation water pipes of the adjacent condensers are coincident with each other. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は原子力発電所等において蒸気タービン駆動後の排蒸気を復水とする復水設備に係り、特に複数の復水器を直列配置として適用する復水設備に関するものである。   The present invention relates to a condensing facility that condenses exhaust steam after driving a steam turbine in a nuclear power plant or the like, and more particularly to a condensing facility that applies a plurality of condensers in series.

例えば原子力発電所では原子炉で発生した蒸気を蒸気タービンに供給し、発電機を駆動して発電を行い、発電に供された蒸気を復水設備によって復水とした後、再度冷却水として原子炉に供給する循環方式を採用している。通常、発電出力1000MW級の大容量の原子力発電所においては、発電機を回転させる蒸気タービンとして、原子炉で発生した蒸気にて駆動する高圧タービンと、高圧タービンで仕事をした後の蒸気にて駆動する低圧タービンにより構成される。低圧タービンとしては、2台あるいは3台の複数台が設置され、この複数台の低圧タービンで仕事をして排出される蒸気は複数の復水器を備えた復水設備に導かれて復水となる。   For example, in a nuclear power plant, steam generated in a nuclear reactor is supplied to a steam turbine, and the generator is driven to generate electricity. A circulation system for supplying to the furnace is adopted. Normally, in a large-capacity nuclear power plant with a power generation output of 1000 MW, a steam turbine that rotates a generator is a high-pressure turbine that is driven by steam generated in a nuclear reactor, and steam that has been worked in the high-pressure turbine. Consists of a driving low-pressure turbine. Two or three low-pressure turbines are installed, and steam discharged from the work of these low-pressure turbines is led to a condensing facility equipped with a plurality of condensers. It becomes.

原子力発電所の復水設備について、図4を参照して具体的に説明する。図4に示すように、原子炉100で発生した蒸気S1は蒸気配管101を介して高圧タービン102に送られた後、低圧蒸気S2となってタービン配管103を介して複数の低圧タービン、例えば3台の低圧タービン10,11,12に送られ、発電機104を駆動して仕事に供される。これらの低圧タービン10,11,12から排出された排蒸気(S3)は、例えば3体の復水器胴を有する3胴型の復水器1,2,3に供給される。   The condensate facility of the nuclear power plant will be specifically described with reference to FIG. As shown in FIG. 4, the steam S <b> 1 generated in the nuclear reactor 100 is sent to the high-pressure turbine 102 through the steam pipe 101, and then becomes low-pressure steam S <b> 2 through the turbine pipe 103, for example, a plurality of low-pressure turbines 3. It is sent to the low-pressure turbines 10, 11, and 12, and the generator 104 is driven for work. The exhaust steam (S3) discharged from these low-pressure turbines 10, 11, and 12 is supplied to, for example, three-body condensers 1, 2, and 3 having three condenser bodies.

各復水器1,2,3の胴1a,2a,3a内にはそれぞれ冷却管4,5,6が設置されており、これらの冷却管4,5,6内には冷却水供給配管104からそれぞれ冷却水w1,w2,w3が供給される。3台の低圧タービン1,2,3で仕事をして排出され、復水器1,2,3に導かれた蒸気S3は、胴1a,2a,3a内に設けられた冷却管4,5,6の外側を通過し、その際に冷却管4,5,6の内部を流れる冷却水w1,w2,w3とそれぞれ熱交換されて凝縮し、復水19,20,21となって各復水器1,2,3の下部に設けられているホットウェル16,17,18に溜まる。   Cooling pipes 4, 5, 6 are installed in the trunks 1 a, 2 a, 3 a of the condensers 1, 2, 3, respectively, and the cooling water supply pipe 104 is provided in these cooling pipes 4, 5, 6. Are supplied with cooling waters w1, w2, and w3, respectively. The steam S3 discharged from the work by the three low-pressure turbines 1, 2, 3 and led to the condensers 1, 2, 3 is cooled by the cooling pipes 4, 5 provided in the cylinders 1a, 2a, 3a. , 6 passes through the outside of the cooling pipes 4, 5, 6 at that time and exchanges heat with the cooling waters w 1, w 2, w 3, respectively, and condenses into condensates 19, 20, 21. It collects in the hot wells 16, 17, and 18 provided in the lower parts of the water vessels 1, 2, and 3.

ホットウェル16,17,18に溜まった復水19,20,21は、復水器1,2,3の近傍に設置された復水ポンプ22により循環配管105に排出され、さらに給水ポンプ23により昇圧されて原子炉24に導かれる。   Condensate 19, 20, and 21 accumulated in the hot wells 16, 17, and 18 are discharged to the circulation pipe 105 by the condensate pump 22 installed in the vicinity of the condensers 1, 2, and 3, and further, by the feed pump 23. The pressure is increased and guided to the nuclear reactor 24.

なお、復水ポンプ22は、低圧復水ポンプと称する場合があり、この場合にはその下流側にさらに高圧復水ポンプと称するポンプが設置されることがある。   The condensate pump 22 may be referred to as a low-pressure condensate pump. In this case, a pump referred to as a high-pressure condensate pump may be further provided on the downstream side.

ところで、上述した冷却管4,5,6の内部を流れる冷却水w1,w2,w3については、図4に示したように、複数の復水器1,2,3に並列的に導入する場合と、図5に示すように、直列配管構成を用いて冷却水w1,w2,w3を直列的に導入する場合とがある。   By the way, as shown in FIG. 4, about the cooling water w1, w2, w3 which flows through the inside of the cooling pipes 4, 5, and 6 mentioned above, when introducing in parallel to several condenser 1, 2, 3 As shown in FIG. 5, the cooling waters w1, w2, and w3 may be introduced in series using a series piping configuration.

図4に示したように、冷却水w1,w2,w3を並列的に導入する場合には、複数の復水器1,2,3にそれぞれ同じ温度かつ同じ流量の冷却水が導入さる。したがって、低圧タービン10,11,12で仕事をして排出され復水器1,2,3に導かれた蒸気s3との熱交換は、複数の復水器1,2,3においてそれぞれ同じ条件にて行われる。   As shown in FIG. 4, when the cooling waters w1, w2, and w3 are introduced in parallel, the cooling water having the same temperature and the same flow rate is introduced into the plurality of condensers 1, 2, and 3, respectively. Therefore, the heat exchange with the steam s3 exhausted by work in the low-pressure turbines 10, 11, 12 and led to the condensers 1, 2, 3 is performed under the same conditions in the plurality of condensers 1, 2, 3. It is done at.

これに対し、図5に示すように、冷却水wを直列的に導入する場合には、複数の復水器1,2,3に順次冷却水wが導入されるので、先に冷却水wが導入される復水器1においては冷却水の温度が低く、後に冷却水wが導入される復水器2,3においては冷却水wの温度が高くなる。したがって、低圧タービン10,11,12で仕事をして排出され復水器1,2,3に導かれた蒸気S3との熱交換は、複数の復水器1,2,3においてそれぞれ異なる条件にて行われる。   On the other hand, as shown in FIG. 5, when the cooling water w is introduced in series, the cooling water w is sequentially introduced into the condensers 1, 2, 3. In the condenser 1 into which the cooling water is introduced, the temperature of the cooling water is low, and in the condensers 2 and 3 into which the cooling water w is introduced later, the temperature of the cooling water w is high. Therefore, the heat exchange with the steam S3 discharged from the low-pressure turbines 10, 11 and 12 and led to the condensers 1, 2 and 3 has different conditions in the condensers 1, 2 and 3, respectively. It is done at.

冷却管4,5,6の外側で蒸気S3が復水に凝縮される際に飽和状態になっているため、複数の復水器1,2,3において冷却水w1,w2、w3の温度が異なる場合には、冷却管4,5,6の外側の圧力も異なることになる。このように複数胴において器内圧力が異なる復水器を、一般的に「複圧式復水器」と呼んでいる。複圧式復水器の場合、複数の復水器1,2,3においてそれぞれ器内圧力が異なるため、交換熱量のバランス等を考慮して各復水器1,2,3の大きさを変えることがある。   Since the steam S3 is saturated outside the cooling pipes 4, 5, and 6 when it is condensed into condensate, the temperatures of the cooling waters w1, w2, and w3 in the condensers 1, 2, and 3 are If they are different, the pressure outside the cooling tubes 4, 5, 6 will also be different. Such condensers having different internal pressures in a plurality of barrels are generally called “multiple pressure condensers”. In the case of a multi-pressure condenser, the internal pressures of the condensers 1, 2 and 3 are different, so the size of the condensers 1, 2 and 3 is changed in consideration of the balance of the exchange heat. Sometimes.

図6は、図5に示した復水器1,2,3の胴1a,2a,3aの構成を平面図として示している。この図6に示すように、3胴複圧式復水器の場合、蒸気供給方向に沿って次第に大きくし、その大きさを復水器1<復水器2<復水器3のように設定することがある。   FIG. 6 shows the configuration of the trunks 1a, 2a, 3a of the condensers 1, 2, 3 shown in FIG. 5 as a plan view. As shown in FIG. 6, in the case of a three-body double pressure condenser, the size is gradually increased along the steam supply direction, and the size is set as condenser 1 <condenser 2 <condenser 3 There are things to do.

ただし、このように各復水器1,2,3の大きさを変えても、複数の各低圧タービン10,11,12の大きさは同一にするのが一般的であり、複数の各低圧タービン10,11,12は同一の回転軸を持つため、その下部に配置される複数の各復水器1,2,3も図6に示すように、同一の中心線O上に配置されるのが一般的である。なお、図6において、27、28,29,30,31,32,33、34は各復水器1,2,3に冷却水を導く循環水配管を示している。   However, even if the sizes of the condensers 1, 2, and 3 are changed in this way, the sizes of the plurality of low-pressure turbines 10, 11, and 12 are generally the same. Since the turbines 10, 11, and 12 have the same rotation shaft, the plurality of condensers 1, 2, and 3 disposed below the turbines are also disposed on the same center line O as shown in FIG. It is common. In FIG. 6, reference numerals 27, 28, 29, 30, 31, 32, 33, and 34 denote circulating water pipes that guide the cooling water to the condensers 1, 2, and 3.

この図6に示す構成において、冷却水wはまず上流側の循環水配管27により復水器1に導かれ、冷却管4の内側を流れる冷却水wは冷却管4の外側を通過する蒸気との熱交換により温度を上昇させた後、復水器1から排出され循環水配管28,29,30を通り、次段の復水器2に導かれる。復水器2に導かれた冷却水wは冷却管5の内側を流れ、冷却管5の外側を通過する蒸気との熱交換により温度を上昇させた後、復水器2から排出され、循環水配管31,32,33を通り復水器3に導かれる。復水器3に導かれた冷却水wは冷却管6の内側を流れ、冷却管6の外側を通過する蒸気との熱交換により温度を上昇させた後、復水器3から排出され、循環水配管34を通り排出される。   In the configuration shown in FIG. 6, the cooling water w is first guided to the condenser 1 by the circulating water pipe 27 on the upstream side, and the cooling water w flowing inside the cooling pipe 4 is steam that passes outside the cooling pipe 4. After the temperature is raised by heat exchange, the water is discharged from the condenser 1, passes through the circulating water pipes 28, 29, and 30, and is led to the condenser 2 in the next stage. The cooling water w guided to the condenser 2 flows inside the cooling pipe 5, raises the temperature by heat exchange with steam passing outside the cooling pipe 5, and then is discharged from the condenser 2 and circulated. The water pipes 31, 32, 33 are led to the condenser 3. The cooling water w guided to the condenser 3 flows inside the cooling pipe 6, raises the temperature by heat exchange with steam passing outside the cooling pipe 6, and then is discharged from the condenser 3 and circulated. It is discharged through the water pipe 34.

また、前述したように低圧タービンで仕事をして排出され、復水器に導かれた蒸気は、冷却管4,5,6の外側を通過する際に冷却管4,5,6の内部を流れる冷却水wと熱交換することにより、蒸気から復水に凝縮して復水器下部のホットウェルに溜まる。複圧式復水器の場合、復水器下部のホットウェルに溜まった復水は、復水器1から復水器2、復水器3へと順次に、低圧側復水器のホットウェルから高圧側復水器のホットウェルに送られ、最終的に復水器3の近傍に設置された復水ポンプ22により排出される。   Further, as described above, the steam discharged from the work by the low-pressure turbine and led to the condenser passes through the outside of the cooling pipes 4, 5, 6 and passes through the inside of the cooling pipes 4, 5, 6. By exchanging heat with the flowing cooling water w, the steam condenses into condensate and accumulates in a hot well at the lower part of the condenser. In the case of a double pressure condenser, the condensate accumulated in the hot well at the lower part of the condenser is sequentially transferred from the condenser 1 to the condenser 2 and the condenser 3 in order from the hot well of the low pressure side condenser. It is sent to the hot well of the high pressure side condenser, and finally discharged by the condensate pump 22 installed in the vicinity of the condenser 3.

また発電所においては、給水加熱器、湿分分離加熱器などの各種熱交換器等があり、それらから排出されるドレンを復水器に回収するのが一般的である。復水器が3胴式の場合、中央に配置される復水器2にはドレンを回収する配管を接続するスペースがほとんどないため、図6のドレン配管35,36,37,38にて示したように、主に復水器1および復水器3にドレン回収配管を接続し、復水器2には接続しない構成とすることが一般的である。   Further, in a power plant, there are various heat exchangers such as a feed water heater and a moisture separation heater, and the drain discharged from them is generally collected in a condenser. When the condenser is a three-cylinder type, the condenser 2 arranged in the center has little space for connecting a pipe for collecting drain, and is shown by drain pipes 35, 36, 37, and 38 in FIG. As described above, it is general that the drain recovery pipe is connected mainly to the condenser 1 and the condenser 3 and not connected to the condenser 2.

なお、公知文献としての特許文献1においては、複数胴の復水器において真空度が異なり、その平均真空度は単一真空度の場合と比べて同等以上であることについて記載されているが、異なる大きさの複数胴の配置方法等については、特に触れられていない。
特開平8−21205号公報「復水器装置」
In addition, in Patent Document 1 as a publicly known document, the degree of vacuum is different in a multi-cylinder condenser, and the average degree of vacuum is described as being equal to or greater than that of a single degree of vacuum, There is no particular mention about the arrangement method of the multiple cylinders of different sizes.
JP-A-8-21205 “Condenser Device”

従来の一般的な複圧式復水器の平面的な配置においては、図6に示したように、複数の各復水器1,2,3が同一の中心線O上に配置される場合、胴の長さが復水器1,2,3と次第に拡大するため、各冷却水出口部と冷却水入口部の位置がずれた構成となる。すなわち、図6において、復水器1の出口循環水配管28の長さl1と、復水器2の入口循環水配管30の長さl2とを比較すると、l1を最短の長さにした場合でも循環水配管28が長くなってしまうという問題点がある。同様に、復水器2の出口循環水配管31と復水器3の入口循環配管33の配管位置がずれているため、循環水配管33を最短の長さにした場合でも、復水器2の出口循環水配管31の長さl3と、復水器3の入口循環水配管33の長さl4とを比較すると、l3を最短の長さにした場合でも循環水配管31が長くなってしまう。すなわち循環水配管28および循環水配管31が長くなった分、配管損失が増加するという問題があった。   In the planar arrangement of a conventional general multi-pressure condenser, as shown in FIG. 6, when a plurality of condensers 1, 2, and 3 are arranged on the same center line O, Since the length of the trunk gradually increases with the condensers 1, 2, and 3, the positions of the cooling water outlet portions and the cooling water inlet portions are shifted. That is, in FIG. 6, when comparing the length l1 of the outlet circulating water pipe 28 of the condenser 1 and the length l2 of the inlet circulating water pipe 30 of the condenser 2, the length of l1 is the shortest length. However, there is a problem that the circulating water pipe 28 becomes long. Similarly, since the piping positions of the outlet circulating water pipe 31 of the condenser 2 and the inlet circulating pipe 33 of the condenser 3 are shifted, the condenser 2 is provided even when the circulating water pipe 33 is set to the shortest length. When the length l3 of the outlet circulating water pipe 31 is compared with the length l4 of the inlet circulating water pipe 33 of the condenser 3, the circulating water pipe 31 becomes long even if l3 is the shortest length. . That is, there is a problem that the pipe loss increases as the circulating water pipe 28 and the circulating water pipe 31 become longer.

また、各復水器1,2,3が同一の中心線上に配置される場合、各復水器1,2,3の冷却水出入口部の位置が少しずつ復水器中心線からずれているため、復水ポンプ22は、各復水器1,2,3を出入りする循環水配管27〜34と干渉しないように十分離して(図6の図示下方に)配置する必要があった。   Moreover, when each condenser 1,2,3 is arrange | positioned on the same center line, the position of the cooling water inlet / outlet part of each condenser 1,2,3 has shifted | deviated from the condenser centerline little by little. Therefore, the condensate pump 22 needs to be arranged sufficiently separated (below in the drawing in FIG. 6) so as not to interfere with the circulating water pipes 27 to 34 that enter and exit the condensers 1, 2, and 3.

さらに、給水加熱器、湿分分離加熱器などの各種熱交換器等から復水器へのドレン回収配管については、中央に配置される復水器2にはドレン回収配管を接続するスペースがほとんどないため、復水器1,3へのドレン回収配管接続が多くなってドレン回収配管が錯綜したり、復水器1,3へのドレン回収配管接続スペースが足りなくて復水器1,3を大きくせざるを得なくなるという問題点があった。   Furthermore, with regard to drain recovery piping from various heat exchangers such as feed water heaters and moisture separation heaters to the condenser, the condenser 2 arranged in the center has almost no space for connecting the drain recovery piping. Therefore, the drain recovery piping connection to the condensers 1 and 3 is increased, so that the drain recovery piping is complicated, or the drain recovery piping connection space to the condensers 1 and 3 is insufficient. There was a problem that it had to be made larger.

本発明はこのような事情に鑑みてなされたものであり、各復水器の循環配管の長さを短縮かつ同等とすることができ、それによりドレン回収配管が錯綜することを防止し、しかも復水器へのドレン回収配管接続スペースを確保して復水器を余分に大きくすることなく、またスペース確保等を図ることができる復水設備を提供することを目的とする。   The present invention has been made in view of such circumstances, and the length of the circulation piping of each condenser can be shortened and equalized, thereby preventing the drain recovery piping from being complicated, It is an object of the present invention to provide a condensing facility that can secure a drain recovery piping connection space to the condenser without enlarging the condenser and securing the space.

前記の目的を達成するため、本発明に係る復水設備では、復水器胴の長さが異なる複数の復水器を平行に配置し、これらの復水器を循環水配管により直列に接続した復水設備であって、前記各復水器の胴長さ方向中心位置を当該長さ方向に異ならせ、前記各復水器の互いに隣接するもの同士の入口側循環水配管と出口側循環配管との長さを一致させたことを特徴とする。   In order to achieve the above object, in the condensing facility according to the present invention, a plurality of condensers having different condenser body lengths are arranged in parallel, and these condensers are connected in series by circulating water piping. The condensers in the trunk length direction of the condensers differ in the length direction, and the inlet side circulating water piping and the outlet side circulation of the condensers adjacent to each other The length is the same as that of the pipe.

本発明によれば、各復水器の循環配管の長さを短縮かつ同等とすることができ、それによりドレン回収配管が錯綜することを防止し、しかも復水器へのドレン回収配管接続スペースを確保して復水器を余分に大きくすることなく、またスペース確保等を図ることができる。   According to the present invention, the length of the circulation piping of each condenser can be shortened and equalized, thereby preventing the drain recovery piping from being complicated, and the drain recovery piping connection space to the condenser. It is possible to secure space and the like without increasing the condenser and making the condenser larger.

以下、本発明に係る復水設備の実施例について、図面を参照して説明する。   Hereinafter, an embodiment of a condensate facility according to the present invention will be described with reference to the drawings.

[第1実施形態(図1)]
図1は、本発明の第1実施形態による復水設備を示す平面図である。図1に示すように、本実施形態では、3胴の復水器1,2,3に冷却水wを導く循環水配管27〜34を備えている。すなわち、各復水器1,2,3の胴1a,2a,3a内にはそれぞれ冷却管4,5,6が設置されており、これらの冷却管4,5,6内には冷却水供給配管から冷却水wが供給される。復水器1,2,3に導かれた蒸気は、胴1a,2a,3a内に設けられた冷却管4,5,6の外側を通過し、その際に冷却管4,5,6の内部を流れる冷却水wとそれぞれ熱交換されて凝縮し、復水となって各復水器1,2,3の下部に設けられているホットウェル16,17,18に溜まるようになっている。
[First Embodiment (FIG. 1)]
FIG. 1 is a plan view showing a condensing facility according to a first embodiment of the present invention. As shown in FIG. 1, in this embodiment, circulating water pipes 27 to 34 that guide the cooling water w to three condensers 1, 2, and 3 are provided. That is, cooling pipes 4, 5, and 6 are installed in the trunks 1a, 2a, and 3a of the condensers 1, 2, and 3, respectively, and cooling water is supplied into these cooling pipes 4, 5, and 6, respectively. Cooling water w is supplied from the piping. The steam guided to the condensers 1, 2, 3 passes outside the cooling pipes 4, 5, 6 provided in the trunks 1 a, 2 a, 3 a, and at that time, the cooling pipes 4, 5, 6 Heat is exchanged with the cooling water w flowing inside to condense, and condensate to accumulate in hot wells 16, 17, 18 provided below the condensers 1, 2, 3. .

ホットウェル16,17,18に溜まった復水は、復水器1,2,3の近傍に設置された図示省略の復水ポンプにより循環配管に排出され、昇圧されて原子炉に導かれる。冷却管4,5,6の内部を流れる冷却水wについては、複数の復水器1,2,3に直列配管構成を用いて冷却水wを直列的に導入する構成となっている。   Condensate accumulated in the hot wells 16, 17, and 18 is discharged to a circulation pipe by a condensate pump (not shown) installed in the vicinity of the condensers 1, 2, and 3, and is boosted and guided to the nuclear reactor. About the cooling water w which flows through the inside of the cooling pipes 4, 5, and 6, it has the structure which introduce | transduces the cooling water w into a plurality of condensers 1, 2, and 3 in series using a serial piping structure.

図1には、復水器1,2,3の胴1a,2a,3aの構成を平面図として示している。この図1に示すように、3胴複圧式復水器の場合、蒸気供給方向に沿って次第に大きくし、その大きさを復水器1<復水器2<復水器3のように設定している。そして、各復水器1,2,3の中心線O1,O2,O3は胴の軸方向にずらした構成となっている。すなわち、胴の長さが異なる複数の復水器を平行に配置し、これらの復水器1,2,3を循環水配管27,28,29,30,31,32,33,34により直列に接続した復水設備として構成している。そして、各復水器1,2,3の胴長さ方向中心位置を当該長さ方向に異ならせ、各復水器1,2,3の互いに隣接するもの同士の入口側循環水配管と出口側循環配管との長さを一致させる構成となっている。   In FIG. 1, the structure of trunk | drum 1a, 2a, 3a of the condenser 1,2,3 is shown as a top view. As shown in FIG. 1, in the case of a three-body double pressure condenser, the size is gradually increased along the steam supply direction, and the size is set as condenser 1 <condenser 2 <condenser 3 is doing. And centerline O1, O2, O3 of each condenser 1,2,3 has the structure shifted in the axial direction of the trunk | drum. That is, a plurality of condensers having different trunk lengths are arranged in parallel, and these condensers 1, 2, 3 are connected in series by circulating water pipes 27, 28, 29, 30, 31, 32, 33, 34. Condensation equipment connected to And the trunk | drum length direction center position of each condenser 1,2,3 is varied in the said length direction, the inlet-side circulating water piping and outlet of each condenser 1,2,3 adjacent to each other The length is the same as that of the side circulation pipe.

これにより、冷却水wはまず上流側の循環水配管27により復水器1に導かれ、冷却管4の内側を流れる冷却水wは冷却管4の外側を通過する蒸気との熱交換により温度を上昇させた後、復水器1から排出され循環水配管28,29,30を通り、次段の復水器2に導かれる。復水器2に導かれた冷却水wは冷却管5の内側を流れ、冷却管5の外側を通過する蒸気との熱交換により温度を上昇させた後、復水器2から排出され、循環水配管31,32,33を通り復水器3に導かれる。復水器3に導かれた冷却水wは冷却管6の内側を流れ、冷却管6の外側を通過する蒸気との熱交換により温度を上昇させた後、復水器3から排出され、循環水配管34を通り排出される。   As a result, the cooling water w is first guided to the condenser 1 by the circulating water pipe 27 on the upstream side, and the cooling water w flowing inside the cooling pipe 4 is heated by heat exchange with the steam passing outside the cooling pipe 4. Is then discharged from the condenser 1, passes through the circulating water pipes 28, 29, and 30, and is led to the condenser 2 in the next stage. The cooling water w guided to the condenser 2 flows inside the cooling pipe 5, raises the temperature by heat exchange with steam passing outside the cooling pipe 5, and then is discharged from the condenser 2 and circulated. The water pipes 31, 32, 33 are led to the condenser 3. The cooling water w guided to the condenser 3 flows inside the cooling pipe 6, raises the temperature by heat exchange with steam passing outside the cooling pipe 6, and then is discharged from the condenser 3 and circulated. It is discharged through the water pipe 34.

また、復水器1,2,3に導かれた蒸気は、冷却管4,5,6の外側を通過する際に冷却管4,5,6の内部を流れる冷却水wと熱交換することにより、蒸気から復水に凝縮して復水器下部のホットウェルに溜まる。復水器下部のホットウェルに溜まった復水は、復水器1から復水器2、復水器3へと順次に、低圧側復水器のホットウェルから高圧側復水器のホットウェルに送られ、最終的に復水器3の近傍に設置された復水ポンプ22により排出される。   The steam guided to the condensers 1, 2, 3 exchanges heat with the cooling water w flowing inside the cooling pipes 4, 5, 6 when passing outside the cooling pipes 4, 5, 6. As a result, the steam condenses into condensate and accumulates in the hot well at the bottom of the condenser. Condensate accumulated in the hot well at the lower part of the condenser is sequentially transferred from the condenser 1 to the condenser 2 and the condenser 3 in order from the hot well of the low pressure side condenser to the hot well of the high pressure side condenser. And is finally discharged by a condensate pump 22 installed in the vicinity of the condenser 3.

このように,本実施形態では、各復水器1,2,3を同一の中心線上に配置するのではなく、復水器1の冷却水出口部と復水器2の冷却水入口部の位置をそろえるよう配置している。また、復水器2の冷却水出口部と復水器3の冷却水入口部の位置をそろえるよう配置している。すなわち、l1とl2、l3とl4、l5とl6をそれぞれ一致させる構成としている。   Thus, in this embodiment, each condenser 1, 2, 3 is not arrange | positioned on the same center line, but the cooling water outlet part of the condenser 1 and the cooling water inlet part of the condenser 2 are provided. Arranged to align the positions. Further, the cooling water outlet portion of the condenser 2 and the cooling water inlet portion of the condenser 3 are arranged so as to be aligned. That is, l1 and l2, l3 and l4, and l5 and l6 are made to coincide with each other.

これにより、復水器2の循環水配管30を最短の長さにした場合、復水器1の循環水配管28も同様に最短の長さにすることができる。また同様に、循環水配管33を最短の長さにした場合、循環水配管31も同様に最短の長さにすることができる。   Thereby, when the circulation water piping 30 of the condenser 2 is made the shortest length, the circulation water piping 28 of the condenser 1 can be similarly made the shortest length. Similarly, when the circulating water pipe 33 has the shortest length, the circulating water pipe 31 can also have the shortest length.

本実施形態によれば、循環水配管28、および循環水配管31が短くなった分、配管損失を減少させることができる。   According to the present embodiment, the piping loss can be reduced as much as the circulating water piping 28 and the circulating water piping 31 are shortened.

[第2実施形態(図2)]
本発明の実施例2について、図2を用いて説明する。
[Second Embodiment (FIG. 2)]
A second embodiment of the present invention will be described with reference to FIG.

図2は、本発明の請求項2に関わる復水器の構成例を示した平面図であり、以下にその構成要素について説明する。   FIG. 2 is a plan view showing a configuration example of a condenser according to claim 2 of the present invention, and the components will be described below.

図2において、27〜34は各復水器1,2,3に冷却水を導く循環水配管を示している。すなわち、冷却水はまず循環水配管27により復水器1に導かれ、冷却管4の内側を流れる冷却水7は冷却管4の外側を通過する蒸気との熱交換により温度を上昇させた後、復水器1から排出され循環水配管28,29,30を通り復水器2に導かれる。復水器2に導かれた冷却水wは冷却管5の内側を流れ、冷却管5の外側を通過する蒸気との熱交換により温度を上昇させた後、復水器2から排出され循環水配管31,32,33を通り復水器3に導かれる。復水器3に導かれた冷却水9は冷却管6の内側を流れ、冷却管6の外側を通過する蒸気との熱交換により温度を上昇させた後、復水器3から排出され循環水配管34を通り排出される。   In FIG. 2, reference numerals 27 to 34 denote circulating water pipes that guide the cooling water to the condensers 1, 2, and 3. That is, the cooling water is first guided to the condenser 1 by the circulating water pipe 27, and the cooling water 7 flowing inside the cooling pipe 4 is raised in temperature by heat exchange with steam passing outside the cooling pipe 4. The water is discharged from the condenser 1 and is led to the condenser 2 through the circulating water pipes 28, 29 and 30. The cooling water w guided to the condenser 2 flows inside the cooling pipe 5, raises the temperature by heat exchange with steam passing outside the cooling pipe 5, and then is discharged from the condenser 2 and circulated water. The pipe 31, 32, 33 is led to the condenser 3. The cooling water 9 guided to the condenser 3 flows inside the cooling pipe 6, raises the temperature by heat exchange with steam passing outside the cooling pipe 6, and then is discharged from the condenser 3 and circulated water. It is discharged through the pipe 34.

図2においては、各復水器を同一の中心線上に配置するのではなく、復水器1の冷却水出口部と復水器2の冷却水入口部の位置をそろえるよう配置している。また、復水器2の冷却水出口部と復水器3の冷却水入口部の位置をそろえるよう配置している。すなわち、l1とl2、l3とl4、l5とl6をそれぞれ一致させる構成としている。   In FIG. 2, the condensers are not arranged on the same center line, but are arranged so that the positions of the cooling water outlet part of the condenser 1 and the cooling water inlet part of the condenser 2 are aligned. Further, the cooling water outlet portion of the condenser 2 and the cooling water inlet portion of the condenser 3 are arranged so as to be aligned. That is, l1 and l2, l3 and l4, and l5 and l6 are made to coincide with each other.

図2において、復水器3のホットウェルから復水を排出する復水ポンプ22は、復水器2の冷却水出口部と復水器3の冷却水入口部の位置をそろえるよう配置したことにより反対側に生じた大きなスペースを利用して、復水器3の近傍に配置している。   In FIG. 2, the condensate pump 22 that discharges the condensate from the hot well of the condenser 3 is arranged so that the positions of the cooling water outlet portion of the condenser 2 and the cooling water inlet portion of the condenser 3 are aligned. By using a large space generated on the opposite side, the condenser 3 is disposed in the vicinity.

これにより、復水器2の冷却水入口部と復水器3の冷却水出口部の位置関係が大きくずれているため、復水ポンプ22を復水器3の近傍に配置できるスペースができている。このため、復水器3と復水ポンプ22を接続する配管を短くすることができ、すなわち配管損失を減少させることができる。   Thereby, since the positional relationship of the cooling water inlet part of the condenser 2 and the cooling water outlet part of the condenser 3 has shifted | deviated largely, the space which can arrange | position the condensate pump 22 in the vicinity of the condenser 3 is made. Yes. For this reason, the pipe connecting the condenser 3 and the condensate pump 22 can be shortened, that is, the pipe loss can be reduced.

[第3実施形態(図3)]
本発明の実施例3について、図3を用いて説明する。
[Third Embodiment (FIG. 3)]
A third embodiment of the present invention will be described with reference to FIG.

図3は、本発明の請求項3に関わる復水器の構成例を示した平面図であり、以下にその構成要素について説明する。図3において、27〜34は各復水器1,2,3に冷却水wを導く循環水配管を示している。すなわち、冷却水wはまず循環水配管27により復水器1に導かれ、冷却管4の内側を流れる冷却水wは冷却管4の外側を通過する蒸気との熱交換により温度を上昇させた後、復水器1から排出され循環水配管28,29,30を通り復水器2に導かれる。復水器2に導かれた冷却水wは冷却管5の内側を流れ、冷却管5の外側を通過する蒸気との熱交換により温度を上昇させた後、復水器2から排出され循環水配管31,32,33を通り復水器3に導かれる。復水器3に導かれた冷却水9は冷却管6の内側を流れ、冷却管6の外側を通過する蒸気との熱交換により温度を上昇させた後、復水器3から排出され循環水配管34を通り排出される。   FIG. 3 is a plan view showing an example of the configuration of a condenser according to claim 3 of the present invention, and the components will be described below. In FIG. 3, reference numerals 27 to 34 denote circulating water pipes that guide the cooling water w to the condensers 1, 2, and 3. That is, the cooling water w is first guided to the condenser 1 by the circulating water pipe 27, and the temperature of the cooling water w flowing inside the cooling pipe 4 is increased by heat exchange with steam passing outside the cooling pipe 4. Thereafter, the water is discharged from the condenser 1 and led to the condenser 2 through the circulating water pipes 28, 29 and 30. The cooling water w guided to the condenser 2 flows inside the cooling pipe 5, raises the temperature by heat exchange with steam passing outside the cooling pipe 5, and then is discharged from the condenser 2 and circulated water. The pipe 31, 32, 33 is led to the condenser 3. The cooling water 9 guided to the condenser 3 flows inside the cooling pipe 6, raises the temperature by heat exchange with steam passing outside the cooling pipe 6, and then is discharged from the condenser 3 and circulated water. It is discharged through the pipe 34.

本実施形態によれば、図3に示すように、各復水器を同一の中心線上に配置するのではなく、復水器1の冷却水出口部と復水器2の冷却水入口部の位置をそろえるよう配置している。また、復水器2の冷却水出口部と復水器3の冷却水入口部の位置をそろえるよう配置している。すなわち、l1とl2、l3とl4、l5とl6をそれぞれ一致させる構成としている。   According to the present embodiment, as shown in FIG. 3, the condensers are not arranged on the same center line, but instead of the cooling water outlet part of the condenser 1 and the cooling water inlet part of the condenser 2. Arranged to align the positions. Further, the cooling water outlet portion of the condenser 2 and the cooling water inlet portion of the condenser 3 are arranged so as to be aligned. That is, l1 and l2, l3 and l4, and l5 and l6 are made to coincide with each other.

したがって、図3に示すように、給水加熱器、湿分分離加熱器などの各種熱交換器等から復水器へのドレン回収配管については、復水器1,3へのドレン回収配管接続だけでなく、中央に配置される復水器2や、復水器3内側にもドレン回収配管を接続している。   Therefore, as shown in FIG. 3, the drain recovery piping from the various heat exchangers such as the feed water heater and moisture separation heater to the condenser is only connected to the drain recovery piping to the condensers 1 and 3. In addition, a drain recovery pipe is also connected to the condenser 2 disposed in the center and the condenser 3 inside.

すなわち、復水器1の冷却水入口部と復水器2の冷却水出口部の位置関係が大きくずれているため、復水器2にドレン回収配管37を接続できるスペースがとれている。また、復水器2の冷却水入口部と復水器3の冷却水出口部の位置関係が大きくずれているため、復水器3内側にドレン回収配管39,40を接続できるスペースがとれている。   That is, since the positional relationship between the cooling water inlet portion of the condenser 1 and the cooling water outlet portion of the condenser 2 is greatly deviated, a space is provided for connecting the drain recovery pipe 37 to the condenser 2. In addition, since the positional relationship between the cooling water inlet of the condenser 2 and the cooling water outlet of the condenser 3 is greatly deviated, there is a space for connecting the drain recovery pipes 39 and 40 inside the condenser 3. Yes.

本実施形態によれば、復水器1,3へのドレン回収配管接続だけでなく、中央に配置される復水器2や、復水器3内側にもドレン回収配管を接続できており、よってドレン回収配管接続が各復水器に均等化されるため、復水器1,3へのドレン回収配管接続が多くなってドレン回収配管が錯綜したり、復水器1,3へのドレン回収配管接続スペースが足りなくて復水器1,3を大きくせざるを得なくなるという問題点を解消する効果を有している。   According to the present embodiment, not only the drain recovery pipe connection to the condensers 1 and 3 but also the drain recovery pipe connected to the condenser 2 disposed in the center and the condenser 3 inside can be connected. Therefore, since the drain recovery pipe connection is equalized to each condenser, the drain recovery pipe connection to the condensers 1 and 3 is increased, and the drain recovery pipe is complicated, or the drain to the condensers 1 and 3 is complicated. This has the effect of solving the problem that the condenser pipes 1 and 3 have to be enlarged due to insufficient recovery pipe connection space.

本発明の第1の実施形態による復水器の構成を示す構成図。The block diagram which shows the structure of the condenser by the 1st Embodiment of this invention. 本発明の第2の実施形態による復水器の構成を示す構成図。The block diagram which shows the structure of the condenser by the 2nd Embodiment of this invention. 本発明の第3の実施形態による復水器の構成を示す構成図。The block diagram which shows the structure of the condenser by the 3rd Embodiment of this invention. 従来例による復水器の構成を示す構成図。The block diagram which shows the structure of the condenser by a prior art example. 従来例による復水器の構成を示す構成図。The block diagram which shows the structure of the condenser by a prior art example. 従来例による復水器の構成を示す構成図。The block diagram which shows the structure of the condenser by a prior art example.

符号の説明Explanation of symbols

1,2,3 復水器
4,5,6 冷却管
w 冷却水
16,17,18 復水器ホットウェル
19,20,21 復水
22 復水ポンプ
23 給水ポンプ
24 原子炉
25 高圧タービン
26 発電機
27〜34 循環水配管
35〜40 ドレン回収配管
1, 2, 3 Condenser 4, 5, 6 Cooling pipe w Cooling water 16, 17, 18 Condenser hot well 19, 20, 21 Condensate 22 Condensate pump 23 Feed water pump 24 Reactor 25 High-pressure turbine 26 Power generation Machines 27-34 Circulating water piping 35-40 Drain recovery piping

Claims (4)

復水器胴の長さが異なる複数の復水器を平行に配置し、これらの復水器を循環水配管により直列に接続した復水設備であって、前記各復水器の胴長さ方向中心位置を当該長さ方向に異ならせ、前記各復水器の互いに隣接するもの同士の入口側循環水配管と出口側循環配管との長さを一致させたことを特徴とする復水装置。 A condenser facility in which a plurality of condensers having different condenser body lengths are arranged in parallel, and these condensers are connected in series by circulating water piping, and the trunk length of each condenser is A condensing device characterized in that the direction center position is varied in the length direction, and the lengths of the inlet side circulating water piping and the outlet side circulating piping of the condensers adjacent to each other are matched. . 発電所において発生した蒸気を蒸気タービンに供給して発電機を回転させ、排蒸気を冷却して復水にする復水器を複数備えた復水設備であって、復水器胴の長さが異なる複数の復水器を平行に配置し、これらの復水器を循環水配管により直列に接続した復水設備において、前記各復水器の胴長さ方向中心位置を当該長さ方向に異ならせ、前記各復水器の互いに隣接するもの同士の入口側循環水配管と出口側循環配管との長さを一致させたことを特徴とする復水装置。 Condensation equipment with multiple condensers that supply steam generated at the power plant to the steam turbine, rotate the generator, cool the exhaust steam to condensate, and the length of the condenser body In a condensing facility in which a plurality of condensers of different condensers are arranged in parallel and these condensers are connected in series by circulating water piping, the center position in the trunk length direction of each condenser is in the length direction. A condensing device characterized in that the lengths of the inlet-side circulating water piping and the outlet-side circulating piping of the condensers adjacent to each other are made to coincide with each other. 大きさの異なる複数胴の復水器を有し、復水器の冷却水出口部と隣の復水器の冷却水入口部の位置をそろえて配置することにより生じた反対側の大きなスペースに、復水ポンプを復水器近傍に配置した請求項1または請求項2記載の復水設備。 A large space on the opposite side created by arranging multiple condensers with different sizes and aligning the cooling water outlet of the condenser with the cooling water inlet of the adjacent condenser. The condensate facility according to claim 1 or 2, wherein a condensate pump is disposed in the vicinity of the condenser. 大きさの異なる3胴の復水器を有し、復水器の冷却水出口部と隣の復水器の冷却水入口部の位置をそろえて配置することにより生じた反対側の大きなスペースに、中央に設置される復水器にドレン回収配管を接続した請求項1または2記載の復水設備。 A large space on the opposite side created by arranging three condensers of different sizes and aligning the cooling water outlet part of the condenser and the cooling water inlet part of the adjacent condenser. The condensate facility according to claim 1 or 2, wherein a drain recovery pipe is connected to a condenser installed in the center.
JP2007099512A 2007-04-05 2007-04-05 Condensing facility Pending JP2008256279A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007099512A JP2008256279A (en) 2007-04-05 2007-04-05 Condensing facility
PCT/JP2008/056704 WO2008126769A1 (en) 2007-04-05 2008-04-03 Condensing facilities
CN2008800107529A CN101652620B (en) 2007-04-05 2008-04-03 Condensing facilities
US12/594,217 US20100115949A1 (en) 2007-04-05 2008-04-03 Condensing equipment
DE112008000892T DE112008000892B4 (en) 2007-04-05 2008-04-03 condensation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007099512A JP2008256279A (en) 2007-04-05 2007-04-05 Condensing facility

Publications (1)

Publication Number Publication Date
JP2008256279A true JP2008256279A (en) 2008-10-23

Family

ID=39863869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007099512A Pending JP2008256279A (en) 2007-04-05 2007-04-05 Condensing facility

Country Status (5)

Country Link
US (1) US20100115949A1 (en)
JP (1) JP2008256279A (en)
CN (1) CN101652620B (en)
DE (1) DE112008000892B4 (en)
WO (1) WO2008126769A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7892567B2 (en) * 2007-10-01 2011-02-22 Board Of Regents, The University Of Texas System Methods and compositions for immunization against chlamydial infection and disease
JP4798125B2 (en) * 2007-12-13 2011-10-19 株式会社デンソー Illuminance sensor
JP5300618B2 (en) * 2009-06-24 2013-09-25 株式会社東芝 Multi-stage pressure condenser
CN102706177A (en) * 2012-06-07 2012-10-03 镇江新梦溪能源科技有限公司 Fresh water condensing device for sea water desalinization
KR101637292B1 (en) * 2015-02-16 2016-07-20 현대자동차 주식회사 Apparatus of condensing gas with reflux separator
CN110081730A (en) * 2019-05-08 2019-08-02 上海蓝滨石化设备有限责任公司 A kind of compound board-like condensate cooler

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB355625A (en) * 1930-12-23 1931-08-27 Ingersoll Rand Co Improvements in surface condensers
JPS5578111A (en) * 1978-12-05 1980-06-12 Fuji Electric Co Ltd Double-flow condensing turbine facility
US4306418A (en) * 1978-12-05 1981-12-22 Fuji Electric Co., Ltd. Condensing turbine installation
JPS5977290A (en) * 1982-10-26 1984-05-02 Fuji Electric Co Ltd Dual pressure type condenser
EP0128346B1 (en) * 1983-06-09 1986-09-10 BBC Aktiengesellschaft Brown, Boveri & Cie. Multi-stage steam generator condenser with reheating arrangements for the suppression of condensate under cooling
FR2616526B1 (en) * 1987-06-10 1989-11-03 Laguilharre Sa METHOD FOR CONDENSING A STEAM, DEVICE FOR IMPLEMENTING IT, AND EVAPORATOR COMPRISING SUCH A DEVICE
US5174120A (en) * 1991-03-08 1992-12-29 Westinghouse Electric Corp. Turbine exhaust arrangement for improved efficiency
JPH0821205A (en) 1994-07-08 1996-01-23 Japan Atom Power Co Ltd:The Condenser device
JP3706571B2 (en) * 2001-11-13 2005-10-12 三菱重工業株式会社 Multi-stage pressure condenser

Also Published As

Publication number Publication date
US20100115949A1 (en) 2010-05-13
DE112008000892T5 (en) 2010-05-20
DE112008000892B4 (en) 2010-11-11
WO2008126769A1 (en) 2008-10-23
CN101652620A (en) 2010-02-17
CN101652620B (en) 2011-05-25

Similar Documents

Publication Publication Date Title
EP2199720B1 (en) Double-pressure type condenser, and condensate reheating method
JP2008256279A (en) Condensing facility
RU2605865C2 (en) Evaporator with multiple drums
RU2542725C2 (en) Steam-turbine plant with steam turbine assembly and process steam user and its operation method
JP2010038163A (en) System and assemblies for hot water extraction to pre-heat fuel in combined cycle power plant
JP2010038162A (en) System and assembly for preheating fuel in combined cycle power plant
US20160273406A1 (en) Combined cycle system
CN202441442U (en) Regenerated steam-driven draught fan thermodynamic cycle system of air cooling unit of power plant
US20130048245A1 (en) Heat Exchanger Having Improved Drain System
FI118132B (en) Procedure in a soda pan and soda pan
US20160305280A1 (en) Steam power plant with a liquid-cooled generator
CN114810249A (en) Thermoelectric decoupling system and method for heat supply unit
KR101662474B1 (en) Condensate preheater for a waste-heat steam generator
WO2017029956A1 (en) Steam turbine plant
JP2009008290A (en) Drainage recovering system in power generation facility
Brodov et al. State of the art and trends in the design and operation of high-and low-pressure heaters for steam turbines at thermal and nuclear power plants in Russia and abroad: Part 1. Heater types and designs
TW201529961A (en) Heat exchanging system and method for a heat recovery steam generator
JP6081543B1 (en) Steam turbine plant
CN109945224A (en) Low temperature heat system
JPH0148363B2 (en)
CN218846938U (en) Three-pressure condenser matched with turboset with output of more than million kilowatts
JP6578247B2 (en) Double pressure condenser
JP6564646B2 (en) Steam turbine plant
CN115751438A (en) Offshore nuclear power cogeneration multistage heat supply system
CN117029075A (en) Nuclear power unit heat energy recovery device and combined type built-in heat supply network heat exchanger

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100426