JP2015210028A - Heat storage system and air conditioning system - Google Patents

Heat storage system and air conditioning system Download PDF

Info

Publication number
JP2015210028A
JP2015210028A JP2014091942A JP2014091942A JP2015210028A JP 2015210028 A JP2015210028 A JP 2015210028A JP 2014091942 A JP2014091942 A JP 2014091942A JP 2014091942 A JP2014091942 A JP 2014091942A JP 2015210028 A JP2015210028 A JP 2015210028A
Authority
JP
Japan
Prior art keywords
heat storage
heat
storage medium
temperature
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014091942A
Other languages
Japanese (ja)
Inventor
安尾 晃一
Koichi Yasuo
晃一 安尾
柯壁 陳
Kebi Chen
柯壁 陳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2014091942A priority Critical patent/JP2015210028A/en
Publication of JP2015210028A publication Critical patent/JP2015210028A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To surely make a heat storage medium as hydrate slurry from an overcooling state in a heat storage tank, in a heat storage system which uses the heat storage medium in which a clathrate hydrate is created by cooling.SOLUTION: A refrigerant in a refrigerant circuit and a heat storage medium in a heat storage circuit are heat-exchanged by a heat storage heat exchanger, the heat storage medium is cooled, and the heat storage medium is brought into an overcooled state at a temperature lower than a hydrate creation temperature. After that, the heat storage medium is heated by the refrigerant in the heat storage heat exchanger, and raised in temperature to a prescribed temperature not lower than the hydrate creation temperature. By this constitution, a temperature impact arises in the heat storage tank by the flow-in of the high-temperature heat storage medium, the low-temperature heat storage medium and the high-temperature heat storage medium are mixed with each other, disturbance abruptly occurs, and the inside of the heat storage tank is agitated. As a result, hydrate slurry originally existing in the heat storage tank is largely grown up. The hydrate slurry becomes a core for eliminating the overcooling state of the heat storage medium which flows into the heat storage tank succeedingly.

Description

本発明は、蓄熱媒体の蓄熱作用を利用して冷熱を蓄える蓄熱システム、及びこの蓄熱システムで蓄えた冷熱を利用して空調を行う空調システムに関するものである。   The present invention relates to a heat storage system that stores cold using the heat storage action of a heat storage medium, and an air conditioning system that performs air conditioning using the cold stored in the heat storage system.

蓄熱システムには、特許文献1に示すように、蓄熱回路と冷媒回路とで構成され、蓄熱媒体を利用して蓄熱する。また、この蓄熱システムの蓄熱媒体に蓄えられた冷熱を利用して室内の空調を行う空調システムが知られている。蓄熱回路は、主として、蓄熱媒体を貯留する蓄熱タンク、蓄熱媒体を冷媒等の熱媒体と熱交換する蓄熱用熱交換器、及び循環ポンプ等によって構成される。冷媒回路は、主として、上記蓄熱用熱交換器、及び蓄熱用熱交換器にて蓄熱媒体から取り出された冷熱を用いて室内空気を冷却する利用側熱交換器等によって構成される。   As shown in Patent Document 1, the heat storage system includes a heat storage circuit and a refrigerant circuit, and stores heat using a heat storage medium. There is also known an air conditioning system that performs indoor air conditioning using cold energy stored in a heat storage medium of the heat storage system. The heat storage circuit mainly includes a heat storage tank that stores a heat storage medium, a heat storage heat exchanger that exchanges heat between the heat storage medium and a heat medium such as a refrigerant, and a circulation pump. The refrigerant circuit is mainly configured by the heat storage heat exchanger and a use-side heat exchanger that cools indoor air using cold heat extracted from the heat storage medium by the heat storage heat exchanger.

上記特許文献1では、冷却することによって包接水和物が生成される水和剤を蓄熱材(例えば臭化テトラnブチルアンモニウム)とし、この蓄熱材の水溶液が蓄熱媒体として利用されている。特許文献1では、蓄熱媒体を蓄熱用熱交換器で冷却し蓄熱タンクに貯留することで、蓄熱タンク内に冷熱を蓄える蓄冷運転が行われる。   In Patent Document 1, a wettable powder that produces clathrate hydrate by cooling is used as a heat storage material (for example, tetra-n-butylammonium bromide), and an aqueous solution of this heat storage material is used as a heat storage medium. In patent document 1, the cool storage operation which stores cold heat in a heat storage tank is performed by cooling a heat storage medium with the heat exchanger for heat storage, and storing in a heat storage tank.

特開2013−083439号公報JP2013-083439A

上記蓄熱システムで利用する蓄熱材、例えば臭化テトラnブチルアンモニウム(TBAB)水溶液などの蓄熱媒体では、その水和物生成温度未満の温度に安定的に冷却すると、包接水和物が生成されず、溶液状態を保持した過冷却溶液となる。この過冷却溶液、すなわち過冷却状態の蓄熱媒体は、蓄熱媒体としての氷に比べて、その過冷却状態を解消し難い、すなわち水和物スラリーになり難い特性を持つ。また、過冷却溶液中に水和物スラリーが少々存在している状態において、その水和物スラリーに過冷却溶液が接触しても、過冷却溶液はその過冷却状態を解消し難い特性を持っている。従って、このような蓄熱媒体を利用する蓄熱システムでは、従来のダイナミック氷蓄熱システムのように水の過冷却溶液を種氷生成装置で作った種氷と接触させてその過冷却状態を解消する方法を採用し難いし、また採用しても、大きな種氷を生成できる種氷生成装置のごとき装置が必要となり、コスト高になる欠点がある。   In a heat storage medium used in the above heat storage system, for example, a heat storage medium such as a tetra-n-butylammonium bromide (TBAB) aqueous solution, clathrate hydrate is generated when cooled stably to a temperature lower than the hydrate generation temperature. Therefore, it becomes a supercooled solution maintaining the solution state. This supercooled solution, that is, the supercooled heat storage medium, has characteristics that it is difficult to eliminate the supercooled state, that is, not to become a hydrate slurry, compared to ice as a heat storage medium. In addition, even when a small amount of hydrate slurry is present in the supercooled solution, even if the supercooled solution comes into contact with the hydrate slurry, the supercooled solution has characteristics that make it difficult to eliminate the supercooled state. ing. Therefore, in a heat storage system using such a heat storage medium, a method of canceling the supercooled state by bringing the water supercooled solution into contact with the seed ice produced by the seed ice generator as in the conventional dynamic ice heat storage system. However, even if it is adopted, a device such as a seed ice producing device capable of producing large seed ice is required, and there is a disadvantage that the cost is increased.

更に、臭化テトラnブチルアンモニウム(TBAB)水溶液などの蓄熱媒体は、蓄熱タンクに水和物スラリーが全く存在しない初期状態からプルダウン運転を開始した場合には、過冷却度が大きい(例えば5°C以上の)状態となっても過冷却状態を解消し難い特性を持つ。その過冷却度を更に大きくすれば、小さな衝撃(例えば蓄熱媒体が流通する配管での圧力変動など)により過冷却状態が解消されて、蓄熱媒体は水和物スラリーになるが、過冷却度を更に大きくしようとすると、蓄熱用熱交換器での熱交換率が悪くなる欠点が生じる。   Furthermore, a heat storage medium such as an aqueous solution of tetra n-butylammonium bromide (TBAB) has a high degree of supercooling when the pull-down operation is started from an initial state where no hydrate slurry is present in the heat storage tank (for example, 5 ° (C or higher), it is difficult to eliminate the supercooled state. If the supercooling degree is further increased, the supercooling state is eliminated by a small impact (for example, pressure fluctuation in a pipe through which the heat storage medium flows), and the heat storage medium becomes a hydrate slurry. If it is further increased, there is a drawback that the heat exchange rate in the heat storage heat exchanger is deteriorated.

更に、過冷却溶液が上記配管の途中でその過冷却状態を解消してしまった場合には、その解消部分で水和物スラリーが成長し凍結すると、配管の閉塞が生じる。この閉塞を解消しようと蓄熱用熱交換器で過冷却溶液を加熱しても、その蓄熱用熱交換器から配管の閉塞部分まで熱伝達して凍結が解消され始めるまで、更には水和物スラリーの包接水和物が配管内壁から剥がれて流れ出すまでに長時間を要する。その結果、蓄熱タンクの蓄熱量を所望の時間で確保できない欠点が生じる。   Furthermore, when the supercooled solution has canceled the supercooled state in the middle of the piping, the hydrate slurry grows and freezes at the portion where the supercooled solution is formed, and the piping is blocked. Even if the supercooled solution is heated with a heat storage heat exchanger to eliminate this blockage, heat transfer from the heat storage heat exchanger to the plugged portion of the pipe starts to freeze the hydrate slurry. It takes a long time for the clathrate hydrate to flow off the inner wall of the pipe. As a result, there arises a drawback that the heat storage amount of the heat storage tank cannot be secured in a desired time.

本発明は、かかる点に鑑みてなされたものであり、その目的は、臭化テトラnブチルアンモニウム(TBAB)水溶液などの蓄熱媒体を利用した蓄熱システムにおいて、蓄熱タンク内に過冷却状態を解消させる核となる大きな水和物スラリーを生じさせて、蓄熱媒体の過冷却状態を安価で且つ確実に解消することにある。   This invention is made | formed in view of this point, The objective is to eliminate a supercooling state in a thermal storage tank in the thermal storage system using thermal storage media, such as tetra n butyl ammonium bromide (TBAB) aqueous solution. The purpose is to generate a large hydrate slurry as a core, and to reliably and reliably eliminate the supercooled state of the heat storage medium.

第1の発明の蓄熱システムは、冷却することによって包接水和物が生成される蓄熱媒体を貯留する蓄熱タンク(52)を有し、上記蓄熱媒体を循環させる蓄熱回路(61)と、冷媒を循環させる冷媒回路(11)と、上記蓄熱回路(61)と冷媒回路(11)とに共通して配置され、上記冷媒回路(11)の冷媒と上記蓄熱回路(61)の蓄熱媒体との間で熱交換させる蓄熱用熱交換器(29)とを備えた蓄熱システムであって、上記蓄熱タンク(52)へ蓄熱する運転を制御する運転制御部(100)を備え、上記運転制御部(100)は、上記蓄熱回路(61)の上記蓄熱媒体を水和物生成温度未満の第1所定温度とするよう、上記蓄熱用熱交換器(29)で上記蓄熱媒体を冷却する顕熱蓄冷運転を行った後、上記蓄熱回路(61)の蓄熱媒体を上記水和物生成温度以上にするよう、上記蓄熱用熱交換器(29)で上記蓄熱媒体を加熱する加熱運転を行うことを特徴とする。   The heat storage system of 1st invention has the heat storage tank (52) which stores the heat storage medium in which clathrate hydrate is produced | generated by cooling, the heat storage circuit (61) which circulates the said heat storage medium, and a refrigerant | coolant A refrigerant circuit (11) that circulates the refrigerant, and the heat storage circuit (61) and the refrigerant circuit (11) in common, and the refrigerant of the refrigerant circuit (11) and the heat storage medium of the heat storage circuit (61) A heat storage system (29) for exchanging heat between the heat storage tanks (52), comprising an operation control unit (100) for controlling the operation of storing heat in the heat storage tank (52), and the operation control unit ( 100) is a sensible heat storage operation for cooling the heat storage medium by the heat storage heat exchanger (29) so that the heat storage medium of the heat storage circuit (61) is set to a first predetermined temperature lower than the hydrate generation temperature. After the heat treatment, the heat storage medium of the heat storage circuit (61) is set to the hydrate formation temperature or higher. And performing heating operation for heating the heat storage medium in the heat storage heat exchanger (29).

この蓄熱システムでは、先ず、顕熱蓄冷運転が行われて、蓄熱媒体はその温度が水和物生成温度未満の第1所定温度の過冷却状態になる。この過冷却状態では、蓄熱タンク内では、水和物スラリーが少々存在した状態にある。   In this heat storage system, first, a sensible heat storage operation is performed, and the heat storage medium enters a supercooled state at a first predetermined temperature whose temperature is lower than the hydrate generation temperature. In this supercooled state, there is a little hydrate slurry in the heat storage tank.

その後は、加熱運転が行われて、蓄熱媒体の温度は水和物生成温度以上に上昇する。これにより、蓄熱用熱交換器で温度上昇した蓄熱媒体は蓄熱タンクに流入して、該蓄熱タンク内では水和物生成温度未満の蓄熱媒体と水和物生成温度以上の蓄熱媒体とが一気に混ざり合い、急激に乱流が生じて、蓄熱タンク内が攪拌される。このように、上記蓄熱媒体の加熱制御(温度衝撃)によって、蓄熱タンク内で温度の異なる蓄熱媒体同士の混合、乱流及び攪拌が生じることにより、元々存在していた水和物スラリーに多くの過冷却状態の蓄熱媒体が接触して、その元々存在していた水和物スラリーが確実に大きく成長する。そして、この成長した水和物スラリーが、その後に蓄熱タンク内に流入してくる蓄熱媒体の過冷却状態を解消させる核となる。   Thereafter, a heating operation is performed, and the temperature of the heat storage medium rises above the hydrate formation temperature. As a result, the heat storage medium whose temperature has increased in the heat storage heat exchanger flows into the heat storage tank, and the heat storage medium having a temperature lower than the hydrate generation temperature and the heat storage medium having a temperature higher than the hydrate generation temperature are mixed at once in the heat storage tank. As a result, a turbulent flow suddenly occurs and the heat storage tank is agitated. In this way, the heat control (temperature shock) of the heat storage medium causes mixing, turbulence, and agitation of heat storage media having different temperatures in the heat storage tank, so that many hydrate slurries originally existed. The supercooled heat storage medium comes into contact with each other, and the hydrate slurry that originally existed is surely greatly grown. And this grown hydrate slurry becomes the nucleus which cancels the supercooled state of the thermal storage medium which flows in in a thermal storage tank after that.

第2の発明は、上記蓄熱システムにおいて、上記第1所定温度は、上記蓄熱用熱交換器(29)の出口の蓄熱媒体の温度であることを特徴とする。   The second invention is characterized in that, in the heat storage system, the first predetermined temperature is a temperature of a heat storage medium at an outlet of the heat storage heat exchanger (29).

この蓄熱システムでは、蓄熱用熱交換器(29)の出口の蓄熱媒体の温度は、水和物生成温度未満の第1所定温度の過冷却状態となるので、蓄熱タンクの内部では、蓄熱媒体の温度は確実に水和物生成温度未満の過冷却状態になっている。従って、蓄熱タンク内には、水和物スラリーが多少でも確実に存在することになる。よって、その後の蓄熱媒体の加熱制御(温度衝撃)に伴う蓄熱タンク内での蓄熱媒体の混合、乱流及び攪拌によって、過冷却状態の蓄熱媒体が上記既に存在する水和物スラリーに接触すると、その蓄熱媒体は過冷却状態を解消して水和物スラリーになる。   In this heat storage system, the temperature of the heat storage medium at the outlet of the heat storage heat exchanger (29) is in a supercooled state at a first predetermined temperature lower than the hydrate generation temperature. The temperature is surely undercooled below the hydrate formation temperature. Therefore, some hydrate slurry is surely present in the heat storage tank. Therefore, when the supercooled heat storage medium comes into contact with the already existing hydrate slurry by mixing, turbulent flow, and stirring in the heat storage tank accompanying the subsequent heating control (temperature shock) of the heat storage medium, The heat storage medium eliminates the supercooled state and becomes a hydrate slurry.

また、上記水和物生成温度未満の第1所定温度を水和物生成温度から例えば3°C低い温度(過冷却度=3°C)の所定温度に設定すると、蓄熱用熱交換器の蓄熱媒体の出入口温度差を大きく確保できて、熱交換率の良い状態で蓄熱用熱交換器を運転することが可能である。   Further, when the first predetermined temperature lower than the hydrate generation temperature is set to a predetermined temperature that is, for example, 3 ° C. lower than the hydrate generation temperature (supercooling = 3 ° C.), the heat storage of the heat storage heat exchanger It is possible to secure a large temperature difference between the inlet and outlet of the medium and to operate the heat storage heat exchanger with a good heat exchange rate.

第3の発明は、上記蓄熱システムにおいて、上記冷媒回路(11)は、上記蓄熱用熱交換器(29)への冷媒の供給通路(14a,14b)に配置される電動弁(30)を有し、上記運転制御部(100)は、上記顕熱蓄冷運転の完了後は、上記電動弁(30)の開度を大きい側に変更して、上記蓄熱用熱交換器(29)での冷媒温度を上げることを特徴とする。   According to a third aspect of the present invention, in the heat storage system, the refrigerant circuit (11) includes an electric valve (30) disposed in a refrigerant supply passage (14a, 14b) to the heat storage heat exchanger (29). Then, after the sensible heat storage operation is completed, the operation control unit (100) changes the opening of the motor-operated valve (30) to the larger side, and the refrigerant in the heat storage heat exchanger (29) It is characterized by raising the temperature.

この蓄熱システムでは、加熱運転時には、冷媒回路の電動弁の開度を大きい側に変更して、蓄熱用熱交換器での冷媒温度を上げる。これにより、蓄熱媒体を適度に加熱できて、温度の異なる蓄熱媒体同士の混合、攪拌が適切に行われ、蓄熱媒体の過冷却状態を確実に解消できる。   In this heat storage system, during the heating operation, the opening degree of the motor-operated valve of the refrigerant circuit is changed to a larger side to raise the refrigerant temperature in the heat storage heat exchanger. Thereby, a heat storage medium can be heated moderately, mixing and stirring of heat storage media from which temperature differs are performed appropriately, and the supercooled state of a heat storage medium can be canceled reliably.

第4の発明は、上記蓄熱システムにおいて、上記運転制御部(100)は、上記加熱運転により上記蓄熱用熱交換器(29)の出口での蓄熱媒体温度が上記水和物生成温度以上の第2所定温度になった後、上記顕熱蓄冷運転と同態様の潜熱蓄冷運転を行うことを特徴とする。   According to a fourth aspect of the present invention, in the heat storage system, the operation control unit (100) is configured such that the heat storage medium temperature at the outlet of the heat storage heat exchanger (29) is higher than the hydrate generation temperature by the heating operation. 2 After the temperature reaches a predetermined temperature, the latent heat cool-down operation in the same manner as the sensible heat cool-down operation is performed.

この蓄熱システムでは、加熱運転により蓄熱用熱交換器出口の蓄熱媒体温度が第2所定温度になった時点で、その加熱運転が停止して、潜熱蓄冷運転が行われる。従って、蓄熱媒体の加熱運転時間を短くできて、蓄熱タンクへの蓄熱を効率良く行うことが可能である。   In this heat storage system, when the heat storage medium temperature at the outlet of the heat storage heat exchanger becomes the second predetermined temperature by the heating operation, the heating operation is stopped and the latent heat cold storage operation is performed. Therefore, the heating operation time of the heat storage medium can be shortened, and heat storage in the heat storage tank can be performed efficiently.

第5の発明の空調システムは、上記蓄熱システムと、上記蓄熱システムの冷媒回路(11)に配置される利用側熱交換器(25)を有し、上記蓄熱タンク(52)に蓄熱された冷熱を上記利用側熱交換器(25)に与えて対象空調空間を冷房することを特徴とする。   An air conditioning system according to a fifth aspect of the present invention includes the heat storage system and a use side heat exchanger (25) disposed in the refrigerant circuit (11) of the heat storage system, and the cold heat stored in the heat storage tank (52). Is provided to the use side heat exchanger (25) to cool the target air-conditioned space.

この空調システムでは、蓄熱システムの蓄熱タンク(52)に蓄熱された冷熱が利用側熱交換器(25)に与えられて、対象空調空間が良好に冷房される。   In this air conditioning system, the cold energy stored in the heat storage tank (52) of the heat storage system is given to the use side heat exchanger (25), and the target air-conditioned space is cooled well.

以上説明したように、第1の発明によれば、蓄熱タンク内で過冷却状態にあった蓄熱媒体に温度衝撃を与えることによってその蓄熱媒体の過冷却状態を確実に解消して水和物スラリーを生成できるので、ダイナミック氷蓄熱システムの種氷生成装置のごとき装置を採用する必要がなく、低コスト化が可能である。しかも、蓄熱タンク内で過冷却状態を解消できるので、蓄熱媒体の流通配管の途中での配管の閉塞を防止できる。   As described above, according to the first invention, by applying a temperature shock to the heat storage medium that has been in the supercooled state in the heat storage tank, the supercooled state of the heat storage medium is reliably eliminated, and the hydrate slurry Therefore, it is not necessary to employ a device such as a seed ice generation device of a dynamic ice heat storage system, and the cost can be reduced. In addition, since the supercooled state can be eliminated in the heat storage tank, blockage of the pipe in the middle of the heat storage medium distribution pipe can be prevented.

第2の発明によれば、蓄熱媒体の過冷却状態を解消するための大きな水和物スラリーを得るための核となる水和物スラリーを蓄熱タンク内に元々存在させたので、蓄熱タンク内での過冷却状態をより一層確実に解消できる。また、蓄熱用熱交換器での熱交換率を高く確保できる。   According to the second invention, since the hydrate slurry as a core for obtaining a large hydrate slurry for eliminating the supercooled state of the heat storage medium was originally present in the heat storage tank, It is possible to more reliably eliminate the overcooling state. Further, a high heat exchange rate in the heat storage heat exchanger can be secured.

第3の発明によれば、蓄熱媒体を適度に加熱して、蓄熱タンク内で適切な温度衝撃を与えることができ、蓄熱媒体の過冷却状態を確実に解消できる。   According to the third invention, the heat storage medium can be appropriately heated to give an appropriate temperature shock in the heat storage tank, and the supercooled state of the heat storage medium can be reliably eliminated.

第4の発明によれば、蓄熱媒体の加熱運転時間を短くできるので、蓄熱タンクへの蓄熱効率を高く確保して、ほぼ所望時間で既定蓄熱量を確保できる。   According to the fourth invention, since the heating operation time of the heat storage medium can be shortened, the heat storage efficiency to the heat storage tank can be ensured high, and the predetermined heat storage amount can be secured in almost the desired time.

第5の発明によれば、蓄熱システムで蓄熱した冷熱を利用して対象空調空間を良好に冷房できる。   According to the fifth aspect, the target air-conditioned space can be favorably cooled using the cold energy stored in the heat storage system.

図1は空調システムの構成図である。FIG. 1 is a configuration diagram of an air conditioning system. 図2は顕熱蓄冷運転時、潜熱蓄冷運転時及び加熱運転時の冷媒の流れと蓄熱媒体の流れとを表す図である。FIG. 2 is a diagram illustrating the refrigerant flow and the heat storage medium flow during the sensible heat storage operation, the latent heat storage operation, and the heating operation. 図3は第1利用冷房運転時の冷媒の流れと蓄熱媒体の流れとを表す図である。FIG. 3 is a diagram illustrating the flow of the refrigerant and the flow of the heat storage medium during the first use cooling operation. 図4は第2利用冷房運転時の冷媒の流れと蓄熱媒体の流れとを表す図である。FIG. 4 is a diagram illustrating the refrigerant flow and the heat storage medium flow during the second usage cooling operation. 図5は空調システムのプルダウン運転時の蓄熱用熱交換器出口の蓄熱媒体温度及び冷媒温度の変化の様子を示す図である。FIG. 5 is a diagram showing changes in the heat storage medium temperature and the refrigerant temperature at the outlet of the heat storage heat exchanger during the pull-down operation of the air conditioning system. 図6は臭化テトラnブチルアンモニウム水溶液の各種濃度において2種類の水溶液温度での粘度を示す図である。FIG. 6 is a diagram showing the viscosities at two aqueous solution temperatures at various concentrations of an aqueous tetra-n-butylammonium bromide solution.

以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The following embodiments are essentially preferable examples, and are not intended to limit the scope of the present invention, its application, or its use.

≪実施形態≫
図1は、空調システム(10)の構成図である。図1に示すように、空調システム(10)は、空気調和装置(20)、蓄熱装置(50)、及びコントローラ(100)(運転制御部に相当)を有する。
<Embodiment>
FIG. 1 is a configuration diagram of an air conditioning system (10). As shown in FIG. 1, the air conditioning system (10) includes an air conditioner (20), a heat storage device (50), and a controller (100) (corresponding to an operation control unit).

蓄熱装置(50)は、蓄熱タンクユニット(51)、補助熱交換器(28)、蓄熱用熱交換器(29)、蓄熱用膨張弁(30)、循環ポンプ(58)、及びその他の各種弁(32,33,34)を有する。蓄熱装置(50)が有する機器によって蓄熱回路(61)が構成されている。   The heat storage device (50) includes a heat storage tank unit (51), an auxiliary heat exchanger (28), a heat storage heat exchanger (29), a heat storage expansion valve (30), a circulation pump (58), and other various valves. (32, 33, 34). The heat storage circuit (61) is configured by the devices included in the heat storage device (50).

空気調和装置(20)は、室外ユニット(20a)と室内ユニット(20b)とを有する。各ユニット(20a,20b)に含まれる機器と、蓄熱装置(50)が有する一部の機器(具体的には、補助熱交換器(28)、蓄熱用熱交換器(29)、蓄熱用膨張弁(30)及びその他の各種弁(32,33,34))によって冷媒回路(11)が構成されている。   The air conditioner (20) includes an outdoor unit (20a) and an indoor unit (20b). Equipment included in each unit (20a, 20b) and some equipment of heat storage device (50) (specifically, auxiliary heat exchanger (28), heat storage heat exchanger (29), expansion for heat storage) A refrigerant circuit (11) is constituted by the valve (30) and other various valves (32, 33, 34).

コントローラ(100)は、空調システム(10)の運転を制御するためのものであって、冷媒回路(11)の圧縮機(21)や蓄熱回路(61)の循環ポンプ(58)等の駆動制御を行う。   The controller (100) is for controlling the operation of the air conditioning system (10), and controls the compressor (21) of the refrigerant circuit (11) and the circulation pump (58) of the heat storage circuit (61). I do.

上記空調システム(10)のうち、空気調和装置(20)の室外ユニット(20a)及び蓄熱装置(50)により、蓄熱タンクユニット(51)に冷熱を蓄熱する蓄熱システム(40)が構成される。   Of the air conditioning system (10), the outdoor unit (20a) and the heat storage device (50) of the air conditioner (20) constitute a heat storage system (40) for storing cold energy in the heat storage tank unit (51).

<冷媒回路の構成>
冷媒回路(11)には冷媒(熱媒体に相当)が充填されており、冷媒が循環することによって冷凍サイクルが行われる。図1に示すように、冷媒回路(11)は、主として、圧縮機(21)、室外熱交換器(22)、室外膨張弁(23)、室内膨張弁(24)、室内熱交換器(25)、四方切換弁(26)、補助熱交換器(28),蓄熱用熱交換器(29)及び蓄熱用膨張弁(30)によって構成されている。圧縮機(21)、室外熱交換器(22)、室外膨張弁(23)及び四方切換弁(26)は、室外ユニット(20a)に設けられ、室内膨張弁(24)及び室内熱交換器(25)は、室内ユニット(20b)に設けられている。
<Configuration of refrigerant circuit>
The refrigerant circuit (11) is filled with a refrigerant (corresponding to a heat medium), and a refrigeration cycle is performed by circulating the refrigerant. As shown in FIG. 1, the refrigerant circuit (11) mainly includes a compressor (21), an outdoor heat exchanger (22), an outdoor expansion valve (23), an indoor expansion valve (24), and an indoor heat exchanger (25 ), A four-way switching valve (26), an auxiliary heat exchanger (28), a heat storage heat exchanger (29), and a heat storage expansion valve (30). The compressor (21), the outdoor heat exchanger (22), the outdoor expansion valve (23) and the four-way switching valve (26) are provided in the outdoor unit (20a), and the indoor expansion valve (24) and the indoor heat exchanger ( 25) is provided in the indoor unit (20b).

圧縮機(21)は冷媒を圧縮して吐出する。圧縮機(21)は、例えば容量可変式であって、図示しないインバータ回路によって回転数(運転周波数)が可変される。   The compressor (21) compresses and discharges the refrigerant. The compressor (21) is, for example, a variable capacity type, and the rotation speed (operation frequency) is variable by an inverter circuit (not shown).

室外熱交換器(22)は、配管(12)を介して四方切換弁(26)と接続されている。室外熱交換器(22)は、例えばクロスフィンアンドチューブ式であって、室外ユニット(20a)に設けられた室外ファン(22a)によって室外空気が供給されると、当該室外空気と冷媒との熱交換を行う。   The outdoor heat exchanger (22) is connected to the four-way switching valve (26) through the pipe (12). The outdoor heat exchanger (22) is, for example, a cross fin and tube type, and when outdoor air is supplied by an outdoor fan (22a) provided in the outdoor unit (20a), heat of the outdoor air and the refrigerant is generated. Exchange.

室外膨張弁(23)は、配管(13)を介して室外熱交換器(22)と接続され、配管(14a,14b)を介して室内膨張弁(24)と接続されている。室外膨張弁(23)及び室内膨張弁(24)は、例えば電子膨張弁で構成されており、開度を可変することで冷媒の圧力を調整する。   The outdoor expansion valve (23) is connected to the outdoor heat exchanger (22) via the pipe (13), and is connected to the indoor expansion valve (24) via the pipe (14a, 14b). The outdoor expansion valve (23) and the indoor expansion valve (24) are composed of, for example, electronic expansion valves, and adjust the refrigerant pressure by varying the opening.

室内熱交換器(25)は、配管(15)を介して室内膨張弁(24)と接続され、配管(16)を介して四方切換弁(26)と接続されている。室内熱交換器(25)は、例えばクロスフィンアンドチューブ式であって、室内ユニット(20b)に設けられた室内ファン(25a)によって室内空気が供給されると、当該室内空気と冷媒との熱交換を行う。   The indoor heat exchanger (25) is connected to the indoor expansion valve (24) via the pipe (15), and is connected to the four-way switching valve (26) via the pipe (16). The indoor heat exchanger (25) is, for example, a cross fin and tube type, and when indoor air is supplied by an indoor fan (25a) provided in the indoor unit (20b), the heat of the indoor air and the refrigerant Exchange.

四方切換弁(26)は、4つポートを有する。具体的に、四方切換弁(26)の第1ポートは、圧縮機(21)の吐出側に接続され、四方切換弁(26)の第2ポートは、アキュムレータ(27)を介して圧縮機(21)の吸入側に接続されている。四方切換弁(26)の第3ポートは、配管(12)を介して室外熱交換器(22)に接続され、四方切換弁(26)の第4ポートは、配管(16)を介して室内熱交換器(25)に接続されている。四方切換弁(26)は、空調システム(10)の運転種類に応じて、各ポートの接続状態を第1状態(図1の実線で示す状態)または第2状態(図1の破線で示す状態)に切り換える。   The four-way switching valve (26) has four ports. Specifically, the first port of the four-way switching valve (26) is connected to the discharge side of the compressor (21), and the second port of the four-way switching valve (26) is connected to the compressor (27) via the accumulator (27). 21) connected to the suction side. The third port of the four-way switching valve (26) is connected to the outdoor heat exchanger (22) through the pipe (12), and the fourth port of the four-way switching valve (26) is connected to the indoor through the pipe (16). Connected to heat exchanger (25). The four-way selector valve (26) has a connection state of each port in a first state (state indicated by a solid line in FIG. 1) or a second state (state indicated by a broken line in FIG. 1) depending on the operation type of the air conditioning system (10). ).

補助熱交換器(28)は、冷媒側通路(28a)と蓄熱側通路(28b)とを有する。冷媒側通路(28a)は、配管(14a)上、つまりは室外膨張弁(23)と蓄熱用膨張弁(30)との間に位置し、内部には冷媒が流れる。蓄熱側通路(28b)は、蓄熱回路(61)に直列に接続され、内部には蓄熱媒体(後述)が流れる。補助熱交換器(28)は、冷媒と蓄熱媒体と熱交換を行う。   The auxiliary heat exchanger (28) has a refrigerant side passage (28a) and a heat storage side passage (28b). The refrigerant side passage (28a) is located on the pipe (14a), that is, between the outdoor expansion valve (23) and the heat storage expansion valve (30), and the refrigerant flows inside. The heat storage side passage (28b) is connected in series to the heat storage circuit (61), and a heat storage medium (described later) flows through the heat storage side passage (28b). The auxiliary heat exchanger (28) performs heat exchange between the refrigerant and the heat storage medium.

蓄熱用熱交換器(29)は、冷媒側通路(29a)と蓄熱側通路(29b)とを有する。冷媒側通路(29a)は、配管(14b)上において蓄熱用膨張弁(30)と室内膨張弁(24)との間に位置し、内部には冷媒が流れる。蓄熱側通路(29b)は、蓄熱回路(61)に直列に接続され、内部には蓄熱媒体が流れる。蓄熱用熱交換器(29)は、冷媒と蓄熱媒体との熱交換を行う。   The heat storage heat exchanger (29) has a refrigerant side passage (29a) and a heat storage side passage (29b). The refrigerant side passage (29a) is located between the heat storage expansion valve (30) and the indoor expansion valve (24) on the pipe (14b), and the refrigerant flows inside. The heat storage side passage (29b) is connected in series to the heat storage circuit (61), and the heat storage medium flows inside. The heat storage heat exchanger (29) performs heat exchange between the refrigerant and the heat storage medium.

蓄熱用膨張弁(30)は、配管(14a)を介して補助熱交換器(28)に接続されると共に、配管(14b)を介して蓄熱用熱交換器(29)と接続されている。蓄熱用膨張弁(30)は、例えば電子膨張弁で構成されており、開度を可変することで冷媒の圧力を調整する。   The heat storage expansion valve (30) is connected to the auxiliary heat exchanger (28) via the pipe (14a), and is connected to the heat storage heat exchanger (29) via the pipe (14b). The heat storage expansion valve (30) is composed of, for example, an electronic expansion valve, and adjusts the pressure of the refrigerant by varying the opening degree.

また、冷媒回路(11)には、3つの開閉弁(31,32,33)及び1つの逆止弁(34)が設けられている。第1開閉弁(31)は、第1バイパス配管(17)上に位置し、第2開閉弁(32)は、第2バイパス配管(18)上に位置している。ここで、第1バイパス配管(17)は、配管(12)と、配管(14a)における室外膨張弁(23)及び補助熱交換器(28)の間とを繋いでいる。第2バイパス配管(18)は、配管(16)と、配管(14b)における蓄熱用熱交換器(29)及び室内膨張弁(24)の間とを繋いでいる。第3開閉弁(33)は、配管(14b)のうち蓄熱用熱交換器(29)と室内膨張弁(24)との間であって、且つ第2バイパス配管(18)と配管(14b)との接続部分よりも室内膨張弁(24)側に位置している。逆止弁(34)は、第3開閉弁(33)に並列に接続されている。逆止弁(34)は、第3開閉弁(33)における室内膨張弁(24)側の冷媒圧力が所定値を超えた場合に、室内膨張弁(24)側から蓄熱用熱交換器(29)側に向けて冷媒が流れるように設けられている。   The refrigerant circuit (11) is provided with three on-off valves (31, 32, 33) and one check valve (34). The first on-off valve (31) is located on the first bypass pipe (17), and the second on-off valve (32) is located on the second bypass pipe (18). Here, the first bypass pipe (17) connects the pipe (12) and the outdoor expansion valve (23) and the auxiliary heat exchanger (28) in the pipe (14a). The second bypass pipe (18) connects the pipe (16) and the heat storage heat exchanger (29) and the indoor expansion valve (24) in the pipe (14b). The third on-off valve (33) is between the heat storage heat exchanger (29) and the indoor expansion valve (24) in the pipe (14b), and is also connected to the second bypass pipe (18) and the pipe (14b). It is located in the indoor expansion valve (24) side rather than the connection part. The check valve (34) is connected in parallel to the third on-off valve (33). When the refrigerant pressure on the indoor expansion valve (24) side of the third on-off valve (33) exceeds a predetermined value, the check valve (34) receives heat from the indoor expansion valve (24) (29) It is provided so that the refrigerant flows toward the) side.

<蓄熱回路の構成>
蓄熱回路(61)には蓄熱媒体が充填されており、蓄熱媒体を循環させて冷熱を蓄熱するサイクル等が行われる。蓄熱回路(61)は、主として、蓄熱タンクユニット(51)及び循環ポンプ(58)の他に、上述した補助熱交換器(28)及び蓄熱用熱交換器(29)によって構成されている。
<Configuration of heat storage circuit>
The heat storage circuit (61) is filled with a heat storage medium, and a cycle of storing the cold energy by circulating the heat storage medium is performed. The heat storage circuit (61) is mainly configured by the auxiliary heat exchanger (28) and the heat storage heat exchanger (29) described above, in addition to the heat storage tank unit (51) and the circulation pump (58).

ここで、本実施形態1に係る蓄熱媒体について説明する。蓄熱媒体には、冷却することによって包接水和物が生成される蓄熱材、即ち流動性を有する蓄熱材が採用される。蓄熱媒体の具体例としては、臭化テトラnブチルアンモニウム(TBAB:Tetra Butyl Ammonium Bromide)水溶液、トリメチロールエタン(TME:Trimethylolethane)水溶液、パラフィン系スラリーなどが挙げられる。例えば、臭化テトラnブチルアンモニウム水溶液は、安定的に冷却されて当該水溶液の温度が水和物生成温度よりも低くなった過冷却状態でもその水溶液の状態を維持するが、この過冷却状態で衝撃が与えられると、過冷却溶液が包接水和物を含んだ溶液(水和物スラリー)へと遷移する。すなわち、臭化テトラnブチルアンモニウム水溶液は、過冷却状態を解消して、臭化テトラnブチルアンモニウムと水分子とからなる包接水和物(水和物結晶)が生成されて粘性の比較的高い水和物スラリーとなる。逆に、臭化テトラnブチルアンモニウムの水和物スラリーは、加熱により水和物生成温度よりも高くなると、包接水和物が融解して流動性の比較的高い液状態となる。なお、臭化テトラnブチルアンモニウム水溶液の水和物生成温度は、0℃よりも高い温度、例えば12℃となっている。   Here, the heat storage medium according to the first embodiment will be described. As the heat storage medium, a heat storage material in which clathrate hydrate is generated by cooling, that is, a heat storage material having fluidity is employed. Specific examples of the heat storage medium include tetranbutylammonium bromide (TBAB) aqueous solution, trimethylolethane (TME) aqueous solution, and paraffinic slurry. For example, an aqueous solution of tetra-n-butylammonium bromide maintains the state of the aqueous solution even in a supercooled state in which the temperature of the aqueous solution is lower than the hydrate formation temperature after being stably cooled. When an impact is applied, the supercooled solution changes to a solution containing clathrate hydrate (hydrate slurry). That is, the tetra-n-butylammonium bromide aqueous solution eliminates the supercooled state, and clathrate hydrates (hydrate crystals) composed of tetra-n-butylammonium bromide and water molecules are generated, resulting in a relatively viscous viscosity. High hydrate slurry. On the contrary, when the hydrate slurry of tetra-n-butylammonium bromide becomes higher than the hydrate formation temperature by heating, the clathrate hydrate melts and becomes a liquid state having a relatively high fluidity. In addition, the hydrate formation temperature of tetra n butyl ammonium bromide aqueous solution is higher than 0 degreeC, for example, 12 degreeC.

蓄熱タンクユニット(51)は、図1に示すように、蓄熱タンク(52)、流入管(55)及び流出管(56)を備える。蓄熱タンク(52)は、軸方向が上下方向となるように配置された中空の円筒状容器であって、上端及び下端は閉塞されている。蓄熱タンク(52)の内部には蓄熱媒体が貯留される。また、蓄熱タンク(52)の側壁のうち該タンク(52)の下部には、第1開口(53)が形成され、蓄熱タンク(52)の側壁うち該タンク(52)の上部には、第2開口(54)が形成されている。   As shown in FIG. 1, the heat storage tank unit (51) includes a heat storage tank (52), an inflow pipe (55), and an outflow pipe (56). The heat storage tank (52) is a hollow cylindrical container arranged such that the axial direction is the vertical direction, and the upper end and the lower end are closed. A heat storage medium is stored in the heat storage tank (52). A first opening (53) is formed in a lower portion of the side wall of the heat storage tank (52), and a first opening (53) is formed in the upper side of the tank (52) of the side wall of the heat storage tank (52). Two openings (54) are formed.

図1に示すように、流入管(55)は、第1開口(53)を介して蓄熱タンク(52)に取り付けられており、蓄熱タンク(52)内部に蓄熱媒体を流入させる。流入管(55)の蓄熱媒体の入口端は、配管(62)を介して蓄熱用熱交換器(29)の蓄熱側通路(29b)の一端に接続されている。流入管(55)の蓄熱媒体の出口端は、蓄熱タンク(52)内部と連通している。   As shown in FIG. 1, the inflow pipe (55) is attached to the heat storage tank (52) through the first opening (53), and allows the heat storage medium to flow into the heat storage tank (52). The inlet end of the heat storage medium of the inflow pipe (55) is connected to one end of the heat storage side passage (29b) of the heat storage heat exchanger (29) via the pipe (62). The outlet end of the heat storage medium of the inflow pipe (55) communicates with the inside of the heat storage tank (52).

図1に示すように、流出管(56)は、第2開口(54)を介して蓄熱タンク(52)に取り付けられており、蓄熱タンク(52)内部の蓄熱媒体を該タンク(52)から流出させる。流出管(56)の蓄熱媒体の入口端は、蓄熱タンク(52)内部と連通している。流出管(56)の蓄熱媒体の出口端は、配管(63)を介して補助熱交換器(28)の蓄熱側通路(28b)の一端に接続されている。   As shown in FIG. 1, the outflow pipe (56) is attached to the heat storage tank (52) via the second opening (54), and the heat storage medium inside the heat storage tank (52) is transferred from the tank (52). Spill. The inlet end of the heat storage medium of the outflow pipe (56) communicates with the heat storage tank (52). The outlet end of the heat storage medium of the outflow pipe (56) is connected to one end of the heat storage side passage (28b) of the auxiliary heat exchanger (28) via the pipe (63).

循環ポンプ(58)は、図1の蓄熱回路(61)において、補助熱交換器(28)から蓄熱用熱交換器(29)に向かう方向に蓄熱媒体を循環させる。循環ポンプ(58)は、配管(64)を介して補助熱交換器(28)の蓄熱側通路(28b)の他端に接続され、配管(65)を介して蓄熱用熱交換器(29)の蓄熱側通路(29b)の他端に接続されている。循環ポンプ(58)の運転のオン及びオフや蓄熱媒体の搬送量は、コントローラ(100)によって制御される。   The circulation pump (58) circulates the heat storage medium in the direction from the auxiliary heat exchanger (28) toward the heat storage heat exchanger (29) in the heat storage circuit (61) of FIG. The circulation pump (58) is connected to the other end of the heat storage side passage (28b) of the auxiliary heat exchanger (28) through the pipe (64), and is connected to the heat storage heat exchanger (29) through the pipe (65). Is connected to the other end of the heat storage side passage (29b). The controller (100) controls on / off of the operation of the circulation pump (58) and the conveyance amount of the heat storage medium.

以上の構成により、蓄熱回路(61)は、閉回路となっている。   With the above configuration, the heat storage circuit (61) is a closed circuit.

<空調システムの運転動作>
空調システム(10)の運転種類は、冷媒回路(11)における冷媒の循環と並行して蓄熱回路(61)における蓄熱媒体の循環が行われる運転と、冷媒回路(11)における冷媒の循環のみが行われる運転とに大別される。以下では、前者の場合の運転動作について説明する。前者の場合としては、潜熱蓄冷運転及び利用冷房運転が挙げられる。
<Operation of air conditioning system>
The operation types of the air conditioning system (10) are only the operation in which the heat storage medium is circulated in the heat storage circuit (61) in parallel with the refrigerant circulation in the refrigerant circuit (11), and the refrigerant circulation in the refrigerant circuit (11). It is roughly divided into driving. Below, the driving | operation operation | movement in the former case is demonstrated. As the former case, latent heat cold storage operation and utilization cooling operation can be mentioned.

―潜熱蓄冷運転―
図2に示される潜熱蓄冷運転では、室外熱交換器(22)及び補助熱交換器(28)にて凝縮及び冷却された冷媒が蓄熱用熱交換器(29)の冷媒側通路(29a)にて蒸発することで、蓄熱側通路(29b)内の蓄熱媒体が冷却されて過冷却状態となった後、蓄熱タンク(52)に流入し水和物スラリーとなって蓄熱タンク(52)に貯留される。冷媒回路(11)は、室外熱交換器(22)が凝縮器となり蓄熱用熱交換器(29)が蒸発器となる冷凍サイクルを行う。蓄熱回路(61)は、蓄熱タンク(52)から流出した蓄熱媒体が補助熱交換器(28)及び蓄熱用熱交換器(29)を順に通過して蓄熱タンク(52)に再度流入するように蓄熱媒体を循環させる。
―Cooling operation of latent heat―
In the latent heat cold storage operation shown in FIG. 2, the refrigerant condensed and cooled in the outdoor heat exchanger (22) and the auxiliary heat exchanger (28) enters the refrigerant side passage (29a) of the heat storage heat exchanger (29). As a result, the heat storage medium in the heat storage side passage (29b) is cooled and becomes supercooled, then flows into the heat storage tank (52) and becomes hydrate slurry and is stored in the heat storage tank (52). Is done. The refrigerant circuit (11) performs a refrigeration cycle in which the outdoor heat exchanger (22) serves as a condenser and the heat storage heat exchanger (29) serves as an evaporator. The heat storage circuit (61) is configured so that the heat storage medium flowing out of the heat storage tank (52) passes through the auxiliary heat exchanger (28) and the heat storage heat exchanger (29) in order, and flows into the heat storage tank (52) again. Circulate the heat storage medium.

具体的に、四方切換弁(26)は第1状態、第1開閉弁(31)及び第3開閉弁(33)は閉状態、第2開閉弁(32)は開状態にそれぞれ設定される。室外膨張弁(23)の開度は全開状態、室内膨張弁(24)の開度は全閉状態、蓄熱用膨張弁(30)の開度は所定の開度(蓄熱用熱交換器(29)の冷媒側通路(29a)の出口における冷媒の過熱度が所定目標値となる開度)にそれぞれ設定される。圧縮機(21)および室外ファン(22a)は作動する。   Specifically, the four-way selector valve (26) is set to the first state, the first on-off valve (31) and the third on-off valve (33) are set to the closed state, and the second on-off valve (32) is set to the open state. The opening of the outdoor expansion valve (23) is in a fully open state, the opening of the indoor expansion valve (24) is in a fully closed state, and the opening of the heat storage expansion valve (30) is a predetermined opening (heat storage heat exchanger (29 ), The degree of superheat of the refrigerant at the outlet of the refrigerant side passage (29a) is set to a predetermined target value. The compressor (21) and the outdoor fan (22a) operate.

圧縮機(21)から吐出された冷媒は、配管(12)を介して室外熱交換器(22)に流入し、室外熱交換器(22)にて室外空気に放熱して凝縮する。凝縮された冷媒は、室外膨張弁(23)を介して補助熱交換器(28)の冷媒側通路(28a)に流入するが、冷媒側通路(28a)を通過する間に蓄熱側通路(28b)を流れる蓄熱媒体によって更に冷却される。補助熱交換器(28)から流出した冷媒は、蓄熱用膨張弁(30)にて減圧された後、蓄熱用熱交換器(29)にて蓄熱媒体から吸熱して蒸発する。蒸発した冷媒は、第2バイパス配管(18)及び四方切換弁(26)を介してアキュムレータ(27)に一旦吸入され、その後圧縮機(21)に吸入されて圧縮される。   The refrigerant discharged from the compressor (21) flows into the outdoor heat exchanger (22) through the pipe (12), dissipates heat to the outdoor air and condenses in the outdoor heat exchanger (22). The condensed refrigerant flows into the refrigerant side passage (28a) of the auxiliary heat exchanger (28) through the outdoor expansion valve (23), but while passing through the refrigerant side passage (28a), the heat storage side passage (28b ) Is further cooled by the heat storage medium flowing through. The refrigerant flowing out of the auxiliary heat exchanger (28) is depressurized by the heat storage expansion valve (30), and then absorbs heat from the heat storage medium and evaporates by the heat storage heat exchanger (29). The evaporated refrigerant is once sucked into the accumulator (27) through the second bypass pipe (18) and the four-way switching valve (26), and then sucked into the compressor (21) and compressed.

蓄熱回路(61)では、循環ポンプ(58)が作動する。蓄熱タンク(52)内の蓄熱媒体は、第2開口(54)及び配管(56,63)を介して補助熱交換器(28)の蓄熱側通路(28b)に流入する。この蓄熱側通路(28b)を通過する間に、蓄熱媒体は、冷媒側通路(28a)を流れる冷媒によって加熱される。加熱された蓄熱媒体は、循環ポンプ(58)及び配管(64,65)を介して蓄熱用熱交換器(29)の蓄熱側通路(29b)に流入する。この蓄熱側通路(29b)を通過する間に、蓄熱媒体は、冷媒側通路(29a)を流れる冷媒によって水和物生成温度未満の温度に冷却されて過冷却状態となる。過冷却状態の蓄熱媒体は、配管(62,55)及び第1開口(53)を介して蓄熱タンク(52)内に流入する。蓄熱タンク(52)内では、既に多くの水和物スラリーが存在していると、この存在する水和物スラリーに上記過冷却状態の蓄熱媒体(すなわち過冷却溶液)が接触することによって、その過冷却状態を解消して、水和物スラリーになる。このようにして、蓄熱タンク(52)には多くの水和物スラリーが生成されて、冷熱が蓄えられる。   In the heat storage circuit (61), the circulation pump (58) operates. The heat storage medium in the heat storage tank (52) flows into the heat storage side passage (28b) of the auxiliary heat exchanger (28) through the second opening (54) and the pipes (56, 63). While passing through the heat storage side passage (28b), the heat storage medium is heated by the refrigerant flowing through the refrigerant side passage (28a). The heated heat storage medium flows into the heat storage side passage (29b) of the heat storage heat exchanger (29) through the circulation pump (58) and the pipes (64, 65). While passing through the heat storage side passage (29b), the heat storage medium is cooled to a temperature lower than the hydrate generation temperature by the refrigerant flowing through the refrigerant side passage (29a) and is in a supercooled state. The supercooled heat storage medium flows into the heat storage tank (52) through the pipes (62, 55) and the first opening (53). In the heat storage tank (52), if a lot of hydrate slurry already exists, the supercooled heat storage medium (that is, the supercooled solution) comes into contact with the existing hydrate slurry. The supercooled state is eliminated and a hydrate slurry is obtained. In this way, a lot of hydrate slurry is generated in the heat storage tank (52), and cold heat is stored.

―利用冷房運転―
図3及び図4に示される利用冷房運転では、上記潜熱蓄冷運転にて蓄熱タンク(52)に貯留された水和物スラリーを冷熱源として用いて、室内熱交換器(25)により室内(空調対象空間に相当)の冷房が行われる。冷媒回路(11)は、蓄熱用熱交換器(29)にて蓄熱媒体から冷熱を得た冷媒が室内熱交換器(25)にて蒸発するように冷媒を循環させる。蓄熱回路(61)は、蓄熱タンク(52)から流出した蓄熱媒体が補助熱交換器(28)及び蓄熱用熱交換器(29)を順に通過して蓄熱タンク(52)に再度流入するように蓄熱媒体を循環させる。
―Cooling operation―
In the utilization cooling operation shown in FIGS. 3 and 4, the hydrate slurry stored in the heat storage tank (52) in the latent heat storage operation is used as a cold heat source, and the indoor heat exchanger (25) The air conditioning is equivalent to the target space. The refrigerant circuit (11) circulates the refrigerant so that the refrigerant obtained from the heat storage medium in the heat storage heat exchanger (29) evaporates in the indoor heat exchanger (25). The heat storage circuit (61) is configured so that the heat storage medium flowing out of the heat storage tank (52) passes through the auxiliary heat exchanger (28) and the heat storage heat exchanger (29) in order, and flows into the heat storage tank (52) again. Circulate the heat storage medium.

利用冷房運転には、図3の第1利用冷房運転と図4の第2利用冷房運転とがある。   The utilization cooling operation includes a first utilization cooling operation in FIG. 3 and a second utilization cooling operation in FIG.

―第1利用冷房運転―
第1利用冷房運転では、蓄熱タンク(52)に蓄えられた冷熱と冷媒回路(11)の冷凍サイクルによって得られる冷熱とを用いて室内の冷房が行われる。冷媒回路(11)は、室外熱交換器(22)が凝縮器、補助熱交換器(28)及び蓄熱用熱交換器(29)が過冷却器(即ち放熱器)、室内熱交換器(25)が蒸発器となる冷凍サイクルを行う。
-First use cooling operation-
In the first use cooling operation, indoor cooling is performed using the cold heat stored in the heat storage tank (52) and the cold heat obtained by the refrigeration cycle of the refrigerant circuit (11). In the refrigerant circuit (11), the outdoor heat exchanger (22) is a condenser, the auxiliary heat exchanger (28) and the heat storage heat exchanger (29) are subcoolers (that is, radiators), and the indoor heat exchanger (25 ) Performs a refrigeration cycle that becomes an evaporator.

具体的には、図3に示すように、四方切換弁(26)は第1状態、第1開閉弁(31)及び第2開閉弁(32)は閉状態、第3開閉弁(33)は開状態にそれぞれ設定される。室外膨張弁(23)及び蓄熱用膨張弁(30)の開度は全開状態、室内膨張弁(24)の開度は所定の開度(室内熱交換器(25)の出口における冷媒の過熱度が所定目標値となる開度)にそれぞれ設定される。圧縮機(21)、室外ファン(22a)及び室内ファン(25a)は作動する。   Specifically, as shown in FIG. 3, the four-way switching valve (26) is in the first state, the first on-off valve (31) and the second on-off valve (32) are closed, and the third on-off valve (33) is Each is set to the open state. The opening degree of the outdoor expansion valve (23) and the heat storage expansion valve (30) is fully open, and the opening degree of the indoor expansion valve (24) is a predetermined opening degree (the degree of superheat of the refrigerant at the outlet of the indoor heat exchanger (25)). Is set to a predetermined target value). The compressor (21), the outdoor fan (22a), and the indoor fan (25a) operate.

圧縮機(21)から吐出された冷媒は、配管(12)を介して室外熱交換器(22)に流入し、室外熱交換器(22)にて室外空気に放熱して凝縮する。凝縮された冷媒は、全開である室外膨張弁(23)を介して補助熱交換器(28)の冷媒側通路(28a)に流入し、補助熱交換器(28)の冷媒側通路(28a)を通過する間に蓄熱側通路(28b)を流れる蓄熱媒体によって更に冷却される。補助熱交換器(28)から流出した冷媒は、全開である蓄熱用膨張弁(30)を介して蓄熱用熱交換器(29)の冷媒側通路(29a)に流入し、蓄熱側通路(29b)を流れる蓄熱媒体によって更に冷却される。この冷媒は、室内膨張弁(24)にて減圧された後、室内熱交換器(25)にて室内空気から吸熱して蒸発する。これにより、室内空気が冷却される。蒸発した冷媒は、配管(16)及び四方切換弁(26)を介してアキュムレータ(27)に一旦吸入され、その後圧縮機(21)に吸入されて圧縮される。   The refrigerant discharged from the compressor (21) flows into the outdoor heat exchanger (22) through the pipe (12), dissipates heat to the outdoor air and condenses in the outdoor heat exchanger (22). The condensed refrigerant flows into the refrigerant side passage (28a) of the auxiliary heat exchanger (28) via the outdoor expansion valve (23) that is fully open, and the refrigerant side passage (28a) of the auxiliary heat exchanger (28). Is further cooled by the heat storage medium flowing through the heat storage side passageway (28b). The refrigerant that has flowed out of the auxiliary heat exchanger (28) flows into the refrigerant side passage (29a) of the heat storage heat exchanger (29) via the heat storage expansion valve (30) that is fully open, and the heat storage side passage (29b ) Is further cooled by the heat storage medium flowing through. The refrigerant is depressurized by the indoor expansion valve (24), and then absorbs heat from the indoor air by the indoor heat exchanger (25) to evaporate. Thereby, indoor air is cooled. The evaporated refrigerant is once sucked into the accumulator (27) through the pipe (16) and the four-way switching valve (26), and then sucked into the compressor (21) and compressed.

蓄熱回路(61)では、循環ポンプ(58)が作動する。蓄熱タンク(52)内の蓄熱媒体は、第2開口(54)及び配管(56,63)を介して補助熱交換器(28)の蓄熱側通路(28b)に流入する。この蓄熱側通路(28b)を通過する間に、蓄熱媒体は、冷媒側通路(28a)を流れる冷媒から吸熱する。吸熱した蓄熱媒体は、循環ポンプ(58)及び配管(64,65)を介して蓄熱用熱交換器(29)の蓄熱側通路(29b)に流入する。この蓄熱側通路(29b)を通過する間に、蓄熱媒体は、冷媒側通路(29a)を流れる冷媒から更に吸熱する。更に吸熱した蓄熱媒体は、配管(62,55)及び第1開口(53)を介して蓄熱タンク(52)内に流入する。このようにして、蓄熱媒体から冷媒へ冷熱が付与される。   In the heat storage circuit (61), the circulation pump (58) operates. The heat storage medium in the heat storage tank (52) flows into the heat storage side passage (28b) of the auxiliary heat exchanger (28) through the second opening (54) and the pipes (56, 63). While passing through the heat storage side passage (28b), the heat storage medium absorbs heat from the refrigerant flowing through the refrigerant side passage (28a). The heat storage medium that has absorbed heat flows into the heat storage side passageway (29b) of the heat storage heat exchanger (29) through the circulation pump (58) and the pipes (64, 65). While passing through the heat storage side passage (29b), the heat storage medium further absorbs heat from the refrigerant flowing through the refrigerant side passage (29a). Further, the heat storage medium that has absorbed heat flows into the heat storage tank (52) through the pipes (62, 55) and the first opening (53). In this way, cold heat is applied from the heat storage medium to the refrigerant.

―第2利用冷房運転―
第2利用冷房運転では、蓄熱タンク(52)に蓄えられた冷熱のみを用いて室内の冷房が行われる。冷媒回路(11)は、蓄熱用熱交換器(29)を通過した冷媒が室内熱交換器(25)において蒸発するように冷媒を循環させる。
-Second use cooling operation-
In the second usage cooling operation, indoor cooling is performed using only the cold energy stored in the heat storage tank (52). The refrigerant circuit (11) circulates the refrigerant so that the refrigerant that has passed through the heat storage heat exchanger (29) evaporates in the indoor heat exchanger (25).

具体的には、図4に示すように、四方切換弁(26)は第1状態、第2開閉弁(32)は閉状態、第1開閉弁(31)及び第3開閉弁(33)は開状態にそれぞれ設定される。室外膨張弁(23)の開度は全閉状態、蓄熱用膨張弁(30)の開度は全開状態、室内膨張弁(24)の開度は所定の開度(室内熱交換器(25)の出口における冷媒の過熱度が所定目標値となる開度)にそれぞれ設定される。圧縮機(21)及び室内ファン(25a)は作動する。   Specifically, as shown in FIG. 4, the four-way switching valve (26) is in the first state, the second on-off valve (32) is in the closed state, and the first on-off valve (31) and the third on-off valve (33) are Each is set to the open state. The opening of the outdoor expansion valve (23) is fully closed, the opening of the heat storage expansion valve (30) is fully open, and the opening of the indoor expansion valve (24) is a predetermined opening (indoor heat exchanger (25) The opening degree at which the degree of superheat of the refrigerant at the outlet becomes a predetermined target value). The compressor (21) and the indoor fan (25a) operate.

圧縮機(21)から吐出された冷媒は、配管(12)、第1バイパス配管(17)及び配管(14)を介して補助熱交換器(28)の冷媒側通路(28a)に流入し、蓄熱側通路(28b)を流れる蓄熱媒体に放熱して凝縮する。凝縮された冷媒は、全開状態である蓄熱用膨張弁(30)を通過後、蓄熱用熱交換器(29)の冷媒側通路(29a)に流入し、冷媒側通路(29a)を通過する間に蓄熱側通路(29b)を流れる蓄熱媒体によって更に冷却される。当該冷媒は、その後、第3開閉弁(33)を介して室内膨張弁(24)に流入し、減圧される。減圧された冷媒は、室内熱交換器(25)を通過する間に室内空気から吸熱して蒸発する。これにより、室内空気が冷却される。蒸発した冷媒は、配管(16)及び四方切換弁(26)を介してアキュムレータ(27)に一旦吸入され、その後圧縮機(21)に吸入されて圧縮される。   The refrigerant discharged from the compressor (21) flows into the refrigerant side passage (28a) of the auxiliary heat exchanger (28) through the pipe (12), the first bypass pipe (17) and the pipe (14), The heat storage medium flowing through the heat storage side passage (28b) dissipates heat and condenses. The condensed refrigerant passes through the heat storage expansion valve (30) that is fully open, then flows into the refrigerant side passage (29a) of the heat storage heat exchanger (29), and passes through the refrigerant side passage (29a). And further cooled by the heat storage medium flowing through the heat storage side passageway (29b). Thereafter, the refrigerant flows into the indoor expansion valve (24) through the third on-off valve (33) and is depressurized. The decompressed refrigerant absorbs heat from the room air and evaporates while passing through the indoor heat exchanger (25). Thereby, indoor air is cooled. The evaporated refrigerant is once sucked into the accumulator (27) through the pipe (16) and the four-way switching valve (26), and then sucked into the compressor (21) and compressed.

蓄熱回路(61)では、循環ポンプ(58)が作動する。蓄熱タンク(52)内の蓄熱媒体は、第2開口(54)、配管(56,63)、補助熱交換器(28)の蓄熱側通路(28b)、配管(64)、循環ポンプ(58)、配管(65)を、この順に流れた後、蓄熱用熱交換器(29)の蓄熱側通路(29b)に流入する。各蓄熱側通路(28b,29b)を通過する間に、蓄熱媒体は、各冷媒側通路(28a,29a)を通過する冷媒から吸熱する。吸熱した蓄熱媒体は、配管(62,55)及び第1開口(53)を介して蓄熱タンク(52)内に流入する。このようにして、蓄熱媒体から冷媒へ冷熱が付与される。   In the heat storage circuit (61), the circulation pump (58) operates. The heat storage medium in the heat storage tank (52) consists of the second opening (54), piping (56, 63), the heat storage side passage (28b) of the auxiliary heat exchanger (28), piping (64), and circulation pump (58) After flowing through the pipe (65) in this order, it flows into the heat storage side passage (29b) of the heat storage heat exchanger (29). While passing through each heat storage side passage (28b, 29b), the heat storage medium absorbs heat from the refrigerant passing through each refrigerant side passage (28a, 29a). The heat storage medium that has absorbed heat flows into the heat storage tank (52) through the pipes (62, 55) and the first opening (53). In this way, cold heat is applied from the heat storage medium to the refrigerant.

<プルダウン運転>
蓄熱媒体がその水和物生成温度(12°C)を大きく超える所定温度(例えば20°C)である初期状態から、蓄熱タンク(52)に水和物スラリーを生成して蓄熱するプルダウン運転について説明する。
<Pull-down operation>
Pull-down operation in which the heat storage medium generates a hydrate slurry in the heat storage tank (52) from the initial state where the heat storage medium is at a predetermined temperature (for example, 20 ° C) that greatly exceeds the hydrate generation temperature (12 ° C). explain.

このプルダウン運転時での蓄熱用熱交換器(29)の蓄熱側通路(29b)の出口の蓄熱媒体の温度変化及び冷媒側通路(29a)の冷媒の温度変化を図5に示す。図5では、蓄熱媒体として臭化テトラnブチルアンモニウム(TBAB)溶液を使用した場合を例示している。   FIG. 5 shows the temperature change of the heat storage medium at the outlet of the heat storage side passage (29b) of the heat storage heat exchanger (29) and the refrigerant temperature change in the refrigerant side passage (29a) during the pull-down operation. FIG. 5 illustrates the case where a tetra-n-butylammonium bromide (TBAB) solution is used as a heat storage medium.

このプルダウン運転時には、コントローラ(100)は、当初、上記潜熱蓄冷運転と同態様の顕熱蓄冷運転を行う。この顕熱蓄冷運転の継続により、蓄熱用熱交換器(29)では蓄熱媒体は冷却されて、蓄熱用熱交換器(29)の蓄熱側通路(29b)の出口での蓄熱媒体温度は、上記所定温度(20°C)から徐々に低下する。   At the time of this pull-down operation, the controller (100) initially performs a sensible heat cold storage operation in the same manner as the latent heat cold storage operation. By continuing this sensible heat storage operation, the heat storage medium is cooled in the heat storage heat exchanger (29), and the temperature of the heat storage medium at the outlet of the heat storage side passage (29b) of the heat storage heat exchanger (29) is The temperature gradually decreases from a predetermined temperature (20 ° C.).

上記顕熱蓄冷運転により蓄熱用熱交換器(29)の蓄熱側通路(29b)の出口での蓄熱媒体温度がその水和物生成温度(12°C)に達し、更に温度低下して、所定温度(第1所定温度であり、例えば9°C)になると、この蓄熱側通路(29b)の出口の蓄熱媒体は、過冷却度が3°Cの過冷却状態の過冷却溶液となる。この状態では、蓄熱用熱交換器(29)や蓄熱タンク(52)を含む蓄熱回路(61)の全体又は大半で蓄熱媒体の温度は水和物生成温度(12°C)未満の過冷却状態になっている。   Due to the sensible heat storage operation, the temperature of the heat storage medium at the outlet of the heat storage side passage (29b) of the heat storage heat exchanger (29) reaches its hydrate formation temperature (12 ° C), and the temperature is further lowered to a predetermined level. When the temperature (first predetermined temperature, for example, 9 ° C) is reached, the heat storage medium at the outlet of the heat storage side passage (29b) becomes a supercooled solution in a supercooled state having a supercooling degree of 3 ° C. In this state, in the whole or most of the heat storage circuit (61) including the heat storage heat exchanger (29) and the heat storage tank (52), the temperature of the heat storage medium is lower than the hydrate formation temperature (12 ° C). It has become.

この時点になると、コントローラ(100)は、顕熱蓄冷運転を停止し、蓄熱媒体を加熱する加熱運転を実行する。この加熱運転により、後述の通り、蓄熱タンク(52)内の蓄熱媒体に温度衝撃を与えて、蓄熱タンク(52)内に水和物スラリーを確実に成長させて、蓄熱媒体の過冷却状態を解消する。   At this point, the controller (100) stops the sensible heat storage operation and executes a heating operation for heating the heat storage medium. By this heating operation, as described later, a temperature shock is given to the heat storage medium in the heat storage tank (52), and the hydrate slurry is reliably grown in the heat storage tank (52), so that the heat storage medium is supercooled. Eliminate.

ここで、過冷却度が3°Cになると顕熱蓄冷運転を停止する理由は次の通りである。即ち、図5から判るように、顕熱蓄冷運転の開始時からその継続時間が短い期間では、蓄熱用熱交換器(29)の蓄熱側通路(29b)の出口での蓄熱媒体温度の低下は顕著であり、蓄熱用熱交換器(29)の熱交換率は高い。一方、顕熱蓄冷運転を停止する前の期間では、上記温度低下は次第に小さくなり、蓄熱用熱交換器(29)の熱交換率は低くなる。従って、顕熱蓄冷運転を停止する時点の過冷却度を3°C未満に低く設定すると、蓄熱用熱交換器(29)の熱交換率が極めて低くなり、蓄熱タンク(52)への目標量の蓄熱を所望時間で確保できなくなるからである。   Here, the reason for stopping the sensible heat storage operation when the degree of supercooling is 3 ° C. is as follows. That is, as can be seen from FIG. 5, in the period of short duration from the start of the sensible heat storage operation, the decrease in the temperature of the heat storage medium at the outlet of the heat storage side passage (29b) of the heat storage heat exchanger (29) is It is remarkable, and the heat exchange rate of the heat storage heat exchanger (29) is high. On the other hand, in the period before the sensible heat storage operation is stopped, the temperature decrease gradually decreases, and the heat exchange rate of the heat storage heat exchanger (29) decreases. Therefore, if the degree of supercooling when the sensible heat storage operation is stopped is set lower than 3 ° C, the heat exchange rate of the heat storage heat exchanger (29) becomes extremely low, and the target amount to the heat storage tank (52) This is because it becomes impossible to secure the heat storage in the desired time.

上記顕熱蓄冷運転完了後の加熱運転は、蓄熱回路(61)の蓄熱媒体を冷媒回路(11)の冷媒で加熱する運転である。この加熱運転の詳細は次の通りである。   The heating operation after completion of the sensible heat storage operation is an operation of heating the heat storage medium of the heat storage circuit (61) with the refrigerant of the refrigerant circuit (11). The details of this heating operation are as follows.

―加熱運転―
この加熱運転では、蓄熱用膨張弁(電動弁に相当)(30)の開度を上記顕熱蓄冷運転時の所定開度(蓄熱用熱交換器(29)の冷媒側通路(29a)の出口における冷媒の過熱度が所定目標値となる開度)よりも大きな開度側(全開を含む)に変更する点を除き、図2に係る顕熱蓄冷運転と同じ動作が行われる。
-Heating operation-
In this heating operation, the opening degree of the heat storage expansion valve (corresponding to an electric valve) (30) is set to the predetermined opening degree during the sensible heat storage operation (the outlet of the refrigerant side passage (29a) of the heat storage heat exchanger (29)). The same operation as the sensible heat regenerative operation according to FIG. 2 is performed except that the degree of superheat of the refrigerant is changed to an opening degree side (including full opening) larger than an opening degree at which the refrigerant becomes a predetermined target value.

即ち、圧縮機(21)から吐出された冷媒は、室外熱交換器(22)にて凝縮された後、室外膨張弁(23)、補助熱交換器(28)の冷媒側通路(28a)、蓄熱用膨張弁(30)、蓄熱用熱交換器(29)の冷媒側通路(29a)及び第2バイパス配管(18)をこの順に流れる。特に、蓄熱用膨張弁(30)は上記所定開度よりも大きい開度であるため、補助熱交換器(28)を流出した冷媒は、減圧されることなく又は少しの減圧で配管(供給通路)(14a,14b)を経て蓄熱用熱交換器(29)に流入する。従って、この加熱運転時に蓄熱用熱交換器(29)の冷媒側通路(29a)を流れる冷媒の温度は、図5で破線で示したように、顕熱蓄冷運転にて流れる冷媒の温度から急上昇し、蓄熱媒体の水和物生成温度(12°C)よりも高くなる。蓄熱用熱交換器(29)を流れた冷媒は、その後、四方切換弁(26)及びアキュムレータ(27)を介して圧縮機(21)に吸入される。   That is, after the refrigerant discharged from the compressor (21) is condensed in the outdoor heat exchanger (22), the outdoor expansion valve (23), the refrigerant side passage (28a) of the auxiliary heat exchanger (28), The heat storage expansion valve (30), the refrigerant side passage (29a) of the heat storage heat exchanger (29), and the second bypass pipe (18) flow in this order. In particular, since the heat storage expansion valve (30) has an opening larger than the predetermined opening, the refrigerant flowing out of the auxiliary heat exchanger (28) can be piped (supply passage) without being decompressed or with little decompression. ) (14a, 14b) and then flows into the heat storage heat exchanger (29). Therefore, the temperature of the refrigerant flowing through the refrigerant side passage (29a) of the heat storage heat exchanger (29) during the heating operation rapidly rises from the temperature of the refrigerant flowing in the sensible heat storage operation as shown by the broken line in FIG. However, it becomes higher than the hydrate formation temperature (12 ° C.) of the heat storage medium. The refrigerant flowing through the heat storage heat exchanger (29) is then sucked into the compressor (21) via the four-way switching valve (26) and the accumulator (27).

蓄熱回路(61)では、蓄熱タンク(52)から流出し補助熱交換器(28)の蓄熱側通路(28b)に流入した蓄熱媒体は、冷媒側通路(28a)を流れる冷媒から吸熱した後、蓄熱用熱交換器(29)の蓄熱側通路(29b)に流入する。冷媒側通路(29a)を流れる冷媒の温度は既述の通り蓄熱媒体の水和物生成温度(12°C)よりも高いため、蓄熱側通路(29b)を流れる蓄熱媒体の温度は、図6で実線で示したように、水和物生成温度(12°C)を越えて上昇する。   In the heat storage circuit (61), the heat storage medium flowing out of the heat storage tank (52) and flowing into the heat storage side passage (28b) of the auxiliary heat exchanger (28) absorbs heat from the refrigerant flowing through the refrigerant side passage (28a), It flows into the heat storage side passageway (29b) of the heat storage heat exchanger (29). Since the temperature of the refrigerant flowing through the refrigerant side passage (29a) is higher than the hydrate formation temperature (12 ° C) of the heat storage medium as described above, the temperature of the heat storage medium flowing through the heat storage side passage (29b) is as shown in FIG. As shown by the solid line, the temperature rises above the hydrate formation temperature (12 ° C.).

図5に示したように、加熱運転時には、蓄熱用熱交換器(29)の冷媒側通路(29a)の冷媒温度は急上昇する。同時に、蓄熱用熱交換器(29)の蓄熱側通路(29b)の出口での蓄熱媒体温度は温度(9°C)から急上昇し、水和物生成温度(12°C)を超えて所定温度(第2所定温度であって、例えば18°C)に達する。この温度上昇した蓄熱媒体は蓄熱用熱交換器(29)の蓄熱側通路(29b)から配管(62,55)を経て蓄熱タンク(52)に流入する。   As shown in FIG. 5, during the heating operation, the refrigerant temperature in the refrigerant side passage (29a) of the heat storage heat exchanger (29) rapidly rises. At the same time, the temperature of the heat storage medium at the outlet of the heat storage side passage (29b) of the heat storage heat exchanger (29) rises rapidly from the temperature (9 ° C) and exceeds the hydrate formation temperature (12 ° C) at a predetermined temperature. (Second predetermined temperature, for example, 18 ° C.). The heat storage medium having increased in temperature flows from the heat storage side passage (29b) of the heat storage heat exchanger (29) into the heat storage tank (52) through the pipes (62, 55).

ここで、臭化テトラnブチルアンモニウム(TBAB)水溶液などの蓄熱媒体は、温度が高いほど粘度が低くなる特性を持つ。従って、蓄熱タンク(52)では、既に内部に存在していた過冷却状態(温度=9°C)の高粘度の蓄熱媒体と上記流入してきた高温度(18°C)で低粘度の蓄熱媒体とが、粘度を均一にするよう一気に混ざり合い、急激に乱流が生じて、蓄熱タンク(52)内が攪拌される。その結果、蓄熱タンク(52)内で既に存在している水和物スラリーに多くの蓄熱媒体が接触して、その水和物スラリーが大きく成長することになる。   Here, a heat storage medium such as a tetra-n-butylammonium bromide (TBAB) aqueous solution has a characteristic that the viscosity decreases as the temperature increases. Therefore, in the heat storage tank (52), the high-viscosity heat storage medium already present in the supercooled state (temperature = 9 ° C.) and the low-viscosity heat storage medium in the high temperature (18 ° C.) that has flowed in. Are mixed at once to make the viscosity uniform, and a turbulent flow is suddenly generated to stir the heat storage tank (52). As a result, many heat storage media come into contact with the hydrate slurry already present in the heat storage tank (52), and the hydrate slurry grows greatly.

このように、蓄熱タンク(52)内に高温度の蓄熱媒体が流入して蓄熱タンク(52)内で温度衝撃が生じることにより、蓄熱媒体の上記混合、乱流、攪拌が生じるが、その際、温度の異なる蓄熱媒体同士の粘度差がその混合、乱流、攪拌の程度に影響すると考えられる。このため、本発明者等は、図6に示すように、3種類(10%、20%、40%)の濃度の臭化テトラnブチルアンモニウム(TBAB)水溶液を用意し、このTBAB水溶液の温度を10°Cと20°Cに調整した場合の各温度でのTBAB水溶液の粘度を測定した。同図から判るように、10%濃度では粘度差は0.6mPa・s、20%濃度では粘度差は1.0mPa・s、40%濃度では粘度差は3.9mPa・sである。以上のことから、TBAB水溶液を蓄熱媒体とする場合には、同一温度差の下では、高濃度の方が粘度差が大きいため、蓄熱タンク(52)内での上記混合、乱流、攪拌の程度が大きくて、蓄熱媒体はその過冷却状態を解消し易いと考えられる。   As described above, when the high-temperature heat storage medium flows into the heat storage tank (52) and a temperature shock occurs in the heat storage tank (52), the above-mentioned mixing, turbulence, and stirring of the heat storage medium occur. It is considered that the difference in viscosity between the heat storage media at different temperatures affects the degree of mixing, turbulence, and stirring. For this reason, the present inventors prepared three types (10%, 20%, 40%) of tetra-n-butylammonium bromide (TBAB) aqueous solution having a concentration as shown in FIG. Was adjusted to 10 ° C and 20 ° C, and the viscosity of the TBAB aqueous solution at each temperature was measured. As can be seen from the figure, the viscosity difference is 0.6 mPa · s at 10% concentration, the viscosity difference is 1.0 mPa · s at 20% concentration, and the viscosity difference is 3.9 mPa · s at 40% concentration. From the above, when the TBAB aqueous solution is used as a heat storage medium, under the same temperature difference, the higher the concentration, the greater the viscosity difference. Therefore, the mixing, turbulent flow, and stirring in the heat storage tank (52) The degree is large, and it is considered that the heat storage medium can easily eliminate the supercooled state.

上記加熱運転の開始から蓄熱用熱交換器(29)の蓄熱側通路(29b)の出口での蓄熱媒体温度が水和物生成温度(12°C)を超える所定温度(18°C)に達するまでの時間(すなわち、加熱運転の継続時間)は、短時間、例えば0.5〜1.0分である。   From the start of the heating operation, the heat storage medium temperature at the outlet of the heat storage side passage (29b) of the heat storage heat exchanger (29) reaches a predetermined temperature (18 ° C) exceeding the hydrate formation temperature (12 ° C). The time until (that is, the duration of the heating operation) is a short time, for example, 0.5 to 1.0 minutes.

上記の通り、蓄熱媒体温度が上記高温度(18°C)に達すると、コントローラ(100)は、蓄熱用熱交換器(29)の蓄熱側通路(29b)の出口での蓄熱媒体温度を急激に下げるよう、蓄熱用膨張弁(電動弁に相当)(30)の開度を上記所定開度(蓄熱用熱交換器(29)の冷媒側通路(29a)の出口における冷媒の過熱度が所定目標値となる開度)よりも大幅に小さい開度に設定する。これにより、蓄熱用熱交換器(29)の冷媒側通路(29a)出口の冷媒温度及び蓄熱側通路(29b)出口の蓄熱媒体温度は、上記顕熱蓄冷運転時の温度近傍にまで急激に低下する。この温度低下の期間は、図5に示したように、加熱運転後に冷媒や蓄熱媒体の温度が安定するまでの安定待ち期間である。   As described above, when the heat storage medium temperature reaches the high temperature (18 ° C.), the controller (100) rapidly increases the temperature of the heat storage medium at the outlet of the heat storage side passage (29b) of the heat storage heat exchanger (29). So that the opening degree of the heat storage expansion valve (corresponding to an electric valve) (30) is the predetermined opening degree (the degree of superheat of the refrigerant at the outlet of the refrigerant side passage (29a) of the heat storage heat exchanger (29) is predetermined). The opening is set to be much smaller than the target opening). As a result, the refrigerant temperature at the outlet of the refrigerant side passage (29a) and the temperature of the heat storage medium at the outlet of the heat storage side passage (29b) of the heat storage heat exchanger (29) rapidly decrease to near the temperature during the sensible heat storage operation. To do. As shown in FIG. 5, this temperature decrease period is a stabilization waiting period until the temperature of the refrigerant and the heat storage medium is stabilized after the heating operation.

上記安定待ち期間の後は、蓄熱用熱交換器(29)の蓄熱側通路(29b)の出口の蓄熱媒体温度(9°C)を維持するように、上記潜熱蓄冷運転が行われる。従って、蓄熱用熱交換器(29)の蓄熱側通路(29b)から流出する蓄熱媒体は温度(9°C)の過冷却状態になった後、この過冷却状態の蓄熱媒体が蓄熱タンク(52)内に流入すると、この過冷却状態の蓄熱媒体が上記成長した水和物スラリーと接触することによって、その過冷却状態を確実に解消して、水和物スラリーとなることが繰り返される。
―実施形態の効果―
本実施形態では、プルダウン運転時に、蓄熱媒体を温度(9°C)の過冷却状態(過冷却度=3°C)とした後、加熱運転を行って、蓄熱タンク(52)内で蓄熱媒体に温度衝撃を与えることにより、蓄熱タンク(52)内に水和物スラリーを生成させたので、その後は、蓄熱タンク(52)内に流入する過冷却状態の蓄熱媒体が上記生成した水和物スラリーと接触すると、その過冷却状態を確実に解消して水和物スラリーとなることが繰り返される。従って、プルダウン運転時に1回の加熱運転を行うだけで、蓄熱タンク(52)内に確実に冷熱を蓄えることができる。
After the stabilization waiting period, the latent heat cold storage operation is performed so as to maintain the heat storage medium temperature (9 ° C.) at the outlet of the heat storage side passage (29b) of the heat storage heat exchanger (29). Therefore, after the heat storage medium flowing out from the heat storage side passage (29b) of the heat storage heat exchanger (29) is in a supercooled state at a temperature (9 ° C), the supercooled heat storage medium is converted into a heat storage tank (52 When the heat storage medium in the supercooled state comes into contact with the grown hydrate slurry, the supercooled state is surely eliminated and the hydrate slurry is repeated.
-Effect of the embodiment-
In the present embodiment, during the pull-down operation, the heat storage medium is brought into a supercooled state (supercooling degree = 3 ° C) at a temperature (9 ° C), and then the heating operation is performed to store the heat storage medium in the heat storage tank (52). Since a hydrate slurry was generated in the heat storage tank (52) by applying a temperature shock to the heat storage tank (52), the supercooled heat storage medium flowing into the heat storage tank (52) was then generated as described above. When it comes into contact with the slurry, the supercooled state is surely canceled and a hydrate slurry is repeated. Therefore, cold heat can be reliably stored in the heat storage tank (52) by performing only one heating operation during the pull-down operation.

しかも、上記加熱運転は、蓄熱用膨張弁(30)の開度を大開度側に変更するだけで可能であるので、従来のダイナミック氷蓄熱システムの種氷生成装置のごとき装置が不要であり、低コスト化が可能である。   In addition, since the heating operation can be performed only by changing the opening degree of the heat storage expansion valve (30) to the large opening side, a device such as a seed ice generation device of a conventional dynamic ice heat storage system is unnecessary. Cost reduction is possible.

また、本実施形態では、プルダウン運転当初の顕熱蓄冷運転は、蓄熱用熱交換器(29)の蓄熱側通路(29b)の出口の蓄熱媒体温度が水和物生成温度(12°C)未満の所定温度(9°C)になるまで継続される。従って、蓄熱タンク(52)内の蓄熱媒体のほぼ全てを水和物生成温度(12°C)未満の過冷却状態にできるので、蓄熱タンク(52)内には水和物スラリーが小さくても確実に存在する。よって、その後の加熱運転による温度衝撃時には、蓄熱タンク(52)内では、その存在した水和物スラリーを核として水和物スラリーを大きく成長させることができるので、その後に蓄熱タンク(52)に流入する蓄熱媒体の過冷却状態を確実に解消できる。   In the present embodiment, the sensible heat storage operation at the beginning of the pull-down operation is such that the temperature of the heat storage medium at the outlet of the heat storage side passage (29b) of the heat storage heat exchanger (29) is less than the hydrate generation temperature (12 ° C). This is continued until the predetermined temperature (9 ° C.) is reached. Therefore, since almost all of the heat storage medium in the heat storage tank (52) can be brought into a supercooled state below the hydrate formation temperature (12 ° C), even if the hydrate slurry is small in the heat storage tank (52). Certainly exists. Therefore, at the time of a temperature shock due to the subsequent heating operation, in the heat storage tank (52), the hydrate slurry can be greatly grown with the existing hydrate slurry as a core, and then the heat storage tank (52) The supercooled state of the inflowing heat storage medium can be reliably eliminated.

更に、本実施形態では、加熱運転時には、蓄熱用膨張弁(30)の開度を大開度側に変更するだけで、蓄熱用熱交換器(29)の蓄熱側通路(29b)の出口の蓄熱媒体温度を水和物生成温度(12°C)未満の温度(9°C)から水和物生成温度を超える温度(18°C)にまで急上昇させることができるので、この加熱運転時に蓄熱媒体に加える加熱量を適切にできる。   Further, in the present embodiment, during the heating operation, the heat storage at the outlet of the heat storage side passage (29b) of the heat storage heat exchanger (29) is performed only by changing the opening of the heat storage expansion valve (30) to the large opening side. Since the medium temperature can be rapidly increased from a temperature (9 ° C.) below the hydrate formation temperature (12 ° C.) to a temperature (18 ° C.) above the hydrate formation temperature, the heat storage medium during this heating operation The amount of heating applied to can be made appropriate.

加えて、蓄熱用熱交換器(29)の蓄熱側通路(29b)の出口の蓄熱媒体温度が高温度(18°C)にまで急上昇した時点で、蓄熱用膨張弁(30)の開度を大開度値から絞って、その蓄熱媒体温度を過冷却状態の温度(9°C)付近に戻したので、蓄熱用膨張弁(30)の開度を顕熱蓄冷運転時の所定開度を大きく超える開度に設定している加熱運転の継続時間を、既述の通り0.5〜1.0分の短時間に制限できる。従って、加熱運転が蓄熱タンク(52)への蓄熱効率に与える影響を小さくでき、蓄熱タンク(52)には目標量の冷熱をほぼ所望時間で蓄えることが可能である。   In addition, when the temperature of the heat storage medium at the outlet of the heat storage side passage (29b) of the heat storage heat exchanger (29) suddenly rises to a high temperature (18 ° C), the opening degree of the heat storage expansion valve (30) is increased. Since the heat storage medium temperature is returned to near the supercooled temperature (9 ° C) by narrowing down from the large opening value, the opening of the heat storage expansion valve (30) is increased to the predetermined opening during sensible heat storage operation. The continuation time of the heating operation set to an opening degree exceeding can be limited to a short time of 0.5 to 1.0 minutes as described above. Accordingly, the influence of the heating operation on the heat storage efficiency to the heat storage tank (52) can be reduced, and a target amount of cold can be stored in the heat storage tank (52) in a substantially desired time.

(その他の実施形態)
上記実施形態では、加熱運転時に、蓄熱用膨張弁(30)の開度を大開度側に変更して、蓄熱用熱交換器(29)の冷媒側通路(29a)の冷媒温度を上げて蓄熱媒体を加熱し、冷媒回路(11)の冷媒サイクルを顕熱蓄冷運転時と同一(正サイクル)としたが、その冷媒サイクルを逆サイクルとして、室内熱交換器(25)で吸熱した熱量を蓄熱用熱交換器(29)の蓄熱側通路(29b)で蓄熱媒体に与えて、蓄熱媒体を加熱しても良い。この加熱運転時に冷媒回路(11)を正又は逆サイクルの何れにするかは、蓄熱タンク(52)の容量や、蓄熱タンク(52)内での上記温度衝撃時での混合や乱流、攪拌の様子などを考慮して、適切な方を選択すれば良い。
(Other embodiments)
In the above embodiment, during the heating operation, the opening degree of the heat storage expansion valve (30) is changed to the large opening side, and the refrigerant temperature in the refrigerant side passage (29a) of the heat storage heat exchanger (29) is increased to store heat. The medium is heated and the refrigerant cycle of the refrigerant circuit (11) is the same as the sensible heat storage operation (forward cycle), but the refrigerant cycle is the reverse cycle, and the amount of heat absorbed by the indoor heat exchanger (25) is stored. The heat storage medium may be heated by being applied to the heat storage medium through the heat storage side passageway (29b) of the heat exchanger (29). Whether the refrigerant circuit (11) is set to the forward or reverse cycle during the heating operation depends on the capacity of the heat storage tank (52), mixing, turbulent flow, and stirring during the temperature shock in the heat storage tank (52). It is only necessary to select an appropriate one in consideration of the situation.

また、上記実施形態では、蓄熱媒体として臭化テトラnブチルアンモニウム(TBAB)水溶液を使用したが、その他の蓄熱媒体を使用しても良いのは勿論である。   Moreover, in the said embodiment, although tetra n butyl ammonium bromide (TBAB) aqueous solution was used as a thermal storage medium, of course, you may use another thermal storage medium.

更に、蓄熱回路(61)は図1に示したように補助熱交換器(28)を備えた回路を例示したが、蓄熱回路は種々の回路を採用しても良い。   Furthermore, although the heat storage circuit (61) illustrated the circuit provided with the auxiliary heat exchanger (28) as shown in FIG. 1, a various circuit may be employ | adopted for a heat storage circuit.

以上説明したように、本発明は、冷却することによって包接水和物が生成される蓄熱媒体を蓄熱タンク内で過冷却状態から確実に水和物スラリーにして冷熱を蓄熱できるので、蓄熱システム及びこれを利用した空調システムとして有用である。   As described above, since the present invention can reliably store chilled heat from a supercooled state in a heat storage tank from a supercooled state in a heat storage medium in which clathrate hydrate is produced by cooling, the heat storage system And it is useful as an air conditioning system using this.

10 空調システム
11 冷媒回路
14a,14b 配管(供給通路)
25 利用側熱交換器
29 蓄熱用熱交換器
30 蓄熱用膨張弁(電動弁)
40 蓄熱システム
52 蓄熱タンク
61 蓄熱回路
100 コントローラ(運転制御部)
10 Air-conditioning system 11 Refrigerant circuit 14a, 14b Piping (supply passage)
25 Use-side heat exchanger 29 Heat storage heat exchanger 30 Heat storage expansion valve (motorized valve)
40 heat storage system 52 heat storage tank 61 heat storage circuit 100 controller (operation control unit)

Claims (5)

冷却することによって包接水和物が生成される蓄熱媒体を貯留する蓄熱タンク(52)を有し、上記蓄熱媒体を循環させる蓄熱回路(61)と、
冷媒を循環させる冷媒回路(11)と、
上記蓄熱回路(61)と冷媒回路(11)とに共通して配置され、上記冷媒回路(11)の冷媒と上記蓄熱回路(61)の蓄熱媒体との間で熱交換させる蓄熱用熱交換器(29)とを備えた蓄熱システムであって、
上記蓄熱タンク(52)へ蓄熱する運転を制御する運転制御部(100)を備え、
上記運転制御部(100)は、
上記蓄熱回路(61)の上記蓄熱媒体を水和物生成温度未満の第1所定温度とするよう、上記蓄熱用熱交換器(29)で上記蓄熱媒体を冷却する顕熱蓄冷運転を行った後、
上記蓄熱回路(61)の蓄熱媒体を上記水和物生成温度以上にするよう、上記蓄熱用熱交換器(29)で上記蓄熱媒体を加熱する加熱運転を行う
ことを特徴とする蓄熱システム。
A heat storage tank (52) for storing a heat storage medium in which clathrate hydrate is generated by cooling, and a heat storage circuit (61) for circulating the heat storage medium;
A refrigerant circuit (11) for circulating the refrigerant;
A heat storage heat exchanger that is arranged in common to the heat storage circuit (61) and the refrigerant circuit (11) and exchanges heat between the refrigerant of the refrigerant circuit (11) and the heat storage medium of the heat storage circuit (61). (29) a heat storage system comprising:
An operation control unit (100) for controlling the operation of storing heat in the heat storage tank (52),
The operation control unit (100)
After performing a sensible heat storage operation for cooling the heat storage medium in the heat storage heat exchanger (29) so that the heat storage medium of the heat storage circuit (61) is set to a first predetermined temperature lower than the hydrate generation temperature. ,
A heat storage system that performs a heating operation of heating the heat storage medium by the heat storage heat exchanger (29) so that the heat storage medium of the heat storage circuit (61) is equal to or higher than the hydrate formation temperature.
請求項1において、
上記第1所定温度は、上記蓄熱用熱交換器(29)の出口の蓄熱媒体の温度である
ことを特徴とする蓄熱システム。
In claim 1,
The first predetermined temperature is a temperature of a heat storage medium at an outlet of the heat storage heat exchanger (29).
請求項2において、
上記冷媒回路(11)は、上記蓄熱用熱交換器(29)への冷媒の供給通路(14a,14b)に配置される電動弁(30)を有し、
上記運転制御部(100)は、
上記顕熱蓄冷運転の完了後は、上記電動弁(30)の開度を大きい側に変更して、上記蓄熱用熱交換器(29)での冷媒の温度を上げる
ことを特徴とする蓄熱システム。
In claim 2,
The refrigerant circuit (11) includes an electric valve (30) disposed in a refrigerant supply passage (14a, 14b) to the heat storage heat exchanger (29),
The operation control unit (100)
After completion of the sensible heat storage operation, the opening degree of the motor-operated valve (30) is changed to a larger side, and the temperature of the refrigerant in the heat storage heat exchanger (29) is increased. .
請求項3において、
上記運転制御部(100)は、
上記加熱運転により上記蓄熱用熱交換器(29)の出口での蓄熱媒体温度が上記水和物生成温度以上の第2所定温度になった後、上記顕熱蓄冷運転と同態様の潜熱蓄冷運転を行う
ことを特徴とする蓄熱システム。
In claim 3,
The operation control unit (100)
After the heat storage medium temperature at the outlet of the heat storage heat exchanger (29) reaches a second predetermined temperature equal to or higher than the hydrate generation temperature by the heating operation, the latent heat cold storage operation in the same mode as the sensible heat cold storage operation is performed. A heat storage system characterized by
請求項1〜4の何れか1項の蓄熱システムと、
上記蓄熱システムの冷媒回路(11)に配置される利用側熱交換器(25)を有し、
上記蓄熱タンク(52)に蓄熱された冷熱を上記利用側熱交換器(25)に与えて対象空調空間を冷房する
ことを特徴とする空調システム。
The heat storage system according to any one of claims 1 to 4,
Having a use side heat exchanger (25) arranged in the refrigerant circuit (11) of the heat storage system,
An air conditioning system characterized in that the cold air stored in the heat storage tank (52) is given to the use side heat exchanger (25) to cool the target air-conditioned space.
JP2014091942A 2014-04-25 2014-04-25 Heat storage system and air conditioning system Pending JP2015210028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014091942A JP2015210028A (en) 2014-04-25 2014-04-25 Heat storage system and air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014091942A JP2015210028A (en) 2014-04-25 2014-04-25 Heat storage system and air conditioning system

Publications (1)

Publication Number Publication Date
JP2015210028A true JP2015210028A (en) 2015-11-24

Family

ID=54612352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014091942A Pending JP2015210028A (en) 2014-04-25 2014-04-25 Heat storage system and air conditioning system

Country Status (1)

Country Link
JP (1) JP2015210028A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6144396B1 (en) * 2016-09-14 2017-06-07 伸和コントロールズ株式会社 Liquid temperature control device and temperature control system
CN112527034A (en) * 2020-11-30 2021-03-19 江苏天丰种业有限公司 Seed humiture management system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6144396B1 (en) * 2016-09-14 2017-06-07 伸和コントロールズ株式会社 Liquid temperature control device and temperature control system
WO2018051745A1 (en) * 2016-09-14 2018-03-22 伸和コントロールズ株式会社 Liquid temperature adjustment apparatus and temperature control system
JP2018044716A (en) * 2016-09-14 2018-03-22 伸和コントロールズ株式会社 Liquid temperature adjustment device and temperature control system
CN108076653A (en) * 2016-09-14 2018-05-25 伸和控制工业股份有限公司 Liquid register and temperature control system
CN108076653B (en) * 2016-09-14 2020-08-04 伸和控制工业股份有限公司 Liquid temperature adjusting device and temperature control system
CN112527034A (en) * 2020-11-30 2021-03-19 江苏天丰种业有限公司 Seed humiture management system
CN112527034B (en) * 2020-11-30 2022-01-07 江苏天丰种业有限公司 Seed humiture management system
WO2022110266A1 (en) * 2020-11-30 2022-06-02 江苏天丰种业有限公司 Seed temperature and humidity management system

Similar Documents

Publication Publication Date Title
JP6793816B2 (en) Systems and methods for controlling cooling systems
JP5327308B2 (en) Hot water supply air conditioning system
EP3121522B1 (en) Method for controlling a heat storage device and method for controlling a hot water generation device
CN100504246C (en) Cooling heating device
CN103080668B (en) Air-conditioning device
JP5732709B1 (en) Hydrogen gas cooling device
JP6085207B2 (en) Heat pump equipment
JP2015068620A (en) Air conditioner
JP2013083439A5 (en)
JP2013083439A (en) Hot water supply air conditioning system
JP2015210029A (en) Heat storage system and air conditioning system
JP6020550B2 (en) Thermal storage air conditioner
JP2015210028A (en) Heat storage system and air conditioning system
JP6020548B2 (en) Thermal storage air conditioner
JP2015210025A (en) Cold storage system and air conditioning system
JP2016125714A (en) Heat storage type air conditioner
WO2016103726A1 (en) Heat-storage-type air conditioner
JP5867539B2 (en) Thermal storage tank unit and air conditioning system
JP5333557B2 (en) Hot water supply air conditioning system
JP2016125727A (en) Heat storage type air conditioner
JP2013245850A (en) Air conditioner
JP6052275B2 (en) Thermal storage air conditioner
JP2016125716A (en) Storage air conditioner
CN105091149B (en) A kind of air conditioner with water dispenser
JP2016125713A (en) Storage air conditioner