JP2015209539A - Polymer electrolyte and application of the same - Google Patents
Polymer electrolyte and application of the same Download PDFInfo
- Publication number
- JP2015209539A JP2015209539A JP2014094098A JP2014094098A JP2015209539A JP 2015209539 A JP2015209539 A JP 2015209539A JP 2014094098 A JP2014094098 A JP 2014094098A JP 2014094098 A JP2014094098 A JP 2014094098A JP 2015209539 A JP2015209539 A JP 2015209539A
- Authority
- JP
- Japan
- Prior art keywords
- polymer electrolyte
- formula
- integer
- polymer
- represented
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000005518 polymer electrolyte Substances 0.000 title claims abstract description 125
- 150000001768 cations Chemical class 0.000 claims abstract description 5
- 125000001624 naphthyl group Chemical group 0.000 claims abstract description 5
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 5
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims abstract description 5
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 4
- 125000005842 heteroatom Chemical group 0.000 claims abstract description 4
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 4
- 239000012528 membrane Substances 0.000 claims description 89
- 239000007787 solid Substances 0.000 claims description 36
- 229920000642 polymer Polymers 0.000 claims description 34
- 239000000446 fuel Substances 0.000 claims description 29
- 125000000542 sulfonic acid group Chemical group 0.000 claims description 22
- 150000001875 compounds Chemical class 0.000 claims description 17
- 239000002994 raw material Substances 0.000 claims description 11
- 230000002209 hydrophobic effect Effects 0.000 claims description 10
- 229920001400 block copolymer Polymers 0.000 claims description 8
- 125000005843 halogen group Chemical group 0.000 claims description 7
- 125000000217 alkyl group Chemical group 0.000 claims description 6
- 125000003118 aryl group Chemical group 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 3
- 239000011593 sulfur Substances 0.000 claims description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 abstract description 8
- 125000004432 carbon atom Chemical group C* 0.000 abstract 1
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 87
- 239000000243 solution Substances 0.000 description 50
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 46
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 44
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 40
- 238000006243 chemical reaction Methods 0.000 description 27
- 238000000034 method Methods 0.000 description 21
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 18
- 239000003792 electrolyte Substances 0.000 description 17
- 238000003786 synthesis reaction Methods 0.000 description 17
- 230000015572 biosynthetic process Effects 0.000 description 16
- 238000001914 filtration Methods 0.000 description 16
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- 239000000203 mixture Substances 0.000 description 15
- 238000010992 reflux Methods 0.000 description 14
- 239000012299 nitrogen atmosphere Substances 0.000 description 13
- 238000006116 polymerization reaction Methods 0.000 description 12
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 11
- 238000005342 ion exchange Methods 0.000 description 11
- 235000002597 Solanum melongena Nutrition 0.000 description 10
- 239000011521 glass Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 238000005406 washing Methods 0.000 description 9
- 239000007864 aqueous solution Substances 0.000 description 8
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 8
- JRTIUDXYIUKIIE-KZUMESAESA-N (1z,5z)-cycloocta-1,5-diene;nickel Chemical compound [Ni].C\1C\C=C/CC\C=C/1.C\1C\C=C/CC\C=C/1 JRTIUDXYIUKIIE-KZUMESAESA-N 0.000 description 7
- ROFVEXUMMXZLPA-UHFFFAOYSA-N Bipyridyl Chemical compound N1=CC=CC=C1C1=CC=CC=N1 ROFVEXUMMXZLPA-UHFFFAOYSA-N 0.000 description 7
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 7
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 7
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 7
- 239000012965 benzophenone Substances 0.000 description 7
- 239000000460 chlorine Substances 0.000 description 7
- 238000001816 cooling Methods 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 6
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical group C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 5
- KEQGZUUPPQEDPF-UHFFFAOYSA-N 1,3-dichloro-5,5-dimethylimidazolidine-2,4-dione Chemical compound CC1(C)N(Cl)C(=O)N(Cl)C1=O KEQGZUUPPQEDPF-UHFFFAOYSA-N 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- XTHPWXDJESJLNJ-UHFFFAOYSA-N chlorosulfonic acid Substances OS(Cl)(=O)=O XTHPWXDJESJLNJ-UHFFFAOYSA-N 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- 238000000691 measurement method Methods 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 229910000027 potassium carbonate Inorganic materials 0.000 description 4
- GPAPPPVRLPGFEQ-UHFFFAOYSA-N 4,4'-dichlorodiphenyl sulfone Chemical compound C1=CC(Cl)=CC=C1S(=O)(=O)C1=CC=C(Cl)C=C1 GPAPPPVRLPGFEQ-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910021645 metal ion Inorganic materials 0.000 description 3
- 230000003472 neutralizing effect Effects 0.000 description 3
- 239000007800 oxidant agent Substances 0.000 description 3
- 229920006254 polymer film Polymers 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 3
- PLVUIVUKKJTSDM-UHFFFAOYSA-N 1-fluoro-4-(4-fluorophenyl)sulfonylbenzene Chemical compound C1=CC(F)=CC=C1S(=O)(=O)C1=CC=C(F)C=C1 PLVUIVUKKJTSDM-UHFFFAOYSA-N 0.000 description 2
- HORNXRXVQWOLPJ-UHFFFAOYSA-N 3-chlorophenol Chemical compound OC1=CC=CC(Cl)=C1 HORNXRXVQWOLPJ-UHFFFAOYSA-N 0.000 description 2
- OKISUZLXOYGIFP-UHFFFAOYSA-N 4,4'-dichlorobenzophenone Chemical compound C1=CC(Cl)=CC=C1C(=O)C1=CC=C(Cl)C=C1 OKISUZLXOYGIFP-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 229920000557 Nafion® Polymers 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 239000004696 Poly ether ether ketone Substances 0.000 description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000005215 alkyl ethers Chemical class 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- -1 ethylene glycol dialkyl ether Chemical class 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- 229920002521 macromolecule Polymers 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 229920002530 polyetherether ketone Polymers 0.000 description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 description 2
- 229920005604 random copolymer Polymers 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 150000003459 sulfonic acid esters Chemical class 0.000 description 2
- HIFJUMGIHIZEPX-UHFFFAOYSA-N sulfuric acid;sulfur trioxide Chemical compound O=S(=O)=O.OS(O)(=O)=O HIFJUMGIHIZEPX-UHFFFAOYSA-N 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- RLUFBDIRFJGKLY-UHFFFAOYSA-N (2,3-dichlorophenyl)-phenylmethanone Chemical class ClC1=CC=CC(C(=O)C=2C=CC=CC=2)=C1Cl RLUFBDIRFJGKLY-UHFFFAOYSA-N 0.000 description 1
- YZBBUYKPTHDZHF-KNVGNIICSA-N (3R)-7,2'-dihydroxy-4'-methoxyisoflavanol Chemical compound OC1=CC(OC)=CC=C1[C@H]1C(O)C2=CC=C(O)C=C2OC1 YZBBUYKPTHDZHF-KNVGNIICSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- VFWCMGCRMGJXDK-UHFFFAOYSA-N 1-chlorobutane Chemical compound CCCCCl VFWCMGCRMGJXDK-UHFFFAOYSA-N 0.000 description 1
- LFXZSGVZSSMCMB-UHFFFAOYSA-N 2,5-dichlorobenzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC(Cl)=CC=C1Cl LFXZSGVZSSMCMB-UHFFFAOYSA-N 0.000 description 1
- QKPVEISEHYYHRH-UHFFFAOYSA-N 2-methoxyacetonitrile Chemical compound COCC#N QKPVEISEHYYHRH-UHFFFAOYSA-N 0.000 description 1
- VWIIJDNADIEEDB-UHFFFAOYSA-N 3-methyl-1,3-oxazolidin-2-one Chemical compound CN1CCOC1=O VWIIJDNADIEEDB-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical compound C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- WXNZTHHGJRFXKQ-UHFFFAOYSA-N 4-chlorophenol Chemical compound OC1=CC=C(Cl)C=C1 WXNZTHHGJRFXKQ-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 229920013634 DIC-PPS Polymers 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Chemical group BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000007810 chemical reaction solvent Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 150000004816 dichlorobenzenes Chemical class 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 230000005251 gamma ray Effects 0.000 description 1
- ZTOMUSMDRMJOTH-UHFFFAOYSA-N glutaronitrile Chemical compound N#CCCCC#N ZTOMUSMDRMJOTH-UHFFFAOYSA-N 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 229910021482 group 13 metal Inorganic materials 0.000 description 1
- 150000002391 heterocyclic compounds Chemical class 0.000 description 1
- 229920006158 high molecular weight polymer Polymers 0.000 description 1
- 238000001192 hot extrusion Methods 0.000 description 1
- 125000001841 imino group Chemical group [H]N=* 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical group II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 125000004170 methylsulfonyl group Chemical group [H]C([H])([H])S(*)(=O)=O 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- KJFMBFZCATUALV-UHFFFAOYSA-N phenolphthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2C(=O)O1 KJFMBFZCATUALV-UHFFFAOYSA-N 0.000 description 1
- 125000003170 phenylsulfonyl group Chemical group C1(=CC=CC=C1)S(=O)(=O)* 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000012744 reinforcing agent Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000010421 standard material Substances 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 125000002130 sulfonic acid ester group Chemical group 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 125000005147 toluenesulfonyl group Chemical group C=1(C(=CC=CC1)S(=O)(=O)*)C 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 125000001889 triflyl group Chemical group FC(F)(F)S(*)(=O)=O 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Conductive Materials (AREA)
- Fuel Cell (AREA)
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
Abstract
Description
本発明は、固体高分子形燃料電池に好適な高分子電解質、それを用いた高分子電解質膜、膜/電極接合体、これらを含む燃料電池に関するものである。 The present invention relates to a polymer electrolyte suitable for a solid polymer fuel cell, a polymer electrolyte membrane using the polymer electrolyte, a membrane / electrode assembly, and a fuel cell including these.
近年、地球温暖化等の環境問題等の観点から、高効率でクリーンなエネルギー源の開発が求められている。その要求に対する一つの候補として燃料電池が注目されている。燃料電池は、水素ガスやメタノール等の燃料と酸素等の酸化剤をそれぞれ電解質で隔てられた電極に供給し、一方で燃料の酸化を、他方で酸化剤の還元を行い、直接発電するものである。上述した燃料電池の材料のなかで、最も重要な材料の一つが電解質である。その電解質からなる燃料と酸化剤とを隔てる電解質膜としては、これまで様々なものが開発されているが、近年、特にスルホン酸基などのプロトン伝導性官能基を含有する高分子化合物から構成される高分子電解質の開発が盛んである。こうした高分子電解質は、固体高分子形燃料電池の他にも、例えば、湿度センサー、ガスセンサー、エレクトロクロミック表示素子などの電気化学素子の原料としても使用される。これら高分子電解質の利用法の中でも、特に、固体高分子形燃料電池は、新エネルギー技術の柱の一つとして期待されている。例えば、プロトン伝導性官能基を有する高分子化合物からなる電解質膜を使用した固体高分子形燃料電池は、低温における作動、小型軽量化が可能などの特徴を有し、自動車などの移動体、家庭用コージェネレーションシステム、および民生用小型携帯機器などへの適用が検討されている。 In recent years, development of highly efficient and clean energy sources has been demanded from the viewpoint of environmental problems such as global warming. Fuel cells are attracting attention as one candidate for that requirement. A fuel cell directly supplies power by supplying a fuel such as hydrogen gas or methanol and an oxidant such as oxygen to electrodes separated by an electrolyte, while oxidizing the fuel on the one hand and reducing the oxidant on the other. is there. Among the fuel cell materials described above, one of the most important materials is an electrolyte. Various types of electrolyte membranes have been developed so far to separate the electrolyte fuel and oxidant, and in recent years, the electrolyte membrane is composed of a polymer compound containing a proton conductive functional group such as a sulfonic acid group. The development of polymer electrolytes is thriving. In addition to the solid polymer fuel cell, such a polymer electrolyte is used as a raw material for electrochemical elements such as a humidity sensor, a gas sensor, and an electrochromic display element. Among these polymer electrolyte utilization methods, in particular, polymer electrolyte fuel cells are expected as one of the pillars of new energy technology. For example, a polymer electrolyte fuel cell using an electrolyte membrane made of a polymer compound having a proton-conducting functional group has features such as operation at a low temperature and reduction in size and weight. Application to consumer cogeneration systems and consumer small portable devices is under consideration.
固体高分子形燃料電池に使用される電解質膜としては、1950年代に開発されたスチレン系の陽イオン交換膜があるが、燃料電池動作環境下における安定性に乏しく、充分な寿命を有する燃料電池を製造するには至っていない。一方、実用的な安定性を有する電解質膜としては、ナフィオン(Nafion)(登録商標)に代表されるパーフルオロカーボンスルホン酸膜が広く検討されている。パーフルオロカーボンスルホン酸膜は、高いプロトン伝導性を有し、耐酸性、耐酸化性などの化学的安定性に優れているとされている。しかしながらナフィオン(登録商標)は、使用原料が高く、複雑な製造工程を経るため、非常に高価であるという欠点がある。また、電極反応で生じる過酸化水素やその副生物であるヒドロキシラジカルで劣化すると指摘されている。さらに、その構造上、プロトン伝導基であるスルホン酸基の導入には限界がある。 As an electrolyte membrane used in a polymer electrolyte fuel cell, there is a styrene-based cation exchange membrane developed in the 1950s. However, the fuel cell has poor stability under a fuel cell operating environment and has a sufficient lifetime. Has not yet been manufactured. On the other hand, as an electrolyte membrane having practical stability, a perfluorocarbon sulfonic acid membrane represented by Nafion (registered trademark) has been widely studied. Perfluorocarbon sulfonic acid membranes are said to have high proton conductivity and excellent chemical stability such as acid resistance and oxidation resistance. However, Nafion (registered trademark) has a drawback that it is very expensive because of the high raw materials used and the complicated manufacturing process. In addition, it has been pointed out that it is deteriorated by hydrogen peroxide generated by the electrode reaction and by-product hydroxy radical. Furthermore, due to its structure, there is a limit to the introduction of sulfonic acid groups that are proton conducting groups.
このような背景から、再び炭化水素系電解質膜の開発が期待されるようになってきた。その理由としては、炭化水素系電解質膜は化学構造の多様性を持たせやすく、スルホン酸基などのプロトン伝導基の導入の範囲が広く調整できる、他の材料との複合化、架橋の導入などが比較的容易であるという特徴があるからである。 Against this background, the development of hydrocarbon electrolyte membranes has come to be expected. The reason for this is that the hydrocarbon electrolyte membrane is easy to have a variety of chemical structures, the range of introduction of proton conducting groups such as sulfonic acid groups can be adjusted widely, compounding with other materials, introduction of crosslinking, etc. This is because there is a feature that is relatively easy.
近年では電解質膜にスルホン酸基を多く導入することでプロトン伝導性を改善する例があるが、このような膜は含水状態での膨潤が大きく、含水状態と乾燥状態を繰り返すことで膜の強度が損なわれ、燃料電池用の電解質膜として使用するには問題であった。そこで、電解質膜に剛直な構造を導入することで膜の強度を高める試みが行われている。 In recent years, there are examples in which proton conductivity is improved by introducing a large number of sulfonic acid groups into the electrolyte membrane, but such membranes have a large swelling in the water-containing state, and the strength of the membrane can be improved by repeating the water-containing state and the dry state. This is a problem for use as an electrolyte membrane for fuel cells. Therefore, attempts have been made to increase the strength of the membrane by introducing a rigid structure into the electrolyte membrane.
剛直な構造として、例えばベンゾフェノン構造が挙げられる。ただし、これらのように剛直な構造を含むポリマーは、反応溶媒への溶解性の問題で一般に高分子量化が難しい。特許文献1では、重合の際にベンゾフェノン構造のカルボニル基をアルキルエーテルへと変換して溶解性を高めている。そして、高分子量化を行った後に酸処理でアルキルエーテルをカルボニル基へと戻す処理を行っている。また特許文献2では剛直なベンゾフェノン構造を含むポリエーテルエーテルケトンを合成している。高分子量のポリマーを得るために、一部の芳香環にt−ブチル基を導入している。このようにベンゾフェノン構造を含むポリマーは一般に高分子量化することが難しく、溶解性を高めるなどの工夫が必要である。しかし、これらはエーテル結合を含むポリマーであり、溶解性が比較的高いものの燃料電池用電解質膜として利用した場合、劣化しやすいという問題があった。
Examples of the rigid structure include a benzophenone structure. However, it is generally difficult to increase the molecular weight of such a polymer having a rigid structure due to the problem of solubility in a reaction solvent. In
エーテル結合を含まず、ベンゾフェノン構造を含むポリマーの例としては、特許文献3の参考合成例3で示されているようにポリ(4,4’−ベンゾフェノン)を部分的に含むランダム共重合体があるが、数平均分子量が12000程度のものしか得られておらず、高分子量化が難しいことが分かる。また、このポリマーをスルホン化しているが、この方法では通常、ポリ(4,4’−ベンゾフェノン)構造にスルホン酸基を導入することはできない。
As an example of a polymer that does not include an ether bond and includes a benzophenone structure, a random copolymer partially including poly (4,4′-benzophenone) as shown in Reference Synthesis Example 3 of
非特許文献1では、ポリ(4,4’−ベンゾフェノン)と同一組成のポリ(2,5−ベンゾフェノン)を合成し、それらの性質の比較を行っている。同一組成のポリマーであっても、結合部位が異なるため、ポリ(4,4’−ベンゾフェノン)はポリ(2,5−ベンゾフェノン)に比べると、より結晶性が高く、溶解性が低いため合成が困難であり、同様の方法では合成ができないことが示されている。ポリ(4,4’−ベンゾフェノン)を得るために、モノマーのカルボニル基をイミノ基へと変換して重合をし、重合後に加水分解することでカルボニル基へと戻すという工夫がなされている。このようにポリ(4,4’−ベンゾフェノン)は直接的な合成が難しいものであった。
本発明の目的は、加工性に優れ、かつ、プロトン伝導度、特に水分の少ない状況で優れたプロトン伝導度を持つ炭化水素系高分子電解質およびその膜を提供することである。 An object of the present invention is to provide a hydrocarbon polymer electrolyte having excellent processability and proton conductivity, particularly excellent proton conductivity in a low water content, and a membrane thereof.
本発明者らは、上記課題を解決すべく鋭意検討を行った結果、プロトン伝導度に有利なスルホン酸基を有し、かつ剛直なカルボニル構造を主鎖に有する特定のポリマーを含む高分子電解質を使用することで、膜強度が高まり、かつ水分の少ない状況におけるプロトン伝導度が優れることを見出し、本発明を完成させるに至った。 As a result of intensive studies to solve the above problems, the present inventors have found that a polymer electrolyte containing a specific polymer having a sulfonic acid group advantageous for proton conductivity and having a rigid carbonyl structure in the main chain As a result, it was found that the proton conductivity in a situation where the membrane strength is high and the moisture content is low is excellent, and the present invention has been completed.
すなわち、本発明は、下記式(1)および(2):
で示される構造を主鎖に有する高分子電解質に関する。
That is, the present invention provides the following formulas (1) and (2):
It is related with the polymer electrolyte which has a structure shown by this in a principal chain.
式(2)において、eおよびfが1であることが好ましい。 In Formula (2), it is preferable that e and f are 1.
主鎖を構成する原料として分子量2000未満の化合物のみを用いた高分子電解質であることが好ましい。 A polymer electrolyte using only a compound having a molecular weight of less than 2000 as a raw material constituting the main chain is preferable.
ポリマー中の親水部構造として、前記式(1)で示される構造または、その繰り返し構造のみを有する高分子電解質であることが好ましい。 It is preferable that the polymer is a polymer electrolyte having only the structure represented by the formula (1) or the repeating structure as the hydrophilic portion structure in the polymer.
前記式(1)で示される構造が、下記式(3):
で示される構造であることが好ましい。
The structure represented by the formula (1) is represented by the following formula (3):
It is preferable that it is a structure shown by these.
前記式(2)で示される構造が、下記式(4)および/または(5):
で示される構造であることが好ましい。
The structure represented by the formula (2) is represented by the following formula (4) and / or (5):
It is preferable that it is a structure shown by these.
前記式(4)および(5)で示される構造が、それぞれ下記式(6)および(7):
で示される構造を有する化合物から合成されることが好ましい。
The structures represented by the formulas (4) and (5) are represented by the following formulas (6) and (7), respectively:
It is preferably synthesized from a compound having a structure represented by
前記式(1)で示される構造の合計が、全体の10重量%以上含まれることが好ましい。 The total of the structure represented by the formula (1) is preferably included at 10% by weight or more of the whole.
スルホン酸基を有する親水性セグメントとスルホン酸基を有さない疎水性セグメントを含むブロック共重合体からなる高分子電解質であることが好ましい。 A polymer electrolyte composed of a block copolymer including a hydrophilic segment having a sulfonic acid group and a hydrophobic segment having no sulfonic acid group is preferable.
スルホン酸基を有する親水性セグメントの10重量%以上が、前記式(1)で示される構造である高分子電解質であることが好ましい。 It is preferable that 10% by weight or more of the hydrophilic segment having a sulfonic acid group is a polymer electrolyte having a structure represented by the formula (1).
また、本発明は前記高分子電解質を含む、高分子電解質膜に関する。 The present invention also relates to a polymer electrolyte membrane comprising the polymer electrolyte.
また、本発明は前記高分子電解質膜を含む、膜/電極接合体または固体高分子形燃料電池、さらには前記膜/電極接合体を含む、固体高分子形燃料電池に関する。 The present invention also relates to a membrane / electrode assembly or a polymer electrolyte fuel cell comprising the polymer electrolyte membrane, and further to a polymer electrolyte fuel cell comprising the membrane / electrode assembly.
本発明の高分子電解質は、プロトン伝導度に有利なスルホン酸基を有し、かつ剛直なカルボニル構造を主鎖に有する特定のポリマーを含むため、高分子電解質膜としたときに膜強度が高く、水分の少ない状況で優れたプロトン伝導度を有することができる。 Since the polymer electrolyte of the present invention contains a specific polymer having a sulfonic acid group advantageous for proton conductivity and having a rigid carbonyl structure in the main chain, the polymer electrolyte membrane has high membrane strength. It can have excellent proton conductivity in a low moisture condition.
本発明の一実施形態について説明すれば以下の通りである。なお、本発明は以下の説明に限定されるものではない。 An embodiment of the present invention will be described as follows. The present invention is not limited to the following description.
<1.高分子電解質>
本発明の高分子電解質は、下記式(1)および(2):
で示される構造をポリマーの主鎖に有することを特徴とする。
前記式(1)において、cの上限は特に限定されないが、3以下が好ましい。dは0以上の整数であるが、1以上が好ましく、上限は特に限定されないが、3以下が好ましい。前記式(2)において、合成の容易さの点から、eおよびfがともに1であることが好ましい。gは1以上7以下の整数であるが、1以上3以下の整数であることがより好ましい。7を超えると、ブロックポリマーの疎水部が大きくなり、ミクロ相分離のサイズが細かく均一な膜が得られなくなる傾向がある。
ここで、陽イオンとしては、リチウム、ナトリウム、カリウムなどの第1族の金属イオンや、マグネシウム、カルシウムなどの第2族の金属イオン、アルミニウムなどの第13族の金属イオン、第3族〜第12族の遷移金属の金属イオンなどが挙げられる。
<1. Polymer electrolyte>
The polymer electrolyte of the present invention has the following formulas (1) and (2):
It has the structure shown by this in the principal chain of a polymer.
In the formula (1), the upper limit of c is not particularly limited, but is preferably 3 or less. d is an integer of 0 or more, preferably 1 or more, and the upper limit is not particularly limited, but is preferably 3 or less. In the formula (2), it is preferable that e and f are both 1 from the viewpoint of ease of synthesis. g is an integer of 1 to 7, more preferably an integer of 1 to 3. If it exceeds 7, the hydrophobic part of the block polymer becomes large, and there is a tendency that a micro-phase-separated size is fine and a uniform film cannot be obtained.
Here, as the cation, a
本発明の高分子電解質において、式(1)で示される構造の総含有量は、全体の10重量%以上であることが好ましく、15重量%以上であることがより好ましい。また、70重量%以下であることが好ましく、50重量%以下であることがより好ましい。10重量%未満では、充分なプロトン伝導性を有さない可能性がある。また、70重量%を超えると、水への耐溶解性が悪くなる可能性がある。 In the polymer electrolyte of the present invention, the total content of the structure represented by the formula (1) is preferably 10% by weight or more, and more preferably 15% by weight or more. Moreover, it is preferable that it is 70 weight% or less, and it is more preferable that it is 50 weight% or less. If it is less than 10% by weight, it may not have sufficient proton conductivity. Moreover, when it exceeds 70 weight%, the solubility resistance to water may worsen.
ポリマー中の親水部構造としてラジカル耐久性を高めるという理由から、前記式(1)で示される構造または、その繰り返し構造のみを有する高分子電解質であることが好ましい。 A polymer electrolyte having only the structure represented by the formula (1) or a repeating structure thereof is preferable because the radical durability is enhanced as the hydrophilic portion structure in the polymer.
前記式(1)で示される構造は、原料の入手の容易さの点で、Arがベンゼンである、下記式(3):
で示される構造であることが好ましい。高分子電解質が式(3)で示される構造を有する場合、前記式(3)で示される構造の合計が全体の10重量%以上であることが好ましく、20重量%以上であることがより好ましい。上限については特に限定されない。10重量%未満では、充分なプロトン伝導性を有さなくなる可能性がある。
The structure represented by the above formula (1) has the following formula (3) in which Ar is benzene from the viewpoint of easy availability of raw materials:
It is preferable that it is a structure shown by these. When the polymer electrolyte has a structure represented by the formula (3), the total structure represented by the formula (3) is preferably 10% by weight or more, more preferably 20% by weight or more. . The upper limit is not particularly limited. If it is less than 10% by weight, it may not have sufficient proton conductivity.
前記式(2)で示される構造は、合成の容易さと加工性の容易さから、下記式(4)および/または(5):
で示される構造であることが好ましい。
The structure represented by the above formula (2) has the following formulas (4) and / or (5) because of ease of synthesis and workability:
It is preferable that it is a structure shown by these.
前記式(4)および(5)で示される構造は、合成の容易さと原料の入手の容易さの点で、それぞれ下記式(6)および(7):
で示される構造を有する化合物から合成されることが好ましい。
The structures represented by the above formulas (4) and (5) are represented by the following formulas (6) and (7), respectively, in terms of ease of synthesis and availability of raw materials.
It is preferably synthesized from a compound having a structure represented by
本発明の高分子電解質は、上記構造を主鎖に有していればランダム共重合体であってもよいし、グラフト共重合体やブロック共重合体であってもよい。低加湿条件では高分子電解質膜の内部の水が少なくなるが、プロトン伝導を高めるためにはプロトン伝導の媒体となる水を有効に利用する必要があり、そのためにはミクロ相分離を形成し、水の多い相を作り出すことのできるブロック共重合体であることがさらに好ましい。 The polymer electrolyte of the present invention may be a random copolymer, a graft copolymer or a block copolymer as long as it has the above structure in the main chain. Under low humidification conditions, the water inside the polymer electrolyte membrane is reduced, but in order to increase proton conduction, it is necessary to effectively use the water that serves as the proton conduction medium. More preferably, it is a block copolymer capable of producing a water-rich phase.
さらに、ミクロ相分離を形成するブロック共重合体において、親水性の相と疎水性の相を相分離させることで親水性の相により多くの水を集めることが可能であることから、スルホン酸基を有する親水性セグメントとスルホン酸基を有さない疎水性セグメントとからなるブロック共重合体であることが好ましい。 Furthermore, in the block copolymer that forms microphase separation, it is possible to collect more water in the hydrophilic phase by separating the hydrophilic phase and the hydrophobic phase. The block copolymer is preferably composed of a hydrophilic segment having a hydrophobic segment and a hydrophobic segment having no sulfonic acid group.
親水性セグメントと疎水性セグメントの分子量がそれぞれ2000未満であることが好ましく、1000未満であることがより好ましい。2000以上であるとブロックポリマーの疎水部が大きくなり、ミクロ相分離のサイズが細かく均一な膜が得られなくなる傾向がある。 The molecular weights of the hydrophilic segment and the hydrophobic segment are each preferably less than 2000, and more preferably less than 1000. When the molecular weight is 2000 or more, the hydrophobic portion of the block polymer becomes large, and there is a tendency that a microphase-separated size is fine and a uniform film cannot be obtained.
スルホン酸基を有する親水性セグメントは、前記式(1)で示される構造を有することが好ましい。水への耐溶解性の点で、親水性セグメントは、10重量%以上が式(1)で示される構造であることが好ましく、20重量%以上であることがより好ましい。上限については特に限定されない。10重量%未満では水への耐溶解性が低下する傾向がある。 The hydrophilic segment having a sulfonic acid group preferably has a structure represented by the formula (1). In terms of resistance to dissolution in water, the hydrophilic segment preferably has a structure represented by the formula (1) at 10% by weight or more, and more preferably 20% by weight or more. The upper limit is not particularly limited. If it is less than 10% by weight, the solubility in water tends to decrease.
本発明の高分子電解質が、スルホン酸基を有する親水性セグメントとスルホン酸基を有さないセグメントとからなるブロック共重合体である場合、スルホン酸基を有する親水性セグメントとしては、上記式(1)で示される構造を主鎖に有すればよいが、dがc以上であるものが、合成の容易さという点で好ましい。 When the polymer electrolyte of the present invention is a block copolymer comprising a hydrophilic segment having a sulfonic acid group and a segment not having a sulfonic acid group, the hydrophilic segment having a sulfonic acid group is represented by the above formula ( The structure shown in 1) may be contained in the main chain, but d is preferably c or more from the viewpoint of ease of synthesis.
本発明の高分子電解質のイオン交換容量は、プロトン伝導性と高分子電解質膜の強度が共に優れるとの観点から、0.5〜5.0ミリ当量/gであることが好ましく、0.8〜4.0ミリ当量/gであることがより好ましく、1.1〜3.5ミリ当量/gであることがさらに好ましい。 The ion exchange capacity of the polymer electrolyte of the present invention is preferably 0.5 to 5.0 meq / g from the viewpoint that both proton conductivity and the strength of the polymer electrolyte membrane are excellent, 0.8 It is more preferably ˜4.0 meq / g, and further preferably 1.1 to 3.5 meq / g.
<本発明の高分子電解質の合成>
本発明の高分子電解質の合成には、一般的な重合反応(「実験化学講座第4版 有機合成VII 有機金属試薬による合成」p.353−366(1991)丸善株式会社)などを適用することができる。
<Synthesis of the polymer electrolyte of the present invention>
For the synthesis of the polymer electrolyte of the present invention, a general polymerization reaction ("Experimental Chemistry Course 4th edition: Organic Synthesis VII Synthesis with organometallic reagents" p.353-366 (1991) Maruzen Co., Ltd.) should be applied. Can do.
重合に用いる材料は脱離基を2箇所以上に有する化合物を用いることができ、ハロゲン基やスルホン酸エステル基などの脱離基を有する化合物を用いることができる。材料入手の点と反応性の点から脱離基として塩素や臭素やヨウ素といったハロゲン基、あるいはメタンスルホニル基、トリフルオロメタンスルホニル基、ベンゼンスルホニル基、トルエンスルホニル基といったスルホン酸エステルなどの脱離基を2箇所に有する化合物であることが好ましい。 As a material used for polymerization, a compound having a leaving group at two or more positions can be used, and a compound having a leaving group such as a halogen group or a sulfonate group can be used. From the point of material availability and reactivity, leaving groups such as halogen groups such as chlorine, bromine and iodine, or leaving groups such as sulfonic acid esters such as methanesulfonyl group, trifluoromethanesulfonyl group, benzenesulfonyl group and toluenesulfonyl group can be used. It is preferable that it is a compound which has in two places.
ポリマーの主鎖を構成する原料の分子量は、2000未満が好ましく、50以上2000未満がより好ましく、特にスルホン酸基を有する原料の分子量は70以上2000未満が好ましく、またスルホン酸基を有さない原料の分子量は70以上2000未満が好ましい。分子量が2000以上であるとブロックポリマーの疎水部が大きくなり、ミクロ相分離のサイズが細かく均一な膜が得られなくなる傾向がある。 The molecular weight of the raw material constituting the main chain of the polymer is preferably less than 2000, more preferably 50 or more and less than 2000. In particular, the molecular weight of the raw material having a sulfonic acid group is preferably 70 or more and less than 2000, and has no sulfonic acid group. The molecular weight of the raw material is preferably 70 or more and less than 2000. When the molecular weight is 2000 or more, the hydrophobic portion of the block polymer becomes large, and there is a tendency that a microphase-separated size is fine and a uniform film cannot be obtained.
これらの原料によって合成される本発明の高分子電解質の重量平均分子量は10000〜5000000が好ましく、より好ましくは20000〜3000000であることが高分子電解質膜を製造するための加工性と高分子電解質膜の強度が共に優れるため好ましい。 The weight average molecular weight of the polymer electrolyte of the present invention synthesized from these raw materials is preferably 10,000 to 5,000,000, and more preferably 20,000 to 3,000,000. Processability for producing the polymer electrolyte membrane and the polymer electrolyte membrane Both are preferable because of their excellent strength.
重合反応は窒素ガス雰囲気下、アルゴン雰囲気下などの不活性ガス雰囲気下で行うことができるが、好ましくは窒素雰囲気下で行う。 The polymerization reaction can be performed in an inert gas atmosphere such as a nitrogen gas atmosphere or an argon atmosphere, but is preferably performed in a nitrogen atmosphere.
重合反応工程における溶媒としては重合を禁止するものでなければ特に制限は無く、カーボネート化合物(エチレンカーボネート、プロピレンカーボネート等)、複素環化合物(3−メチル−2−オキサゾリジノン、1−メチル−2−ピロリドン(以下NMP)、N,N−ジメチルイミダゾリジノン(以下DMI)等)、N,N−ジメチルアセトアミド(以下DMAc)、N,N−ジメチルホルムアミド(以下DMF)、環状エーテル類(ジオキサン、テトラヒドロフラン等)、鎖状エーテル類(ジエチルエーテル、エチレングリコールジアルキルエーテル等)、ニトリル化合物(アセトニトリル、グルタロジニトリル、メトキシアセトニトリル等)、非プロトン極性物質(ジメチルスルホキシド(以下DMSO)、スルホラン等)、非極性溶媒(トルエン、キシレン等)等が列挙でき、中でも溶解度からDMAcやDMF、NMP、DMI、DMSO等が、ポリマーの溶解性が高いため好ましい。なかでもDMAcとDMSOがポリマーの溶解性が高いため好ましい。これらは単独で用いても2種以上を併用してもよい。また、溶媒中に微量存在する水を除くため、ベンゼンやトルエン、キシレン、シクロヘキサンなどの共沸溶媒を添加して水を共沸により除くことが有効である。 The solvent in the polymerization reaction step is not particularly limited as long as polymerization is not prohibited, and carbonate compounds (ethylene carbonate, propylene carbonate, etc.), heterocyclic compounds (3-methyl-2-oxazolidinone, 1-methyl-2-pyrrolidone) (Hereinafter referred to as NMP), N, N-dimethylimidazolidinone (hereinafter referred to as DMI), N, N-dimethylacetamide (hereinafter referred to as DMAc), N, N-dimethylformamide (hereinafter referred to as DMF), cyclic ethers (dioxane, tetrahydrofuran, etc.) ), Chain ethers (diethyl ether, ethylene glycol dialkyl ether, etc.), nitrile compounds (acetonitrile, glutarodinitrile, methoxyacetonitrile, etc.), aprotic polar substances (dimethyl sulfoxide (hereinafter DMSO), sulfolane, etc.), nonpolar Medium to enumerate (toluene, xylene), etc., among them DMAc or DMF from solubility, NMP, DMI, DMSO and the like is preferable because of high solubility in the polymer. Of these, DMAc and DMSO are preferred because of their high polymer solubility. These may be used alone or in combination of two or more. In addition, in order to remove a small amount of water in the solvent, it is effective to remove water by azeotropy by adding an azeotropic solvent such as benzene, toluene, xylene and cyclohexane.
重合反応工程の反応温度は重合反応に応じて適宜設定すればよい。具体的には0℃〜200℃に設定すればよく、より好ましくは20℃〜170℃であり、さらに好ましくは40℃〜140℃である。この範囲よりも低温であれば反応速度が遅く、高温であれば微量不純物などの影響を大きく受け、高分子の着色や望みとしない副反応などが起きることが懸念される。 What is necessary is just to set the reaction temperature of a polymerization reaction process suitably according to a polymerization reaction. Specifically, it may be set to 0 ° C to 200 ° C, more preferably 20 ° C to 170 ° C, and further preferably 40 ° C to 140 ° C. If the temperature is lower than this range, the reaction rate is slow, and if the temperature is higher, there is a concern that the polymer may be greatly affected by a small amount of impurities and coloring of the polymer or unwanted side reactions may occur.
重合反応工程では停止操作を行うことが好ましく、これは冷却、希釈、重合禁止剤の添加によって行うことができる。重合反応工程の後に生成した高分子を取り出してもよく。さらに精製工程を追加してもよい。 In the polymerization reaction step, it is preferable to perform a stopping operation, which can be performed by cooling, diluting, or adding a polymerization inhibitor. You may take out the polymer | macromolecule produced | generated after the polymerization reaction process. Further purification steps may be added.
本発明の高分子電解質をブロック共重合体として合成する場合、スルホン酸基を有する親水性セグメントを形成する材料として、脱離基を2箇所以上に有する化合物を用いることができる。脱離基としてはハロゲン基やスルホン酸エステルなどが挙げられる。芳香環上に脱離基を有する化合物が好ましく、材料の入手の容易さからジクロロベンゼン誘導体、ジクロロベンゾフェノン誘導体がより好ましい。 When synthesizing the polymer electrolyte of the present invention as a block copolymer, a compound having two or more leaving groups can be used as a material for forming a hydrophilic segment having a sulfonic acid group. Examples of the leaving group include a halogen group and a sulfonic acid ester. A compound having a leaving group on the aromatic ring is preferable, and a dichlorobenzene derivative and a dichlorobenzophenone derivative are more preferable because of easy availability of materials.
スルホン酸基を有さない疎水性セグメントを形成する材料として、脱離基を2箇所以上に有する化合物を用いることができる。脱離基としてはハロゲン基やスルホン酸エステルなどが挙げられる。好ましくは芳香環上に脱離基を有する化合物が好ましく、前記式(6)あるいは(7)で示される構造を有する化合物、或いは少なくともこれらを原料として合成され、脱離基を2箇所以上に有する化合物がより好ましい。 As a material for forming a hydrophobic segment having no sulfonic acid group, a compound having two or more leaving groups can be used. Examples of the leaving group include a halogen group and a sulfonic acid ester. A compound having a leaving group on an aromatic ring is preferable, and a compound having a structure represented by the above formula (6) or (7), or at least synthesized using these compounds as a raw material, has two or more leaving groups. Compounds are more preferred.
本発明の高分子電解質は、様々な産業上の利用が考えられ、その利用(用途)については、特に制限されるものではないが、高分子電解質膜、膜/電極接合体、燃料電池に好適である。 The polymer electrolyte of the present invention can be used in various industries, and its use (use) is not particularly limited, but is suitable for a polymer electrolyte membrane, a membrane / electrode assembly, and a fuel cell. It is.
<2.本発明の高分子電解質膜>
本発明の高分子電解質膜は、上記高分子電解質を任意の方法で膜状に成型したものである。このような製膜方法としては、公知の方法が適宜使用され得る。上記公知の方法としては、例えば、ホットプレス法、インフレーション法、Tダイ法などの溶融押出成形、キャスト法、エマルション法などの溶液からの製膜方法が例示され得る。例えば溶液からの製膜方法としては、キャスト法が例示される。これは粘度を調整した高分子電解質の溶液を、ガラス板などの平板上に、バーコーター、ブレードコーターなどを用いて塗布し、溶媒を気化させて膜を得る方法である。工業的には溶液を連続的にコートダイからベルト上に塗布し、溶媒を気化させて長尺物を得る方法も一般的である。
<2. Polymer electrolyte membrane of the present invention>
The polymer electrolyte membrane of the present invention is obtained by molding the polymer electrolyte into a membrane by an arbitrary method. As such a film forming method, a known method can be appropriately used. Examples of the known methods include film forming methods from solutions such as hot extrusion methods, inflation methods, melt extrusion molding such as T-die methods, casting methods, and emulsion methods. For example, a casting method is exemplified as a method for forming a film from a solution. This is a method in which a polymer electrolyte solution with adjusted viscosity is applied onto a flat plate such as a glass plate using a bar coater, a blade coater or the like, and the solvent is evaporated to obtain a film. Industrially, it is also common to apply a solution continuously from a coating die onto a belt and vaporize the solvent to obtain a long product.
さらに、高分子電解質膜の分子配向などを制御するために、得られた高分子電解質膜に対して二軸延伸などの処理を施したり、結晶化度を制御するための熱処理を施したりしてもよい。また、高分子電解質膜の機械的強度を向上させるために各種フィラーを添加したり、ガラス不織布などの補強剤と高分子電解質膜とをプレスにより複合化させたりすることも、本発明の範疇である。 Furthermore, in order to control the molecular orientation of the polymer electrolyte membrane, the obtained polymer electrolyte membrane is subjected to a treatment such as biaxial stretching or a heat treatment for controlling the crystallinity. Also good. In addition, it is also within the scope of the present invention to add various fillers in order to improve the mechanical strength of the polymer electrolyte membrane or to combine a reinforcing agent such as a glass nonwoven fabric with the polymer electrolyte membrane by pressing. is there.
高分子電解質膜の厚さは、用途に応じて任意の厚さを選択することができる。例えば、得られる高分子電解質膜の内部抵抗を低減することを考慮した場合、高分子電解質膜の厚みは薄い程よい。一方、得られた高分子電解質膜のガス遮断性やハンドリング性を考慮すると、高分子電解質膜の厚みは薄すぎると好ましくない場合がある。これらを考慮すると、高分子電解質膜の厚みは、1.2μm以上350μm以下であることが好ましい。上記高分子電解質膜の厚さが上記数値の範囲内であれば、取り扱いが容易であり、破損が生じ難いなどハンドリング性が向上する。また、得られた高分子電解質膜のプロトン伝導性も所望の範囲で発現させることができる。 As the thickness of the polymer electrolyte membrane, any thickness can be selected according to the application. For example, when considering reducing the internal resistance of the obtained polymer electrolyte membrane, the thinner the polymer electrolyte membrane, the better. On the other hand, in consideration of gas barrier properties and handling properties of the obtained polymer electrolyte membrane, it may not be preferable if the thickness of the polymer electrolyte membrane is too thin. Considering these, the thickness of the polymer electrolyte membrane is preferably 1.2 μm or more and 350 μm or less. When the thickness of the polymer electrolyte membrane is within the range of the above numerical values, handling is improved such that handling is easy and damage is unlikely to occur. In addition, the proton conductivity of the obtained polymer electrolyte membrane can be expressed within a desired range.
なお、本発明の高分子電解質膜の特性をさらに向上させるために、電子線、γ線、イオンビーム等の放射線を照射させることも可能である。これらにより、高分子電解質膜中に架橋構造などが導入でき、さらに性能が向上する場合がある。またプラズマ処理やコロナ処理などの各種表面処理により、高分子電解質膜表面の触媒層との接着性を上げるなどの特性向上を図ることもできる。 In order to further improve the characteristics of the polymer electrolyte membrane of the present invention, it is possible to irradiate radiation such as electron beam, γ-ray, ion beam and the like. As a result, a crosslinked structure or the like can be introduced into the polymer electrolyte membrane, and the performance may be further improved. In addition, various surface treatments such as plasma treatment and corona treatment can improve properties such as improving adhesion to the catalyst layer on the surface of the polymer electrolyte membrane.
<3.本発明にかかる膜/電極接合体、燃料電池>
本発明にかかる膜/電極接合体(以下、「MEA」と表記する)は、本発明の高分子電解質または高分子電解質膜を用いてなる。かかるMEAは、例えば、燃料電池、特に、固体高分子形燃料電池に用いることができる。
<3. Membrane / electrode assembly and fuel cell according to the present invention>
The membrane / electrode assembly (hereinafter referred to as “MEA”) according to the present invention uses the polymer electrolyte or polymer electrolyte membrane of the present invention. Such an MEA can be used, for example, in a fuel cell, in particular, a polymer electrolyte fuel cell.
MEAを作製する方法は、従来検討されている、パーフルオロカーボンスルホン酸からなる高分子電解質膜やその他の炭化水素系高分子電解質膜(例えば、スルホン酸ポリエーテルエーテルケトン、スルホン酸ポリエーテルスルホン、スルホン酸ポリスルホン、スルホン酸ポリイミド、スルホン酸ポリフェニレンサルファイドなど)で行われる公知の方法が適用可能である。 Methods for producing MEA are conventionally studied polymer electrolyte membranes made of perfluorocarbon sulfonic acid and other hydrocarbon polymer electrolyte membranes (for example, sulfonic acid polyether ether ketone, sulfonic acid polyether sulfone, sulfone). A known method performed with acid polysulfone, sulfonic acid polyimide, sulfonic acid polyphenylene sulfide, or the like is applicable.
上述した例以外にも、本発明にかかる高分子電解質は、例えば特開2006−179298号公報等で公知になっている固体高分子形燃料電池の電解質として、使用可能である。これらの公知の特許文献に基づけば、当業者であれば、本発明の高分子電解質を用いて容易に固体高分子形燃料電池を構成することができる。 In addition to the examples described above, the polymer electrolyte according to the present invention can be used as an electrolyte of a polymer electrolyte fuel cell known in, for example, Japanese Patent Application Laid-Open No. 2006-179298. Based on these known patent documents, those skilled in the art can easily construct a solid polymer fuel cell using the polymer electrolyte of the present invention.
以下実施例を示し、本発明の実施の形態についてさらに詳しく説明する。もちろん、本発明は以下の実施例に限定されるものではなく、細部については様々な態様が可能であることはいうまでもない。さらに、本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、それぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 Hereinafter, examples will be shown, and the embodiment of the present invention will be described in more detail. Of course, the present invention is not limited to the following examples, and it goes without saying that various aspects are possible in detail. Further, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope shown in the claims, and the present invention is also applied to the embodiments obtained by appropriately combining the disclosed technical means. It is included in the technical scope of the invention.
ポリマーの分子量、高分子電解質のイオン交換容量およびプロトン伝導度の各測定方法は以下のとおりである。 The measurement methods of the molecular weight of the polymer, the ion exchange capacity of the polymer electrolyte, and the proton conductivity are as follows.
〔分子量の測定方法〕
GPC法により分子量を測定した。条件は以下の通り。
GPC測定装置:東ソー株式会社製 HLC−8220
カラム:昭和電工株式会社製 SuperAW4000、SuperAW2500の2本を直列に接続
カラム温度:40℃
移動相溶媒:NMP(LiBrを10mmol/dm3になるように添加)
溶媒流量:0.3ml/min
標準物質:TSK標準ポリスチレン(東ソー株式会社製)
以下、標準ポリスチレンで換算した数平均分子量をMnと表記し、標準ポリスチレンで換算した重量平均分子量をMwと表記する。
[Measurement method of molecular weight]
The molecular weight was measured by GPC method. The conditions are as follows.
GPC measuring device: HLC-8220 manufactured by Tosoh Corporation
Column: Showa Denko Co., Ltd. Super AW 4000 and Super AW 2500 connected in series Column temperature: 40 ° C
Mobile phase solvent: NMP (LiBr added to 10 mmol / dm 3 )
Solvent flow rate: 0.3 ml / min
Standard material: TSK standard polystyrene (manufactured by Tosoh Corporation)
Hereinafter, the number average molecular weight converted with standard polystyrene is expressed as Mn, and the weight average molecular weight converted with standard polystyrene is expressed as Mw.
〔イオン交換容量(以下、IECと略す)の測定方法〕
対象となる高分子電解質(約100mg:十分に乾燥)を25℃での塩化ナトリウム飽和水溶液20mlに浸漬し、ウォーターバス中で60℃、3時間イオン交換反応させた。25℃まで冷却し、次いで膜をイオン交換水で充分に洗浄し、塩化ナトリウム飽和水溶液および洗浄水をすべて回収した。この回収した溶液に、指示薬としてフェノールフタレイン溶液を加え、0.01Nの水酸化ナトリウム水溶液で中和滴定し、IEC(meq/g)を算出した。
[Measurement method of ion exchange capacity (hereinafter abbreviated as IEC)]
The target polymer electrolyte (about 100 mg: sufficiently dried) was immersed in 20 ml of a saturated aqueous sodium chloride solution at 25 ° C., and subjected to an ion exchange reaction in a water bath at 60 ° C. for 3 hours. After cooling to 25 ° C., the membrane was thoroughly washed with ion exchanged water, and all of the saturated aqueous sodium chloride solution and the washing water were collected. To this collected solution, a phenolphthalein solution was added as an indicator, and neutralization titration with a 0.01N sodium hydroxide aqueous solution was performed to calculate IEC (meq / g).
〔プロトン伝導度の測定方法〕
プロトン伝導度測定は恒温恒湿器(ESPEC社製、SH−221)を用いて温度と湿度を一定に保ち(約3時間)、インピーダンスアナライザー(日置電気株式会社製、3532−50)を用いて、電解質の抵抗を測定した。具体的にはインピーダンスアナライザーにより50kHz〜5MHzまでの周波数応答性を測定し、次式からプロトン伝導性を算出した。
プロトン伝導度(S/cm)=D/(W×T×R)
ここで、Dは電極間距離(cm)、Wは膜幅(cm)、Tは膜厚(cm)、Rは測定した抵抗値(Ω)である。本測定においては、D=1cm、W=1cmで行い、膜厚はそれぞれのサンプルについてマイクロメーターを用いて測定した値を用いた。低加湿での測定条件の温度と湿度はそれぞれ80℃、30%RHとした。
[Measurement method of proton conductivity]
Proton conductivity measurement is performed using a constant temperature and humidity chamber (manufactured by ESPEC, SH-221), keeping the temperature and humidity constant (about 3 hours), and using an impedance analyzer (manufactured by Hioki Electric Co., Ltd., 3532-50). The resistance of the electrolyte was measured. Specifically, the frequency response from 50 kHz to 5 MHz was measured with an impedance analyzer, and the proton conductivity was calculated from the following equation.
Proton conductivity (S / cm) = D / (W × T × R)
Here, D is a distance between electrodes (cm), W is a film width (cm), T is a film thickness (cm), and R is a measured resistance value (Ω). In this measurement, D = 1 cm and W = 1 cm, and the film thickness was a value measured using a micrometer for each sample. The temperature and humidity of the measurement conditions with low humidification were 80 ° C. and 30% RH, respectively.
〔合成例1〕
還流管とDeanStark管を取り付けた100mlナスフラスコに4,4’−ジフルオロジフェニルスルホン10g、4−クロロフェノール12g、炭酸カリウム7g、DMAc30mlおよびトルエン10mlを窒素雰囲気下混合し、170℃に加熱した。トルエンを還流させて生成した水を除き、6時間後室温まで冷却後反応溶液を水に加え、析出した固体をろ過し、さらに残渣をメタノールで洗浄した。得られた固体を60℃で12時間減圧乾燥し、白色固体(以下M1と呼ぶ)を得た。得られたM1の分子式はC24H16Cl2O4Sであり、分子量は471.35である。
[Synthesis Example 1]
In a 100 ml eggplant flask equipped with a reflux tube and a DeanStark tube, 10 g of 4,4′-difluorodiphenylsulfone, 12 g of 4-chlorophenol, 7 g of potassium carbonate, 30 ml of DMAc and 10 ml of toluene were mixed in a nitrogen atmosphere and heated to 170 ° C. Water produced by refluxing toluene was removed, and after 6 hours, the reaction solution was added to water after cooling to room temperature. The precipitated solid was filtered, and the residue was washed with methanol. The obtained solid was dried under reduced pressure at 60 ° C. for 12 hours to obtain a white solid (hereinafter referred to as M1). Molecular formula of the resulting M1 is C 24 H 16 Cl 2 O 4 S, a molecular weight of 471.35.
〔合成例2〕
還流管とDeanStark管を取り付けた100mlナスフラスコに4,4’−ジフルオロジフェニルスルホン5g、3−クロロフェノール6g、炭酸カリウム4g、DMAc40mlおよびトルエン10mlを窒素雰囲気下混合し、175℃に加熱した。トルエンを還流させて生成した水を除き、12間後室温まで冷却後反応溶液を水に加え、析出した固体をろ過し、さらに残渣をメタノールで洗浄した。得られた固体を60℃で12時間減圧乾燥し、白色固体(以下M2と呼ぶ)を得た。得られたM2の分子式はC24H16Cl2O4Sであり、分子量は471.35である。
[Synthesis Example 2]
In a 100 ml eggplant flask equipped with a reflux tube and a DeanStark tube, 5 g of 4,4′-difluorodiphenylsulfone, 6 g of 3-chlorophenol, 4 g of potassium carbonate, 40 ml of DMAc and 10 ml of toluene were mixed in a nitrogen atmosphere and heated to 175 ° C. The water produced by refluxing toluene was removed, and after 12 hours, the reaction solution was added to water after cooling to room temperature. The precipitated solid was filtered, and the residue was washed with methanol. The obtained solid was dried under reduced pressure at 60 ° C. for 12 hours to obtain a white solid (hereinafter referred to as M2). Molecular formula of the resulting M2 is C 24 H 16 Cl 2 O 4 S, a molecular weight of 471.35.
〔合成例3〕
還流管とDeanStark管を取り付けた100mlナスフラスコに4,4’−ジクロロベンゾフェノン5g、3−クロロフェノール6g、炭酸カリウム4g、DMAc40mlおよびトルエン10mlを窒素雰囲気下混合し、175℃に加熱した。トルエンを還流させて生成した水を除き、12時間後室温まで冷却後反応溶液を水に加え、析出した固体をろ過し、さらに残渣をメタノールで洗浄した。得られた固体を60℃で12時間減圧乾燥し、白色固体(以下M3と呼ぶ)を得た。得られたM3の分子式はC25H16Cl2O3であり、分子量は435.30である。
[Synthesis Example 3]
In a 100 ml eggplant flask equipped with a reflux tube and a DeanStark tube, 5 g of 4,4′-dichlorobenzophenone, 6 g of 3-chlorophenol, 4 g of potassium carbonate, 40 ml of DMAc and 10 ml of toluene were mixed in a nitrogen atmosphere and heated to 175 ° C. Water produced by refluxing toluene was removed, and after 12 hours, the reaction solution was added to water after cooling to room temperature. The precipitated solid was filtered, and the residue was washed with methanol. The obtained solid was dried under reduced pressure at 60 ° C. for 12 hours to obtain a white solid (hereinafter referred to as M3). Molecular formula of the resulting M3 is C 25 H 16 Cl 2 O 3 , molecular weight is 435.30.
〔合成例4〕
還流管とDeanStark管を取り付けた100mlナスフラスコに4,4’−ジクロロジフェニルスルホン5.86g、4,4’−ジヒドロキシジフェニルスルホン4.64g、炭酸カリウム3.33g、DMAc20mlおよびトルエン5mlを窒素雰囲気下混合し、180℃に加熱した。トルエンを還流させて生成した水を除き、40時間後さらに4,4’−ジクロロジフェニルスルホンを1.0g追加し、6時間後室温まで冷却後反応溶液を水に加え、析出した固体をミキサーで細かく粉砕して濾過した後80℃で12時間乾燥した。さらに固体をジクロロメタンに溶解し、メタノールに加え、析出した固体をろ過後80℃で12時間乾燥し、ポリマー(以下、P1と呼ぶ)を得た。得られたP1の分子量はMn=7400、Mw/Mn=2.52であった。
[Synthesis Example 4]
A 100 ml eggplant flask equipped with a reflux tube and a DeanStark tube was charged with 5.86 g of 4,4′-dichlorodiphenylsulfone, 4.64 g of 4,4′-dihydroxydiphenylsulfone, 3.33 g of potassium carbonate, 20 ml of DMAc and 5 ml of toluene under a nitrogen atmosphere. Mix and heat to 180 ° C. The water produced by refluxing toluene was removed, and after 40 hours, 1.0 g of 4,4′-dichlorodiphenylsulfone was further added. After 6 hours, the reaction solution was added to water after cooling to room temperature, and the precipitated solid was mixed with a mixer. After finely pulverizing and filtering, it was dried at 80 ° C. for 12 hours. Further, the solid was dissolved in dichloromethane, added to methanol, and the precipitated solid was filtered and dried at 80 ° C. for 12 hours to obtain a polymer (hereinafter referred to as P1). The molecular weight of the obtained P1 was Mn = 7400 and Mw / Mn = 2.52.
〔合成例5〕
4,4’−ジクロロベンゾフェノン27gと30%発煙硫酸134gを窒素雰囲気下混合し、攪拌しながら130℃に加熱した。20時間後室温まで冷却した後反応溶液を氷冷した水に加えた。NaOH水溶液を加えて中和した後、析出した白色固体をろ過により回収した。残渣を100℃で減圧乾燥し、白色固体(以下S1と呼ぶ)を得た。得られたS1の分子式はC13H6Cl2Na2O7S2であり、分子量は455.20である。
[Synthesis Example 5]
27 g of 4,4′-dichlorobenzophenone and 134 g of 30% fuming sulfuric acid were mixed in a nitrogen atmosphere and heated to 130 ° C. with stirring. After 20 hours, the reaction solution was cooled to room temperature and then added to ice-cooled water. After neutralizing with an aqueous NaOH solution, the precipitated white solid was collected by filtration. The residue was dried at 100 ° C. under reduced pressure to obtain a white solid (hereinafter referred to as S1). Molecular formula of the resulting S1 is a C 13 H 6 Cl 2 Na 2 O 7
〔合成例6〕
2,5−ジクロロベンゼンスルホン酸120gをNaOH水溶液と混合して中和した。減圧下で加熱することで水を除去し、得られた固体をメタノールに加えて撹拌した後、ろ過を行い、残渣を60℃で12時間減圧乾燥し、白色固体(以下S2と呼ぶ)を得た。得られたS2の分子式はC6H3Cl2NaO3Sであり、分子量は249.05である。
[Synthesis Example 6]
120 g of 2,5-dichlorobenzenesulfonic acid was mixed with an aqueous NaOH solution for neutralization. Water was removed by heating under reduced pressure, and the resulting solid was added to methanol and stirred, followed by filtration. The residue was dried under reduced pressure at 60 ° C. for 12 hours to obtain a white solid (hereinafter referred to as S2). It was. Molecular formula of the resulting S2 are a C 6 H 3 Cl 2 NaO 3 S, a molecular weight of 249.05.
〔合成例7〕
4,4’−ジクロロジフェニルスルホン120gと30%発煙硫酸505gを窒素雰囲気下混合し、撹拌しながら120℃に加熱した。4時間後室温まで冷却した後反応溶液を氷冷した水に加えた。NaOH水溶液を加えて中和した後、析出した白色固体をろ過により回収した。残渣を100℃で減圧乾燥し、白色固体(以下、S3と呼ぶ)を得た。得られたS3の分子式はC12H6Cl2Na2O8S3であり、分子量は491.25である。
[Synthesis Example 7]
120 g of 4,4′-dichlorodiphenylsulfone and 505 g of 30% fuming sulfuric acid were mixed in a nitrogen atmosphere and heated to 120 ° C. with stirring. After 4 hours, the reaction solution was cooled to room temperature and then added to ice-cooled water. After neutralizing with an aqueous NaOH solution, the precipitated white solid was collected by filtration. The residue was dried at 100 ° C. under reduced pressure to obtain a white solid (hereinafter referred to as S3). Molecular formula of the resulting S3, a C 12 H 6 Cl 2 Na 2 O 8
〔実施例1〕
還流管とDeanStark管を取り付けた100mlナスフラスコに、M1(1.4g)とS1(2.1g)と2,2’−ビピリジン(3.0g)をDMSO40mlと混合し、80℃に加熱して完全に溶解させ、その後トルエン15mlを加えて170℃に加熱して、トルエンを還流させてフラスコ内の水分を除き、引き続きトルエンを除いてから80℃まで冷却した。窒素雰囲気下でビス(1,5−シクロオクタジエン)ニッケル(5.0g)を加え、メカニカルスターラーで撹拌した。4時間反応後に室温まで冷却し、反応溶液を6N塩酸水溶液にゆっくりと加え、析出した固体をろ過により回収した。その後回収した固体を6N塩酸水溶液に加え洗浄、濾過する操作を2度繰り返した。その後水洗浄、濾過を行い、100℃で減圧乾燥し、高分子電解質を得た。分子量はMn98000、Mw/Mnは1.94であった。
[Example 1]
In a 100 ml eggplant flask equipped with a reflux tube and a DeanStark tube, M1 (1.4 g), S1 (2.1 g) and 2,2′-bipyridine (3.0 g) were mixed with 40 ml of DMSO and heated to 80 ° C. After completely dissolving, 15 ml of toluene was added and heated to 170 ° C., the toluene was refluxed to remove moisture in the flask, and then the toluene was removed and the mixture was cooled to 80 ° C. Bis (1,5-cyclooctadiene) nickel (5.0 g) was added under a nitrogen atmosphere, and the mixture was stirred with a mechanical stirrer. After the reaction for 4 hours, the reaction solution was cooled to room temperature, the reaction solution was slowly added to a 6N aqueous hydrochloric acid solution, and the precipitated solid was collected by filtration. Thereafter, the operation of adding the collected solid to a 6N aqueous hydrochloric acid solution, washing and filtering was repeated twice. Thereafter, it was washed with water, filtered, and dried under reduced pressure at 100 ° C. to obtain a polymer electrolyte. The molecular weight was Mn 98000, and Mw / Mn was 1.94.
得られた高分子電解質0.7gをDMSO20mlに溶解した後、溶液をガラス基板上に流延塗布し、80℃にて15時間真空乾燥した後、更に100℃にて18時間真空乾燥し、自己支持性のある高分子電解質膜(膜厚20μm)を得た。 After dissolving 0.7 g of the obtained polymer electrolyte in 20 ml of DMSO, the solution was cast on a glass substrate, vacuum dried at 80 ° C. for 15 hours, and further vacuum dried at 100 ° C. for 18 hours. A supporting polymer electrolyte membrane (film thickness 20 μm) was obtained.
高分子電解質膜を6N塩酸水溶液に12時間浸漬し、その後純水に1時間ずつ2度浸漬した後、100℃で減圧乾燥した。得られた膜のイオン交換容量は2.79meq/gであった。低加湿条件においてプロトン伝導度を測定したところ1.5×10−2S/cmであった。 The polymer electrolyte membrane was immersed in a 6N hydrochloric acid aqueous solution for 12 hours, then immersed twice in pure water for 1 hour, and then dried at 100 ° C. under reduced pressure. The obtained membrane had an ion exchange capacity of 2.79 meq / g. When the proton conductivity was measured under low humidification conditions, it was 1.5 × 10 −2 S / cm.
〔実施例2〕
還流管とDeanStark管を取り付けた100mlナスフラスコに、M2(1.6g)とS1(2.4g)と2,2’−ビピリジン(3.0g)をDMSO60mlと混合し、80℃に加熱して完全に溶解させ、その後トルエン10mlを加えて170℃に加熱して、トルエンを還流させてフラスコ内の水分を除き、引き続きトルエンを除いてから80℃まで冷却した。窒素雰囲気下でビス(1,5−シクロオクタジエン)ニッケル(5.0g)を加え、メカニカルスターラーで撹拌した。3時間反応後に室温まで冷却し、反応溶液を6N塩酸水溶液にゆっくりと加え、析出した固体をろ過により回収した。その後回収した固体を6N塩酸水溶液に加え洗浄、濾過する操作を2度繰り返した。その後水洗浄、濾過を行い、100℃で減圧乾燥し、高分子電解質を得た。分子量はMn19000、Mw/Mnは19.2であった。
[Example 2]
In a 100 ml eggplant flask equipped with a reflux tube and a DeanStark tube, M2 (1.6 g), S1 (2.4 g) and 2,2′-bipyridine (3.0 g) were mixed with 60 ml of DMSO and heated to 80 ° C. After completely dissolving, 10 ml of toluene was added and heated to 170 ° C., the toluene was refluxed to remove the water in the flask, and after removing the toluene, the mixture was cooled to 80 ° C. Bis (1,5-cyclooctadiene) nickel (5.0 g) was added under a nitrogen atmosphere, and the mixture was stirred with a mechanical stirrer. After the reaction for 3 hours, the reaction solution was cooled to room temperature, the reaction solution was slowly added to a 6N aqueous hydrochloric acid solution, and the precipitated solid was collected by filtration. Thereafter, the operation of adding the collected solid to a 6N aqueous hydrochloric acid solution, washing and filtering was repeated twice. Thereafter, it was washed with water, filtered, and dried under reduced pressure at 100 ° C. to obtain a polymer electrolyte. The molecular weight was Mn 19000 and Mw / Mn was 19.2.
得られた高分子電解質0.7gをDMAc20mlに溶解した後、溶液をガラス基板上に流延塗布し、80℃にて15時間真空乾燥した後、更に100℃にて18時間真空乾燥し、自己支持性のある高分子電解質膜(膜厚20μm)を得た。 After dissolving 0.7 g of the obtained polymer electrolyte in 20 ml of DMAc, the solution was cast on a glass substrate, vacuum-dried at 80 ° C. for 15 hours, and further vacuum-dried at 100 ° C. for 18 hours. A supporting polymer electrolyte membrane (film thickness 20 μm) was obtained.
高分子電解質膜を6N塩酸水溶液に12時間浸漬し、その後純水に1時間ずつ2度浸漬した後、100℃で減圧乾燥した。得られた膜のイオン交換容量は2.50meq/gであった。低加湿条件においてプロトン伝導度を測定したところ1.2×10−2S/cmであった。 The polymer electrolyte membrane was immersed in a 6N hydrochloric acid aqueous solution for 12 hours, then immersed twice in pure water for 1 hour, and then dried at 100 ° C. under reduced pressure. The obtained membrane had an ion exchange capacity of 2.50 meq / g. The proton conductivity measured under low humidification conditions was 1.2 × 10 −2 S / cm.
〔実施例3〕
還流管とDeanStark管を取り付けた100mlナスフラスコに、M3(1.6g)とS1(2.4g)と2,2’−ビピリジン(3.0g)をDMSO60mlと混合し、80℃に加熱して完全に溶解させ、その後トルエン10mlを加えて170℃に加熱して、トルエンを還流させてフラスコ内の水分を除き、引き続きトルエンを除いてから80℃まで冷却した。窒素雰囲気下でビス(1,5−シクロオクタジエン)ニッケル(5.0g)を加え、メカニカルスターラーで撹拌した。3時間反応後に室温まで冷却し、反応溶液を6N塩酸水溶液にゆっくりと加え、析出した固体をろ過により回収した。その後回収した固体を6N塩酸水溶液に加え洗浄、濾過する操作を2度繰り返した。その後水洗浄、濾過を行い、100℃で減圧乾燥し、高分子電解質を得た。分子量はMn62000、Mw/Mnは2.69であった。
Example 3
In a 100 ml eggplant flask equipped with a reflux tube and a DeanStark tube, M3 (1.6 g), S1 (2.4 g) and 2,2′-bipyridine (3.0 g) were mixed with 60 ml of DMSO and heated to 80 ° C. After completely dissolving, 10 ml of toluene was added and heated to 170 ° C., the toluene was refluxed to remove the water in the flask, and after removing the toluene, the mixture was cooled to 80 ° C. Bis (1,5-cyclooctadiene) nickel (5.0 g) was added under a nitrogen atmosphere, and the mixture was stirred with a mechanical stirrer. After the reaction for 3 hours, the reaction solution was cooled to room temperature, the reaction solution was slowly added to a 6N aqueous hydrochloric acid solution, and the precipitated solid was collected by filtration. Thereafter, the operation of adding the collected solid to a 6N aqueous hydrochloric acid solution, washing and filtering was repeated twice. Thereafter, it was washed with water, filtered, and dried under reduced pressure at 100 ° C. to obtain a polymer electrolyte. The molecular weight was Mn62000, and Mw / Mn was 2.69.
得られた高分子電解質0.7gをDMSO20mlに溶解した後、溶液をガラス基板上に流延塗布し、80℃にて15時間真空乾燥した後、更に100℃にて18時間真空乾燥し、自己支持性のある高分子電解質膜(膜厚24μm)を得た。 After dissolving 0.7 g of the obtained polymer electrolyte in 20 ml of DMSO, the solution was cast on a glass substrate, vacuum dried at 80 ° C. for 15 hours, and further vacuum dried at 100 ° C. for 18 hours. A supporting polymer electrolyte membrane (film thickness: 24 μm) was obtained.
高分子電解質膜を6N塩酸水溶液に12時間浸漬し、その後純水に1時間ずつ2度浸漬した後、100℃で減圧乾燥した。得られた膜のイオン交換容量は2.84meq/gであった。低加湿条件においてプロトン伝導度を測定したところ1.4×10−2S/cmであった。 The polymer electrolyte membrane was immersed in a 6N hydrochloric acid aqueous solution for 12 hours, then immersed twice in pure water for 1 hour, and then dried at 100 ° C. under reduced pressure. The obtained membrane had an ion exchange capacity of 2.84 meq / g. When proton conductivity was measured under low humidification conditions, it was 1.4 × 10 −2 S / cm.
〔実施例4〕
還流管とDeanStark管を取り付けた100mlナスフラスコに、M1(1.6g)とS1(2.4g)と2,2’−ビピリジン(3.0g)をDMSO60mlと混合し、80℃に加熱して完全に溶解させ、その後トルエン10mlを加えて170℃に加熱して、トルエンを還流させてフラスコ内の水分を除き、引き続きトルエンを除いてから80℃まで冷却した。窒素雰囲気下でビス(1,5−シクロオクタジエン)ニッケル(5.0g)を加え、メカニカルスターラーで撹拌した。3時間反応後に室温まで冷却し、反応溶液を6N塩酸水溶液にゆっくりと加え、析出した固体をろ過により回収した。その後回収した固体を6N塩酸水溶液に加え洗浄、濾過する操作を2度繰り返した。その後水洗浄、濾過を行い、100℃で減圧乾燥し、高分子電解質を得た。分子量はMn48000、Mw/Mnは12.7であった。
Example 4
In a 100 ml eggplant flask equipped with a reflux tube and a DeanStark tube, M1 (1.6 g), S1 (2.4 g) and 2,2′-bipyridine (3.0 g) were mixed with 60 ml of DMSO and heated to 80 ° C. After completely dissolving, 10 ml of toluene was added and heated to 170 ° C., the toluene was refluxed to remove the water in the flask, and after removing the toluene, the mixture was cooled to 80 ° C. Bis (1,5-cyclooctadiene) nickel (5.0 g) was added under a nitrogen atmosphere, and the mixture was stirred with a mechanical stirrer. After the reaction for 3 hours, the reaction solution was cooled to room temperature, the reaction solution was slowly added to a 6N aqueous hydrochloric acid solution, and the precipitated solid was collected by filtration. Thereafter, the operation of adding the collected solid to a 6N aqueous hydrochloric acid solution, washing and filtering was repeated twice. Thereafter, it was washed with water, filtered, and dried under reduced pressure at 100 ° C. to obtain a polymer electrolyte. The molecular weight was Mn 48000, and Mw / Mn was 12.7.
得られた高分子電解質0.7gをDMAc20mlに溶解した後、溶液をガラス基板上に流延塗布し、80℃にて15時間真空乾燥した後、更に100℃にて18時間真空乾燥し、自己支持性のある高分子電解質膜(膜厚22μm)を得た。 After dissolving 0.7 g of the obtained polymer electrolyte in 20 ml of DMAc, the solution was cast on a glass substrate, vacuum-dried at 80 ° C. for 15 hours, and further vacuum-dried at 100 ° C. for 18 hours. A supporting polymer electrolyte membrane (film thickness 22 μm) was obtained.
高分子電解質膜を6N塩酸水溶液に12時間浸漬し、その後純水に1時間ずつ2度浸漬した後、100℃で減圧乾燥した。得られた膜のイオン交換容量は2.32meq/gであった。低加湿条件においてプロトン伝導度を測定したところ1.1×10−2S/cmであった。 The polymer electrolyte membrane was immersed in a 6N hydrochloric acid aqueous solution for 12 hours, then immersed twice in pure water for 1 hour, and then dried at 100 ° C. under reduced pressure. The obtained membrane had an ion exchange capacity of 2.32 meq / g. When proton conductivity was measured under low humidification conditions, it was 1.1 × 10 −2 S / cm.
〔実施例5〕
還流管とDeanStark管を取り付けた100mlナスフラスコに、M3(2.0g)とS1(1.0g)と2,2’−ビピリジン(3.0g)をDMSO60mlと混合し、80℃に加熱して完全に溶解させ、その後トルエン10mlを加えて170℃に加熱して、トルエンを還流させてフラスコ内の水分を除き、引き続きトルエンを除いてから80℃まで冷却した。窒素雰囲気下でビス(1,5−シクロオクタジエン)ニッケル(5.0g)を加え、メカニカルスターラーで撹拌した。4時間反応後に室温まで冷却し、反応溶液を6N塩酸水溶液にゆっくりと加え、析出した固体をろ過により回収した。その後回収した固体を6N塩酸水溶液に加え洗浄、濾過する操作を2度繰り返した。その後水洗浄、濾過を行い、100℃で減圧乾燥し、高分子電解質を得た。分子量はMn68000、Mw/Mnは2.64であった。
Example 5
In a 100 ml eggplant flask equipped with a reflux tube and a DeanStark tube, M3 (2.0 g), S1 (1.0 g) and 2,2′-bipyridine (3.0 g) were mixed with 60 ml of DMSO and heated to 80 ° C. After completely dissolving, 10 ml of toluene was added and heated to 170 ° C., the toluene was refluxed to remove the water in the flask, and after removing the toluene, the mixture was cooled to 80 ° C. Bis (1,5-cyclooctadiene) nickel (5.0 g) was added under a nitrogen atmosphere, and the mixture was stirred with a mechanical stirrer. After the reaction for 4 hours, the reaction solution was cooled to room temperature, the reaction solution was slowly added to a 6N aqueous hydrochloric acid solution, and the precipitated solid was collected by filtration. Thereafter, the operation of adding the collected solid to a 6N aqueous hydrochloric acid solution, washing and filtering was repeated twice. Thereafter, it was washed with water, filtered, and dried under reduced pressure at 100 ° C. to obtain a polymer electrolyte. The molecular weight was Mn 68000, and Mw / Mn was 2.64.
得られた高分子電解質0.7gをDMSO20mlに溶解した後、溶液をガラス基板上に流延塗布し、80℃にて15時間真空乾燥した後、更に100℃にて18時間真空乾燥し、自己支持性のある高分子電解質膜(膜厚27μm)を得た。 After dissolving 0.7 g of the obtained polymer electrolyte in 20 ml of DMSO, the solution was cast on a glass substrate, vacuum dried at 80 ° C. for 15 hours, and further vacuum dried at 100 ° C. for 18 hours. A supporting polymer electrolyte membrane (thickness 27 μm) was obtained.
高分子電解質膜を6N塩酸水溶液に12時間浸漬し、その後純水に1時間ずつ2度浸漬した後、100℃で減圧乾燥した。得られた膜のイオン交換容量は1.59meq/gであった。低加湿条件においてプロトン伝導度を測定したところ5.8×10−4S/cmであった。 The polymer electrolyte membrane was immersed in a 6N hydrochloric acid aqueous solution for 12 hours, then immersed twice in pure water for 1 hour, and then dried at 100 ° C. under reduced pressure. The obtained membrane had an ion exchange capacity of 1.59 meq / g. When the proton conductivity was measured under low humidification conditions, it was 5.8 × 10 −4 S / cm.
〔実施例6〕
還流管とDeanStark管を取り付けた100mlナスフラスコに、M1(1.6g)とS1(1.6g)とS2(0.8g)と2,2’−ビピリジン(3.0g)をDMSO60mlと混合し、80℃に加熱して完全に溶解させ、その後トルエン10mlを加えて170℃に加熱して、トルエンを還流させてフラスコ内の水分を除き、引き続きトルエンを除いてから80℃まで冷却した。窒素雰囲気下でビス(1,5−シクロオクタジエン)ニッケル(5.0g)を加え、メカニカルスターラーで撹拌した。4時間反応後に室温まで冷却し、反応溶液を6N塩酸水溶液にゆっくりと加え、析出した固体をろ過により回収した。その後回収した固体を6N塩酸水溶液に加え洗浄、濾過する操作を2度繰り返した。その後水洗浄、濾過を行い、100℃で減圧乾燥し、高分子電解質を得た。分子量はMn96000、Mw/Mnは1.98であった。
Example 6
M1 (1.6 g), S1 (1.6 g), S2 (0.8 g) and 2,2′-bipyridine (3.0 g) were mixed with DMSO 60 ml in a 100 ml eggplant flask equipped with a reflux tube and a DeanStark tube. Then, the mixture was heated to 80 ° C. to be completely dissolved, and then 10 ml of toluene was added and heated to 170 ° C., the toluene was refluxed to remove moisture in the flask, and then the toluene was removed, followed by cooling to 80 ° C. Bis (1,5-cyclooctadiene) nickel (5.0 g) was added under a nitrogen atmosphere, and the mixture was stirred with a mechanical stirrer. After the reaction for 4 hours, the reaction solution was cooled to room temperature, the reaction solution was slowly added to a 6N aqueous hydrochloric acid solution, and the precipitated solid was collected by filtration. Thereafter, the operation of adding the collected solid to a 6N aqueous hydrochloric acid solution, washing and filtering was repeated twice. Thereafter, it was washed with water, filtered, and dried under reduced pressure at 100 ° C. to obtain a polymer electrolyte. The molecular weight was Mn 96000, and Mw / Mn was 1.98.
得られた高分子電解質0.7gをDMSO20mlに溶解した後、溶液をガラス基板上に流延塗布し、80℃にて15時間真空乾燥した後、更に100℃にて18時間真空乾燥し、自己支持性のある高分子電解質膜(膜厚31μm)を得た。 After dissolving 0.7 g of the obtained polymer electrolyte in 20 ml of DMSO, the solution was cast on a glass substrate, vacuum dried at 80 ° C. for 15 hours, and further vacuum dried at 100 ° C. for 18 hours. A supporting polymer electrolyte membrane (film thickness 31 μm) was obtained.
高分子電解質膜を6N塩酸水溶液に12時間浸漬し、その後純水に1時間ずつ2度浸漬した後、100℃で減圧乾燥した。得られた膜のイオン交換容量は2.53meq/gであった。低加湿条件においてプロトン伝導度を測定したところ9.4×10−3S/cmであった。 The polymer electrolyte membrane was immersed in a 6N hydrochloric acid aqueous solution for 12 hours, then immersed twice in pure water for 1 hour, and then dried at 100 ° C. under reduced pressure. The obtained membrane had an ion exchange capacity of 2.53 meq / g. When proton conductivity was measured under low humidification conditions, it was 9.4 × 10 −3 S / cm.
〔比較例1〕
実施例1においてS1の代わりにS2(1.5g)を用い、P1(1.5g)、DMSO50ml、トルエン16ml、2,2’−ビピリジン3.0gとビス(1,5−シクロオクタジエン)ニッケル5.0gを使用したほかは同様の方法で合成を行った。ただし、ポリマーの洗浄工程において6N塩酸水溶液中で攪拌を行っているとポリマーが溶解してしまった。NaOH水溶液で中和し、濃縮することでポリマーを回収し、80℃で減圧乾燥し、乾燥した固体を水洗し、さらに80℃で3時間減圧乾燥、さらに100℃で10時間減圧乾燥することで高分子電解質を得た。分子量はMn=72000、Mw/Mn=1.67であった。
[Comparative Example 1]
In Example 1, S2 (1.5 g) was used instead of S1, P1 (1.5 g), DMSO 50 ml, toluene 16 ml, 2,2′-bipyridine 3.0 g and bis (1,5-cyclooctadiene) nickel The synthesis was performed in the same manner except that 5.0 g was used. However, the polymer was dissolved when stirring was performed in a 6N hydrochloric acid aqueous solution in the polymer washing step. The polymer is recovered by neutralizing with an aqueous NaOH solution and concentrating, drying under reduced pressure at 80 ° C., washing the dried solid with water, further drying under reduced pressure at 80 ° C. for 3 hours, and further drying under reduced pressure at 100 ° C. for 10 hours. A polymer electrolyte was obtained. The molecular weight was Mn = 72000 and Mw / Mn = 1.67.
得られた高分子電解質0.7gをDMAc20mlに溶解した後、溶液をガラス基板上に流延塗布し、80℃にて15時間真空乾燥した後、更に100℃にて18時間真空乾燥し高分子電解質膜(膜厚30μm)を得た。 After dissolving 0.7 g of the obtained polymer electrolyte in 20 ml of DMAc, the solution was cast on a glass substrate, vacuum dried at 80 ° C. for 15 hours, and further vacuum dried at 100 ° C. for 18 hours. An electrolyte membrane (film thickness 30 μm) was obtained.
高分子電解質膜を6N塩酸水溶液に12時間浸漬したところ、膜は溶解してしまった。 When the polymer electrolyte membrane was immersed in a 6N aqueous hydrochloric acid solution for 12 hours, the membrane was dissolved.
〔比較例2〕
ポリフェニレンサルファイド(大日本インキ工業株式会社製、DIC−PPS LD10p11)のペレットを、スクリュー温度290℃、Tダイ温度290℃の条件で、2軸混練押出し機にTダイをセットした二軸押出機により、溶融押出成形し、高分子フィルムを得た。ガラス容器に1−クロロブタン634g、クロロスルホン酸15gを秤量し、クロロスルホン酸溶液を調整した。前記高分子フィルムを1.5g秤量し、前記クロロスルホン酸溶液に25℃で20時間浸漬することで高分子電解質膜を得た。(クロロスルホン酸添加量は、高分子フィルムの重量に対して10倍量)。その後、高分子電解質膜を回収し、イオン交換水で中性になるまで洗浄し、100℃で18時間真空乾燥し、自己支持性のある高分子電解質膜(膜厚65μm)を得た。
[Comparative Example 2]
Pellets of polyphenylene sulfide (Dainippon Ink Industries, Ltd., DIC-PPS LD10p11) with a screw temperature of 290 ° C. and a T die temperature of 290 ° C. The polymer film was obtained by melt extrusion molding. In a glass container, 634 g of 1-chlorobutane and 15 g of chlorosulfonic acid were weighed to prepare a chlorosulfonic acid solution. 1.5 g of the polymer film was weighed and immersed in the chlorosulfonic acid solution at 25 ° C. for 20 hours to obtain a polymer electrolyte membrane. (The amount of chlorosulfonic acid added is 10 times the weight of the polymer film). Thereafter, the polymer electrolyte membrane was recovered, washed with ion-exchanged water until neutral, and vacuum dried at 100 ° C. for 18 hours to obtain a self-supporting polymer electrolyte membrane (film thickness 65 μm).
得られた膜のイオン交換容量は2.20meq/gであった。低加湿条件においてプロトン伝導度を測定したところ7.5×10−4S/cmであった。 The obtained membrane had an ion exchange capacity of 2.20 meq / g. When the proton conductivity was measured under low humidification conditions, it was 7.5 × 10 −4 S / cm.
実施例1〜6と、比較例1、2との比較から、本発明の高分子電解質は、プロトン伝導性に優れ、かつ良好な耐水性を有することが分かる。 From comparison between Examples 1 to 6 and Comparative Examples 1 and 2, it can be seen that the polymer electrolyte of the present invention has excellent proton conductivity and good water resistance.
本発明の高分子電解質は固体高分子形燃料電池の材料として有用であり、特に高分子電解質膜として有用であることは明らかである。 It is clear that the polymer electrolyte of the present invention is useful as a material for a solid polymer fuel cell, and particularly useful as a polymer electrolyte membrane.
1 高分子電解質膜
2 触媒層
3 拡散層
4 セパレーター
5 流路
10 固体高分子形燃料電池
DESCRIPTION OF
Claims (14)
で示される構造を主鎖に有する高分子電解質。 The following formulas (1) and (2):
A polymer electrolyte having a structure represented by
で示される構造である、請求項1〜4のいずれか一項に記載の高分子電解質。 The structure represented by the formula (1) is represented by the following formula (3):
The polymer electrolyte according to any one of claims 1 to 4, which has a structure represented by:
で示される構造である、請求項1〜5のいずれか一項に記載の高分子電解質。 The structure represented by the formula (2) is represented by the following formula (4) and / or (5):
The polymer electrolyte according to any one of claims 1 to 5, which has a structure represented by:
で示される構造を有する化合物から合成される請求項6に記載の高分子電解質。 The structures represented by the formulas (4) and (5) are represented by the following formulas (6) and (7), respectively:
The polymer electrolyte according to claim 6, which is synthesized from a compound having a structure represented by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014094098A JP2015209539A (en) | 2014-04-30 | 2014-04-30 | Polymer electrolyte and application of the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014094098A JP2015209539A (en) | 2014-04-30 | 2014-04-30 | Polymer electrolyte and application of the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015209539A true JP2015209539A (en) | 2015-11-24 |
Family
ID=54611997
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014094098A Pending JP2015209539A (en) | 2014-04-30 | 2014-04-30 | Polymer electrolyte and application of the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2015209539A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015211023A (en) * | 2014-04-30 | 2015-11-24 | 株式会社カネカ | Polymer electrolyte membrane and use thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004311267A (en) * | 2003-04-09 | 2004-11-04 | Mitsui Chemicals Inc | Ion conductive polymer membrane and fuel cell using the same |
JP2007103070A (en) * | 2005-09-30 | 2007-04-19 | Hitachi Chem Co Ltd | Ion conductive binder |
JP2007294436A (en) * | 2006-03-28 | 2007-11-08 | Fujifilm Corp | Solid electrolyte, membrane electrode assembly and fuel cell |
JP2012229418A (en) * | 2011-04-14 | 2012-11-22 | Kaneka Corp | Polymer electrolyte and use thereof |
JP2013231127A (en) * | 2012-04-27 | 2013-11-14 | Kaneka Corp | Polymer electrolyte and use thereof |
-
2014
- 2014-04-30 JP JP2014094098A patent/JP2015209539A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004311267A (en) * | 2003-04-09 | 2004-11-04 | Mitsui Chemicals Inc | Ion conductive polymer membrane and fuel cell using the same |
JP2007103070A (en) * | 2005-09-30 | 2007-04-19 | Hitachi Chem Co Ltd | Ion conductive binder |
JP2007294436A (en) * | 2006-03-28 | 2007-11-08 | Fujifilm Corp | Solid electrolyte, membrane electrode assembly and fuel cell |
JP2012229418A (en) * | 2011-04-14 | 2012-11-22 | Kaneka Corp | Polymer electrolyte and use thereof |
JP2013231127A (en) * | 2012-04-27 | 2013-11-14 | Kaneka Corp | Polymer electrolyte and use thereof |
Non-Patent Citations (2)
Title |
---|
平山太悟 外: "高スルホン酸基密度を有するスルホン酸化ポリエーテルブロック共重合体膜の合成と物性", 高分子学会予稿集, vol. 60, no. 2, JPN6018000621, 2011, pages 39 - 8 * |
酒井麻由 外: "スルホン酸化ポリエーテルブロック共重合体における疎水部構造の効果", 高分子学会予稿集, vol. 62, no. 2, JPN6018000622, 2013, pages 4006 - 4007 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015211023A (en) * | 2014-04-30 | 2015-11-24 | 株式会社カネカ | Polymer electrolyte membrane and use thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5892653B2 (en) | POLYMER ELECTROLYTE AND USE THEREOF | |
JP5740030B2 (en) | Copolymer of sulfonated polyethersulfone containing hydroxy group and method for producing the same, polymer electrolyte membrane for fuel cell, and membrane electrode assembly including the same | |
KR101461417B1 (en) | Perfluorosulfonic acid membrane modified with amine compounds and method for the preparation thereof | |
Zhang et al. | Fabrication of a polymer electrolyte membrane with uneven side chains for enhancing proton conductivity | |
JP2011181423A (en) | Polymer electrolyte material, and polymer electrolyte fuel cell using the same | |
JP4985041B2 (en) | Aromatic sulfonate esters and sulfonated polyarylene polymers | |
JP2007106986A (en) | Block copolymer and production method thereof, polymer electrolyte, catalyst composition, polymer electrolyte membrane, membrane-electrode assembly, and fuel cell | |
JP5398008B2 (en) | POLYMER ELECTROLYTE AND USE THEREOF | |
JP2009217950A (en) | Ion conductive polymer electrolyte membrane, and manufacturing method thereof | |
JP5482507B2 (en) | POLYMER ELECTROLYTE MATERIAL AND METHOD FOR PRODUCING POLYMER ELECTROLYTE MEMBRANE | |
JP2015209539A (en) | Polymer electrolyte and application of the same | |
JP6028963B2 (en) | Method for producing polymer electrolyte | |
JP5309822B2 (en) | Aromatic sulfonic acid derivative, sulfonated polymer, polymer electrolyte material and polymer electrolyte fuel cell using the same | |
JP5407063B2 (en) | Method for producing polymer electrolyte membrane | |
JP5867863B2 (en) | POLYMER ELECTROLYTE AND USE THEREOF | |
WO2013153696A1 (en) | High-molecular-weight electrolyte and use thereof | |
JP6366130B2 (en) | Polymer electrolyte membrane and use thereof | |
JP5866729B2 (en) | POLYMER ELECTROLYTE AND USE THEREOF | |
JP2018198208A (en) | Polymer electrolyte membrane and use thereof | |
JP6202422B2 (en) | Method for producing polymer electrolyte | |
JP5338656B2 (en) | Method for producing polymer electrolyte membrane | |
JP5412718B2 (en) | POLYMER ELECTROLYTE MOLDED MANUFACTURING METHOD, POLYMER ELECTROLYTE MATERIAL, POLYMER ELECTROLYTE COMPONENT, MEMBRANE ELECTRODE COMPOSITE AND POLYMER ELECTROLYTE FUEL CELL | |
JP2015214617A (en) | Polymer electrolyte and usage of the same | |
JP5590568B2 (en) | Block copolymer and use thereof | |
JP5434386B2 (en) | A method for producing a polymer electrolyte membrane. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170414 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20170414 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20171221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180116 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180313 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20180410 |