JP2015206616A - Rolled copper foil and manufacturing method of rolled copper foil - Google Patents

Rolled copper foil and manufacturing method of rolled copper foil Download PDF

Info

Publication number
JP2015206616A
JP2015206616A JP2014085727A JP2014085727A JP2015206616A JP 2015206616 A JP2015206616 A JP 2015206616A JP 2014085727 A JP2014085727 A JP 2014085727A JP 2014085727 A JP2014085727 A JP 2014085727A JP 2015206616 A JP2015206616 A JP 2015206616A
Authority
JP
Japan
Prior art keywords
copper foil
rolled copper
plate
thickness
resin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014085727A
Other languages
Japanese (ja)
Inventor
高明 笹岡
Takaaki Sasaoka
高明 笹岡
室賀 岳海
Takemi Muroga
岳海 室賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SH Copper Products Co Ltd
Original Assignee
SH Copper Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SH Copper Products Co Ltd filed Critical SH Copper Products Co Ltd
Priority to JP2014085727A priority Critical patent/JP2015206616A/en
Publication of JP2015206616A publication Critical patent/JP2015206616A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a copper-clad laminate and a copper foil having predetermined folding flexural resistance or more by allowing folding flexural resistance estimation to be executed.SOLUTION: The number of folding times of a rolled copper foil is three or more when repeatedly performing : folding in which the rolled copper foil 22 protruded from the edge 11 is folded toward the other main surface 13 of the plate-like member 10 after a rolled copper foil 22 having a resin layer 21 is mounted on one main surface 12 of a plate-like member 10 having a linear edge 11 so that a part of the rolled copper foil 22 is protruded from the edge; adhesion in which the rolled copper foil 22 is adhered to the plate-like member 10 until a total of the thickness of the plate-like member 11, the rolled copper foil 22, and the resin layer 22 at a place where the rolled copper foil 22 exists on both main surfaces 12, 13 of the plate-like member 10 reaches a predetermined value; and folding in which a step of bringing the rolled copper foil 22 brought into contact with the other main surface 13 and a step of folding the rolled copper foil 22 toward one main surface 12 are repeatedly performed until breakage occurrence is recognized.

Description

本発明は、圧延銅箔及び圧延銅箔の製造方法に関する。   The present invention relates to a rolled copper foil and a method for producing the rolled copper foil.

デジタルカメラや携帯電話などの電子機器を駆動させる回路として、フレキシブル配線基板(FPC:Flexible Printed Circuit)やCOF(Chip of Flexible circuit)が用いられている。このFPCやCOFは、樹脂層の片面又は両面に銅箔を積層した銅張積層板(CCL:Copper Clad Laminate)を用い、銅箔に回路パターン(銅配線)を形成してなる。   As a circuit for driving an electronic device such as a digital camera or a mobile phone, a flexible printed circuit (FPC) or a chip of flexible circuit (COF) is used. The FPC and COF are formed by using a copper clad laminate (CCL: Copper Clad Laminate) in which a copper foil is laminated on one or both sides of a resin layer, and forming a circuit pattern (copper wiring) on the copper foil.

そして、このような電子機器を小型化、高機能化するために、ケース内の狭い空間にFPCを折りたたんで収容する方法がとられている。例えば液晶ディスプレイ周辺に用いられるCOFの場合には、ベゼル(いわゆる「額縁」)を細くするために、銅配線が形成されたCOFを液晶基板の裏側へ折り返している。   In order to reduce the size and increase the functionality of such an electronic device, a method is adopted in which the FPC is folded and accommodated in a narrow space in the case. For example, in the case of a COF used around a liquid crystal display, the COF on which the copper wiring is formed is folded back to the back side of the liquid crystal substrate in order to make the bezel (so-called “frame”) thin.

しかしながら、FPCやCOFを折り曲げた際、銅箔部分に大きな変形荷重が加わり、破断し易くなるという問題がある。そこで、CCL構成にした銅箔として、180度密着曲げを行った場合に、銅箔が破断するまでの曲げ回数が4回以上であることを規定した圧延銅箔が提案されている(例えば特許文献1参照)。   However, there is a problem that when FPC or COF is bent, a large deformation load is applied to the copper foil portion, and the copper foil portion is easily broken. Thus, as a copper foil having a CCL configuration, a rolled copper foil that specifies that the number of times of bending until the copper foil breaks when the 180-degree contact bending is performed is four or more (for example, a patent) Reference 1).

特許第5124039号公報Japanese Patent No. 5124039

ところが、特許文献1記載の180度密着曲げ方法においては、同じ折目の位置で折曲げと折返しとを繰り返すことが試験として重要となるが、実際には同じ折目の位置で折曲げと折返しとを繰り返すことが困難である。折目の位置がずれると、試験データとなる破断までの回数が増え、データとしての再現性も悪くなり、CCLとしての折曲げ耐性評価が必ずしも適切でない場合がある。   However, in the 180-degree contact bending method described in Patent Document 1, it is important as a test to repeat folding and folding at the same fold position, but in actuality, folding and folding at the same fold position are important. It is difficult to repeat. If the position of the fold is shifted, the number of times until the break as test data increases, the reproducibility as data also deteriorates, and the bending resistance evaluation as CCL may not always be appropriate.

本発明は、上記課題を解決し、信頼性を向上させた圧延銅箔を提供することを目的とする。   An object of the present invention is to provide a rolled copper foil that solves the above-described problems and has improved reliability.

本発明の一態様によれば、樹脂層を備える圧延銅箔であって、少なくとも一部に直線の縁を有する板状部材の一方の主面上に、前記圧延銅箔と前記板状部材とが接するとともに、前記縁から前記圧延銅箔の一部がはみ出るように、前記圧延銅箔を載置して固定した後、前記縁からはみ出た前記圧延銅箔を、前記板状部材の他方の主面に向けて前記板状部材に沿って折り曲げる折り曲げと、前記板状部材の両主面上に前記圧延銅箔が存在する箇所での前記板状部材と前記圧延銅箔と前記樹脂層との合計の厚さを計測した計測値が、前記圧延銅箔の厚さ及び前記樹脂層の厚さをそれぞれ単独で計測したときの計測値を2倍にした値、及び前記板状部材の厚さを単独で計測したときの計測値の合計の値に等しくなるまで、前記圧延銅箔を前記板状部材に密着させる密着と、前記板状部材の側面に位置する前記圧延銅箔の破断発生の有無を確認し、前記破断発生が認められない場合には、前記圧延銅箔が平坦になるように、前記他方の主面と接する前記圧延銅箔を前記一方の主面に向けて前記圧延銅箔を折り返す折り返しと、を前記破断発生が認められるまで繰り返して行ったとき、前記破断発生が認められるまでの前記圧延銅箔の折り曲げ回数が所定回数以上である圧延銅箔が提供される。   According to one aspect of the present invention, a rolled copper foil provided with a resin layer, the rolled copper foil and the plate-like member on one main surface of a plate-like member having a straight edge at least partially. The rolled copper foil is placed and fixed so that a part of the rolled copper foil protrudes from the edge, and then the rolled copper foil protruding from the edge is placed on the other side of the plate-like member. Folding along the plate member toward the main surface, and the plate member, the rolled copper foil, and the resin layer at the location where the rolled copper foil is present on both main surfaces of the plate member The measured value obtained by measuring the total thickness is a value obtained by doubling the measured value when the thickness of the rolled copper foil and the thickness of the resin layer are individually measured, and the thickness of the plate-like member. Until the rolled copper foil is equal to the total value of the measured values when measured independently. Adhering closely and confirming the presence or absence of breakage of the rolled copper foil located on the side of the plate-like member, if the occurrence of breakage is not observed, so that the rolled copper foil becomes flat, When the rolled copper foil in contact with the other main surface is turned back toward the one main surface and the rolled copper foil is folded back until the occurrence of breakage is observed, until the occurrence of breakage is recognized There is provided a rolled copper foil in which the rolled copper foil is bent a predetermined number of times or more.

本発明の他の態様によれば、少なくとも一部に直線の縁を有する板状部材の一方の主面上に、樹脂層を備える圧延銅箔と前記板状部材とが接するとともに、前記縁から前記圧延銅箔の一部がはみ出るように、前記圧延銅箔を載置して固定する載置工程と、前記縁からはみ出た前記圧延銅箔を、前記板状部材の他方の主面に向けて前記板状部材に沿って折り曲げる工程と、前記板状部材の両主面上に前記圧延銅箔が存在する箇所での前記板状部材と前記圧延銅箔と前記樹脂層との合計の厚さを計測した計測値が、前記圧延銅箔の厚さ及び前記樹脂層の厚さをそれぞれ単独で計測したときの計測値を2倍にした値と、前記板状部材の厚さを単独で計測したときの計測値と、の合計の値に等しくなるまで、前記圧延銅箔を前記板状部材に密着させる密着工程と、前記板状部材の側面に位置する前記圧延銅箔の破断発生の有無を確認する確認工程と、前記圧延銅箔が平坦になるように、前記他方の主面と接する前記圧延銅箔を前記一方の主面に向けて前記圧延銅箔を折り返す折り返し工程と、を有し、前記確認工程で前記破断発生が認められない場合には、前記折り返し工程を行った後、前記折り曲げ工程と、前記密着工程と、前記確認工程と、を前記破断発生が認められるまで繰り返して行う評価工程を有する圧延銅箔の製造方法が提供される。   According to another aspect of the present invention, the rolled copper foil provided with a resin layer is in contact with the plate-like member on one main surface of the plate-like member having a straight edge at least partially, and from the edge A placement step of placing and fixing the rolled copper foil so that a part of the rolled copper foil protrudes, and the rolled copper foil protruding from the edge toward the other main surface of the plate-like member Bending along the plate member, and the total thickness of the plate member, the rolled copper foil, and the resin layer at the location where the rolled copper foil is present on both main surfaces of the plate member The measured value obtained by measuring the thickness is a value obtained by doubling the measured value when the thickness of the rolled copper foil and the thickness of the resin layer are individually measured, and the thickness of the plate-like member alone. The rolled copper foil is brought into close contact with the plate-like member until it becomes equal to the total value of the measured value when measured. A step of attaching, a step of confirming whether or not the rolled copper foil located on the side surface of the plate member is broken, and the rolled copper in contact with the other main surface so that the rolled copper foil becomes flat A folding step of folding the rolled copper foil with the foil facing the one main surface, and when the occurrence of breakage is not recognized in the confirmation step, the folding step is performed after the folding step is performed. And the manufacturing method of the rolled copper foil which has the evaluation process which repeats the said contact process and the said confirmation process until the said fracture | rupture generation | occurrence | production is recognized is provided.

本発明によれば、圧延銅箔の信頼性を向上させることができる。   According to the present invention, the reliability of the rolled copper foil can be improved.

本発明の一実施形態にかかる圧延銅箔を備える銅張積層板の概略断面図である。It is a schematic sectional drawing of a copper clad laminated board provided with the rolled copper foil concerning one Embodiment of this invention. 本発明の一実施形態にかかる圧延銅箔を備える銅張積層板の製造工程を示すフロー図である。It is a flowchart which shows the manufacturing process of a copper clad laminated board provided with the rolled copper foil concerning one Embodiment of this invention. 本発明の実施形態にかかる圧延銅箔を備える銅張積層板の評価方法の説明図であり、(a)は縦断面概略図を示し、(b)は平面概略図を示す。It is explanatory drawing of the evaluation method of a copper clad laminated board provided with the rolled copper foil concerning embodiment of this invention, (a) shows a longitudinal cross-sectional schematic diagram, (b) shows a plane schematic diagram. 本発明の実施形態にかかる圧延銅箔の評価方法の説明図である。It is explanatory drawing of the evaluation method of the rolled copper foil concerning embodiment of this invention. 本発明の実施形態にかかる圧延銅箔の評価方法の説明図である。It is explanatory drawing of the evaluation method of the rolled copper foil concerning embodiment of this invention. 本発明の一実施例にかかる圧延銅箔の評価方法の説明図である。It is explanatory drawing of the evaluation method of the rolled copper foil concerning one Example of this invention. 本発明の一実施例にかかる圧延銅箔の評価方法の説明図である。It is explanatory drawing of the evaluation method of the rolled copper foil concerning one Example of this invention. 本発明の一実施例にかかる圧延銅箔の評価方法の説明図である。It is explanatory drawing of the evaluation method of the rolled copper foil concerning one Example of this invention. 本発明の一実施例にかかる圧延銅箔の折り曲げ部を示す画像である。It is an image which shows the bending part of the rolled copper foil concerning one Example of this invention. 発明の一実施例にかかる圧延銅箔の折り曲げ部を示す画像である。It is an image which shows the bending part of the rolled copper foil concerning one Example of invention. 発明の一実施例にかかる圧延銅箔の折り曲げ部を示す画像である。It is an image which shows the bending part of the rolled copper foil concerning one Example of invention. 発明の一実施例にかかる圧延銅箔の折り曲げ部を示す画像である。It is an image which shows the bending part of the rolled copper foil concerning one Example of invention.

<本発明の一実施形態>
(1)圧延銅箔及び銅張積層板の構成
以下に、本発明の一実施形態にかかる圧延銅箔及び銅張積層板20について、図1を参照しながら説明する。図1は本実施形態にかかる圧延銅箔22を備える銅張積層板20の概略断面図である。
<One Embodiment of the Present Invention>
(1) Configuration of rolled copper foil and copper clad laminate A rolled copper foil and copper clad laminate 20 according to an embodiment of the present invention will be described below with reference to FIG. FIG. 1 is a schematic cross-sectional view of a copper clad laminate 20 including a rolled copper foil 22 according to this embodiment.

図1に示すように、本実施形態にかかる銅張積層板20は、圧延銅箔22を備えている。圧延銅箔22は、例えばタフピッチ銅(JIS H3100 C1100)や無酸素銅(JIS H3100 C1020)等により形成されている。圧延銅箔22は、厚さが例えば5μm以上35μm以下となるように形成されている。   As shown in FIG. 1, the copper clad laminate 20 according to this embodiment includes a rolled copper foil 22. The rolled copper foil 22 is made of, for example, tough pitch copper (JIS H3100 C1100) or oxygen-free copper (JIS H3100 C1020). The rolled copper foil 22 is formed to have a thickness of, for example, 5 μm or more and 35 μm or less.

後述の樹脂層21が設けられる圧延銅箔22の主面上には、粗化処理層23が設けられている。粗化処理層23は、圧延銅箔22の表面に凹凸を形成し、アンカー効果により圧延銅箔22と樹脂層21との接着性を向上させるための層である。つまり、樹脂層21に粗化処理層23を食い込ませることができるため、圧延銅箔22と樹脂層21との機械的な接着強度を向上させることができる。粗化処理層23は、例えば銅(Cu)や、銅及びニッケルの合金(Cu−Ni合金)、銅及びコバルトの合金(Cu−Co合金)の粒子(めっき粒子)等で形成されている。   A roughened layer 23 is provided on the main surface of the rolled copper foil 22 on which a resin layer 21 described later is provided. The roughening treatment layer 23 is a layer for forming irregularities on the surface of the rolled copper foil 22 and improving the adhesion between the rolled copper foil 22 and the resin layer 21 by an anchor effect. That is, since the roughening layer 23 can be bitten into the resin layer 21, the mechanical adhesive strength between the rolled copper foil 22 and the resin layer 21 can be improved. The roughening layer 23 is made of, for example, copper (Cu), an alloy of copper and nickel (Cu—Ni alloy), an alloy of copper and cobalt (Cu—Co alloy) (plated particles), or the like.

銅張積層板20は、2枚の圧延銅箔22a,22bを備えており、圧延銅箔22aと圧延銅箔22bとの間に樹脂層21が設けられている。つまり、樹脂層21の両主面上には、圧延銅箔22a,22bがそれぞれ設けられている。圧延銅箔22a,22bはそれぞれ、粗化処理層23と樹脂層21とが接するように設けられている。樹脂層21は、ポリイミド(PI)フィルムや、ポリエチレンテレフタラート(PET)等のポリエステルフィルム等で形成されている。樹脂層21は、厚さが例えば10μm以上60μm以下となるように形成されている。   The copper-clad laminate 20 includes two rolled copper foils 22a and 22b, and a resin layer 21 is provided between the rolled copper foil 22a and the rolled copper foil 22b. That is, the rolled copper foils 22a and 22b are provided on both main surfaces of the resin layer 21, respectively. The rolled copper foils 22a and 22b are provided such that the roughening treatment layer 23 and the resin layer 21 are in contact with each other. The resin layer 21 is formed of a polyimide (PI) film, a polyester film such as polyethylene terephthalate (PET), or the like. The resin layer 21 is formed to have a thickness of, for example, 10 μm or more and 60 μm or less.

(2)圧延銅箔及び銅張積層板の製造方法
次に、本実施形態にかかる圧延銅箔22及び銅張積層板20の製造方法の一実施形態について、図2〜図5を用いて説明する。図2は、本実施形態にかかる圧延銅箔及びこの圧延銅箔を備える銅張積層板の製造工程を示すフロー図である。図3〜図5はそれぞれ、本実施形態にかかる圧延銅箔を備える銅張積層板の評価方法の説明図である
(2) Manufacturing Method of Rolled Copper Foil and Copper Clad Laminate Next, an embodiment of a manufacturing method of the rolled copper foil 22 and the copper clad laminate 20 according to the present embodiment will be described with reference to FIGS. To do. FIG. 2 is a flow diagram showing a manufacturing process of the rolled copper foil and the copper clad laminate provided with the rolled copper foil according to the present embodiment. 3-5 is explanatory drawing of the evaluation method of a copper clad laminated board provided with the rolled copper foil concerning this embodiment, respectively.

(鋳造工程(S11))
図2に示すようにまず、例えばタフピッチ銅や無酸素銅の銅を、例えば高周波溶解炉等により溶解して銅の溶湯を形成する。この銅の溶湯を鋳型に注いで冷却し、所定形状の鋳塊(インゴット)を鋳造(溶製)する。
(Casting process (S11))
As shown in FIG. 2, first, for example, tough pitch copper or oxygen-free copper is melted by, for example, a high-frequency melting furnace to form a molten copper. The molten copper is poured into a mold and cooled to cast (ingot) a predetermined shape ingot.

(熱間圧延工程(S12))
鋳造工程(S11)が終了した後、インゴットを所定温度(例えば950℃)に加熱して熱間圧延処理を行い、所定厚さ(例えば12mm)の熱間圧延材を形成する。
(Hot rolling process (S12))
After the casting step (S11) is completed, the ingot is heated to a predetermined temperature (for example, 950 ° C.) and subjected to hot rolling to form a hot rolled material having a predetermined thickness (for example, 12 mm).

(一次冷間圧延・一次焼鈍処理工程(S13))
熱間圧延工程(S12)が終了した後、熱間圧延材に一次冷間圧延処理と、一次焼鈍処理と、を所定回数交互に繰り返して行い、所定厚さ(例えば0.1mm以上1mm以下)の一次冷間圧延材を形成する。
(Primary cold rolling / primary annealing treatment step (S13))
After the hot rolling step (S12) is completed, the primary cold rolling treatment and the primary annealing treatment are alternately repeated a predetermined number of times on the hot rolled material, and a predetermined thickness (for example, 0.1 mm to 1 mm). The first cold rolled material is formed.

(二次焼鈍処理工程(S14))
一次冷間圧延・一次焼鈍処理工程(S13)が終了した後、一次冷間圧延材に二次焼鈍処理を行って、二次焼鈍材を形成する。
(Secondary annealing treatment step (S14))
After the primary cold rolling / primary annealing treatment step (S13) is completed, the primary cold rolling material is subjected to a secondary annealing treatment to form a secondary annealing material.

(圧延銅箔形成工程(S15))
二次焼鈍処理工程(S14)が終了した後、二次焼鈍材に二次冷間圧延処理(最終の冷間圧延処理、仕上げ圧延処理)を行い、所定厚さ(例えば5μm以上35μm以下)の圧延銅箔22を形成する。二次冷間圧延処理として、例えば圧延ロールを用い、圧延方向と直交する方向(二次焼鈍材の幅方向)における二次焼鈍材の長さを変えることなく、二次冷間圧延処理の圧延方向における二次焼鈍材の長さを長くしつつ(つまり二次焼鈍材を圧延方向に伸ばしつつ)、二次焼鈍材の厚さを薄くする処理を、複数回行う。
(Rolled copper foil forming step (S15))
After the secondary annealing treatment step (S14) is finished, the secondary annealing material is subjected to secondary cold rolling treatment (final cold rolling treatment, finish rolling treatment), and a predetermined thickness (for example, 5 μm or more and 35 μm or less). A rolled copper foil 22 is formed. As the secondary cold rolling treatment, for example, using a rolling roll, rolling in the secondary cold rolling treatment without changing the length of the secondary annealing material in the direction orthogonal to the rolling direction (the width direction of the secondary annealing material). The process of reducing the thickness of the secondary annealing material is performed a plurality of times while increasing the length of the secondary annealing material in the direction (that is, extending the secondary annealing material in the rolling direction).

(粗化処理層形成工程(S16))
圧延銅箔形成工程(S15)が終了した後、樹脂層21が形成されることとなる圧延銅箔22の面に粗化処理を行って、圧延銅箔22上に粗化処理層23を形成する。粗化処理とは、例えば電気めっき(電解めっき)処理を行い、所定の平均粒子径のめっき粒子(粗化粒)からなる層を形成する処理である。
(Roughening treatment layer forming step (S16))
After the rolled copper foil forming step (S15) is completed, the surface of the rolled copper foil 22 on which the resin layer 21 is to be formed is roughened to form the roughened layer 23 on the rolled copper foil 22. To do. A roughening process is a process which performs the electroplating (electrolytic plating) process, for example, and forms the layer which consists of a plating particle (roughening grain) of a predetermined | prescribed average particle diameter.

(樹脂層形成工程(S17))
粗化処理層形成工程(S16)が終了した後、圧延銅箔22上に樹脂層21を形成する。まず、樹脂層21としてのポリイミド(PI)フィルムや、ポリエチレンテレフタラート(PET)等のポリエステルフィルム等の樹脂フィルムを準備する。そして、樹脂層21の両主面上に、所定厚さ(例えば10μm以上60μm以下)の樹脂層21と粗化処理層23とが接するように圧延銅箔22a,22bをそれぞれ載置して、圧延銅箔22a,22bと樹脂層21とをそれぞれ貼り合わせる。圧延銅箔22a,22bと樹脂層21とをそれぞれ貼り合わせる方法として、例えば、接着剤を介して貼り合わせを行う方法を用いることができる。圧延銅箔22a,22bと樹脂層21とをそれぞれ貼り合わせた後、圧延銅箔22a,22bに再結晶化焼鈍処理を行い、樹脂層21の両面に圧延銅箔22a,22bが設けられた銅張積層板(両面CCL)20を形成する。
(Resin layer forming step (S17))
After the roughening treatment layer forming step (S16) is completed, the resin layer 21 is formed on the rolled copper foil 22. First, a resin film such as a polyimide (PI) film as the resin layer 21 or a polyester film such as polyethylene terephthalate (PET) is prepared. Then, the rolled copper foils 22a and 22b are placed on both main surfaces of the resin layer 21 so that the resin layer 21 having a predetermined thickness (for example, 10 μm or more and 60 μm or less) and the roughening treatment layer 23 are in contact with each other, The rolled copper foils 22a and 22b and the resin layer 21 are bonded together. As a method of bonding the rolled copper foils 22a and 22b and the resin layer 21, respectively, for example, a method of bonding using an adhesive can be used. After bonding the rolled copper foils 22a and 22b and the resin layer 21 respectively, the rolled copper foils 22a and 22b are subjected to a recrystallization annealing treatment, and the copper having the rolled copper foils 22a and 22b provided on both surfaces of the resin layer 21 A tension laminate (double-sided CCL) 20 is formed.

(評価工程(S20))
樹脂層形成工程(S17)が終了したら、樹脂層21を備える圧延銅箔22(銅張積層板20)を所定形状(例えば幅5mm、長さ90mm)に切り出し、圧延銅箔22について折り曲げ評価を行う。
(Evaluation process (S20))
When the resin layer forming step (S17) is completed, the rolled copper foil 22 (copper-clad laminate 20) including the resin layer 21 is cut into a predetermined shape (for example, 5 mm in width and 90 mm in length), and bending evaluation is performed on the rolled copper foil 22. Do.

[載置工程(S21)]
まず、図3(a)(b)に示すように、少なくとも一部に直線の縁11を有し、所定厚さ(例えば0.02mm)の板状部材(スペーサ)10の一方の主面12上に、銅張積層板20を載置する。このとき、板状部材10と圧延銅箔22(圧延銅箔22a)とが接するとともに、銅張積層板20の一部が板状部材10の直線の縁11からはみ出るように、銅張積層板20を板状部材10上に載置する。そして、板状部材10上に載置した銅張積層板20を例えば粘着テープにより固定する。
[Placing step (S21)]
First, as shown in FIGS. 3 (a) and 3 (b), one main surface 12 of a plate-like member (spacer) 10 having a straight edge 11 at least partially and having a predetermined thickness (for example, 0.02 mm). The copper clad laminate 20 is placed on the top. At this time, the copper-clad laminate is such that the plate-like member 10 and the rolled copper foil 22 (rolled copper foil 22a) are in contact with each other, and a part of the copper-clad laminate 20 protrudes from the straight edge 11 of the plate-like member 10. 20 is placed on the plate member 10. And the copper clad laminated board 20 mounted on the plate-shaped member 10 is fixed, for example with an adhesive tape.

[折り曲げ工程(S22)]
載置工程(S21)が終了したら、図4に示すように、直線の縁11からはみ出た銅張積層板20を、板状部材10の他方の主面13に向けて板状部材10に沿って折り曲げる。そして、図5に示すように圧延銅箔22(圧延銅箔22a)を板状部材10の他方の主面13上に接触させる。
[Bending process (S22)]
When the placing step (S21) is completed, the copper clad laminate 20 protruding from the straight edge 11 is directed along the plate member 10 toward the other main surface 13 of the plate member 10, as shown in FIG. And bend. And the rolled copper foil 22 (rolled copper foil 22a) is made to contact on the other main surface 13 of the plate-shaped member 10, as shown in FIG.

[密着工程(S23)]
折り曲げ工程(S22)が終了したら、板状部材10と圧延銅箔22(圧延銅箔22a)との間に隙間が形成されないように、板状部材10と銅張積層板20(圧延銅箔22a)とを密着させる。具体的には、まず、板状部材10の両主面12,13上に銅張積層板20が存在する箇所での板状部材10と銅張積層板20(圧延銅箔22及び樹脂層21)との合計の厚さ(以下では、単に「合計厚さ」とも言う。)を、厚さ計測装置(例えばマイクロメータ)を用いて計測する。そして、この合計厚さが、圧延銅箔22の厚さ及び樹脂層21の厚さをそれぞれ単独で計測したとき(銅張積層板20の厚さを単独で計測したとき)の計測値tを2倍にした値(2t)と、板状部材10の厚さを単独で計測したときの計測値tと、の合計の値(2t+t)に等しくなるまで、治具等を用いて銅張積層板20(圧延銅箔22a)を板状部材10に密着させる。例えば、厚さ計測部間の距離を数値的に制御できるマイクロメータを用い、マイクロメータの目盛が2t+tになるまで、板状部材10と銅張積層板20とを密着させる。なお、圧延銅箔22の単独の厚さ、樹脂層21の単独の厚さ、板状部材10の単独の厚さはそれぞれ、厚さ計測装置により測定できる。
[Adherence Step (S23)]
When the bending step (S22) is completed, the plate member 10 and the copper clad laminate 20 (rolled copper foil 22a) are formed so that no gap is formed between the plate member 10 and the rolled copper foil 22 (rolled copper foil 22a). ). Specifically, first, the plate-like member 10 and the copper-clad laminate 20 (the rolled copper foil 22 and the resin layer 21 in the place where the copper-clad laminate 20 exists on both main surfaces 12 and 13 of the plate-like member 10. ) And a total thickness (hereinafter also referred to simply as “total thickness”) using a thickness measuring device (for example, a micrometer). And this total thickness is a measured value t 1 when the thickness of the rolled copper foil 22 and the thickness of the resin layer 21 are each measured independently (when the thickness of the copper clad laminate 20 is measured alone). Until the total value (2t 1 + t 2 ) of the value obtained by doubling the value (2t 1 ) and the measured value t 2 when the thickness of the plate-like member 10 is independently measured is equal to The copper clad laminate 20 (rolled copper foil 22a) is brought into close contact with the plate member 10 using For example, using a micrometer that can numerically control the distance between the thickness measurement units, the plate member 10 and the copper clad laminate 20 are brought into close contact until the scale of the micrometer reaches 2t 1 + t 2 . In addition, the single thickness of the rolled copper foil 22, the single thickness of the resin layer 21, and the single thickness of the plate member 10 can each be measured by a thickness measuring device.

[確認工程(S24)]
密着工程(S23)が終了したら、例えば光学顕微鏡(光学レンズ4倍)により、圧延銅箔22の折り曲げ部を観察して、折り曲げ部に破断が発生していないかを確認する。つまり、板状部材10の側面14に位置する圧延銅箔22の破断発生の有無を確認する。例えば、圧延銅箔22の折り曲げ部の表面にクラック(ひびや亀裂)等が認められたときは「破断あり」とし、それらが認められない場合には「破断なし」とする。
[Confirmation step (S24)]
When the adhesion step (S23) is completed, the bent portion of the rolled copper foil 22 is observed by, for example, an optical microscope (optical lens 4 times) to confirm whether or not the bent portion is broken. That is, it is confirmed whether or not the rolled copper foil 22 located on the side surface 14 of the plate-like member 10 is broken. For example, when cracks (cracks or cracks) or the like are recognized on the surface of the bent portion of the rolled copper foil 22, “break” is set, and when no cracks are found, “no break” is set.

[折り返し工程(S25)]
確認工程(S24)で破断発生が認められない(つまり「破断なし」と判断した)場合には、銅張積層板20が平坦になるように(つまり図3に示す状態となるまで)、板状部材10の他方の主面13と接する圧延銅箔22(つまり板状部材10の他方の主面13側に位置する銅張積層板20)を、一方の主面12に向けて治具(例えばマイクロメータ)等を用いて折り返す。
[Folding step (S25)]
When the occurrence of breakage is not recognized in the confirmation step (S24) (that is, it is determined that “no breakage”), the copper clad laminate 20 is flattened (that is, until the state shown in FIG. 3 is reached). A rolled copper foil 22 (that is, a copper clad laminate 20 located on the other main surface 13 side of the plate-like member 10) in contact with the other main surface 13 of the plate-shaped member 10 is directed to one main surface 12 with a jig ( For example, it is folded using a micrometer.

折り返し工程(S25)が終了した後、確認工程(S24)で破断発生が認められるまで、折り曲げ工程(S22)、密着工程(S23)、確認工程(S24)、折り返し工程(S25)を繰り返して行う。   After the folding process (S25) is finished, the folding process (S22), the adhesion process (S23), the confirmation process (S24), and the folding process (S25) are repeated until occurrence of breakage is recognized in the confirmation process (S24). .

[折り曲げ回数算出工程(S26)]
確認工程(S24)で破断発生が認められた(つまり「破断あり」と判断した)場合には、圧延銅箔22(圧延銅箔22b)に破断発生が認められるまでに行った折り曲げ回数を算出する。例えば、圧延銅箔22に破断発生が認められるまでに行った折り曲げ工程(S22)の回数を算出する。
[Bending Count Calculation Step (S26)]
When breakage is recognized in the confirmation step (S24) (that is, it is determined that there is a break), the number of bendings performed until the occurrence of breakage in the rolled copper foil 22 (rolled copper foil 22b) is calculated. To do. For example, the number of bending processes (S22) performed until the occurrence of breakage in the rolled copper foil 22 is recognized is calculated.

(3)本実施形態にかかる効果
本実施形態によれば、以下に示す1つまたは複数の効果を奏する。
(3) Effects According to the Present Embodiment According to the present embodiment, one or a plurality of effects described below are exhibited.

(a)本実施形態では、圧延銅箔22の評価方法によれば、圧延銅箔20の同じ箇所で折り曲げと折り返しとが繰り返して行われる。従って、評価結果の信頼性を向上させることができる。 (A) In this embodiment, according to the evaluation method of the rolled copper foil 22, bending and folding are repeatedly performed at the same location of the rolled copper foil 20. Therefore, the reliability of the evaluation result can be improved.

例えば、圧延銅箔22の厚さが6μmであるときは、折り曲げ回数が2回以上となる。圧延銅箔22の厚さが9μmであるときは、折り曲げ回数が3回以上となる。圧延銅箔22の厚さが12μmであるときは、折り曲げ回数が4回以上となる。圧延銅箔22の厚さが18μmであるときは、折り曲げ回数が5回以上となる。   For example, when the thickness of the rolled copper foil 22 is 6 μm, the number of bendings is 2 or more. When the thickness of the rolled copper foil 22 is 9 μm, the number of bendings is 3 or more. When the thickness of the rolled copper foil 22 is 12 μm, the number of bendings is 4 or more. When the thickness of the rolled copper foil 22 is 18 μm, the number of bendings is 5 or more.

(b)本実施形態では、板状部材10上に圧延銅箔22(銅張積層板20)を例えば粘着テープにより固定して、圧延銅箔22の評価を行っている。これにより、圧延銅箔22(銅張積層板20)を折り曲げたり、折り返したりする際、板状部材10上で圧延銅箔22(銅張積層板20)の位置がずれることを抑制できる。従って、上記(a)の効果をより得ることができる。 (B) In this embodiment, the rolled copper foil 22 is evaluated by fixing the rolled copper foil 22 (copper-clad laminate 20) on the plate member 10 with, for example, an adhesive tape. Thereby, when the rolled copper foil 22 (copper-clad laminate 20) is bent or folded, the position of the rolled copper foil 22 (copper-clad laminate 20) can be suppressed from shifting on the plate-like member 10. Therefore, the effect (a) can be further obtained.

(c)本実施形態では、圧延銅箔形成工程で、二次冷間圧延処理として、圧延方向と直交する方向における二次焼鈍材の長さを変えることなく、二次冷間圧延処理の圧延方向における二次焼鈍材の長さを長くしつつ(つまり二次焼鈍材を圧延方向に伸ばしつつ)、二次焼鈍材の厚さを薄くする処理を、複数回行っている。これにより、二次冷間圧延処理による圧延方向に対する結晶組織の配向度を高くできる。圧延銅箔の折り曲げと折り返しとを繰り返すと、結晶組織が配向していない箇所に、ミクロ的な歪みが集中して蓄積してしまう。結晶組織の配向度を高くすることで、圧延銅箔中に歪が蓄積することを遅らせることができる。その結果、圧延銅箔の耐折り曲げ性を向上させることができる。つまり、圧延銅箔22の破断発生を抑制できる。従って、上記(a)の評価方法により折り曲げ性の評価を行ったとき、圧延銅箔に破断が認められるまでの折り曲げ回数を所定回数以上にできる。 (C) In this embodiment, in the rolled copper foil forming step, the secondary cold rolling process is performed as a secondary cold rolling process without changing the length of the secondary annealing material in the direction orthogonal to the rolling direction. The process of reducing the thickness of the secondary annealing material is performed a plurality of times while increasing the length of the secondary annealing material in the direction (that is, extending the secondary annealing material in the rolling direction). Thereby, the orientation degree of the crystal structure with respect to the rolling direction by the secondary cold rolling treatment can be increased. When the folding and folding of the rolled copper foil are repeated, microscopic strains are concentrated and accumulated at the locations where the crystal structure is not oriented. By increasing the degree of orientation of the crystal structure, it is possible to delay the accumulation of strain in the rolled copper foil. As a result, the bending resistance of the rolled copper foil can be improved. That is, the occurrence of breakage of the rolled copper foil 22 can be suppressed. Therefore, when the bendability is evaluated by the evaluation method (a), the number of bendings until the rolled copper foil is ruptured can be made a predetermined number or more.

例えば、圧延銅箔22の厚さが6μmであるときは、折り曲げ回数を2回以上にできる。圧延銅箔22の厚さが9μmであるときは、折り曲げ回数を3回以上にできる。圧延銅箔22の厚さが12μmであるときは、折り曲げ回数を4回以上にできる。圧延銅箔22の厚さが18μmであるときは、折り曲げ回数を5回以上にできる。   For example, when the thickness of the rolled copper foil 22 is 6 μm, the number of bendings can be made 2 times or more. When the thickness of the rolled copper foil 22 is 9 μm, the number of bending can be increased to 3 times or more. When the thickness of the rolled copper foil 22 is 12 μm, the number of bendings can be increased to 4 times or more. When the thickness of the rolled copper foil 22 is 18 μm, the number of bending can be made 5 times or more.

(他の実施形態)
以上、本発明の一実施形態を具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で適宜変更可能である。
(Other embodiments)
As mentioned above, although one Embodiment of this invention was described concretely, this invention is not limited to the above-mentioned embodiment, In the range which does not deviate from the summary, it can change suitably.

上述の実施形態では、樹脂層21の両面に圧延銅箔22が設けられている銅張積層板20について説明したが、これに限定されるものではない。例えば、樹脂層21のいずれかの主面に圧延銅箔22が設けられた銅張積層板(片面CCL)20であってもよい。この場合は、評価工程(S20)を行う際、圧延銅箔22が外側となるように(つまり樹脂層21と板状部材10とが接するように)、銅張積層板20を板状部材10上に載置して行うとよい。また、銅張積層板ではなく、圧延銅箔単体であってもよい。   In the above-described embodiment, the copper clad laminate 20 in which the rolled copper foil 22 is provided on both surfaces of the resin layer 21 has been described. However, the present invention is not limited to this. For example, the copper clad laminated board (single-sided CCL) 20 by which the rolled copper foil 22 was provided in any main surface of the resin layer 21 may be sufficient. In this case, when performing an evaluation process (S20), the copper clad laminated board 20 is made into the plate-shaped member 10 so that the rolled copper foil 22 may become an outer side (namely, the resin layer 21 and the plate-shaped member 10 may contact | connect). It is better to place it on top. Moreover, not a copper clad laminated board but a rolled copper foil single-piece | unit may be sufficient.

なお、CCL構成にする際に、樹脂層21の厚さや板状部材10の厚さについては、上述した値に限定されるものではない。樹脂層21の厚さや板状部材10の厚さが0.2mmよりも薄い場合、上述の実施形態と比べて圧延銅箔22に破断が認められるまでの折り曲げ回数が少なくなるが、上述の実施形態と同様に、圧延銅箔22の信頼性を向上させることができる。   In addition, when setting it as CCL structure, about the thickness of the resin layer 21 and the thickness of the plate-shaped member 10, it is not limited to the value mentioned above. When the thickness of the resin layer 21 and the thickness of the plate-like member 10 are thinner than 0.2 mm, the number of times of bending until the fracture is recognized in the rolled copper foil 22 is reduced as compared with the above-described embodiment. Like the form, the reliability of the rolled copper foil 22 can be improved.

上述の実施形態では、圧延銅箔22上に粗化処理層23が設けられている場合について説明したが、粗化処理層23は設けられていなくてもよい。   In the above-described embodiment, the case where the roughening treatment layer 23 is provided on the rolled copper foil 22 has been described, but the roughening treatment layer 23 may not be provided.

また、上述の実施形態では、圧延銅箔22と樹脂層21との貼り合わせを接着剤を用いて行ったが、これに限定されるものではない。例えば、接着剤を使用せずに、高温高圧下で圧延銅箔22と樹脂層21とを接着させることで、貼り合わせを行ってもよい。また、上述の実施形態では、樹脂層21として樹脂フィルムを用いたが、これに限定されるものではない。例えば、圧延銅箔22(粗化処理層23)上にポリイミド前駆体を塗布した後、ポリイミド前駆体を乾燥させて硬化させて樹脂層21を形成することで、圧延銅箔22と樹脂層21との貼り合わせを行ってもよい。 Moreover, in the above-mentioned embodiment, although the bonding of the rolled copper foil 22 and the resin layer 21 was performed using the adhesive agent, it is not limited to this. For example, bonding may be performed by bonding the rolled copper foil 22 and the resin layer 21 under high temperature and high pressure without using an adhesive. Moreover, in the above-mentioned embodiment, although the resin film was used as the resin layer 21, it is not limited to this. For example, after applying a polyimide precursor onto the rolled copper foil 22 (roughening layer 23), the polyimide precursor is dried and cured to form the resin layer 21, thereby forming the rolled copper foil 22 and the resin layer 21. And may be pasted together.

(実施例1)
タフピッチ銅のインゴットを鋳造した後、熱間圧延処理により、厚さ12mmの熱間圧延材を得た。続いて、この熱間圧延材に対して一次冷間圧延処理と一次焼鈍処理とを繰り返して、一次冷間圧延材を作製した。得られた一次冷間圧延材は厚さ0.1mm×幅600mm×長さ10mである。一次冷間圧延材に二次焼鈍処理を行い、二次焼鈍材を作製した。そして、二次焼鈍材に二次冷間圧延処理を行った。具体的には、圧延ロールを用い、圧延方向と直交する方向の二次焼鈍材の長さを変えず、二次焼鈍材を圧延方向に伸ばしつつ、二次焼鈍材の厚さを薄くしていく加工を12回繰り返して行った。これにより、厚さ17μm×幅600mm×長さ50mの形状の圧延銅箔を作製した。
Example 1
After casting a tough pitch copper ingot, a hot rolled material having a thickness of 12 mm was obtained by hot rolling. Subsequently, a primary cold rolled material was produced by repeating a primary cold rolling process and a primary annealing process on the hot rolled material. The obtained primary cold-rolled material is 0.1 mm thick × 600 mm wide × 10 m long. A secondary annealing treatment was performed on the primary cold-rolled material to produce a secondary annealed material. And the secondary cold rolling process was performed to the secondary annealing material. Specifically, using the rolling roll, without changing the length of the secondary annealing material in the direction orthogonal to the rolling direction, while extending the secondary annealing material in the rolling direction, the thickness of the secondary annealing material is reduced. The process was repeated 12 times. This produced the rolled copper foil of the shape of thickness 17micrometer x width 600mm x length 50m.

この圧延銅箔の一方の主面に凹凸形成の粗化処理を施して粗化処理層を形成し、厚さが18μmである表面処理銅箔を作製した。なお、以下では、粗化処理層が形成された圧延銅箔を表面処理銅箔という。その後に、厚さ25μmのポリイミド樹脂の両面に表面処理銅箔を貼り合わせて、表面処理銅箔(圧延銅箔)に再結晶化焼鈍処理を行って、両面銅張積層板(両面CCL)を作製した。   A roughened layer was formed on one main surface of the rolled copper foil to form a roughened layer, and a surface-treated copper foil having a thickness of 18 μm was produced. Hereinafter, the rolled copper foil on which the roughened layer is formed is referred to as a surface-treated copper foil. After that, a surface-treated copper foil is bonded to both sides of a polyimide resin with a thickness of 25 μm, and a recrystallized annealing treatment is performed on the surface-treated copper foil (rolled copper foil) to form a double-sided copper-clad laminate (double-sided CCL). Produced.

(評価方法)
圧延銅箔の折曲げ耐性評価のために、両面CCLから幅5mm長さ90mmに5個切出し、これらをそれぞれ試料n1〜n5とした。例えば図6に示すように、厚さt(mm)のCCLに厚さ0.2mmの板状部材を粘着テープで固定た。そして、例えば図7に示すように、マイクロメータを用いて、その隙間=t+2×tとなるように、CCLを折り曲げた。そして、圧延銅箔の折り曲げ部(折り目)を光学顕微鏡にて観察し、圧延銅箔の破断発生の有無を観察した。その後、図8に示すように、マイクロメータを用いて、図6に示す状態となるまで圧延銅箔(CCL)を折り返した。
(Evaluation method)
In order to evaluate the bending resistance of the rolled copper foil, 5 pieces were cut out from the double-sided CCL to a width of 5 mm and a length of 90 mm, and these were designated as samples n1 to n5, respectively. For example, as shown in FIG. 6, a plate-like member having a thickness of 0.2 mm was fixed to a CCL having a thickness t 1 (mm) with an adhesive tape. Then, for example, as shown in FIG. 7, the CCL was bent using a micrometer so that the gap = t 2 + 2 × t 1 . And the bending part (fold) of rolled copper foil was observed with the optical microscope, and the presence or absence of the fracture | rupture generation | occurrence | production of rolled copper foil was observed. Then, as shown in FIG. 8, the rolled copper foil (CCL) was folded using a micrometer until the state shown in FIG. 6 was obtained.

この繰り返し操作により、圧延銅箔の折り曲げ部に破断が発生するまでの折り曲げ回数を計測したとした。図9に、折り曲げ回数3回目の試料n1の折り曲げ部を光学顕微鏡にて観察した画像を示し、図10に、折り曲げ回数4回目の試料n1の折り曲げ部を光学顕微鏡にて観察した画像を示し、図11に、折り曲げ回数5回目の試料n1の折り曲げ部を光学顕微鏡にて観察した画像を示し、図12に、折り曲げ回数6回目の試料n1の折り曲げ部を光学顕微鏡にて観察した画像を示す。図9〜図12から、折り曲げ回数が5回目から、圧延銅箔に破断が発生していることが確認できる。従って、圧延銅箔に破断が発生するまでの折り曲げ回数を5回と判定した。このような測定評価を試料数5個で実施した。   By repeating this operation, the number of times of bending until the fracture occurred in the bent portion of the rolled copper foil was measured. FIG. 9 shows an image obtained by observing the bent portion of the sample n1 with the number of bendings 3 times with an optical microscope, and FIG. 10 shows an image obtained by observing the bent portion with the sample n1 with the number of folding times 4 times with the optical microscope. FIG. 11 shows an image obtained by observing the bent portion of the sample n1 with the folding number of 5 times with an optical microscope, and FIG. 12 shows an image obtained by observing the bent portion of the sample n1 with the number of folding times of 6 with the optical microscope. From FIG. 9 to FIG. 12, it can be confirmed that the rolled copper foil is broken from the fifth folding. Therefore, the number of bendings until the fracture occurred in the rolled copper foil was determined to be 5 times. Such measurement evaluation was performed with five samples.

表1に、実施例1の圧延銅箔に破断が発生するまでの折り曲げ回数を示す。表1に示すように、折り曲げ回数は平均値が5.6回、測定のバラツキも±1回未満であり、測定精度も問題なく、折り曲げ回数が5回以上であり、銅箔厚さ18μmの折曲げFPC用として良好な圧延銅箔であると判断した。   In Table 1, the frequency | count of bending until a fracture | rupture generate | occur | produces in the rolled copper foil of Example 1 is shown. As shown in Table 1, the average number of times of bending is 5.6 times, the variation in measurement is less than ± 1, the measurement accuracy is also satisfactory, the number of times of bending is 5 times or more, and the copper foil thickness is 18 μm. It was judged that it was a rolled copper foil that was favorable for bending FPC.

(実施例2)
実施例1と同様にして作製した二次焼鈍材に二次冷間圧延処理を行った。具体的には、圧延ロールを用い、二次焼鈍材を圧延方向に伸ばしつつ、二次焼鈍材の厚さを薄くしていく加工を14回繰り返して行った。これにより、厚さ11μm×幅600mm×長さ50mの形状の圧延銅箔を作製した。この圧延銅箔の一方の主面に凹凸形成の粗化処理を施して粗化処理層を形成し、厚さが12μmの表面処理銅箔を作製した。そして、両面CCLを作製した。
(Example 2)
A secondary cold rolling treatment was performed on the secondary annealed material produced in the same manner as in Example 1. Specifically, using a rolling roll, the process of reducing the thickness of the secondary annealing material was repeated 14 times while extending the secondary annealing material in the rolling direction. This produced the rolled copper foil of the shape of thickness 11micrometer x width 600mm x length 50m. A roughened layer was formed on one main surface of the rolled copper foil to form a roughened layer, and a surface-treated copper foil having a thickness of 12 μm was produced. And double-sided CCL was produced.

実施例1と同様に、折り曲げ試験を実施した。表1に実施例2の圧延銅箔に破断が発生するまでの折り曲げ回数を示す。表1に示すように、折り曲げ回数は平均値が4.6回、測定のバラツキも±1回程度であり、測定精度も問題なく、折曲げ耐性が4回以上であり、銅箔厚さ12μmの折曲げFPC用として良好な圧延銅箔であると判断した。   A bending test was performed in the same manner as in Example 1. Table 1 shows the number of bendings until breakage occurs in the rolled copper foil of Example 2. As shown in Table 1, the average number of bendings is 4.6 times, the variation in measurement is about ± 1, the measurement accuracy is satisfactory, the bending resistance is 4 times or more, and the copper foil thickness is 12 μm. It was judged that it was a good rolled copper foil for use in bending FPC.

(実施例3)
実施例1と同様にして作製した二次焼鈍材に、二次冷間圧延処理を行った。具体的には、二次冷間圧延処理として、圧延ロールを用いることにより、二次焼鈍材を圧延方向に伸ばしつつ、二次焼鈍材の厚さを薄くしていく加工を16回繰り返して行った。これにより、厚さ8μm×幅600mm×長さ50mの形状の圧延銅箔を作製した。この圧延銅箔の一方の主面に凹凸形成の粗化処理を施して粗化処理層を形成し、厚さが9μmの表面処理銅箔を作製した。そして、両面CCLを作製した。
(Example 3)
Secondary cold rolling treatment was performed on the secondary annealed material produced in the same manner as in Example 1. Specifically, as the secondary cold rolling process, by using a rolling roll, the process of reducing the thickness of the secondary annealing material while repeating the secondary annealing material in the rolling direction is repeated 16 times. It was. This produced the rolled copper foil of the shape of thickness 8micrometer x width 600mm x length 50m. A roughened layer was formed on one main surface of the rolled copper foil to form a roughened layer, thereby producing a surface-treated copper foil having a thickness of 9 μm. And double-sided CCL was produced.

実施例1と同様に、折曲げ試験を実施した。表1に実施例3の圧延銅箔に破断が発生するまでの折り曲げ回数を示す。表1に示すように、折り曲げ回数は平均値が3.6回、測定のバラツキも±1回程度であり、測定精度も問題なく、折曲げ耐性が3回以上であり、銅箔厚さ9μmの折曲げFPC用として良好な圧延銅箔であると判断した。   A bending test was carried out in the same manner as in Example 1. Table 1 shows the number of times of bending until breakage occurs in the rolled copper foil of Example 3. As shown in Table 1, the average number of bendings is 3.6 times, the measurement variation is about ± 1, the measurement accuracy is satisfactory, the bending resistance is 3 times or more, and the copper foil thickness is 9 μm. It was judged that it was a good rolled copper foil for use in bending FPC.

(実施例4)
実施例1と同様にして作製した二次焼鈍材に、圧延ロールを用い、二次焼鈍材を圧延方向に伸ばしつつ、二次焼鈍材の厚さを薄くしていく加工を18回繰り返して行った。これにより、厚さ5.5μm×幅600mm×長さ50mの形状の圧延銅箔を作製した。この圧延銅箔の一方の主面に凹凸形成の粗化処理を施して粗化処理層を形成し、厚さが6μmの表面処理銅箔を作製した。そして、両面CCLを作製した。
Example 4
The secondary annealing material produced in the same manner as in Example 1 was repeated 18 times using a rolling roll and extending the secondary annealing material in the rolling direction while reducing the thickness of the secondary annealing material. It was. Thereby, a rolled copper foil having a shape of thickness 5.5 μm × width 600 mm × length 50 m was produced. A roughened layer was formed on one main surface of the rolled copper foil to form a roughened layer, and a surface-treated copper foil having a thickness of 6 μm was produced. And double-sided CCL was produced.

実施例1と同様に、折曲げ試験を実施した。表1に実施例4の圧延銅箔に破断が発生するまでの折り曲げ回数を示す。表1に示すように、折り曲げ回数は平均値が3.0回、測定のバラツキも±1回程度であり、測定精度も問題なく、折曲げ耐性が2回以上であり、銅箔厚さ6μmの折曲げFPC用として良好な圧延銅箔であると判断した。   A bending test was carried out in the same manner as in Example 1. Table 1 shows the number of bendings until breakage occurs in the rolled copper foil of Example 4. As shown in Table 1, the average number of bendings is 3.0 times, the measurement variation is about ± 1, the measurement accuracy is satisfactory, the bending resistance is 2 times or more, and the copper foil thickness is 6 μm. It was judged that it was a good rolled copper foil for use in bending FPC.

(比較例1)
実施例1と同様にして作製した厚さ0.1mm×幅600mm×長さ500mmである二次焼鈍材に、圧延ロールを用い、二次冷間圧延処理を行った。二次冷間圧延処理として、二次焼鈍材の圧延方向と直交する方向(幅方向)の長さが長くなる圧延加工(以下では、「WD加工」とも言う。)及び二次焼鈍材の圧延方向の長さが長くなる圧延加工(以下では、「TD加工」とも言う。)を交互に繰り返し、計12回の圧延加工を行った。これにより、厚さ17μmの圧延銅箔を作製した。この圧延銅箔のいずれかの主面に凹凸形成の粗化処理を施して粗化処理層を形成し、厚さが18μmの表面処理銅箔を作製した。そして、両面CCLを作製した。
(Comparative Example 1)
A secondary cold rolling process was performed on a secondary annealed material having a thickness of 0.1 mm, a width of 600 mm, and a length of 500 mm produced in the same manner as in Example 1, using a rolling roll. As the secondary cold rolling treatment, rolling processing (hereinafter also referred to as “WD processing”) in which the length in the direction (width direction) orthogonal to the rolling direction of the secondary annealing material is increased, and rolling of the secondary annealing material are performed. The rolling process in which the length in the direction becomes longer (hereinafter also referred to as “TD process”) was alternately repeated, and a total of 12 rolling processes were performed. Thereby, a rolled copper foil having a thickness of 17 μm was produced. A roughened layer was formed on any main surface of the rolled copper foil to form a roughened layer, thereby producing a surface-treated copper foil having a thickness of 18 μm. And double-sided CCL was produced.

実施例1と同様に、折曲げ試験を実施した。表1に比較例1の圧延銅箔に破断が発生するまでの折り曲げ回数を示す。表1に示すように、折り曲げ回数は平均値が4.6回、測定のバラツキも±1回程度であり、測定精度も問題ないと判断したが、折曲げ耐性が4回未満であり、CCLとしての折曲げ耐性に問題のある銅箔と判断した。これは圧延加工をWD加工とTD加工とを交互に実施したためと推定される。   A bending test was carried out in the same manner as in Example 1. Table 1 shows the number of times that the rolled copper foil of Comparative Example 1 is bent until breakage occurs. As shown in Table 1, the average number of bendings was 4.6 times, the measurement variation was about ± 1, and the measurement accuracy was judged to be satisfactory, but the bending resistance was less than 4 times, and CCL It was judged that the copper foil had a problem in bending resistance. This is presumed to be because the rolling process was performed alternately with the WD process and the TD process.

(比較例1b)
上述の比較例1で作製した圧延銅箔を用い、両面CCLを作製した。折曲げ試験の際に、板状部材とCCLとを粘着テープで固定せず、手作業により同じ折目で折曲げと折返しを繰り返す方法により、試料数5個で圧延銅箔に破断が発生するまでの折り曲げ回数を調べた。
(Comparative Example 1b)
A double-sided CCL was produced using the rolled copper foil produced in Comparative Example 1 described above. In the folding test, the plate-like member and the CCL are not fixed with the adhesive tape, but the method of repeating folding and folding at the same fold by hand causes breakage in the rolled copper foil with 5 samples. The number of bending until was examined.

表1に示すように、折り曲げ回数は平均値が6.6回、測定のバラツキが2±回程度であった。このように、CCLと板状部材を固定しないで試験を実施すると測定バラツキが大きくなるだけでなく、測定値そのものが大きくなる。この原因は、折曲げと折り返しを繰り返す際に、板状部材と銅箔が固定されていないために、折目が折り返しの度に位置がつれるためと推定される。この銅箔は比較例1と同じものであり、品質として不良とみなされるものであるが、このような試験方法では、良品と判断されてしまい、測定上問題のあることを示している。   As shown in Table 1, the average number of bendings was 6.6 times, and the measurement variation was about 2 ± times. As described above, when the test is performed without fixing the CCL and the plate-like member, not only the measurement variation increases, but also the measurement value itself increases. This is presumed to be because the plate-like member and the copper foil are not fixed when the folding and the folding are repeated, so that the position of the fold is shifted each time the folding is performed. Although this copper foil is the same as that of Comparative Example 1 and is regarded as defective as a quality, such a test method is judged as a non-defective product, which indicates that there is a problem in measurement.

(比較例2)
実施例1と同様にして作製した厚さ0.1mm×幅600mm×長さ500mmである二次焼鈍材に、圧延ロールを用い、二次冷間圧延処理を行った。二次冷間圧延処理として、WD加工とTD加工とを交互に繰り返し施し、計14回の圧延加工を行った。これにより、厚さ11μmの圧延銅箔を作製した。実施例2と同様に、この圧延銅箔のいずれかの主面に凹凸形成の粗化処理を施して粗化処理層を形成し、厚さが12μmの表面処理銅箔を作製した。そして、両面CCLを作製した。
(Comparative Example 2)
A secondary cold rolling process was performed on a secondary annealed material having a thickness of 0.1 mm, a width of 600 mm, and a length of 500 mm produced in the same manner as in Example 1, using a rolling roll. As the secondary cold rolling treatment, WD processing and TD processing were alternately performed repeatedly, and a total of 14 rolling processes were performed. Thereby, a rolled copper foil having a thickness of 11 μm was produced. In the same manner as in Example 2, a roughened layer was formed on any main surface of the rolled copper foil to form a roughened layer, and a surface-treated copper foil having a thickness of 12 μm was produced. And double-sided CCL was produced.

実施例1と同様に、折曲げ試験を実施した。表1に、比較例2の圧延銅箔に破断が発生するまでの折り曲げ回数を示す。表1に示すように、折り曲げ回数は平均値が3.6回、測定のバラツキも±1回程度であり、測定精度も問題ないと判断したが、折曲げ耐性が4回未満であり、CCLとしての折曲げ耐性に問題のある銅箔と判断した。これは圧延加工をWD加工とTD加工とを交互に実施し不適切な製法と考えている。   A bending test was carried out in the same manner as in Example 1. Table 1 shows the number of bendings until the rolled copper foil of Comparative Example 2 breaks. As shown in Table 1, the average number of bendings was 3.6 times, the measurement variation was about ± 1 time, and it was judged that the measurement accuracy was satisfactory, but the bending resistance was less than 4 times, and CCL It was judged that the copper foil had a problem in bending resistance. This is considered to be an inappropriate manufacturing method in which the rolling process is alternately performed by the WD process and the TD process.

(比較例3)
実施例1と同様にして作製した厚さ0.1mm×幅600mm×長さ500mmである二次焼鈍材に、圧延ロールを用い、二次冷間圧延処理を行った。二次冷間圧延処理として、WD加工とTD加工とを交互に繰り返し施し、計16回の圧延加工を行った。これにより、厚さ8μmの圧延銅箔を作製した。実施例3と同様に、この圧延銅箔のいずれかの主面に凹凸形成の粗化処理を施して粗化処理層を形成し、厚さが9μmの表面処理銅箔を作製した。そして、両面CCLを作製した。
(Comparative Example 3)
A secondary cold rolling process was performed on a secondary annealed material having a thickness of 0.1 mm, a width of 600 mm, and a length of 500 mm produced in the same manner as in Example 1, using a rolling roll. As the secondary cold rolling treatment, WD processing and TD processing were alternately performed repeatedly, and a total of 16 rolling operations were performed. As a result, a rolled copper foil having a thickness of 8 μm was produced. In the same manner as in Example 3, a roughened layer was formed on any main surface of the rolled copper foil to form a roughened layer, and a surface-treated copper foil having a thickness of 9 μm was produced. And double-sided CCL was produced.

実施例1と同様に、折曲げ試験を実施した。表1に、比較例3の圧延銅箔に破断が発生する破断までの折り曲げ回数を示す。表1に示すように、折り曲げ回数は平均値が2.6回、測定のバラツキも±1回程度であり、測定精度も問題ないと判断したが、折曲げ耐性が3回未満であり、CCLとしての折曲げ耐性に問題のある銅箔と判断した。これは圧延加工WD加工とTD加工とを交互に実施したためと推定される。   A bending test was carried out in the same manner as in Example 1. Table 1 shows the number of bendings until the breakage occurs in the rolled copper foil of Comparative Example 3. As shown in Table 1, the average number of bendings was 2.6 times, the measurement variation was about ± 1, and the measurement accuracy was judged to be satisfactory, but the bending resistance was less than 3 times, and CCL It was judged that the copper foil had a problem in bending resistance. This is presumably because rolling WD processing and TD processing were performed alternately.

(比較例4)
実施例1と同様にして作製した厚さ0.1mm×幅600mm×長さ500mmである二次焼鈍材に、圧延ロールを用い、二次冷間圧延処理を行った。二次冷間圧延処理として、WD加工とTD加工とを交互に繰り返し施し、計18回の圧延加工を行った。これにより、厚さ5.5μmの圧延銅箔を作製した。実施例4と同様に、この圧延銅箔のいずれかの主面に凹凸形成の粗化処理を施して粗化処理層を形成して、厚さが6μmの表面処理銅箔を作製した。そして、両面CCLを作製した。
(Comparative Example 4)
A secondary cold rolling process was performed on a secondary annealed material having a thickness of 0.1 mm, a width of 600 mm, and a length of 500 mm produced in the same manner as in Example 1, using a rolling roll. As the secondary cold rolling treatment, WD processing and TD processing were alternately performed repeatedly, and a total of 18 rolling operations were performed. This produced the rolled copper foil of thickness 5.5 micrometers. In the same manner as in Example 4, a roughened layer was formed on any main surface of the rolled copper foil to form a roughened layer, thereby producing a surface-treated copper foil having a thickness of 6 μm. And double-sided CCL was produced.

実施例1と同様に、折曲げ試験を実施した。表1に、比較例4の圧延銅箔に破断が発生するまでの折り曲げ回数を示す。表1に示すように、折り曲げ回数は平均値が1.6回、測定のバラツキも±1回程度であり、測定精度も問題ないと判断したが、折曲げ耐性が2回未満であり、CCLとしての折曲げ耐性に問題のある銅箔と判断した。これは圧延加工をWD加工とTD加工とを交互に実施したためと推定される。   A bending test was carried out in the same manner as in Example 1. In Table 1, the frequency | count of bending until a fracture | rupture generate | occur | produces in the rolled copper foil of the comparative example 4 is shown. As shown in Table 1, the average number of bendings was 1.6 times, the measurement variation was about ± 1, and the measurement accuracy was judged to be satisfactory, but the bending resistance was less than 2 times, and CCL It was judged that the copper foil had a problem in bending resistance. This is presumed to be because the rolling process was performed alternately with the WD process and the TD process.

<本発明の好ましい態様>
以下に、本発明の好ましい態様について付記する。
<Preferred embodiment of the present invention>
Hereinafter, preferred embodiments of the present invention will be additionally described.

[付記1]
本発明の一態様によれば、
樹脂層を備える圧延銅箔であって、
少なくとも一部に直線の縁を有する板状部材の一方の主面上に、前記圧延銅箔と前記板状部材とが接するとともに、前記縁から前記圧延銅箔の一部がはみ出るように、前記圧延銅箔を載置して固定した後、
前記縁からはみ出た前記圧延銅箔を、前記板状部材の他方の主面に向けて前記板状部材に沿って折り曲げる折り曲げと、
前記板状部材の両主面上に前記圧延銅箔が存在する箇所での前記板状部材と前記圧延銅箔と前記樹脂層との合計の厚さを計測した計測値が、前記圧延銅箔の厚さ及び前記樹脂層の厚さをそれぞれ単独で計測したときの計測値を2倍にした値、及び前記板状部材の厚さを単独で計測したときの計測値の合計の値に等しくなるまで、前記圧延銅箔を前記板状部材に密着させる密着と、
前記板状部材の側面に位置する前記圧延銅箔の破断発生の有無を確認し、前記破断発生が認められない場合には、前記圧延銅箔が平坦になるように、前記他方の主面と接する前記圧延銅箔を前記一方の主面に向けて前記圧延銅箔を折り返す折り返しと、
を前記破断発生が認められるまで繰り返して行ったとき、
前記破断発生が認められるまでの前記圧延銅箔の折り曲げ回数が所定回数以上である圧延銅箔が提供される。
[Appendix 1]
According to one aspect of the invention,
A rolled copper foil provided with a resin layer,
The rolled copper foil and the plate-like member are in contact with one main surface of the plate-like member having a straight edge at least partially, and the rolled copper foil protrudes from the edge, After placing and fixing the rolled copper foil,
Bending the rolled copper foil protruding from the edge toward the other main surface of the plate-like member along the plate-like member;
The measured value obtained by measuring the total thickness of the plate member, the rolled copper foil, and the resin layer at the location where the rolled copper foil is present on both main surfaces of the plate member is the rolled copper foil. Is equal to the value obtained by doubling the measured value when the thickness of the resin layer and the thickness of the resin layer are individually measured, and the total value of the measured values when the thickness of the plate-like member is independently measured. Until the contact, close contact the rolled copper foil to the plate member,
Check the presence or absence of breakage of the rolled copper foil located on the side surface of the plate-like member, and if the occurrence of breakage is not observed, the other main surface and the other main surface so that the rolled copper foil becomes flat Folding back the rolled copper foil with the rolled copper foil in contact with the one main surface;
When repeated until the occurrence of breakage is observed,
There is provided a rolled copper foil in which the rolled copper foil is bent a predetermined number of times or more until the occurrence of breakage is recognized.

[付記2]
付記1の圧延銅箔であって、好ましくは、
前記圧延銅箔は、厚さが5μm以上35μm以下となるように形成されている。
[Appendix 2]
The rolled copper foil of Appendix 1, preferably,
The rolled copper foil is formed to have a thickness of 5 μm or more and 35 μm or less.

[付記3]
付記1の圧延銅箔であって、好ましくは、
前記圧延銅箔の厚さが9μmであるとき、前記折り曲げ回数が3回以上である。
[Appendix 3]
The rolled copper foil of Appendix 1, preferably,
When the thickness of the rolled copper foil is 9 μm, the number of bending is 3 or more.

[付記4]
付記1の圧延銅箔であって、好ましくは、
前記圧延銅箔の厚さが12μmであるとき、前記折り曲げ回数が4回以上である。
[Appendix 4]
The rolled copper foil of Appendix 1, preferably,
When the thickness of the rolled copper foil is 12 μm, the number of bendings is 4 times or more.

[付記5]
付記1の圧延銅箔であって、好ましくは、
前記圧延銅箔の厚さが18μmであるとき、前記折り曲げ回数が5回以上である。
[Appendix 5]
The rolled copper foil of Appendix 1, preferably,
When the thickness of the rolled copper foil is 18 μm, the number of bendings is 5 or more.

[付記6]
本発明の他の態様によれば、
銅の鋳塊に熱間圧延処理を行って形成した熱間圧延材に、一次冷間圧延処理及び一次焼鈍処理を所定回数行って一次冷間圧延材を形成する処理と、前記一次冷間圧延材に、二次焼鈍処理を行って二次焼鈍材を形成する処理と、前記二次焼鈍材に、二次冷間圧延処理を行って圧延銅箔を形成する処理と、を実施することで製造され、
圧延方向と直交する方向における前記二次焼鈍材の長さを変えることなく、前記二次焼鈍材を前記二次冷間圧延処理の圧延方向に伸ばしつつ、前記二次焼鈍材の厚さを薄くする前記二次冷間圧延処理を複数回行うことで形成した圧延銅箔が提供される。
[Appendix 6]
According to another aspect of the invention,
A process of forming a primary cold rolled material by performing a primary cold rolling process and a primary annealing process a predetermined number of times on a hot rolled material formed by performing a hot rolling process on a copper ingot, and the primary cold rolling By performing a secondary annealing treatment on the material to form a secondary annealing material, and a secondary cold rolling treatment on the secondary annealing material to form a rolled copper foil. Manufactured,
Without changing the length of the secondary annealing material in the direction orthogonal to the rolling direction, the secondary annealing material is extended in the rolling direction of the secondary cold rolling process, and the thickness of the secondary annealing material is reduced. A rolled copper foil formed by performing the secondary cold rolling process a plurality of times is provided.

[付記7]
付記1ないし6のいずれかの圧延銅箔であって、好ましくは、
前記樹脂層が設けられる前記圧延銅箔の面上には、複数のめっき粒子で形成される粗化処理層が設けられている。
[Appendix 7]
The rolled copper foil according to any one of appendices 1 to 6, preferably,
On the surface of the rolled copper foil on which the resin layer is provided, a roughening treatment layer formed of a plurality of plating particles is provided.

[付記8]
本発明のさらに他の態様によれば、
少なくとも一部に直線の縁を有する板状部材の一方の主面上に、樹脂層を備える圧延銅箔と前記板状部材とが接するとともに、前記縁から前記圧延銅箔の一部がはみ出るように、前記圧延銅箔を載置して固定する載置工程と、
前記縁からはみ出た前記圧延銅箔を、前記板状部材の他方の主面に向けて前記板状部材に沿って折り曲げる工程と、
前記板状部材の両主面上に前記圧延銅箔が存在する箇所での前記板状部材と前記圧延銅箔と前記樹脂層との合計の厚さを計測した計測値が、前記圧延銅箔の厚さ及び前記樹脂層の厚さをそれぞれ単独で計測したときの計測値を2倍にした値と、前記板状部材の厚さを単独で計測したときの計測値と、の合計の値に等しくなるまで、前記圧延銅箔を前記板状部材に密着させる密着工程と、
前記板状部材の側面に位置する前記圧延銅箔の破断発生の有無を確認する確認工程と、
前記圧延銅箔が平坦になるように、前記他方の主面と接する前記圧延銅箔を前記一方の主面に向けて前記圧延銅箔を折り返す折り返し工程と、を有し、
前記確認工程で前記破断発生が認められない場合には、前記折り返し工程を行った後、前記折り曲げ工程と、前記密着工程と、前記確認工程と、を前記破断発生が認められるまで繰り返して行う評価工程を有する圧延銅箔の製造方法が提供される。
[Appendix 8]
According to yet another aspect of the invention,
The rolled copper foil provided with a resin layer is in contact with the plate-like member on one main surface of the plate-like member having at least a straight edge, and a part of the rolled copper foil protrudes from the edge. A mounting step of mounting and fixing the rolled copper foil;
Bending the rolled copper foil protruding from the edge along the plate member toward the other main surface of the plate member;
The measured value obtained by measuring the total thickness of the plate member, the rolled copper foil, and the resin layer at the location where the rolled copper foil is present on both main surfaces of the plate member is the rolled copper foil. The total value of the value obtained by doubling the measured value when the thickness of the resin layer and the thickness of the resin layer are individually measured, and the measured value when the thickness of the plate-like member is independently measured Until the rolled copper foil is in close contact with the plate-like member until equal to
A confirmation step for confirming the presence or absence of breakage of the rolled copper foil located on the side surface of the plate-like member;
A folding step of folding back the rolled copper foil with the rolled copper foil in contact with the other main surface facing the one main surface, so that the rolled copper foil becomes flat,
When the occurrence of breakage is not recognized in the confirmation step, after the folding step, the bending step, the adhesion step, and the confirmation step are repeated until the breakage is recognized. A method for producing a rolled copper foil having a process is provided.

[付記9]
本発明のさらに他の態様によれば、
銅の鋳塊に熱間圧延処理を行って形成した熱間圧延材に、一次冷間圧延処理及び一次焼鈍処理を所定回数行って一次冷間圧延材を形成する工程と、
前記一次冷間圧延材に、二次焼鈍処理を行って二次焼鈍材を形成する工程と、
前記二次焼鈍材に、二次冷間圧延処理を行って圧延銅箔を形成する工程と、を有し、
前記二次冷間圧延処理では、圧延方向と直交する方向における前記二次焼鈍材の長さを変えることなく、前記二次焼鈍材を前記二次冷間圧延処理の圧延方向に伸ばしつつ、前記二次焼鈍材の厚さを薄くする処理を複数回行う圧延銅箔の製造方法が提供される。
[Appendix 9]
According to yet another aspect of the invention,
A process of forming a primary cold rolled material by performing a primary cold rolling process and a primary annealing process a predetermined number of times on a hot rolled material formed by performing a hot rolling process on a copper ingot;
A step of subjecting the primary cold-rolled material to a secondary annealing treatment to form a secondary annealing material;
The secondary annealing material has a step of performing a secondary cold rolling process to form a rolled copper foil,
In the secondary cold rolling process, without changing the length of the secondary annealing material in the direction orthogonal to the rolling direction, while extending the secondary annealing material in the rolling direction of the secondary cold rolling process, A method for producing a rolled copper foil is provided in which the treatment for reducing the thickness of the secondary annealing material is performed a plurality of times.

[付記10]
本発明のさらに他の態様によれば、
少なくとも一部に直線の縁を有する板状部材の一方の主面上に、樹脂層を備える圧延銅箔と前記板状部材とが接するとともに、前記圧延銅箔の一部が前記縁からはみ出るように、前記圧延銅箔を載置して固定する載置工程と、
前記縁からはみ出た前記圧延銅箔を、前記板状部材の他方の主面に向けて前記板状部材に沿って折り曲げる工程と、
前記板状部材の両主面上に前記圧延銅箔が存在する箇所での前記板状部材と前記圧延銅箔と前記樹脂層との合計の厚さを計測した計測値が、前記圧延銅箔の厚さ及び前記樹脂層の厚さをそれぞれ単独で計測したときの計測値を2倍にした値と、前記板状部材の厚さを単独で計測したときの計測値と、の合計の値に等しくなるまで、前記圧延銅箔を前記板状部材に密着させる密着工程と、
前記板状部材の側面に位置する前記圧延銅箔の破断発生の有無を確認する確認工程と、
前記他方の主面と接する前記圧延銅箔を前記一方の主面に向けて、前記圧延銅箔が平坦になるまで前記圧延銅箔を折り返す折り返し工程と、を有し、
前記確認工程で前記破断発生が認められない場合には、前記折り返し工程を行った後、前記折り曲げ工程と、前記密着工程と、前記確認工程と、を前記破断発生が認められるまで繰り返して行う
圧延銅箔の評価方法が提供される。
[Appendix 10]
According to yet another aspect of the invention,
The rolled copper foil provided with a resin layer and the plate-like member are in contact with one main surface of the plate-like member having at least a straight edge, and a part of the rolled copper foil protrudes from the edge. A mounting step of mounting and fixing the rolled copper foil;
Bending the rolled copper foil protruding from the edge along the plate member toward the other main surface of the plate member;
The measured value obtained by measuring the total thickness of the plate member, the rolled copper foil, and the resin layer at the location where the rolled copper foil is present on both main surfaces of the plate member is the rolled copper foil. The total value of the value obtained by doubling the measured value when the thickness of the resin layer and the thickness of the resin layer are individually measured, and the measured value when the thickness of the plate-like member is independently measured Until the rolled copper foil is in close contact with the plate-like member until equal to
A confirmation step for confirming the presence or absence of breakage of the rolled copper foil located on the side surface of the plate-like member;
Folding the rolled copper foil until the rolled copper foil is flattened, with the rolled copper foil in contact with the other principal surface facing the one principal surface,
When the occurrence of breakage is not recognized in the confirmation step, after performing the folding step, the rolling step, the adhesion step, and the confirmation step are repeatedly performed until the occurrence of breakage is recognized. A method for evaluating copper foil is provided.

[付記11]
本発明のさらに他の態様によれば、
付記1ないし7のいずれかに記載の圧延銅箔と、
前記圧延銅箔のいずれかの主面上に設けられる樹脂層と、を備える銅張積層板が提供される。
[Appendix 11]
According to yet another aspect of the invention,
The rolled copper foil according to any one of appendices 1 to 7,
There is provided a copper clad laminate comprising a resin layer provided on any main surface of the rolled copper foil.

10 板状部材
11 直線の縁
12 板状部材の一方の面
13 板状部材の他方の面
20 銅張積層板
21 樹脂層
22(22a,22b) 圧延銅箔
DESCRIPTION OF SYMBOLS 10 Plate-shaped member 11 Straight edge 12 One surface 13 of plate-shaped member The other surface 20 of a plate-shaped member 20 Copper-clad laminate 21 Resin layer 22 (22a, 22b) Rolled copper foil

Claims (5)

樹脂層を備える圧延銅箔であって、
少なくとも一部に直線の縁を有する板状部材の一方の主面上に、前記圧延銅箔と前記板状部材とが接するとともに、前記縁から前記圧延銅箔の一部がはみ出るように、前記圧延銅箔を載置して固定した後、
前記縁からはみ出た前記圧延銅箔を、前記板状部材の他方の主面に向けて前記板状部材に沿って折り曲げる折り曲げと、
前記板状部材の両主面上に前記圧延銅箔が存在する箇所での前記板状部材と前記圧延銅箔と前記樹脂層との合計の厚さを計測した計測値が、前記圧延銅箔の厚さ及び前記樹脂層の厚さをそれぞれ単独で計測したときの計測値を2倍にした値、及び前記板状部材の厚さを単独で計測したときの計測値の合計の値に等しくなるまで、前記圧延銅箔を前記板状部材に密着させる密着と、
前記板状部材の側面に位置する前記圧延銅箔の破断発生の有無を確認し、前記破断発生が認められない場合には、前記圧延銅箔が平坦になるように、前記他方の主面と接する前記圧延銅箔を前記一方の主面に向けて前記圧延銅箔を折り返す折り返しと、
を前記破断発生が認められるまで繰り返して行ったとき、
前記破断発生が認められるまでの前記圧延銅箔の折り曲げ回数が所定回数以上である
圧延銅箔。
A rolled copper foil provided with a resin layer,
The rolled copper foil and the plate-like member are in contact with one main surface of the plate-like member having a straight edge at least partially, and the rolled copper foil protrudes from the edge, After placing and fixing the rolled copper foil,
Bending the rolled copper foil protruding from the edge toward the other main surface of the plate-like member along the plate-like member;
The measured value obtained by measuring the total thickness of the plate member, the rolled copper foil, and the resin layer at the location where the rolled copper foil is present on both main surfaces of the plate member is the rolled copper foil. Is equal to the value obtained by doubling the measured value when the thickness of the resin layer and the thickness of the resin layer are individually measured, and the total value of the measured values when the thickness of the plate-like member is independently measured. Until the contact, close contact the rolled copper foil to the plate member,
Check the presence or absence of breakage of the rolled copper foil located on the side surface of the plate-like member, and if the occurrence of breakage is not observed, the other main surface and the other main surface so that the rolled copper foil becomes flat Folding back the rolled copper foil with the rolled copper foil in contact with the one main surface;
When repeated until the occurrence of breakage is observed,
A rolled copper foil in which the rolled copper foil is bent a predetermined number of times or more until the occurrence of breakage is recognized.
前記圧延銅箔の厚さが9μmであるとき、前記折り曲げ回数が3回以上である
請求項1に記載の圧延銅箔。
2. The rolled copper foil according to claim 1, wherein when the thickness of the rolled copper foil is 9 μm, the number of bending times is 3 or more.
前記圧延銅箔の厚さが12μmであるとき、前記折り曲げ回数が4回以上である
請求項1に記載の圧延銅箔。
2. The rolled copper foil according to claim 1, wherein when the rolled copper foil has a thickness of 12 μm, the number of bendings is 4 or more.
前記圧延銅箔の厚さが18μmであるとき、前記折り曲げ回数が5回以上である
請求項1に記載の圧延銅箔。
2. The rolled copper foil according to claim 1, wherein when the rolled copper foil has a thickness of 18 μm, the number of bendings is 5 or more.
少なくとも一部に直線の縁を有する板状部材の一方の主面上に、樹脂層を備える圧延銅箔と前記板状部材とが接するとともに、前記縁から前記圧延銅箔の一部がはみ出るように、前記圧延銅箔を載置して固定する載置工程と、
前記縁からはみ出た前記圧延銅箔を、前記板状部材の他方の主面に向けて前記板状部材に沿って折り曲げる工程と、
前記板状部材の両主面上に前記圧延銅箔が存在する箇所での前記板状部材と前記圧延銅箔と前記樹脂層との合計の厚さを計測した計測値が、前記圧延銅箔の厚さ及び前記樹脂層の厚さをそれぞれ単独で計測したときの計測値を2倍にした値と、前記板状部材の厚さを単独で計測したときの計測値と、の合計の値に等しくなるまで、前記圧延銅箔を前記板状部材に密着させる密着工程と、
前記板状部材の側面に位置する前記圧延銅箔の破断発生の有無を確認する確認工程と、
前記圧延銅箔が平坦になるように、前記他方の主面と接する前記圧延銅箔を前記一方の主面に向けて前記圧延銅箔を折り返す折り返し工程と、を有し、
前記確認工程で前記破断発生が認められない場合には、前記折り返し工程を行った後、前記折り曲げ工程と、前記密着工程と、前記確認工程と、を前記破断発生が認められるまで繰り返して行う評価工程を有する
圧延銅箔の製造方法。
The rolled copper foil provided with a resin layer is in contact with the plate-like member on one main surface of the plate-like member having at least a straight edge, and a part of the rolled copper foil protrudes from the edge. A mounting step of mounting and fixing the rolled copper foil;
Bending the rolled copper foil protruding from the edge along the plate member toward the other main surface of the plate member;
The measured value obtained by measuring the total thickness of the plate member, the rolled copper foil, and the resin layer at the location where the rolled copper foil is present on both main surfaces of the plate member is the rolled copper foil. The total value of the value obtained by doubling the measured value when the thickness of the resin layer and the thickness of the resin layer are individually measured, and the measured value when the thickness of the plate-like member is independently measured Until the rolled copper foil is in close contact with the plate-like member until equal to
A confirmation step for confirming the presence or absence of breakage of the rolled copper foil located on the side surface of the plate-like member;
A folding step of folding back the rolled copper foil with the rolled copper foil in contact with the other main surface facing the one main surface, so that the rolled copper foil becomes flat,
When the occurrence of breakage is not recognized in the confirmation step, after the folding step, the bending step, the adhesion step, and the confirmation step are repeated until the breakage is recognized. The manufacturing method of the rolled copper foil which has a process.
JP2014085727A 2014-04-17 2014-04-17 Rolled copper foil and manufacturing method of rolled copper foil Pending JP2015206616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014085727A JP2015206616A (en) 2014-04-17 2014-04-17 Rolled copper foil and manufacturing method of rolled copper foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014085727A JP2015206616A (en) 2014-04-17 2014-04-17 Rolled copper foil and manufacturing method of rolled copper foil

Publications (1)

Publication Number Publication Date
JP2015206616A true JP2015206616A (en) 2015-11-19

Family

ID=54603519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014085727A Pending JP2015206616A (en) 2014-04-17 2014-04-17 Rolled copper foil and manufacturing method of rolled copper foil

Country Status (1)

Country Link
JP (1) JP2015206616A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105527180A (en) * 2015-11-30 2016-04-27 中国航空工业集团公司沈阳飞机设计研究所 Testing method for bending fatigue of metal material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105527180A (en) * 2015-11-30 2016-04-27 中国航空工业集团公司沈阳飞机设计研究所 Testing method for bending fatigue of metal material
CN105527180B (en) * 2015-11-30 2019-03-08 中国航空工业集团公司沈阳飞机设计研究所 A kind of metal material bending fatigue testing method

Similar Documents

Publication Publication Date Title
US9060432B2 (en) Flexible circuit board and method for producing same and bend structure of flexible circuit board
JP4691573B2 (en) Printed wiring board, method for producing the printed wiring board, and electrolytic copper foil for copper-clad laminate used for producing the printed wiring board
KR101935128B1 (en) Copper foil for flexible printed wiring board, copper-clad laminate using the same, flexible printed wiring board and electronic device
KR20130115140A (en) Rolled copper foil, copper clad laminate, flexible printed wiring board and method of manufacturing the same
JP4158942B2 (en) Method for producing metal-clad laminate
CN107683633B (en) Printed wiring board, stiffener for printed wiring board, and printed circuit board
CN103648670B (en) Rolled copper foil, method for producing same, and laminate plate
JP6781562B2 (en) Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices
TWI549575B (en) Flexible printed wiring board with copper foil, copper clad laminate, flexible printed wiring board and electronic equipment
JP5753115B2 (en) Rolled copper foil for printed wiring boards
JP5933943B2 (en) Rolled copper foil for flexible printed wiring boards, copper-clad laminates, flexible printed wiring boards, and electronic equipment
JP2009280855A (en) Rolled copper foil and method for producing the same
JP2015206616A (en) Rolled copper foil and manufacturing method of rolled copper foil
WO2011158825A1 (en) Surface-roughened copper foil and copper-clad laminated substrate
WO2016031559A1 (en) Method for manufacturing flexible copper wiring board, and flexible copper-clad layered board with support film used in said copper wiring board
JP2014011451A (en) Rolled copper foil, process of manufacturing the same, and laminate sheet
JP4447594B2 (en) Two-layer flexible printed wiring board and method for producing the two-layer flexible printed wiring board
JP5189683B2 (en) Rolled copper alloy foil
KR101024937B1 (en) Double side flexible copper clad laminate and method for fabricating the same
JP2009185364A (en) Rolled copper foil for flexible printed circuit board, and rolled copper foil for electroconductive member
TWI718025B (en) Copper foil for flexible printed circuit boards, copper-clad laminates, flexible printed circuit boards and electronic devices using the same
JP2009170829A (en) Copper foil for circuit board
JP5940010B2 (en) Surface roughening copper foil, method for producing the same, and circuit board
JP2012246556A (en) Rolled copper foil, copper-clad laminate, flexible printed wiring board, and electronic equipment
WO2012070471A1 (en) Rolled copper foil for flexible printed wiring board, copper-clad laminated board, flexible wiring board, and electronic device