JP2015203246A - Reinforcement structure and building - Google Patents

Reinforcement structure and building Download PDF

Info

Publication number
JP2015203246A
JP2015203246A JP2014083463A JP2014083463A JP2015203246A JP 2015203246 A JP2015203246 A JP 2015203246A JP 2014083463 A JP2014083463 A JP 2014083463A JP 2014083463 A JP2014083463 A JP 2014083463A JP 2015203246 A JP2015203246 A JP 2015203246A
Authority
JP
Japan
Prior art keywords
main diagonal
diagonal
connection
pair
members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014083463A
Other languages
Japanese (ja)
Other versions
JP6265422B2 (en
Inventor
雄一 真崎
Yuichi Mazaki
雄一 真崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grape Co Ltd
Original Assignee
Grape Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grape Co Ltd filed Critical Grape Co Ltd
Priority to JP2014083463A priority Critical patent/JP6265422B2/en
Publication of JP2015203246A publication Critical patent/JP2015203246A/en
Application granted granted Critical
Publication of JP6265422B2 publication Critical patent/JP6265422B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a reinforcement structure and a building, capable of reducing cost, and capable of improving structural performance, by reducing a using member quantity.SOLUTION: A reinforcement structure comprises a pair of main diagonal members 21 having one end part connected to the vicinity of left-right joining parts J1 in a lower floor and extending toward a central part of a beam G2 of an upper floor, a damper (a damping member) 3 connected to the respective other end parts of the pair of main diagonal members 21 and the central part of the beam G2 of the upper floor, a pair of first connection members 4 for respectively connecting a joining part J2 of the upper floor and respective midway parts (a first connection part 21A) of the pair of main diagonal members 21 and a pair of second connection members 5 for respectively connecting a beam G1 of the lower floor and the respective midway parts (a second connection part 21B) of the pair of main diagonal members 21, and the first connection part 21A and the second connection part 21B are provided in a mutually separated position along the longitudinal direction of the main diagonal members 21.

Description

本発明は、補強構造及び建物に係り、詳しくは、左右の柱と上下の梁とで囲まれた矩形の骨組みに設けられ、骨組みに作用する水平力を負担する補強構造、及び該補強構造を備えた建物に関するものである。   The present invention relates to a reinforcing structure and a building. Specifically, the reinforcing structure is provided in a rectangular frame surrounded by left and right columns and upper and lower beams, and bears a horizontal force acting on the frame, and the reinforcing structure. It relates to the building provided.

従来、ラーメン架構の補強構造として、ラーメン架構の内部に補強用のブレース材を設置したブレース架構が利用されている(例えば、特許文献1参照)。このブレース架構は、一対の斜材からなる逆V字形ブレースの下端部(一対の斜材の一端部)と下階の柱梁接合部とを剛に接合するとともに、上端部(一対の斜材の他端部)と上階の梁中央部とを剛に接合し、さらに上階の柱梁接合部と逆V字形ブレースの中央部分とを副斜材で接続することにより構成されている。このような補強構造は、架構の水平剛性及び水平耐力の向上を期待した所謂剛構造であって、エネルギーの吸収による振動低減に関しては期待できず、地震等の入力に対する応答加速度が大きくなってしまうという不都合がある。   2. Description of the Related Art Conventionally, as a reinforcing structure for a rigid frame, a braced frame in which a reinforcing brace material is installed inside the rigid frame is used (see, for example, Patent Document 1). The braced frame rigidly joins the lower end (one end of a pair of diagonal members) of an inverted V-shaped brace made of a pair of diagonal members and the column beam joint on the lower floor, and the upper end (a pair of diagonal members). The other end portion of the upper floor is rigidly connected to the center of the beam on the upper floor, and the column beam joint on the upper floor is connected to the center of the inverted V-shaped brace with a sub-diagonal material. Such a reinforcing structure is a so-called rigid structure that is expected to improve the horizontal rigidity and horizontal strength of the frame, and cannot be expected to reduce vibrations due to energy absorption, resulting in a large response acceleration to an input such as an earthquake. There is an inconvenience.

一方、振動低減を期待した建物の構造形式として、柱、梁からなるラーメン架構の内部にブレースを介してダンパーを設置したダンパー付き架構が提案されている(例えば、特許文献2参照)。このダンパー付き架構は、一対の斜材からなる逆V字形ブレースの下端部(一対の斜材の一端部)を下階の柱梁接合部に連結するとともに、上端部(互いに連結された一対の斜材の他端部)を上階の梁中央部にダンパーを介して接続することにより構成されている。このようなダンパー付き架構は、架構に作用する水平力を柱梁のラーメンとダンパー及びブレースとがそれぞれ負担することで、建物の層間変位を抑制するとともに、ダンパーのエネルギー吸収による建物の振動低減を図ろうとするものである。   On the other hand, as a structural type of a building that is expected to reduce vibration, a damper-equipped frame in which a damper is installed via a brace inside a frame frame composed of columns and beams has been proposed (for example, see Patent Document 2). The frame with a damper connects a lower end portion (one end portion of a pair of diagonal members) of an inverted V-shaped brace made of a pair of diagonal members to a lower beam column beam joint portion and an upper end portion (a pair of mutually connected pair of diagonal members). The other end of the diagonal member is connected to the center of the beam on the upper floor via a damper. In such a frame with a damper, the horizontal force acting on the frame is borne by the beam ramen, the damper and the brace, respectively, thereby suppressing the interlayer displacement of the building and reducing the vibration of the building by absorbing the energy of the damper. It is intended to be illustrated.

特開2011−179269号公報JP 2011-179269 A 特開2007−100404号公報JP 2007-100404 A

しかしながら、特許文献2に記載された従来のダンパー付き架構のように、架構に作用する水平力の多くをダンパーに負担させてエネルギー吸収性能を高めようとする構造では、ダンパーを支持する逆V字形ブレースの剛性を高め、このブレースが変形しにくくしてダンパーに変形を集中させる必要がある。このため、断面積が大きな鋼材をブレースに用いることとなり、使用鋼材量及び重量の増加を招くとともに、ブレースと柱梁との接合部が複雑になり施工コストも増加するという不都合が生じる。さらに、ブレースの剛性が大きくなると、架構全体の初期剛性が高くなり過ぎることになり、地震動等の水平力が作用した際に建物への入力が過大になり、入力加速度が増加してしまい構造性能を十分に高めることができないという問題もある。   However, as in the conventional structure with a damper described in Patent Document 2, in a structure in which much of the horizontal force acting on the structure is borne by the damper to increase the energy absorption performance, an inverted V-shape that supports the damper is used. It is necessary to increase the rigidity of the brace and concentrate the deformation on the damper by making the brace difficult to deform. For this reason, a steel material having a large cross-sectional area is used for the brace, resulting in an increase in the amount and weight of the steel material used, and inconvenience that the joint between the brace and the column beam becomes complicated and the construction cost increases. Furthermore, if the brace stiffness increases, the initial stiffness of the entire frame will become too high, and input to the building will be excessive when horizontal forces such as earthquake motion are applied, resulting in an increase in input acceleration and structural performance. There is also a problem that it cannot be raised sufficiently.

したがって、本発明は、使用する部材数量を削減して低コスト化を図るとともに、構造性能を向上させることができる補強構造及び建物を提供することを目的とする。   Therefore, an object of the present invention is to provide a reinforcing structure and a building capable of reducing the number of members to be used and reducing the cost and improving the structural performance.

上記目的を達成するために請求項1に記載の補強構造は、左右の柱と上下の梁とで囲まれた矩形の骨組みに設けられ、該骨組みに作用する水平力を負担する補強構造であって、前記柱と前記梁とが接合される上下左右四箇所の接合部のうち、上下いずれか一方側における左右の接合部近傍に一端部が連結され、他方側の梁中央部に向かって延びる一対の主斜材と、前記一対の主斜材の各他端部と前記他方側の梁中央部とに連結され、該主斜材の他端部と該梁中央部との相対移動に応じた減衰力を発揮する減衰部材と、前記他方側における前記骨組みの一部と前記一対の主斜材の各途中部分とをそれぞれ接続する一対の第一接続部材と、前記一方側における前記梁の一部と前記一対の主斜材の各途中部分とをそれぞれ接続する一対の第二接続部材と、を備え、前記主斜材において、前記第一接続部材が接続する第一接続部と、前記第二接続部材が接続する第二接続部とは、該主斜材の長手方向に沿って互いに離隔した位置に設けられていることを特徴とする。   In order to achieve the above object, the reinforcing structure according to claim 1 is a reinforcing structure that is provided in a rectangular frame surrounded by left and right columns and upper and lower beams and bears a horizontal force acting on the frame. Of the four joints at the top, bottom, left, and right where the pillar and the beam are joined, one end is connected to the vicinity of the left and right joints on either the top or bottom, and extends toward the center of the beam on the other side Connected to a pair of main diagonal members, the other end portions of the pair of main diagonal members and the beam center portion on the other side, and according to relative movement between the other end portions of the main diagonal member and the beam center portion A damping member that exerts a damping force, a pair of first connection members that respectively connect a part of the framework on the other side and each middle part of the pair of main diagonal members, and a beam of the beam on the one side A pair of second connection portions for connecting a part and each intermediate portion of the pair of main diagonal members In the main diagonal member, a first connection portion to which the first connection member is connected and a second connection portion to which the second connection member is connected are along the longitudinal direction of the main diagonal member. It is provided in the position which mutually separated.

このような本発明の補強構造によれば、左右の接合部(柱梁接合部)近傍に一端部が連結された一対の主斜材の各他端部と、他方側の梁中央部と、に亘って減衰部材を連結するとともに、一対の主斜材の各途中部分にそれぞれ第一接続部材及び第二接続部材を接続することで、主斜材を単なる軸力部材ではなく、軸力とともに曲げモーメント及びせん断力を負担する曲げせん断部材として機能させることができる。そして、主斜材の途中部分における互いに離隔した位置に第一接続部材と第二接続部材とがそれぞれ逆側から接続されているので、骨組みに水平力が作用した場合には、第一接続部材及び第二接続部材から主斜材に逆向きの力が作用し、主斜材をS字形に変形させる曲げモーメントとせん断力とが生じることとなる。このように一対の主斜材がS字形に変形することにより、それらの他端部が移動(水平移動、上下移動、及び回転)することになり、この他端部と他方側の梁中央部との間に相対移動が生じることとなる。従って、主斜材の他端部と他方側の梁中央部との間の相対移動に応じた減衰部材を用いることで、減衰部材によるエネルギー吸収効果を高めることができる。   According to such a reinforcing structure of the present invention, each other end portion of the pair of main diagonal members whose one end portion is connected in the vicinity of the left and right joint portions (column beam joint portions), the beam center portion on the other side, And connecting the first connecting member and the second connecting member to the middle portions of the pair of main diagonal members together with the axial force instead of the mere axial force member. It can function as a bending shear member that bears a bending moment and a shearing force. And since the 1st connection member and the 2nd connection member are respectively connected from the opposite side in the position which was mutually separated in the middle part of the main diagonal material, when a horizontal force acts on a framework, the 1st connection member In addition, a reverse force acts on the main diagonal from the second connecting member, and a bending moment and a shearing force that deform the main diagonal into an S shape are generated. As a result of the pair of main diagonal members being deformed into an S shape, the other end portions thereof move (horizontal movement, vertical movement, and rotation), and the other end portion and the beam center portion on the other side. Relative movement will occur between the two. Therefore, the energy absorption effect by the attenuation member can be enhanced by using the attenuation member corresponding to the relative movement between the other end portion of the main diagonal member and the beam center portion on the other side.

また、S字形に変形する主斜材の他端部の移動に応じて減衰部材の変形量が決定されるので、所望のエネルギー吸収性能に対して、主斜材の軸剛性(断面積)のみならず曲げ剛性(断面二次モーメント)を適宜に設定したり、第一接続部材及び第二接続部材の軸剛性や主斜材への接続位置を適宜に設定したりすることにより、減衰部材の変形量が調整できる。従って、主斜材の軸剛性のみによって減衰部材の変形量を調整するような従来の構造と比較して、軸剛性を過度に大きくする必要がなく、主斜材の材料コストを抑制することができ、主斜材を骨組みに接合するための構造を簡単化することができる。また、主斜材を曲げ変形させることで、曲げ変形による靱性向上によって変形性能を高めることができるとともに、骨組み全体としての水平剛性を抑制することができ、地震動の入力加速度を低減させることができる。   Further, since the deformation amount of the damping member is determined according to the movement of the other end portion of the main diagonal member deformed into an S shape, only the axial rigidity (cross-sectional area) of the main diagonal member is obtained for the desired energy absorption performance. By appropriately setting the bending rigidity (secondary moment of cross-section) and appropriately setting the axial rigidity of the first connecting member and the second connecting member and the connection position to the main diagonal member, The amount of deformation can be adjusted. Accordingly, it is not necessary to excessively increase the shaft rigidity compared to the conventional structure in which the deformation amount of the damping member is adjusted only by the shaft rigidity of the main diagonal member, and the material cost of the main diagonal member can be suppressed. It is possible to simplify the structure for joining the main diagonal member to the framework. In addition, by deforming the main diagonal, the deformation performance can be improved by improving the toughness by bending deformation, the horizontal rigidity of the entire frame can be suppressed, and the input acceleration of seismic motion can be reduced. .

この際、本発明の補強構造では、前記第一接続部は、前記主斜材の長手方向中央よりも一方側に設けられ、前記第二接続部は、前記主斜材の長手方向中央よりも他方側に設けられていることが好ましい。   At this time, in the reinforcing structure of the present invention, the first connection portion is provided on one side of the longitudinal center of the main diagonal member, and the second connection portion is longer than the longitudinal center of the main diagonal member. It is preferable to be provided on the other side.

この構成によれば、主斜材の長手方向中央よりも一方側、即ち減衰部材から離れた側に第一接続部が接続され、減衰部材に近い側に第二接続部材が接続されることとなり、この第二接続部材が一方側の梁中央部に接続されていることから、主斜材の他端部側(減衰部材の側)の水平変位を抑制して(あるいは他方側の梁とは逆方向に変位させて)他方側の梁との相対変位を大きくすることができ、減衰部材に生じる変形量を増大させてエネルギー吸収性能を向上させることができる。   According to this configuration, the first connection portion is connected to one side from the longitudinal center of the main diagonal member, that is, the side away from the attenuation member, and the second connection member is connected to the side closer to the attenuation member. Since the second connecting member is connected to the central portion of the beam on one side, the horizontal displacement on the other end side (attenuation member side) of the main diagonal member is suppressed (or what is the other side beam) By displacing in the opposite direction, the relative displacement with the other beam can be increased, and the amount of deformation generated in the damping member can be increased to improve the energy absorption performance.

また、本発明の補強構造では、前記第一接続部と前記第二接続部とは、それぞれ前記主斜材の長さを略三等分する二箇所の一方と他方とに設けられていることが好ましい。   In the reinforcing structure of the present invention, the first connection portion and the second connection portion are respectively provided at one and the other of two places that divide the length of the main diagonal material into approximately three equal parts. Is preferred.

この構成によれば、主斜材の長さを略三等分する位置にそれぞれ第一接続部と第二接続部材とが接続されることとなり、主斜材をS字形に曲げ変形させやすくなり、減衰部材のエネルギー吸収効果を高めるとともに、骨組み全体の水平剛性を抑制することができる。   According to this configuration, the first connecting portion and the second connecting member are connected to the positions at which the length of the main diagonal member is approximately divided into three parts, respectively, and the main diagonal member can be easily bent and deformed into an S shape. In addition to enhancing the energy absorption effect of the damping member, the horizontal rigidity of the entire frame can be suppressed.

また、本発明の補強構造では、前記第一接続部材は、前記他方側における左右の接合部近傍に一端部が接続され、他端部が前記主斜材に接続された第一副斜材を有して構成され、前記第二接続部材は、前記一方側における梁中央部に一端部が接続され、他端部が前記主斜材に接続された第二副斜材を有して構成されていることが好ましい。   In the reinforcing structure of the present invention, the first connecting member includes a first sub-diagonal material having one end connected to the vicinity of the left and right joints on the other side and the other end connected to the main diagonal. The second connecting member is configured to have a second sub-diagonal material having one end connected to the central portion of the beam on the one side and the other end connected to the main diagonal. It is preferable.

この構成によれば、第一接続部材を第一副斜材によって構成し、第二接続部材を第二副斜材によって構成することで、これらの部材をスリム化するとともに、各部材と骨組み及び主斜材との接合構造を簡単化することができる。なお、本発明において、第一接続部材及び第二接続部材は、それぞれ斜材で構成されるものに限らず、面材(鋼板パネルやコンクリートパネルなど)で構成されてもよいし、複数の部材を組み合わせた組立材(トラス材やラチス材など)で構成されてもよい。   According to this configuration, the first connecting member is constituted by the first sub-diagonal material, and the second connecting member is constituted by the second sub-diagonal material. The joint structure with the main diagonal can be simplified. In the present invention, the first connection member and the second connection member are not limited to those made of diagonal materials, but may be made of face materials (steel plate panels, concrete panels, etc.), or a plurality of members. An assembly material (such as a truss material or a lattice material) may be combined.

さらに、本発明の補強構造では、前記第一副斜材の途中部分と前記第二接続部とを接続する第三接続部材と、前記第二副斜材の途中部分と前記第一接続部とを接続する第四接続部材と、をさらに備えることが好ましい。   Furthermore, in the reinforcing structure of the present invention, a third connection member that connects the middle portion of the first sub-diagonal material and the second connection portion, a middle portion of the second sub-diagonal material and the first connection portion, It is preferable to further comprise a fourth connection member for connecting the two.

この構成によれば、第三接続部材及び第四接続部材を設けたことで、補強構造の剛性を高めることができるとともに、第一副斜材の途中部分に第三接続部材が接続され、第二副斜材の途中部分に第四接続部材が接続されていることで、第一副斜材及び第二副斜材に曲げモーメントが生じることとなり、これらの部材を曲げ材として機能させることによって補強構造の靱性を高めることができる。   According to this configuration, by providing the third connecting member and the fourth connecting member, it is possible to increase the rigidity of the reinforcing structure, and the third connecting member is connected to the middle portion of the first subclinical member, Since the fourth connecting member is connected to the middle part of the two sub-diagonal materials, a bending moment is generated in the first sub-diagonal material and the second sub-diagonal material, and these members function as a bending material. The toughness of the reinforcing structure can be increased.

また、本発明の補強構造では、前記減衰部材は、前記主斜材の他端部と前記他方側の梁との相対移動によってせん断変形することで減衰力を発揮するせん断型ダンパーから構成されていることが好ましい。   In the reinforcing structure of the present invention, the damping member is constituted by a shear type damper that exerts a damping force by shearing deformation by relative movement between the other end of the main diagonal member and the beam on the other side. Preferably it is.

この構成によれば、減衰部材をせん断型ダンパーで構成することで、減衰部材自体の構造や、主斜材及び他方側の梁との接合構造を簡単化することができる。なお、本発明において、減衰部材は、せん断型ダンパーに限らず、直動型ダンパーや、曲げ型ダンパー、回転型ダンパー、ねじれ型ダンパーなど、任意のダンパーが利用可能であり、主斜材の他端部と他方側の梁との相対移動の向きや移動量などに応じて適宜な型のダンパーを選択すればよい。   According to this configuration, by configuring the damping member with a shear type damper, it is possible to simplify the structure of the damping member itself and the joint structure between the main diagonal member and the beam on the other side. In the present invention, the damping member is not limited to the shear damper, and any damper such as a linear damper, a bending damper, a rotary damper, and a torsion damper can be used. An appropriate type of damper may be selected in accordance with the direction of relative movement between the end portion and the beam on the other side, the amount of movement, and the like.

一方、本発明の建物は、左右の柱と上下の梁とで囲まれた矩形の骨組みと、骨組みに設けられる前記いずれかの補強構造と、を備えたことを特徴とする。   On the other hand, a building according to the present invention includes a rectangular frame surrounded by right and left columns and upper and lower beams, and any one of the reinforcing structures provided on the frame.

このような本発明の建物によれば、前述した補強構造と同様に、減衰部材によるエネルギー吸収効果を高めるとともに、S字形に変形する主斜材によって変形性能を高めることができ、骨組みの水平剛性を抑制して地震動の入力加速度を低減させることができる。従って、建物各部の損傷を低減させるとともに、建物内部における什器、備品、設備等の落下や破損を抑制することができ、建物としての構造性能(耐震性能、耐久性能)を向上させることができる。   According to such a building of the present invention, as in the reinforcing structure described above, the energy absorption effect by the damping member can be enhanced, and the deformation performance can be enhanced by the main diagonal member deformed into an S shape, and the horizontal rigidity of the frame And the input acceleration of seismic motion can be reduced. Therefore, damage to each part of the building can be reduced, and dropping or breakage of fixtures, fixtures, equipment, etc. inside the building can be suppressed, and the structural performance (seismic performance, durability performance) of the building can be improved.

以上の本発明によれば、主斜材に第一接続部材及び第二接続部材接続して主斜材を曲げ材として機能させることで、補強構造の靱性を高めて変形性能を向上させることができるとともに、減衰部材によるエネルギー吸収効果を高めることができ、建物の構造性能を向上させることができる。   According to the present invention described above, the first connecting member and the second connecting member are connected to the main diagonal member and the main diagonal member functions as a bending member, thereby improving the toughness of the reinforcing structure and improving the deformation performance. In addition, the energy absorbing effect of the damping member can be enhanced, and the structural performance of the building can be improved.

本発明の第一実施形態に係る補強構造を用いた架構を示す側面図である。It is a side view which shows the frame using the reinforcement structure which concerns on 1st embodiment of this invention. 前記補強構造の変形例示す側面図である。It is a side view which shows the modification of the said reinforcement structure. 本発明の第二実施形態に係る補強構造を用いた架構を示す側面図である。It is a side view which shows the frame using the reinforcement structure which concerns on 2nd embodiment of this invention. 前記補強構造の変形例示す側面図である。It is a side view which shows the modification of the said reinforcement structure. 本発明の比較例に係る補強構造の応力解析結果を示す図である。It is a figure which shows the stress analysis result of the reinforcement structure which concerns on the comparative example of this invention. 本発明の実施例1の応力解析結果を示す図である。It is a figure which shows the stress analysis result of Example 1 of this invention. 本発明の実施例2の応力解析結果を示す図である。It is a figure which shows the stress analysis result of Example 2 of this invention. 本発明の実施例3の応力解析結果を示す図である。It is a figure which shows the stress analysis result of Example 3 of this invention. 本発明の実施例4の応力解析結果を示す図である。It is a figure which shows the stress analysis result of Example 4 of this invention. 本発明の変形例に係る補強構造を用いた架構を示す側面図である。It is a side view which shows the frame using the reinforcement structure which concerns on the modification of this invention.

以下、本発明の第一実施形態に係る補強構造を用いた建物の骨組みを、図1に基づいて説明する。本実施形態の補強構造1は、例えば、事務所ビルや商業ビル、高層住宅、倉庫等の建物であって、主要構造体として鉄骨造のラーメン構造の骨組みSを有した建物に適用されるものである。骨組みSは、複数の柱Cと、左右の柱Cに亘って剛接された梁Gと、を有し、左右一対の柱Cと上下一対の梁G(下階の梁G1及び上階の梁G2)とで囲まれた矩形枠Wを有して構成されている。補強構造1は、骨組みSの矩形枠W内に設けられ、建物に作用する水平力(地震荷重や風荷重)を主に負担するものであって、建物の平面内及び立面内における複数個所にバランスよく設けられている。   Hereinafter, the framework of a building using the reinforcing structure according to the first embodiment of the present invention will be described with reference to FIG. The reinforcing structure 1 of the present embodiment is applied to a building having a framework S of a steel-framed ramen structure as a main structure, for example, a building such as an office building, a commercial building, a high-rise house, or a warehouse. It is. The framework S includes a plurality of columns C and beams G rigidly connected across the left and right columns C, and a pair of left and right columns C and a pair of upper and lower beams G (the lower-level beam G1 and the upper-level beam G). It has a rectangular frame W surrounded by the beam G2). The reinforcing structure 1 is provided in a rectangular frame W of the framework S and mainly bears horizontal force (earthquake load or wind load) acting on the building. Is well-balanced.

柱Cは、角型鋼管で構成され、例えば、350mmx350mmx12mmの断面寸法を有して形成されている。梁Gは、H形鋼で構成され、例えば、400mmx200mmx8mmx13mmの断面寸法を有して形成されている。これらの柱Cと梁Gとは、柱Cと同サイズの角型鋼管にダイヤフラムを溶接して箱型に形成された接合部Jで互いに剛に接合されている。即ち、骨組みSのうち1スパン×1層の部分において、接合部Jは、矩形枠Wの上下左右の四箇所に設けられ、下階の梁G1が接合される下階左右の接合部J1と、上階の梁G2が接合される上階左右の接合部J2と、で構成されている。   The column C is formed of a square steel pipe and has a cross-sectional dimension of 350 mm × 350 mm × 12 mm, for example. The beam G is made of H-shaped steel and has a cross-sectional dimension of 400 mm × 200 mm × 8 mm × 13 mm, for example. These columns C and beams G are rigidly joined to each other at a joint J formed in a box shape by welding a diaphragm to a square steel pipe having the same size as the column C. That is, in the portion of 1 span × 1 layer in the framework S, the joint portions J are provided at four locations on the upper, lower, left and right sides of the rectangular frame W, and the lower floor left and right joint portions J1 to which the lower floor beams G1 are joined. The upper floor beam G2 is joined to the upper floor left and right joints J2.

補強構造1は、全体山型に形成された主補強体2と、この主補強体2と骨組みSとに連結された減衰部材としてのダンパー3と、主補強体2と骨組みSとを接続する複数の接続部材4,5(第一接続部材4及び第二接続部材5)と、を備えて構成されている。   The reinforcing structure 1 connects a main reinforcing body 2 formed in an overall mountain shape, a damper 3 as a damping member connected to the main reinforcing body 2 and the framework S, and the main reinforcing body 2 and the framework S. And a plurality of connecting members 4 and 5 (first connecting member 4 and second connecting member 5).

主補強体2は、下階(上下の一方側)左右の接合部J1近傍にそれぞれ一端部が連結されるとともに、上階(上下の他方側)の梁G2中央部に向かって延びる一対の主斜材21と、これら一対の主斜材21の他端部同士を剛に連結する連結梁22と、を有して構成されている。主斜材21の一端部は、柱Cの下端部及び梁G1の端部に溶接された接合板(ガセットプレート)23にボルト接合され、この接合板23を介して骨組みSに連結されている。主斜材21は、例えば、250mmx125mmのH形鋼で構成され、連結梁22は、例えば、125mmx125mmのH形鋼で構成され、それぞれ矩形枠Wの面内方向に強軸を向けて配置されている。   The main reinforcing body 2 has a pair of main ends extending toward the center of the beam G2 on the upper floor (the other side on the upper and lower sides), with one end connected to the vicinity of the joint J1 on the left and right of the lower floor (the upper and lower sides). The diagonal member 21 and a connecting beam 22 that rigidly connects the other ends of the pair of main diagonal members 21 are configured. One end of the main diagonal 21 is bolted to a joining plate (gusset plate) 23 welded to the lower end of the column C and the end of the beam G1, and is connected to the framework S via the joining plate 23. . The main diagonal 21 is made of, for example, a 250 mm × 125 mm H-shaped steel, and the connecting beam 22 is made of, for example, a 125 mm × 125 mm H-shaped steel, and is arranged with the strong axis directed in the in-plane direction of the rectangular frame W. Yes.

ダンパー3は、連結梁22に固定されるフランジ31と、上階の梁G2中央部に固定されるフランジ32と、これらのフランジ31,32間に設けられる粘弾性体33と、を有して構成されている。このダンパー3は、連結梁22と上階の梁G2との相対移動に応じた減衰力を発揮するものであって、粘弾性体33のせん断変形によってエネルギー吸収を行うせん断型ダンパーである。なお、ダンパー3は、粘弾性体33に限らず、鋼材や鉛等の金属材料を用いたものでもよいし、高減衰ゴムを用いたものでもよいし、粘性体を用いたものでもよい。さらに、ダンパー3は、せん断型ダンパーに限らず、直動型ダンパーや、曲げ型ダンパー、回転型ダンパー、ねじれ型ダンパーなど、任意のダンパーが利用可能である。   The damper 3 includes a flange 31 fixed to the connecting beam 22, a flange 32 fixed to the center portion of the upper floor beam G <b> 2, and a viscoelastic body 33 provided between the flanges 31 and 32. It is configured. The damper 3 exhibits a damping force corresponding to the relative movement between the connecting beam 22 and the upper-level beam G2, and is a shear type damper that absorbs energy by shear deformation of the viscoelastic body 33. The damper 3 is not limited to the viscoelastic body 33 but may be a metal material such as steel or lead, a high damping rubber, or a viscous material. Furthermore, the damper 3 is not limited to the shear damper, and any damper such as a direct acting damper, a bending damper, a rotary damper, a torsion damper, or the like can be used.

一対の第一接続部材4は、それぞれ上階(上下の他方側)左右の接合部J2近傍にそれぞれ一端部が連結されるとともに、他端部が一対の主斜材21の各途中部分である第一接続部21Aに接続された一対の第一副斜材41を有して構成されている。第一副斜材41の一端部は、柱Cの上端部及び梁G2の端部に溶接された接合板(ガセットプレート)42にボルト接合され、この接合板42を介して骨組みSに連結されている。第一副斜材41の他端部は、主斜材21に溶接された接合板(ガセットプレート)43にボルト接合され、この接合板43を介して主斜材21に連結されている。第一副斜材41は、例えば、125mmx125mmのH形鋼で構成され、矩形枠Wの面内方向に強軸を向けて配置されている。   Each of the pair of first connection members 4 is connected to the upper floor (on the other side of the upper and lower floors) of the left and right joints J <b> 2, and the other end is an intermediate portion of the pair of main diagonal members 21. The first sub diagonal member 41 is connected to the first connecting portion 21A. One end of the first sub diagonal member 41 is bolted to a joining plate (gusset plate) 42 welded to the upper end of the column C and the end of the beam G2, and is connected to the framework S via the joining plate 42. ing. The other end of the first sub diagonal member 41 is bolted to a joint plate (gusset plate) 43 welded to the main diagonal member 21, and is connected to the main diagonal member 21 via the joint plate 43. The first subclinical member 41 is made of, for example, 125 mm × 125 mm H-section steel, and is disposed with the strong axis directed in the in-plane direction of the rectangular frame W.

一対の第二接続部材5は、それぞれ下階(上下の一方側)の梁G1中央部にそれぞれ一端部が連結されるとともに、他端部が一対の主斜材21の各途中部分である第二接続部21Bに接続された一対の第二副斜材51を有して構成されている。第二副斜材51の一端部は、梁1中央部に溶接された接合板(ガセットプレート)52にボルト接合され、この接合板52を介して骨組みSに連結されている。第二副斜材51の他端部は、主斜材21に溶接された接合板(ガセットプレート)53にボルト接合され、この接合板53を介して主斜材21に連結されている。第一副斜材41は、例えば、125mmx125mmのH形鋼で構成され、矩形枠Wの面内方向に強軸を向けて配置されている。   Each of the pair of second connection members 5 is connected to the center of the beam G1 on the lower floor (upper and lower sides), and the other end is a middle portion of the pair of main diagonal members 21. A pair of second sub diagonal members 51 connected to the two connecting portions 21B are provided. One end of the second sub-diagonal member 51 is bolted to a joining plate (gusset plate) 52 welded to the central portion of the beam 1, and is connected to the framework S via the joining plate 52. The other end of the second sub-diagonal member 51 is bolted to a joining plate (gusset plate) 53 welded to the main oblique member 21 and connected to the main oblique member 21 via the joining plate 53. The first subclinical member 41 is made of, for example, 125 mm × 125 mm H-section steel, and is disposed with the strong axis directed in the in-plane direction of the rectangular frame W.

主斜材21において、第一副斜材41が接続される第一接続部21Aと、第二副斜材51が接続される第二接続部21Bとは、互いに主斜材21の長手方向(軸方向)に離隔した位置に設けられている。具体的には、本実施形態における第一接続部21Aは、主斜材21の長手方向中央よりも下側(上下の一方側)に設けられ、第二接続部21Bは、主斜材21の長手方向中央よりも上側(上下の他方側)に設けられている。さらに具体的には、第一接続部21Aは、主斜材21の全長を略三等分する二箇所のうちの下側に設けられ、第二接続部21Bは、主斜材21の全長を略三等分する二箇所のうちの上側に設けられている。   In the main diagonal 21, the first connecting part 21 </ b> A to which the first auxiliary diagonal 41 is connected and the second connecting part 21 </ b> B to which the second auxiliary diagonal 51 is connected are mutually in the longitudinal direction of the main diagonal 21 ( It is provided at a position separated in the axial direction. Specifically, the first connection portion 21 </ b> A in the present embodiment is provided on the lower side (upper and lower sides) of the main diagonal 21 and the second connection portion 21 </ b> B is provided on the main diagonal 21. It is provided above the center in the longitudinal direction (the other side above and below). More specifically, the first connection portion 21A is provided on the lower side of two locations that divide the overall length of the main diagonal member 21 into approximately three equal parts, and the second connection portion 21B extends the entire length of the main diagonal member 21. It is provided on the upper side of two places that are divided into approximately three equal parts.

以上の補強構造1によれば、主斜材21の長手方向に沿った二箇所である第一接続部21A及び第二接続部21Bにそれぞれ第一副斜材41及び第二副斜材51が接続されているので、骨組みS(建物)に水平力が作用した場合には、第一副斜材41及び第二副斜材51から主斜材21に逆向きの力が作用し、曲げモーメント及びせん断力が発生し、即ち、主斜材21が曲げせん断部材として機能することとなる。この際、主斜材21は、第一副斜材41及び第二副斜材51から作用する力によってS字形に曲げ変形することにより、軸力のみを負担する軸力材と比較して補強構造1の水平剛性が相対的に低くなる。このような補強構造1では、主斜材21の曲げ変形を利用することで、水平剛性を適切な値に調整しやすくなるとともに、主斜材21の靱性による変形性能を高めることができるようになっている。   According to the reinforcing structure 1 described above, the first auxiliary diagonal material 41 and the second auxiliary diagonal material 51 are respectively provided at the first connecting portion 21A and the second connecting portion 21B that are two locations along the longitudinal direction of the main diagonal material 21. Since they are connected, when a horizontal force is applied to the framework S (building), a reverse force is applied to the main diagonal 21 from the first auxiliary diagonal 41 and the second auxiliary diagonal 51, and a bending moment is applied. As a result, a shearing force is generated, that is, the main diagonal 21 functions as a bending shear member. At this time, the main diagonal member 21 is reinforced in comparison with the axial force member that bears only the axial force by bending and deforming into an S shape by the force acting from the first auxiliary diagonal member 41 and the second auxiliary diagonal member 51. The horizontal rigidity of the structure 1 is relatively low. In such a reinforcing structure 1, by utilizing the bending deformation of the main diagonal member 21, the horizontal rigidity can be easily adjusted to an appropriate value, and the deformation performance due to the toughness of the main diagonal member 21 can be enhanced. It has become.

さらに、主斜材21の他端部と上階の梁G2中央部との間にダンパー3が連結されており、骨組みS(建物)に水平力が作用した場合には、連結梁22と梁G2との間に相対移動が生じることになり、この移動に応じてダンパー3の粘弾性体33がせん断変形し、これによりエネルギー吸収が行われる。この際、主斜材21がS字形に曲げ変形することから、その曲げ剛性を適宜に設定したり、第一副斜材41及び第二副斜材51の軸剛性を適宜に設定したりすることにより、主斜材21の他端部の移動、即ち粘弾性体33の変形量が調整できるようになっている。従って、主斜材21の軸剛性(断面積)を過度に大きくしなくても、主斜材21の曲げ変形を利用して粘弾性体33のせん断変形量(エネルギー吸収量)を確保することができる。   Furthermore, when the damper 3 is connected between the other end of the main diagonal 21 and the central part of the beam G2 on the upper floor, and a horizontal force acts on the framework S (building), the connecting beam 22 and the beam Relative movement occurs with G2, and in accordance with this movement, the viscoelastic body 33 of the damper 3 undergoes shear deformation, thereby absorbing energy. At this time, since the main diagonal 21 is bent and deformed into an S-shape, the bending rigidity is appropriately set, and the axial rigidity of the first auxiliary diagonal 41 and the second auxiliary diagonal 51 is appropriately set. Thus, the movement of the other end portion of the main diagonal member 21, that is, the deformation amount of the viscoelastic body 33 can be adjusted. Therefore, the shear deformation amount (energy absorption amount) of the viscoelastic body 33 is ensured by utilizing the bending deformation of the main diagonal member 21 without excessively increasing the axial rigidity (cross-sectional area) of the main diagonal member 21. Can do.

なお、本第一実施形態において、補強構造1としては、図1に示す形態に限らず、図2に変形例として示す形態も採用することができる。図2において、補強構造1は、前述したのと同様の主補強体2、ダンパー3、第一接続部材4及び第二接続部材5に加え、第三接続部材6及び第四接続部材7を備えて構成されている。   In the first embodiment, the reinforcing structure 1 is not limited to the form shown in FIG. 1, and a form shown as a modified example in FIG. 2 can also be adopted. In FIG. 2, the reinforcing structure 1 includes a third connecting member 6 and a fourth connecting member 7 in addition to the main reinforcing body 2, the damper 3, the first connecting member 4 and the second connecting member 5 similar to those described above. Configured.

第三接続部材6は、第一副斜材41の途中部分に一端部が接続されるとともに、他端部が主斜材21の第二接続部21Bに接続されている。この第三接続部材6は、例えば、125mmx125mmのH形鋼で構成され、矩形枠Wの面内方向に強軸を向けて配置されている。第四接続部材7は、第二副斜材42の途中部分に一端部が接続されるとともに、他端部が主斜材21の第一接続部21Aに接続されている。この第四接続部材7は、例えば、125mmx125mmのH形鋼で構成され、矩形枠Wの面内方向に強軸を向けて配置されている。   One end of the third connecting member 6 is connected to the middle portion of the first sub diagonal member 41, and the other end is connected to the second connecting portion 21 </ b> B of the main diagonal member 21. The third connecting member 6 is made of, for example, 125 mm × 125 mm H-section steel, and is arranged with the strong axis directed in the in-plane direction of the rectangular frame W. The fourth connecting member 7 has one end connected to the middle portion of the second sub diagonal 42 and the other end connected to the first connecting portion 21 </ b> A of the main diagonal 21. The fourth connection member 7 is made of, for example, 125 mm × 125 mm H-section steel, and is arranged with the strong axis directed in the in-plane direction of the rectangular frame W.

このような第一実施形態の変形例に係る補強構造1によれば、その水平剛性を高める方向に調整することができるとともに、第一副斜材41の途中部分に第三接続部材6が接続され、第二副斜材51の途中部分に第四接続部材7が接続されていることで、第一副斜材41及び第二副斜材51に曲げモーメントを生じさせて、これらの部材を曲げ材として機能させることによって靱性をさらに高め、補強構造1の剛性を高めつつ変形性能を向上させることができるようになっている。   According to the reinforcing structure 1 according to the modification of the first embodiment as described above, the third connecting member 6 can be connected to the middle portion of the first sub-diagonal member 41 while the horizontal rigidity can be adjusted. Since the fourth connecting member 7 is connected to the middle portion of the second sub-diagonal material 51, a bending moment is generated in the first sub-diagonal material 41 and the second sub-diagonal material 51, and these members are By functioning as a bending material, the toughness can be further improved, and the deformation performance can be improved while increasing the rigidity of the reinforcing structure 1.

以下、本発明の第二実施形態に係る補強構造を用いた建物の骨組みを、図3に基づいて説明する。本実施形態の補強構造1Aは、前記第一実施形態の補強構造1と比較して、接続部材4,5(第一接続部材4及び第二接続部材5)の構成が相違している。以下、相違点を詳しく説明する。なお、第一実施形態と同一又は共通の構成については、同一の符号を付し、その説明を省略又は簡略することがある。   Hereinafter, the framework of a building using the reinforcing structure according to the second embodiment of the present invention will be described with reference to FIG. The reinforcing structure 1A of the present embodiment is different in the configuration of the connecting members 4 and 5 (the first connecting member 4 and the second connecting member 5) from the reinforcing structure 1 of the first embodiment. Hereinafter, the differences will be described in detail. In addition, about the same or common structure as 1st embodiment, the same code | symbol may be attached | subjected and the description may be abbreviate | omitted or simplified.

補強構造1Aにおいて、第一接続部材4の第一副斜材41の他端部が主斜材21に接続される第一接続部21Aは、主斜材21の長手方向中央よりも上側(上下の他方側)に設けられ、第二接続部材5の第二副斜材51の他端部が主斜材21に接続される第二接続部21Bは、主斜材21の長手方向中央よりも下側(上下の一方側)に設けられている。具体的には、本実施形態における第一接続部21Aは、主斜材21の全長を略三等分する二箇所のうちの上側に設けられ、第二接続部21Bは、主斜材21の全長を略三等分する二箇所のうちの下側に設けられている。   In the reinforcing structure 1 </ b> A, the first connecting portion 21 </ b> A in which the other end portion of the first auxiliary diagonal member 41 of the first connecting member 4 is connected to the main diagonal member 21 is above the center in the longitudinal direction of the main diagonal member 21 (up and down The second connection portion 21B provided on the other side of the second connecting member 5 is connected to the main diagonal member 21 at the other end of the second sub diagonal member 51 from the center in the longitudinal direction of the main diagonal member 21. It is provided on the lower side (upper and lower one side). Specifically, the first connection portion 21 </ b> A in the present embodiment is provided on the upper side of two locations that divide the entire length of the main diagonal member 21 into approximately three equal parts, and the second connection portion 21 </ b> B is provided on the main diagonal member 21. It is provided on the lower side of two places that divide the entire length into approximately three equal parts.

また、補強構造1Aのダンパー3は、連結梁22と上階の梁G2との相対移動として特にロッキング変位に応じた減衰力を発揮するものであって、ロッキング変位によって粘弾性体33にせん断変形が生じるような構成となっている。即ち、本実施形態におけるダンパー3は、ロッキング変位によってエネルギー吸収を行う曲げ型ダンパーが好適である。なお、本実施形態においてもダンパー3は、粘弾性体33に限らず、鋼材や鉛等の金属材料を用いたものでもよいし、高減衰ゴムを用いたものでもよいし、粘性体を用いたものでもよい。さらに、ダンパー3は、曲げ型ダンパーに限らず、せん断型ダンパーや、直動型ダンパー、回転型ダンパー、ねじれ型ダンパーなど、任意のダンパーが利用可能であり、ダンパー種別に応じて適宜なリンク機構を有して構成されていてもよい。   Further, the damper 3 of the reinforcing structure 1A exhibits a damping force corresponding to the rocking displacement particularly as a relative movement between the connecting beam 22 and the upper beam G2, and the shear deformation is caused to the viscoelastic body 33 by the rocking displacement. Is configured to occur. In other words, the damper 3 in the present embodiment is preferably a bending damper that absorbs energy by rocking displacement. In the present embodiment, the damper 3 is not limited to the viscoelastic body 33 but may be a metal material such as steel or lead, a high damping rubber, or a viscous material. It may be a thing. Furthermore, the damper 3 is not limited to a bending type damper, and any damper such as a shear type damper, a direct acting type damper, a rotary type damper, a torsion type damper can be used, and an appropriate link mechanism according to the type of the damper. May be configured.

以上の補強構造1Aによっても前記補強構造1と同様に、骨組みS(建物)に水平力が作用した場合には、第一副斜材41及び第二副斜材51から主斜材21に逆向きの力が作用することで、主斜材21がS字形に曲げ変形することにより、補強構造1Aの水平剛性を相対的に低下させることができる。このように主斜材21の曲げ変形を利用することで、水平剛性を適切な値に調整しやすくなるとともに、主斜材21の靱性による変形性能を高めることができるようになっている。さらに、主斜材21の他端部と上階の梁G2中央部との間に生じるロッキング変位によってダンパー3の粘弾性体33によるエネルギー吸収が行われる。この際、主斜材21の曲げ剛性や、第一副斜材41及び第二副斜材51の軸剛性を適宜に設定することで、粘弾性体33の変形量が調整でき、主斜材21の曲げ変形を利用して粘弾性体33のエネルギー吸収量を確保することができる。   Similarly to the reinforcing structure 1, the above reinforcing structure 1 </ b> A reverses from the first sub diagonal material 41 and the second sub diagonal material 51 to the main diagonal material 21 when a horizontal force is applied to the framework S (building). When the direction force acts, the main diagonal 21 is bent and deformed into an S shape, so that the horizontal rigidity of the reinforcing structure 1A can be relatively lowered. By utilizing the bending deformation of the main diagonal member 21 in this way, the horizontal rigidity can be easily adjusted to an appropriate value, and the deformation performance due to the toughness of the main diagonal member 21 can be enhanced. Furthermore, energy absorption by the viscoelastic body 33 of the damper 3 is performed by a rocking displacement generated between the other end portion of the main diagonal member 21 and the central portion of the beam G2 on the upper floor. At this time, the amount of deformation of the viscoelastic body 33 can be adjusted by appropriately setting the bending rigidity of the main diagonal member 21 and the axial rigidity of the first auxiliary diagonal member 41 and the second auxiliary diagonal member 51. The amount of energy absorption of the viscoelastic body 33 can be secured by utilizing the bending deformation of 21.

なお、本第二実施形態において、補強構造1Aとしては、図3に示す形態に限らず、図4に変形例として示す形態も採用することができる。図4において、補強構造1Aは、前述したのと同様の主補強体2、ダンパー3、第一接続部材4及び第二接続部材5に加え、第三接続部材6及び第四接続部材7を備えて構成されている。第三接続部材6は、第一副斜材41の途中部分と主斜材21の第二接続部21Bとに接続され、上下に延びて設けられている。第四接続部材7は、第二副斜材42の途中部分と主斜材21の第一接続部21Aとに接続され、第三接続部材6と略平行に設けられている。   In the second embodiment, the reinforcing structure 1A is not limited to the form shown in FIG. 3, and a form shown as a modification in FIG. 4 can also be adopted. In FIG. 4, the reinforcing structure 1 </ b> A includes a third connecting member 6 and a fourth connecting member 7 in addition to the main reinforcing body 2, the damper 3, the first connecting member 4 and the second connecting member 5 similar to those described above. Configured. The third connecting member 6 is connected to the middle portion of the first sub diagonal member 41 and the second connecting portion 21B of the main diagonal member 21, and is provided extending vertically. The fourth connecting member 7 is connected to the middle portion of the second sub diagonal member 42 and the first connecting portion 21 </ b> A of the main diagonal member 21, and is provided substantially parallel to the third connecting member 6.

このような第二実施形態の変形例に係る補強構造1Aによれば、その水平剛性を高める方向に調整することができるとともに、第一副斜材41の途中部分に第三接続部材6が接続され、第二副斜材51の途中部分に第四接続部材7が接続されていることで、第一副斜材41及び第二副斜材51に曲げモーメントを生じさせて、これらの部材を曲げ材として機能させることによって靱性をさらに高め、補強構造1の剛性を高めつつ変形性能を向上させることができるようになっている。   According to the reinforcing structure 1A according to the modified example of the second embodiment as described above, the third connecting member 6 can be connected to the middle portion of the first auxiliary diagonal member 41 while the horizontal rigidity can be adjusted in the direction of increasing. Since the fourth connecting member 7 is connected to the middle portion of the second sub-diagonal material 51, a bending moment is generated in the first sub-diagonal material 41 and the second sub-diagonal material 51, and these members are By functioning as a bending material, the toughness can be further improved, and the deformation performance can be improved while increasing the rigidity of the reinforcing structure 1.

以上の実施形態によれば、補強構造1,1Aにおける主斜材21の断面積を過度に大きくしなくても、ダンパー3の粘弾性体33によるエネルギー吸収性能を得ることができるので、主斜材21の材料コストを抑制することができ、主斜材21を骨組みSに接合するための構造を簡単化することができる。また、主斜材21を曲げ変形させることで変形性能を高めつつ、補強構造1を含んだ骨組みS全体としての水平剛性を抑制することができ、地震動の入力加速度を低減させることができる。さらに、主斜材21の曲げ変形を利用してダンパー3の粘弾性体33によるエネルギー吸収効果を高めることで、建物の振動を低減させるとともに建物各部の損傷を抑制することができ、建物の構造性能を向上させることができる。   According to the above embodiment, the energy absorption performance by the viscoelastic body 33 of the damper 3 can be obtained without excessively increasing the cross-sectional area of the main diagonal member 21 in the reinforcing structures 1 and 1A. The material cost of the material 21 can be suppressed, and the structure for joining the main diagonal 21 to the framework S can be simplified. Further, by bending and deforming the main diagonal member 21, the horizontal rigidity of the entire frame S including the reinforcing structure 1 can be suppressed while improving the deformation performance, and the input acceleration of seismic motion can be reduced. Furthermore, by enhancing the energy absorption effect by the viscoelastic body 33 of the damper 3 using the bending deformation of the main diagonal member 21, the vibration of the building can be reduced and the damage of each part of the building can be suppressed. Performance can be improved.

以下、本発明の実施例として、前記実施形態で説明した骨組みS及び補強構造1,1Aをモデル化した弾性応力解析を行うとともに、比較例として、骨組みSをモデル化した解析と比較する。弾性応力解析は、各部材を線材に置換した二次元フレーム解析であり、ダンパー3を省略して行うものとする。   Hereinafter, as an example of the present invention, an elastic stress analysis that models the framework S and the reinforcing structures 1 and 1A described in the above embodiment is performed, and as a comparative example, the analysis is compared with an analysis that models the framework S. The elastic stress analysis is a two-dimensional frame analysis in which each member is replaced with a wire, and is performed with the damper 3 omitted.

以下の各実施例(実施例1〜4)及び比較例において、骨組みS及び主補強体2の解析モデルは共通である。具体的には、骨組みSとして、左右の柱Cの芯−芯間のスパンは6mとし、上下の梁G1,G2の芯−芯間の階高は3.5mとした。柱Cは、角型鋼管(断面寸法:350x350x12)の剛性を用い、梁Gは、H形鋼(断面寸法:400x200x8x13)の強軸の剛性を用い、これらの柱Cと梁Gの接合部Jは剛接とした。   In each of the following Examples (Examples 1 to 4) and Comparative Examples, the analysis models of the framework S and the main reinforcing body 2 are common. Specifically, as the framework S, the span between the cores of the left and right columns C was 6 m, and the floor height between the cores of the upper and lower beams G1, G2 was 3.5 m. The column C uses the rigidity of a square steel pipe (cross-sectional dimension: 350 × 350 × 12), and the beam G uses the strong-axis rigidity of an H-section steel (cross-sectional dimension: 400 × 200 × 8 × 13), and the joint J between these columns C and the beam G Was rigid.

主補強体2として、主斜材21は、H形鋼(断面寸法:250x125x6x9)の強軸の剛性を用い、連結梁22は、H形鋼(断面寸法:125x125x6.5x9)の強軸の剛性を用い、これらの主斜材21と連結梁22は剛接とし、主斜材21の下端部は骨組みSに対してピン接合とした。また、連結梁22の長さ寸法は600mmとし、この連結梁22と上階の梁G2との芯−芯間距離は500mmとした。   As the main reinforcement 2, the main diagonal 21 uses the strong shaft rigidity of H-shaped steel (cross-sectional dimension: 250 × 125 × 6 × 9), and the connecting beam 22 uses the strong shaft rigidity of H-shaped steel (cross-sectional dimension: 125 × 125 × 6.5 × 9). The main diagonal member 21 and the connecting beam 22 are rigidly connected, and the lower end portion of the main diagonal member 21 is pin-bonded to the framework S. The length of the connecting beam 22 was 600 mm, and the core-to-core distance between the connecting beam 22 and the upper floor beam G2 was 500 mm.

実施例1は、図1に示す前記第一実施形態の補強構造1をモデル化したもので、接続部材4,5として、第一副斜材41及び第二副斜材51は、H形鋼(125x125x6.5x9)の強軸の剛性を用い、各斜材の両端部は骨組みS及び主斜材21に対してピン接合とした。   In Example 1, the reinforcing structure 1 of the first embodiment shown in FIG. 1 is modeled. As the connecting members 4 and 5, the first auxiliary diagonal member 41 and the second auxiliary diagonal member 51 are H-shaped steel. The rigidity of the strong shaft (125 × 125 × 6.5 × 9) was used, and both end portions of each diagonal member were pin-bonded to the framework S and the main diagonal member 21.

実施例2は、図2に示す前記第一実施形態の変形例の補強構造1をモデル化したもので、接続部材4,5としては実施例1と同一であり、第三接続部材6及び第四接続部材7は、H形鋼(125x125x6.5x9)の強軸の剛性を用い、各部材の両端部は主斜材21及び第一副斜材41、第二副斜材51に対してピン接合とした。   Example 2 models the reinforcing structure 1 of the modified example of the first embodiment shown in FIG. 2, and the connection members 4 and 5 are the same as Example 1, and the third connection member 6 and The four connecting members 7 use the strong shaft rigidity of H-shaped steel (125 × 125 × 6.5 × 9), and both ends of each member are pinned with respect to the main diagonal member 21, the first auxiliary diagonal member 41, and the second auxiliary diagonal member 51. Joined.

実施例3は、図3に示す前記第二実施形態の補強構造1Aをモデル化したもので、接続部材4,5として、第一副斜材41及び第二副斜材51は、H形鋼(125x125x6.5x9)の強軸の剛性を用い、各斜材の両端部は骨組みS及び主斜材21に対してピン接合とした。   In Example 3, the reinforcing structure 1A of the second embodiment shown in FIG. 3 is modeled. As the connecting members 4 and 5, the first auxiliary diagonal member 41 and the second auxiliary diagonal member 51 are H-shaped steel. The rigidity of the strong shaft (125 × 125 × 6.5 × 9) was used, and both end portions of each diagonal member were pin-bonded to the framework S and the main diagonal member 21.

実施例4は、図4に示す前記第二実施形態の変形例の補強構造1Aをモデル化したもので、接続部材4,5としては実施例3と同一であり、第三接続部材6及び第四接続部材7は、H形鋼(125x125x6.5x9)の強軸の剛性を用い、各部材の両端部は主斜材21及び第一副斜材41、第二副斜材51に対してピン接合とした。   Example 4 is a model of the reinforcing structure 1A of the modified example of the second embodiment shown in FIG. 4. The connection members 4 and 5 are the same as those of Example 3, and the third connection member 6 and the first connection member 6 are the same. The four connecting members 7 use the strong shaft rigidity of H-shaped steel (125 × 125 × 6.5 × 9), and both ends of each member are pinned with respect to the main diagonal member 21, the first auxiliary diagonal member 41, and the second auxiliary diagonal member 51. Joined.

解析条件は、下階の接合部J1位置の節点を支点とし、上階の接合部J2及び梁G2の各節点を剛床とするとともに、上階の節点の水平変位が各実施例(実施例1〜4)及び比較例で同一となるように水平荷重を加えることとした。この水平変位は、例えば100mmであり、階高に対する層間変形角として1/35の大変形状態を想定した。   The analysis condition is that the node at the joint J1 position on the lower floor is a fulcrum, each node of the joint J2 and the beam G2 on the upper floor is a rigid floor, and the horizontal displacement of the node on the upper floor is each example (Example) 1-4) and a horizontal load were applied so as to be the same in the comparative example. This horizontal displacement is, for example, 100 mm, and a large deformation state of 1/35 is assumed as the interlayer deformation angle with respect to the floor height.

図5〜図9に応力解析結果を示す。図5は、比較例の解析結果を示す図であり、図6〜9は、実施例1〜4の解析結果を示す図である。各図において、(A)はモーメント図であり、(B)は変位図である。また、各図(A)のモーメント図において、MC1は柱Cの柱脚部モーメントであり、MC2は柱Cの柱頭部モーメントであり、MG1は下階の梁G1の端部モーメントであり、MG2は上階の梁G2の端部モーメントである。   5 to 9 show the stress analysis results. FIG. 5 is a diagram illustrating the analysis results of the comparative example, and FIGS. 6 to 9 are diagrams illustrating the analysis results of Examples 1-4. In each figure, (A) is a moment diagram, and (B) is a displacement diagram. In the moment diagram of each figure (A), MC1 is the column base moment of the column C, MC2 is the column head moment of the column C, MG1 is the end moment of the beam G1 on the lower floor, MG2 Is the end moment of the beam G2 on the upper floor.

また、図6〜9の各(A)のモーメント図において、MB1は主斜材21の第一接続部21Aに発生する曲げモーメントであり、MB2は主斜材21の第二接続部21Bに発生する曲げモーメントである。さらに、図7及び図9において、MV1は第一副斜材41における第三接続部材6の接続部に発生する曲げモーメントであり、MV2は第二副斜材51における第四接続部材7の接続部に発生する曲げモーメントである。   6-9, MB1 is a bending moment generated at the first connecting portion 21A of the main diagonal 21 and MB2 is generated at the second connecting portion 21B of the main diagonal 21. Bending moment to be. Further, in FIGS. 7 and 9, MV 1 is a bending moment generated at the connecting portion of the third connecting member 6 in the first sub diagonal material 41, and MV 2 is a connection of the fourth connecting member 7 in the second sub diagonal material 51. This is the bending moment generated in the part.

また、各図(B)の変位図において、D1は上階の水平変位であり、DX1及びDY1は、一方(図中左側)の主斜材21の上端部(他端部)の水平変位及び鉛直変位であり、DX2及びDY2は、他方(図中右側)の主斜材21の上端部(他端部)の水平変位及び鉛直変位である。なお、上階の水平変位D1は、前述の解析条件のように、各実施例(実施例1〜4)及び比較例で同一の100mmに設定されている。   Further, in the displacement diagram of each figure (B), D1 is the horizontal displacement of the upper floor, and DX1 and DY1 are the horizontal displacement of the upper end portion (the other end portion) of one (left side in the drawing) of the main diagonal member 21 and It is a vertical displacement, and DX2 and DY2 are the horizontal displacement and the vertical displacement of the upper end portion (the other end portion) of the other (right side in the drawing) main diagonal member 21. Note that the horizontal displacement D1 of the upper floor is set to the same 100 mm in each of the examples (Examples 1 to 4) and the comparative example as in the analysis conditions described above.

応力解析結果としては、上階の水平変位D1を同一の100mmに設定したことから、各実施例(実施例1〜4)及び比較例における水平荷重が以下のようになった。比較例の水平荷重は1060kN、実施例1の水平荷重は1713kN、実施例2の水平荷重は2057kN、実施例3の水平荷重は3143kN、実施例4の水平荷重は3482kNであった。即ち、比較例に対し、補強構造1を設置した実施例1では1.62倍の水平剛性となり、補強構造1Aを設置した実施例3では2.97倍の水平剛性となった。また、実施例1に対して実施例2では、1.20倍の水平剛性となり、実施例3に対して実施例4では、1.12倍の水平剛性となった。   As a stress analysis result, since the horizontal displacement D1 of the upper floor was set to the same 100 mm, the horizontal load in each Example (Examples 1-4) and the comparative example became as follows. The horizontal load of the comparative example was 1060 kN, the horizontal load of Example 1 was 1713 kN, the horizontal load of Example 2 was 2057 kN, the horizontal load of Example 3 was 3143 kN, and the horizontal load of Example 4 was 3482 kN. That is, compared to the comparative example, the horizontal rigidity of 1.62 was obtained in Example 1 in which the reinforcing structure 1 was installed, and the horizontal rigidity was 2.97 times in Example 3 in which the reinforcing structure 1A was installed. Further, in Example 2, the horizontal rigidity was 1.20 times that in Example 1, and in Example 4, the horizontal rigidity was 1.12 times that in Example 3.

また、各部の曲げモーメントとして、骨組みSに生じる曲げモーメントMC1,MC2,MG1,MG2は、水平変位が同一であるため、各実施例(実施例1〜4)及び比較例で大きな差異はない。また、実施例1,2において、主斜材21の第一接続部21A及び第二接続部21Bに発生する曲げモーメントMB1,MB2は、実施例1よりも実施例2の方が若干小さくなった。これと同様に、実施例3,4において、曲げモーメントMB1,MB2は、実施例3よりも実施例4の方が若干小さくなった。一方、実施例1,3において、曲げモーメントMB1,MB2は、実施例1よりも実施例3の方が1.6倍〜2.2倍程度大きくなった。また、実施例2,4において、第一副斜材41に発生する曲げモーメントMV1、及び第二副斜材51に発生する曲げモーメントMV2は、いずれも比較的小さな値となった。   In addition, as bending moments MC1, MC2, MG1, and MG2 generated in the framework S as bending moments of each part, the horizontal displacement is the same, so there is no significant difference between each of the examples (Examples 1 to 4) and the comparative example. Further, in Examples 1 and 2, the bending moments MB1 and MB2 generated in the first connection part 21A and the second connection part 21B of the main diagonal 21 are slightly smaller in Example 2 than in Example 1. . Similarly, in Examples 3 and 4, bending moments MB1 and MB2 were slightly smaller in Example 4 than in Example 3. On the other hand, in Examples 1 and 3, the bending moments MB1 and MB2 were about 1.6 to 2.2 times larger in Example 3 than in Example 1. In Examples 2 and 4, the bending moment MV1 generated in the first auxiliary diagonal material 41 and the bending moment MV2 generated in the second auxiliary diagonal material 51 were both relatively small values.

実施例1,2において、主斜材21の上端部の水平変位DX1,DX2は、−1.0mm〜−2.5mm程度となっており、一方の主斜材21における上端部の鉛直変位DY1は、1.0mm程度となり、他方の主斜材21における上端部の鉛直変位DY2は、−3.6mm〜−3.7mmとなっている。即ち、実施例1,2においては、主斜材21の上端部はほとんど移動しておらず、上階の水平変位D1が100mmであることから、主斜材21の上端部と上階の梁G2との相対移動量は、水平変位D1(100mm)と同等になる。また、一方及び他方の主斜材21における上端部の鉛直変位DY1,DY2は、連結梁22の回転変位であり、鉛直変位DY1,DY2を連結梁22の長さ(600mm)で除した変位角は、8/1000(=1/125)程度の微小な値である。   In Examples 1 and 2, the horizontal displacements DX1 and DX2 of the upper end portion of the main diagonal member 21 are about −1.0 mm to −2.5 mm, and the vertical displacement DY1 of the upper end portion of the one main diagonal member 21 is about. Is about 1.0 mm, and the vertical displacement DY2 of the upper end portion of the other main diagonal 21 is -3.6 mm to -3.7 mm. That is, in the first and second embodiments, the upper end of the main diagonal 21 is hardly moved and the horizontal displacement D1 of the upper floor is 100 mm. The amount of relative movement with G2 is equivalent to the horizontal displacement D1 (100 mm). Further, the vertical displacements DY1 and DY2 of the upper end portions of the one and the other main diagonal members 21 are rotational displacements of the connecting beam 22, and a displacement angle obtained by dividing the vertical displacements DY1 and DY2 by the length (600mm) of the connecting beam 22. Is a minute value of about 8/1000 (= 1/125).

一方、実施例3,4において、主斜材21の上端部の水平変位DX1,DX2は、28mm程度となっており、一方の主斜材21における上端部の鉛直変位DY1は、−23mm程度となり、他方の主斜材21における上端部の鉛直変位DY2は、18mm程度となっている。即ち、実施例3,4においては、主斜材21の上端部と上階の梁G2との相対移動量は、水平変位D1(100mm)から水平変位DX1,DX2を差し引いた72mm程度になる。また、一方及び他方の主斜材21における上端部の鉛直変位DY1,DY2を連結梁22の長さで除した変位角は、−67/1000(=−1/15)程度の値になり、上階の水平変位D1とは逆向きのロッキングが連結梁22に生じている。   On the other hand, in Examples 3 and 4, the horizontal displacements DX1 and DX2 of the upper end portion of the main diagonal member 21 are about 28 mm, and the vertical displacement DY1 of the upper end portion of one main diagonal member 21 is about -23 mm. The vertical displacement DY2 of the upper end portion of the other main diagonal 21 is about 18 mm. That is, in Examples 3 and 4, the relative displacement between the upper end of the main diagonal 21 and the upper beam G2 is about 72 mm obtained by subtracting the horizontal displacements DX1 and DX2 from the horizontal displacement D1 (100 mm). The displacement angle obtained by dividing the vertical displacements DY1, DY2 of the upper end portions of the one and the other main diagonal members 21 by the length of the connecting beam 22 is a value of about −67/1000 (= −1 / 15). The connecting beam 22 is rocked in the opposite direction to the horizontal displacement D1 on the upper floor.

以上の実施例によれば、骨組みSの水平剛性に対して、実施例1,2では1.6倍から2倍程度の剛性増大に収まっており、実施例3,4でも3倍から3.3倍程度の剛性増大であり、補強構造1,1Aを設置することによる剛性の増大率は設計可能な範囲である。即ち、主斜材21を曲げ変形させることで、設計可能な範囲に剛性の増大を収めることができることが判明した。また、第三接続部材6及び第四接続部材7を用いた実施例2,4では、それぞれ実施例1,3に対して1.1倍から1.2倍の剛性増大が確認され、第三接続部材6及び第四接続部材7による剛性調整が可能であることが判明した。さらに、第三接続部材6及び第四接続部材7を設けることで、主斜材21に発生する曲げモーメントMB1,MB2が小さくなり、応力が分散されることが確認できた。   According to the above-described embodiment, the horizontal rigidity of the framework S is within 1.6 to 2 times the rigidity increase in Embodiments 1 and 2, and 3 to 3 in Embodiments 3 and 4. The rigidity increase is about three times, and the increase rate of rigidity by installing the reinforcing structures 1 and 1A is within a designable range. That is, it has been found that the bending of the main diagonal member 21 can increase the rigidity within a designable range. Further, in Examples 2 and 4 using the third connecting member 6 and the fourth connecting member 7, an increase in rigidity of 1.1 to 1.2 times with respect to Examples 1 and 3 was confirmed, respectively. It has been found that the rigidity adjustment by the connecting member 6 and the fourth connecting member 7 is possible. Furthermore, it was confirmed that by providing the third connecting member 6 and the fourth connecting member 7, the bending moments MB <b> 1 and MB <b> 2 generated in the main diagonal member 21 are reduced and the stress is dispersed.

また、実施例1,2では、主斜材21の上端部にほとんど水平変位が生じず、連結梁22の変位角が微小な値であることから、上階の水平変位D1が主斜材21の上端部との相対移動量となり、この相対移動量がダンパー3に生じるせん断変形量となることが判明した。従って、実施例1,2では、せん断型ダンパーを用いることで、ダンパー3を効果的に作動させて高いエネルギー吸収効率が得られることが判明した。一方、実施例3,4では、主斜材21の上端部に水平変位が生じるものの、連結梁22の変位角が上階の水平変位D1と逆向きに生じることから、ロッキングによる相対移動がダンパー3に生じることが判明した。従って、実施例3,4では、曲げ型ダンパーを用いることで、ダンパー3のエネルギー吸収効率を高められることが判明した。   Further, in Examples 1 and 2, since the horizontal displacement hardly occurs at the upper end portion of the main diagonal member 21 and the displacement angle of the connecting beam 22 is a minute value, the horizontal displacement D1 of the upper floor is the main diagonal material 21. It has been found that the amount of relative movement with respect to the upper end of each of the two is the amount of shear deformation that occurs in the damper 3. Therefore, in Examples 1 and 2, it was found that by using the shear damper, the damper 3 can be effectively operated to obtain high energy absorption efficiency. On the other hand, in Examples 3 and 4, although the horizontal displacement occurs at the upper end portion of the main diagonal member 21, the displacement angle of the connecting beam 22 occurs in the direction opposite to the horizontal displacement D1 of the upper floor, so that the relative movement due to locking is a damper. 3 was found to occur. Therefore, in Examples 3 and 4, it was found that the energy absorption efficiency of the damper 3 can be increased by using the bending damper.

なお、前述した実施形態は本発明の代表的な形態を示したに過ぎず、本発明は、実施形態に限定されるものではない。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。   In addition, embodiment mentioned above only showed the typical form of this invention, and this invention is not limited to embodiment. That is, various modifications can be made without departing from the scope of the present invention.

例えば、前記実施形態では、柱C、梁Gが鉄骨造の骨組みSに補強構造1,1Aを設けたが、骨組みSは、鉄骨造に限らず、鉄筋コンクリート造であってもよいし、鉄骨鉄筋コンクリート造、木造(軸組構造、枠組み壁構造、大断面集成材ラーメン構造)等であってもよい。また、本発明の補強構造1,1Aは、事務所ビルや商業ビル、高層住宅等の比較的高層の建物に限らず、低層の住宅や倉庫、校舎などにも適用可能である。さらに、本発明の補強構造1,1Aは、新築の建物の施工時に骨組みに組み込まれてもよいし、既存の建物に対して後から取り付けられる耐震補強としても利用可能である。耐震補強として利用される場合には、補強構造1,1Aを骨組みSの内部に設けてもよいし、骨組みSの外部に設けてもよい。   For example, in the above embodiment, the columns C and the beams G are provided with the reinforcing structures 1 and 1A on the steel frame S. However, the frame S is not limited to the steel frame but may be reinforced concrete or steel reinforced concrete. Or a wooden structure (frame structure, frame wall structure, large cross-section laminated wood ramen structure), or the like. Further, the reinforcing structures 1 and 1A of the present invention are not limited to relatively high-rise buildings such as office buildings, commercial buildings, and high-rise houses, but can be applied to low-rise houses, warehouses, school buildings, and the like. Furthermore, the reinforcing structures 1 and 1A of the present invention may be incorporated into a framework when constructing a new building, or can be used as seismic reinforcement to be attached later to an existing building. When used as earthquake-proof reinforcement, the reinforcing structures 1 and 1A may be provided inside the framework S or outside the framework S.

また、前記実施形態では、補強構造1,1Aの主補強体2及び第一〜第四接続部材4,5,6,7を鉄骨製としたが、これに限らず、各部材を木製や竹製としてもよいし、鉄骨製や木製、竹製の部材を適宜に組み合わせてもよい。また、前記実施形態では、主補強体2が山型に形成され、その主斜材21の一端部が下階の接合部J1近傍に接続され、他端部が上階の梁G2中央部に向かって延びて設けられていたが、これに限らず、主斜材21の一端部が上階の接合部J2近傍に接続され、他端部が下階の梁G1中央部に向かって延びて設けられていてもよい。この場合には、主斜材21の他端部と下階の梁G1中央部との間に減衰部材(ダンパー3)が接続されていればよい。   Moreover, in the said embodiment, although the main reinforcement body 2 of the reinforcement structures 1 and 1A and the 1st-4th connection members 4,5,6,7 were made from steel, not only this but each member was made of wood or bamboo It is good also as a product, You may combine the members made from steel, wooden, and bamboo suitably. Moreover, in the said embodiment, the main reinforcement 2 is formed in the mountain shape, the one end part of the main diagonal 21 is connected to the junction part J1 vicinity of a lower floor, and the other end part is the beam G2 center part of an upper floor. However, the present invention is not limited to this. One end of the main diagonal member 21 is connected to the vicinity of the joint J2 on the upper floor, and the other end extends toward the center of the beam G1 on the lower floor. It may be provided. In this case, a damping member (damper 3) may be connected between the other end portion of the main diagonal 21 and the central portion of the beam G1 on the lower floor.

図10には、二階〜三階建ての比較的小規模な戸建て住宅等に供される木造建物であり、大断面集成材ラーメン構造の骨組みSに補強構造1を適用した例が示されている。この骨組みSは、例えば、柱Cが350mm角の集成材で構成され、下階の梁G1(土台)が基礎F上に設けられ、上階の梁G2が200mmx350mmの集成材で構成されている。柱Cと梁Gとは、接合金物とボルト、ナットを用いて互いに剛に接合されている。補強構造1は、一対の主斜材21と、木材や竹集成材からなる各一対の第一接続部材4(第一副斜材41)及び第二接続部材5(第二副斜材51)と、を備えて構成されている。主斜材21は、例えば、200mm角の木材や竹集成材から構成され、第一副斜材41及び第二副斜材51は、例えば、105mm角の木材や竹集成材から構成されている。   FIG. 10 shows an example in which the reinforcing structure 1 is applied to a framework S of a large-section laminated timber ramen structure, which is a wooden building used for a relatively small detached house having two to three floors. . In this framework S, for example, the pillar C is made of a laminated material having a 350 mm square, the lower floor beam G1 (base) is provided on the foundation F, and the upper floor beam G2 is made of a laminated material of 200 mm × 350 mm. . The column C and the beam G are rigidly joined to each other using a joint hardware, bolts, and nuts. The reinforcing structure 1 includes a pair of main diagonal members 21 and a pair of first connecting members 4 (first auxiliary diagonal members 41) and second connecting members 5 (second auxiliary diagonal members 51) made of wood or bamboo laminated material. And is configured. The main diagonal 21 is made of, for example, 200 mm square wood or bamboo laminated material, and the first auxiliary diagonal 41 and the second auxiliary diagonal 51 are made of, for example, 105 mm square wooden or bamboo laminated wood. .

一対の主斜材21の一端部は、下階左右の接合部J1近傍にそれぞれ接合金物25を介して一端部が連結されている。一対の主斜材21の他端部は、フランジ31に溶接された接合プレート24を介してダンパー3に連結され、接合プレート24から延びる接合板24Aに主斜材21の他端部がボルトにより固定されている。第一副斜材41は、上階左右の接合部J2近傍である柱Cの上端部に接合金物44を介して一端部が連結されるとともに、他端部が主斜材21の途中部分である第一接続部21Aに接合金物45を介して連結されている。第二副斜材51は、下階の梁G1中央部に接合金物54を介して一端部が連結されるとともに、他端部が主斜材21の途中部分である第二接続部21Bに接合金物55を介して連結されている。各接合金物44,45,54,55は、柱C、梁G、主斜材21、副斜材51に対してボルトによって固定されている。   One end portions of the pair of main diagonal members 21 are connected to each other in the vicinity of the joint portion J1 on the left and right sides of the lower floor via the joint hardware 25, respectively. The other end portions of the pair of main diagonal members 21 are connected to the damper 3 via a bonding plate 24 welded to the flange 31, and the other end portion of the main diagonal member 21 is connected to a bonding plate 24 </ b> A extending from the bonding plate 24 by a bolt. It is fixed. The first sub-diagonal member 41 has one end connected to the upper end of the column C in the vicinity of the joint J2 on the left and right of the upper floor via a joint metal 44, and the other end is an intermediate portion of the main diagonal 21. It is connected to a certain first connecting portion 21 </ b> A via a metal joint 45. One end of the second sub-diagonal member 51 is connected to the central portion of the beam G1 on the lower floor via a joint metal 54, and the other end is joined to the second connecting portion 21B that is an intermediate portion of the main diagonal member 21. It is connected via a hardware 55. Each of the metal fittings 44, 45, 54, and 55 is fixed to the column C, the beam G, the main diagonal member 21, and the auxiliary diagonal member 51 by bolts.

また、前記実施形態では、補強構造1,1Aにおいて、主斜材21の全長を略三等分する二箇所のうち、一方に第一接続部21Aが設けられ、他方に第二接続部21Bが設けられていたが、第一接続部21A及び第二接続部21Bは、主斜材21の長手方向に沿って互いに離隔した位置に設けられていればよい。即ち、本発明の補強構造は、主斜材における互いに異なる二箇所に第一接続部材及び第二接続部材が接続され、これらの接続部材によって主斜材をS字形に曲げ変形させることを特徴とするものであり、そのような作用が得られる範囲であれば、第一接続部及び第二接続部の位置は特に限定されない。また、第一接続部材及び第二接続部材としては、前記実施形態で例示した斜材(第一副斜材41及び第二副斜材51)で構成されたものに限らず、鋼板パネルやコンクリートパネルなどの面材、トラス材やラチス材などの組立材で構成されてもよい。   In the embodiment, in the reinforcing structures 1 and 1A, the first connecting portion 21A is provided in one of the two portions that divide the entire length of the main diagonal member 21 into approximately three equal parts, and the second connecting portion 21B is provided in the other. Although provided, 21 A of 1st connection parts and the 2nd connection part 21B should just be provided in the position mutually separated along the longitudinal direction of the main diagonal 21. That is, the reinforcing structure of the present invention is characterized in that the first connecting member and the second connecting member are connected to two different positions in the main diagonal member, and the main diagonal member is bent and deformed into an S shape by these connecting members. If it is a range which can obtain such an effect | action, the position of a 1st connection part and a 2nd connection part will not be specifically limited. Moreover, as a 1st connection member and a 2nd connection member, it is not restricted to what was comprised with the diagonal material (1st sub-diagonal material 41 and 2nd sub-diagonal material 51) illustrated in the said embodiment, A steel plate panel or concrete You may be comprised with assembly materials, such as surface materials, such as a panel, truss material, and a lattice material.

1,1A 補強構造
2 主補強体
3 ダンパー(減衰部材)
4 第一接続部材
5 第二接続部材
6 第三接続部材
7 第四接続部材
21 主斜材
21A 第一接続部
21B 第二接続部
41 第一副斜材
51 第二副斜材
C 柱
G 梁
G1 下階の梁
G2 上階の梁
J 接合部
J1 下階の接合部
J2 上階の接合部
S 骨組み
W 矩形枠
1, 1A Reinforcement structure 2 Main reinforcement 3 Damper (damping member)
4 first connection member 5 second connection member 6 third connection member 7 fourth connection member 21 main diagonal member 21A first connection portion 21B second connection portion 41 first sub diagonal material 51 second sub diagonal material C column G beam G1 Lower floor beam G2 Upper floor beam J Joint J1 Lower floor joint J2 Upper floor joint S Frame W Rectangular frame

Claims (7)

左右の柱と上下の梁とで囲まれた矩形の骨組みに設けられ、該骨組みに作用する水平力を負担する補強構造であって、
前記柱と前記梁とが接合される上下左右四箇所の接合部のうち、上下いずれか一方側における左右の接合部近傍に一端部が連結され、他方側の梁中央部に向かって延びる一対の主斜材と、
前記一対の主斜材の各他端部と前記他方側の梁中央部とに連結され、該主斜材の他端部と該梁中央部との相対移動に応じた減衰力を発揮する減衰部材と、
前記他方側における前記骨組みの一部と前記一対の主斜材の各途中部分とをそれぞれ接続する一対の第一接続部材と、
前記一方側における前記梁の一部と前記一対の主斜材の各途中部分とをそれぞれ接続する一対の第二接続部材と、を備え、
前記主斜材において、前記第一接続部材が接続する第一接続部と、前記第二接続部材が接続する第二接続部とは、該主斜材の長手方向に沿って互いに離隔した位置に設けられていることを特徴とする補強構造。
Provided in a rectangular frame surrounded by left and right columns and upper and lower beams, a reinforcing structure that bears a horizontal force acting on the frame,
Of the four joints at the top, bottom, left, and right where the column and the beam are joined, a pair of ends are connected to the vicinity of the left and right joints on either one of the top and bottom, and extend toward the beam center on the other side The main diagonal,
Attenuation connected to each other end of the pair of main diagonal members and the central portion of the beam on the other side, and exhibiting a damping force according to relative movement between the other end portion of the main diagonal member and the central portion of the beam Members,
A pair of first connection members that respectively connect a part of the framework on the other side and each intermediate portion of the pair of main diagonal members;
A pair of second connection members that respectively connect a part of the beam on the one side and each intermediate portion of the pair of main diagonal members,
In the main diagonal member, the first connection portion to which the first connection member is connected and the second connection portion to which the second connection member is connected are spaced apart from each other along the longitudinal direction of the main diagonal member. A reinforced structure characterized by being provided.
前記第一接続部は、前記主斜材の長手方向中央よりも一方側に設けられ、前記第二接続部は、前記主斜材の長手方向中央よりも他方側に設けられていることを特徴とする請求項1に記載の補強構造。   The first connection portion is provided on one side of the longitudinal center of the main diagonal material, and the second connection portion is provided on the other side of the longitudinal center of the main diagonal material. The reinforcing structure according to claim 1. 前記第一接続部と前記第二接続部とは、それぞれ前記主斜材の長さを略三等分する二箇所の一方と他方とに設けられていることを特徴とする請求項1又は2に記載の補強構造。   The said 1st connection part and said 2nd connection part are provided in one side and the other of the two places which respectively divide the length of the said main diagonal material into three substantially equal parts, The 1 or 2 characterized by the above-mentioned. Reinforcement structure as described in. 前記第一接続部材は、前記他方側における左右の接合部近傍に一端部が接続され、他端部が前記主斜材に接続された第一副斜材を有して構成され、
前記第二接続部材は、前記一方側における梁中央部に一端部が接続され、他端部が前記主斜材に接続された第二副斜材を有して構成されていることを特徴とする請求項1〜3のいずれか一項に記載の補強構造。
The first connecting member is configured to have a first sub-diagonal material having one end connected to the vicinity of the left and right joints on the other side and the other end connected to the main diagonal.
The second connecting member includes a second sub-diagonal material having one end connected to the beam central portion on the one side and the other end connected to the main diagonal. The reinforcing structure according to any one of claims 1 to 3.
前記第一副斜材の途中部分と前記第二接続部とを接続する第三接続部材と、前記第二副斜材の途中部分と前記第一接続部とを接続する第四接続部材と、をさらに備えることを特徴とする請求項4に記載の補強構造。   A third connection member that connects the middle part of the first sub-diagonal material and the second connection part, a fourth connection member that connects the middle part of the second sub-diagonal material and the first connection part, The reinforcing structure according to claim 4, further comprising: 前記減衰部材は、前記主斜材の他端部と前記他方側の梁との相対移動によってせん断変形することで減衰力を発揮するせん断型ダンパーから構成されていることを特徴とする請求項1〜5のいずれか一項に記載の補強構造。   The said damping member is comprised from the shear type damper which exhibits damping force by carrying out shear deformation by the relative movement of the other end part of the said main diagonal, and the said other side beam. The reinforcement structure as described in any one of -5. 左右の柱と上下の梁とで囲まれた矩形の骨組みと、
前記骨組みに設けられる請求項1〜6のいずれか一項に記載の補強構造と、を備えたことを特徴とする建物。
A rectangular framework surrounded by left and right columns and upper and lower beams;
The building provided with the reinforcement structure as described in any one of Claims 1-6 provided in the said framework.
JP2014083463A 2014-04-15 2014-04-15 Reinforcement structure and building Expired - Fee Related JP6265422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014083463A JP6265422B2 (en) 2014-04-15 2014-04-15 Reinforcement structure and building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014083463A JP6265422B2 (en) 2014-04-15 2014-04-15 Reinforcement structure and building

Publications (2)

Publication Number Publication Date
JP2015203246A true JP2015203246A (en) 2015-11-16
JP6265422B2 JP6265422B2 (en) 2018-01-24

Family

ID=54596870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014083463A Expired - Fee Related JP6265422B2 (en) 2014-04-15 2014-04-15 Reinforcement structure and building

Country Status (1)

Country Link
JP (1) JP6265422B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107916722A (en) * 2016-10-25 2018-04-17 广东省建筑设计研究院 A kind of frame structure system for highlight lines area
CN108756411A (en) * 2018-05-30 2018-11-06 长江大学 The eccentrically braces structure of tree-shaped column

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10121770A (en) * 1996-10-18 1998-05-12 Nagano Keiki Co Ltd Vibration control device of building
JP2000017887A (en) * 1998-04-27 2000-01-18 Shimizu Corp Earthquake-resisting building
JP2006307626A (en) * 2005-03-31 2006-11-09 Sanix Inc Reinforcing structure of existing wooden building
JP2007100404A (en) * 2005-10-05 2007-04-19 Yokogawa Bridge Corp Shearing panel type damper mounting structure to structure and shearing panel type damper
JP2008281125A (en) * 2007-05-11 2008-11-20 Nitta Ind Corp Damping device
JP2010043523A (en) * 2008-06-17 2010-02-25 Arcreate:Kk Assembly method for aseismatic reinforcing steel frame and structure
JP2011179269A (en) * 2010-03-03 2011-09-15 Nagaoka Tekko Kk Method of construction of steel brace for aseismatic reinforcement
JP2012092581A (en) * 2010-10-27 2012-05-17 Taisei Corp Skeleton structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10121770A (en) * 1996-10-18 1998-05-12 Nagano Keiki Co Ltd Vibration control device of building
JP2000017887A (en) * 1998-04-27 2000-01-18 Shimizu Corp Earthquake-resisting building
JP2006307626A (en) * 2005-03-31 2006-11-09 Sanix Inc Reinforcing structure of existing wooden building
JP2007100404A (en) * 2005-10-05 2007-04-19 Yokogawa Bridge Corp Shearing panel type damper mounting structure to structure and shearing panel type damper
JP2008281125A (en) * 2007-05-11 2008-11-20 Nitta Ind Corp Damping device
JP2010043523A (en) * 2008-06-17 2010-02-25 Arcreate:Kk Assembly method for aseismatic reinforcing steel frame and structure
JP2011179269A (en) * 2010-03-03 2011-09-15 Nagaoka Tekko Kk Method of construction of steel brace for aseismatic reinforcement
JP2012092581A (en) * 2010-10-27 2012-05-17 Taisei Corp Skeleton structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107916722A (en) * 2016-10-25 2018-04-17 广东省建筑设计研究院 A kind of frame structure system for highlight lines area
CN108756411A (en) * 2018-05-30 2018-11-06 长江大学 The eccentrically braces structure of tree-shaped column

Also Published As

Publication number Publication date
JP6265422B2 (en) 2018-01-24

Similar Documents

Publication Publication Date Title
JP4913660B2 (en) Steel stairs
JP6265422B2 (en) Reinforcement structure and building
JP2007077698A (en) Structure having base isolation/seismic response control function
JP6994450B2 (en) Reinforcement structure of column beam frame
JP4414833B2 (en) Seismic walls using corrugated steel
JP5940416B2 (en) building
JP4964545B2 (en) Seismic control structure of a connected building
JP2008208612A (en) External aseismatic reinforcing structure
JP6414877B2 (en) Reinforcement structure and building
JP6383533B2 (en) Seismic retrofit method for existing buildings
JP6979283B2 (en) Steel column beam frame of steel pipe column and H-shaped steel beam
JP2017101516A (en) Structure combining base isolation with vibration control
JP5503200B2 (en) Unit building
JP2015227588A (en) Structure
JP4722560B2 (en) Building materials that effectively use the strength of reinforced steel
KR101798007B1 (en) Frame used in building
JP6535157B2 (en) Seismic structure, building panels and buildings
JP6218214B2 (en) Frame and building
JP5330698B2 (en) BUILDING STRUCTURE AND BUILDING STRUCTURE DESIGN METHOD
JP5369626B2 (en) Composite vibration control frame
JP5060842B2 (en) Damping structure
JP5069713B2 (en) Basic structure of buildings over railway tracks
JP2005282229A (en) Vibration-control structure of building
JP2006336336A (en) Earthquake resistant structure of building
JP5089946B2 (en) Seismic control structure of a connected building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171214

R150 Certificate of patent or registration of utility model

Ref document number: 6265422

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees