JP2015203233A - Soil improvement structure - Google Patents

Soil improvement structure Download PDF

Info

Publication number
JP2015203233A
JP2015203233A JP2014083080A JP2014083080A JP2015203233A JP 2015203233 A JP2015203233 A JP 2015203233A JP 2014083080 A JP2014083080 A JP 2014083080A JP 2014083080 A JP2014083080 A JP 2014083080A JP 2015203233 A JP2015203233 A JP 2015203233A
Authority
JP
Japan
Prior art keywords
ground improvement
improvement body
tensile
force
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014083080A
Other languages
Japanese (ja)
Other versions
JP6317615B2 (en
Inventor
富太 井上
Tomita Inoue
富太 井上
秀幸 渡邊
Hideyuki Watanabe
秀幸 渡邊
卓也 森山
Takuya Moriyama
卓也 森山
明彦 内田
Akihiko Uchida
明彦 内田
剛 本多
Takeshi Honda
剛 本多
太田 義弘
Yoshihiro Ota
義弘 太田
満 竹内
Mitsuru Takeuchi
満 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2014083080A priority Critical patent/JP6317615B2/en
Publication of JP2015203233A publication Critical patent/JP2015203233A/en
Application granted granted Critical
Publication of JP6317615B2 publication Critical patent/JP6317615B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress a shear fracture of a soil improvement body during earthquakes while enabling tensile force to be transferred to the soil improvement body.SOLUTION: A soil improvement body 10 includes: a soil improvement body 20 that is formed under a structure 12; a bearing body 30 that is provided on an undersurface 20L of the soil improvement body 20; and a tension member 24 that passes through the soil improvement body 20 and that connects the structure 12 and the bearing body 30 together.

Description

本発明は、地盤改良構造に関する。   The present invention relates to a ground improvement structure.

構造物の下に形成される地盤改良体と、地盤改良体に埋設されて該地盤改良体と構造物とを連結する引張材(引張力伝達部材)とを備える地盤改良構造が知られている(例えば、特許文献1参照)。   There is known a ground improvement structure including a ground improvement body formed under a structure and a tensile material (tensile force transmission member) embedded in the ground improvement body and connecting the ground improvement body and the structure. (For example, refer to Patent Document 1).

特許文献1に開示された技術では、引張材によって基礎と地盤改良体とを連結し、地震時における構造物の転倒モーメント等に起因する引張力(引抜力)を地盤改良体に伝達することにより、耐震性能を高めている。   In the technique disclosed in Patent Document 1, the foundation and the ground improvement body are connected by a tensile material, and the tensile force (pulling force) resulting from the overturning moment of the structure during an earthquake is transmitted to the ground improvement body. , Have improved seismic performance.

特開2009−7865号公報JP 2009-7865 A

しかしながら、特許文献1に開示された技術では、地震時に、引張材を介して地盤改良体に引張応力が作用するため、地盤改良体のせん断強度が低下する虞がある。この状態で、地盤改良体が地盤からせん断力(水平せん断力)を受けると、地盤改良体が容易にせん断破壊する可能性がある。   However, in the technique disclosed in Patent Document 1, since the tensile stress acts on the ground improvement body via the tensile material at the time of an earthquake, the shear strength of the ground improvement body may be reduced. In this state, if the ground improvement body receives a shearing force (horizontal shearing force) from the ground, the ground improvement body may easily shear and break.

本発明は、上記の事実を考慮し、地盤改良体に引張力を伝達可能にしつつ、地震時における地盤改良体のせん断破壊を抑制することを目的とする。   An object of the present invention is to suppress the shear failure of the ground improvement body at the time of an earthquake, considering the above-mentioned fact, enabling transmission of tensile force to the ground improvement body.

請求項1に記載の地盤改良構造は、構造物の下に形成される地盤改良体と、前記地盤改良体の下面に設けられる支圧体と、前記地盤改良体を貫通し、前記構造物と前記支圧体とを連結する引張材と、を備える。   The ground improvement structure according to claim 1, a ground improvement body formed under the structure, a support body provided on a lower surface of the ground improvement body, the ground improvement body, and the structure A tension member that connects the support body.

請求項1に係る地盤改良構造によれば、地盤改良体を貫通する引張材によって、当該地盤改良体の下面に設けられた支圧体と構造物とが連結される。したがって、地震時に、構造物の転倒モーメント等に起因する引張力(引抜力)が引張材に作用したときに、支圧体によって地盤改良体の下面が押し上げられ、地盤改良体が圧縮する。これにより、構造物の転倒モーメント等に起因する引張力が、地盤改良体に伝達される。したがって、構造物の転倒等が抑制される。   According to the ground improvement structure of the first aspect, the supporting body provided on the lower surface of the ground improvement body and the structure are connected by the tensile material penetrating the ground improvement body. Therefore, when a tensile force (withdrawal force) resulting from the overturning moment or the like of the structure is applied to the tensile material during an earthquake, the lower surface of the ground improvement body is pushed up by the bearing member, and the ground improvement body is compressed. Thereby, the tensile force resulting from the overturning moment etc. of a structure is transmitted to a ground improvement body. Therefore, the fall of the structure is suppressed.

ここで、構造物の転倒モーメント等に起因する引張力は、支圧体を介して下から上向きの圧縮応力として地盤改良体に伝達され、地盤改良体の自重と周面摩擦力の反力によってつりあう。これにより、地盤改良体に圧縮応力が作用するため、せん断強度の低下が抑制される。したがって、地震時における地盤改良体のせん断破壊を抑制することができる。   Here, the tensile force due to the overturning moment etc. of the structure is transmitted to the ground improvement body as upward compression stress from the bottom through the bearing body, and by the reaction force of the ground improvement body's own weight and peripheral friction force Balance. Thereby, since compressive stress acts on the ground improvement body, the fall of shear strength is suppressed. Therefore, the shear failure of the ground improvement body at the time of an earthquake can be suppressed.

このように本発明では、地盤改良体に引張力を伝達可能にしつつ、地震時における地盤改良体のせん断破壊を抑制することができる。   As described above, according to the present invention, it is possible to suppress the shear fracture of the ground improvement body at the time of an earthquake while enabling transmission of a tensile force to the ground improvement body.

請求項2に記載の地盤改良構造は、請求項1に記載の地盤改良構造において、前記引張材が、前記地盤改良体に形成された貫通孔に挿入され、前記貫通孔には、前記地盤改良体と前記引張材とを結合する充填材が途中まで充填される。   The ground improvement structure according to claim 2 is the ground improvement structure according to claim 1, wherein the tensile material is inserted into a through hole formed in the ground improvement body, and the ground improvement structure is inserted into the through hole. A filler that joins the body and the tensile material is filled partway.

請求項2に係る地盤改良構造によれば、地盤改良体の貫通孔に途中まで充填された充填材によって地盤改良体と引張材とが結合されるため、支圧体に伝達される引張力が低減される。これにより、支圧体によって地盤改良体の下面が押し上げられたときに、地盤改良体における下面側の支持力破壊等が抑制される。したがって、地盤改良体により確実に引張力を伝達することができる。   According to the ground improvement structure according to claim 2, since the ground improvement body and the tensile material are coupled to each other by the filler filled in the through hole of the ground improvement body halfway, the tensile force transmitted to the bearing body is reduced. Reduced. Thereby, when the lower surface of the ground improvement body is pushed up by the bearing body, the supporting force destruction on the lower surface side in the ground improvement body is suppressed. Therefore, the tensile force can be reliably transmitted by the ground improvement body.

以上説明したように、本発明に係る地盤改良構造によれば、地盤改良体に引張力を伝達可能にしつつ、地震時における地盤改良体のせん断破壊を抑制することができる。   As described above, according to the ground improvement structure according to the present invention, it is possible to transmit the tensile force to the ground improvement body and to suppress the shear failure of the ground improvement body during an earthquake.

本発明の一実施形態に係る地盤改良構造が適用された構造物を示す断面図である。It is sectional drawing which shows the structure to which the ground improvement structure which concerns on one Embodiment of this invention was applied. 図1に示される地盤改良体を模式化して示す断面図である。It is sectional drawing which shows typically the ground improvement body shown by FIG. 本発明の一実施形態に係る地盤改良構造の変形例が適用された構造物を示す断面図である。It is sectional drawing which shows the structure to which the modification of the ground improvement structure which concerns on one Embodiment of this invention was applied.

以下、図面を参照しながら本発明の一実施形態について説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1には、本実施形態に係る地盤改良構造10が適用された構造物12が示されている。この構造物12は、基礎14と、基礎14上に立てられた柱16とを備えている。基礎14は、例えば、スラブやフーチングで形成される。   FIG. 1 shows a structure 12 to which the ground improvement structure 10 according to the present embodiment is applied. The structure 12 includes a foundation 14 and a pillar 16 that stands on the foundation 14. The foundation 14 is formed by, for example, slab or footing.

地盤改良構造10は、地盤改良体20と、支圧体30と、引張材24とを備えている。地盤改良体20は、構造物12を構成する基礎14の下に柱状に形成されている。この地盤改良体20は、例えば、掘削オーガ等で基礎14の下の地盤Gを掘削しながら、掘削土とセメントスラリー等の固化材とを混合撹拌することにより造成される。   The ground improvement structure 10 includes a ground improvement body 20, a bearing body 30, and a tension member 24. The ground improvement body 20 is formed in a columnar shape under the foundation 14 constituting the structure 12. The ground improvement body 20 is formed, for example, by mixing and stirring the excavated soil and a solidified material such as cement slurry while excavating the ground G under the foundation 14 with an excavating auger or the like.

基礎14及び地盤改良体20には、上下方向に貫通する貫通孔18,22がそれぞれ形成されている。これらの貫通孔18,22には、引張材24が挿入されている。引張材24は、例えば、PC鋼棒やPC鋼線、鉄筋等で形成される。なお、貫通孔22には、例えば、シース管等を挿入しても良い。   The base 14 and the ground improvement body 20 are respectively formed with through holes 18 and 22 penetrating in the vertical direction. A tensile material 24 is inserted into these through holes 18 and 22. The tension member 24 is formed of, for example, a PC steel bar, a PC steel wire, a reinforcing bar, or the like. For example, a sheath tube or the like may be inserted into the through hole 22.

地盤改良体20の下面20Lには、支圧体30が設けられている。支圧体30は、例えば、貫通孔22に挿入された拡径翼等によって地盤改良体20の下を拡径掘削し、モルタル、グラウト等を充填固化することにより円柱状に形成される。この支圧体30の径は、貫通孔22よりも大きく、地盤改良体20よりも小さくなっている。なお、支圧体30の径(幅)は、地盤改良体20よりも大きくしても良い。また、支圧体30の形状は、円柱状に限らず、角柱状やブロック状等であっても良い。   A pressure bearing body 30 is provided on the lower surface 20 </ b> L of the ground improvement body 20. The bearing body 30 is formed in a columnar shape by, for example, expanding and excavating the bottom of the ground improvement body 20 with an expanded wing inserted into the through hole 22 and filling and solidifying mortar, grout and the like. The diameter of the pressure bearing body 30 is larger than the through hole 22 and smaller than the ground improvement body 20. The diameter (width) of the bearing body 30 may be larger than that of the ground improvement body 20. Further, the shape of the support body 30 is not limited to a cylindrical shape, and may be a prismatic shape, a block shape, or the like.

支圧体30と構造物12の基礎14とは、地盤改良体20を上下方向に貫通する引張材24によって連結されている。これにより、引張材24を介して構造物12から支圧体30に引張力(引抜力)Tが伝達されるようになっている。   The bearing body 30 and the foundation 14 of the structure 12 are connected by a tensile member 24 that penetrates the ground improvement body 20 in the vertical direction. As a result, a tensile force (pulling force) T is transmitted from the structure 12 to the bearing body 30 via the tensile member 24.

具体的には、引張材24の下端部には、支圧板26が設けられている。この支圧板26は、例えば、貫通孔22よりも僅かに小さい円形状の鋼板等で形成されており、引張材24の先端部から径方向に張り出している。この支圧板26を支圧体30に埋設することにより、引張材24の下端部が支圧体30に固定されている。   Specifically, a support plate 26 is provided at the lower end of the tension member 24. The pressure bearing plate 26 is formed of, for example, a circular steel plate that is slightly smaller than the through hole 22, and protrudes in the radial direction from the distal end portion of the tension member 24. By burying the bearing plate 26 in the bearing body 30, the lower end portion of the tension member 24 is fixed to the bearing body 30.

一方、引張材24の上端部は、基礎14の上面14Uに定着具28によって固定されている。この引張材24によって、基礎14と支圧体30とが引張力Tを伝達可能に連結されている。   On the other hand, the upper end portion of the tension member 24 is fixed to the upper surface 14U of the foundation 14 by a fixing tool 28. By this tension material 24, the foundation 14 and the support body 30 are connected so that the tensile force T can be transmitted.

図2に示されるように、地盤改良体20の貫通孔22には、グラウト、モルタル等の充填材Wが途中まで充填されている。この充填材Wによって、地盤改良体20における支圧体30側に定着部40及び受圧部42が形成されている。定着部40及び受圧部42では、充填材Wによって引張材24が地盤改良体20に定着されている。これにより、引張材24の引張力(引抜力)Tの一部部分が、定着部40及び受圧部42を介して地盤改良体20に伝達され、残りの引張力が支圧体30に伝達されるようになっている。ここで、定着部40及び受圧部42を介して地盤改良体20に伝達される引張力T(引抜き力)は、非定着部50の範囲における地盤改良体の自重及び周面摩擦力以下とすることにより、地盤改良体20に引張応力が発生しない。   As shown in FIG. 2, the through hole 22 of the ground improvement body 20 is filled with a filler W such as grout or mortar halfway. With this filler W, a fixing portion 40 and a pressure receiving portion 42 are formed on the bearing body 30 side of the ground improvement body 20. In the fixing unit 40 and the pressure receiving unit 42, the tensile material 24 is fixed to the ground improvement body 20 by the filler W. Thereby, a part of the tensile force (pulling force) T of the tensile member 24 is transmitted to the ground improvement body 20 via the fixing portion 40 and the pressure receiving portion 42, and the remaining tensile force is transmitted to the pressure bearing body 30. It has become so. Here, the tensile force T (pull-out force) transmitted to the ground improvement body 20 through the fixing unit 40 and the pressure receiving unit 42 is equal to or less than the own weight of the ground improvement body and the circumferential frictional force in the range of the non-fixing part 50. As a result, no tensile stress is generated in the ground improvement body 20.

なお、地盤改良体20における構造物12側では、引張材24が地盤改良体20に定着されておらず、引張材24から地盤改良体20に引張力(引抜力)が直接的に伝達されないようになっている。これにより、地盤改良体20における構造物12側のせん断破壊等が抑制されている。なお、以下では、引張材24と地盤改良体20とが定着されていない部分を未定着部50という。   Note that, on the structure 12 side of the ground improvement body 20, the tensile material 24 is not fixed to the ground improvement body 20, so that a tensile force (pulling force) is not directly transmitted from the tensile material 24 to the ground improvement body 20. It has become. Thereby, the shear failure etc. by the side of the structure 12 in the ground improvement body 20 are suppressed. Hereinafter, a portion where the tension member 24 and the ground improvement body 20 are not fixed is referred to as an unfixed portion 50.

ここで、定着部40よりも支圧体30側にある受圧部42では、充填材Wによって地盤改良体20と支圧体30とが結合されている。この受圧部42によって、支圧体30から直接的に支圧力Pを受ける地盤改良体20の下面20L側が補強されている。   Here, in the pressure receiving portion 42 on the side of the pressure bearing body 30 with respect to the fixing portion 40, the ground improvement body 20 and the pressure bearing body 30 are coupled by the filler W. By this pressure receiving portion 42, the lower surface 20 </ b> L side of the ground improvement body 20 that receives the support pressure P directly from the support body 30 is reinforced.

具体的には、支圧体30の支圧力Pは、支圧体30における支圧板26と地盤改良体20の下面20Lとの間の部位(伝達部)30Aを介して地盤改良体20の下面20Lに伝達される。この際、支圧力Pは、地盤改良体20の下面20Lに対し、支圧板26の周縁部から所定角度(例えば、略45度)でコーン状に広がる直径Dの領域に直接的に伝達される。そして、この直径Dの領域に対して地盤改良体20が破壊(例えば、すべり破壊)等すると、引張力Tに対する支圧体30の抵抗力が減少し、引き抜き抵抗体としての支圧体30の機能が損なわれる虞がある。   Specifically, the support pressure P of the support body 30 is the lower surface of the ground improvement body 20 via a portion (transmission portion) 30A between the support plate 26 and the lower surface 20L of the ground improvement body 20 in the support body 30. 20L is transmitted. At this time, the support pressure P is directly transmitted to the lower surface 20L of the ground improvement body 20 from a peripheral portion of the support plate 26 to a region having a diameter D spreading in a cone shape at a predetermined angle (for example, approximately 45 degrees). . And if the ground improvement body 20 destroys (for example, slip failure) etc. with respect to the area | region of this diameter D, the resistance force of the bearing body 30 with respect to the tensile force T will reduce, and the bearing body 30 as a drawing-out resistance body will decrease. Function may be impaired.

そこで、本実施形態では、支圧体30の支圧力Pが直接的に伝達される地盤改良体20の円柱状領域(直径略D)を受圧部42とし、前述した定着部40とを分けて設計している。換言すると、引張力Tに対する支圧体30の抵抗力は、受圧部42の破壊耐力(すべり破壊耐力)によって決定されるため、受圧部42と定着部40とを設計上分けている。そして、定着部40は、主として引張材24の引張力Tを地盤改良体20に直接的に伝達する部位とし、受圧部42は、主として地盤改良体20における下面20L側を補強する部位としている。   Therefore, in the present embodiment, the cylindrical region (diameter approximately D) of the ground improvement body 20 to which the support pressure P of the support body 30 is directly transmitted is used as the pressure receiving portion 42, and the fixing portion 40 described above is divided. Designing. In other words, the resistance force of the bearing body 30 against the tensile force T is determined by the breaking strength (sliding breaking strength) of the pressure receiving portion 42, so that the pressure receiving portion 42 and the fixing portion 40 are separated in design. The fixing portion 40 is mainly a portion that directly transmits the tensile force T of the tensile material 24 to the ground improvement body 20, and the pressure receiving portion 42 is a portion that mainly reinforces the lower surface 20 </ b> L side of the ground improvement body 20.

次に、本実施形態の作用について説明する。   Next, the operation of this embodiment will be described.

本実施形態に係る地盤改良構造10によれば、地盤改良体20を貫通する引張材24によって、地盤改良体20の下面20Lに設けられた支圧体30と、構造物12の基礎14とが連結されている。   According to the ground improvement structure 10 according to the present embodiment, the supporting member 30 provided on the lower surface 20L of the ground improvement body 20 and the foundation 14 of the structure 12 are formed by the tensile material 24 penetrating the ground improvement body 20. It is connected.

したがって、地震時に、構造物12の転倒モーメントM等に起因する引張力(引抜力)Tが引張材24に作用すると、支圧体30が上方へ移動し、当該支圧体30によって地盤改良体20の下面20Lが押し上げられる。このとき、地盤改良体20の下面20Lを押し上げる支圧体30の支圧力Pによって、引張材24の引張力Tが地盤改良体20に伝達される。この支圧力Pに対して、地盤改良体20の自重と周面摩擦力を反力として地盤改良体20が圧縮変形しながら抵抗することにより、構造物12の転倒等が抑制される。   Therefore, when a tensile force (pulling force) T caused by the overturning moment M of the structure 12 acts on the tensile member 24 during an earthquake, the bearing body 30 moves upward, and the ground improvement body is moved by the bearing body 30. The lower surface 20L of 20 is pushed up. At this time, the tensile force T of the tensile member 24 is transmitted to the ground improvement body 20 by the support pressure P of the support body 30 that pushes up the lower surface 20L of the ground improvement body 20. The ground improvement body 20 resists against the supporting pressure P while the ground improvement body 20 compresses and deforms using the weight of the ground improvement body 20 and the peripheral frictional force as a reaction force.

ここで、地盤改良体20に引張応力が作用すると、地盤改良体20のせん断強度が低下する虞がある。この状態で、例えば、地震時に地盤改良体20が地盤Gからせん断力(水平せん断力)を受けると、地盤改良体20がせん断破壊する可能性がある。   Here, when tensile stress acts on the ground improvement body 20, there exists a possibility that the shear strength of the ground improvement body 20 may fall. In this state, for example, when the ground improvement body 20 receives a shearing force (horizontal shearing force) from the ground G during an earthquake, the ground improvement body 20 may be sheared and broken.

これに対して本実施形態では、支圧体30が地盤改良体20の下面20Lに設けられている。そのため、引張材24の引張力Tが支圧体30を介して圧縮応力として地盤改良体20に伝達される。したがって、地盤改良体20のせん断強度の低下が抑制されるため、地震時における地盤改良体20のせん断破壊を抑制することができる。   On the other hand, in this embodiment, the bearing body 30 is provided on the lower surface 20L of the ground improvement body 20. Therefore, the tensile force T of the tensile material 24 is transmitted to the ground improvement body 20 as a compressive stress through the support body 30. Therefore, since the fall of the shear strength of the ground improvement body 20 is suppressed, the shear failure of the ground improvement body 20 at the time of an earthquake can be suppressed.

このように本実施形態では、地盤改良体20に引張力を伝達可能にしつつ、地震時における地盤改良体20のせん断破壊を抑制することができる。   Thus, in this embodiment, the shear failure of the ground improvement body 20 at the time of an earthquake can be suppressed, enabling transmission of a tensile force to the ground improvement body 20.

なお、地盤改良体20の下面20Lから下方に離れた位置に支圧体30を形成することも考えられるが、この場合、地盤改良体20と支圧体30との間に介在する地盤の状態によって支圧体30から地盤改良体20に伝達される支圧力Pが変動する。したがって、地盤改良体20に十分な圧縮応力を導入することができない可能性がある。   In addition, although it is also possible to form the support body 30 in the position away from the lower surface 20L of the ground improvement body 20 in this case, in this case, the state of the ground interposed between the ground improvement body 20 and the support body 30 As a result, the support pressure P transmitted from the support body 30 to the ground improvement body 20 varies. Therefore, there is a possibility that sufficient compressive stress cannot be introduced into the ground improvement body 20.

これに対して本実施形態では、支圧体30を地盤改良体20の下面20Lに設け、支圧体30から地盤改良体20の下面20Lに支圧力Pを直接的に伝達するため、地盤改良体20に所定の圧縮応力を導入することができる。したがって、地震時における地盤改良体20のせん断破壊をより確実に抑制することができる。   On the other hand, in this embodiment, since the bearing pressure body 30 is provided on the lower surface 20L of the ground improvement body 20, and the bearing pressure P is directly transmitted from the bearing pressure body 30 to the lower surface 20L of the ground improvement body 20, the ground improvement is performed. A predetermined compressive stress can be introduced into the body 20. Therefore, the shear fracture of the ground improvement body 20 at the time of an earthquake can be suppressed more reliably.

また、本実施形態では、地盤改良体20の貫通孔22に、途中まで充填材Wが充填されている。これにより、地盤改良体20における下面20L側に、地盤改良体20と支圧体30とを結合する受圧部42が形成されている。この受圧部42によって、支圧体30の支圧力Pを直接的に受ける地盤改良体20の下面20L側を補強することにより、支圧体30によって地盤改良体20の下面20Lが押し上げられたときに、地盤改良体20の下面20L側の破壊等が抑制される。したがって、地盤改良体20により確実に引張力Tを伝達することができる。   Moreover, in this embodiment, the filler W is filled in the through hole 22 of the ground improvement body 20 halfway. Thereby, the pressure receiving part 42 which couple | bonds the ground improvement body 20 and the bearing body 30 is formed in the lower surface 20L side in the ground improvement body 20. As shown in FIG. When the lower surface 20L of the ground improvement body 20 is pushed up by the support pressure body 30 by reinforcing the lower surface 20L side of the ground improvement body 20 that directly receives the support pressure P of the support body 30 by the pressure receiving portion 42. In addition, the destruction or the like on the lower surface 20L side of the ground improvement body 20 is suppressed. Therefore, the tensile force T can be reliably transmitted by the ground improvement body 20.

さらに、地盤改良体20内には、当該地盤改良体20と引張材24と定着する定着部40が形成されており、この定着部40を介して引張材24の引張力Tが地盤改良体20に直接的に伝達される。したがって、定着部40がない構成と比較して、地盤改良体20の下面20Lで受ける支圧力Pが低減されるため、地盤改良体20の下面20L側の破損等がさらに抑制される。換言すると、より大きな引張力Tを地盤改良体20に負担させることができる。   Further, a fixing portion 40 for fixing the ground improvement body 20 and the tensile material 24 is formed in the ground improvement body 20, and the tensile force T of the tensile material 24 is applied to the ground improvement body 20 through the fixing portion 40. Is transmitted directly to. Therefore, since the support pressure P received by the lower surface 20L of the ground improvement body 20 is reduced as compared with the configuration without the fixing unit 40, the damage or the like on the lower surface 20L side of the ground improvement body 20 is further suppressed. In other words, the ground improvement body 20 can bear a larger tensile force T.

ここで、定着部40について補足すると、定着部40及びその周辺の地盤改良体20には、引張材24から引張力Tが直接的に伝達されることになる。ところが、図2の右側に示されるように、この引張力Tは、非定着部50の範囲の地盤改良体20の自重と周面摩擦力Fによって生じる圧縮力Cによって打ち消される。そのため、定着部40及びその周辺の地盤改良体20には、基本的に引張応力が作用することはない。したがって、定着部40及びその周辺の地盤改良体20のせん断強度の低下が抑制されるため、地震時における地盤改良体20のせん断破壊が抑制される。なお、図2の矢印Fは、地盤改良体20の外周面(地盤改良体20と地盤Gとの境界面)に発生する下向きの摩擦力(周面摩擦力)である。   Here, when supplementing the fixing unit 40, the tensile force T is directly transmitted from the tensile material 24 to the fixing unit 40 and the ground improvement body 20 in the vicinity thereof. However, as shown on the right side of FIG. 2, the tensile force T is canceled out by the compressive force C generated by the weight of the ground improvement body 20 in the range of the non-fixing portion 50 and the peripheral frictional force F. Therefore, basically, tensile stress does not act on the fixing unit 40 and the surrounding ground improvement body 20. Therefore, since the fall of the shear strength of the fixing | fixed part 40 and the surrounding ground improvement body 20 is suppressed, the shear failure of the ground improvement body 20 at the time of an earthquake is suppressed. Note that an arrow F in FIG. 2 represents a downward frictional force (circumferential frictional force) generated on the outer peripheral surface of the ground improvement body 20 (a boundary surface between the ground improvement body 20 and the ground G).

また、地盤改良体20の自重と周面摩擦力Fによって地盤改良体20に導入される圧縮力Cは、地盤改良体20の上端へ向かうに従って小さくなる。したがって、例えば、貫通孔22の全体に充填材Wを充填し、地盤改良体20の上部にも定着部を形成すると、引張材24から定着部を介して地盤改良体20に直接的に伝達される引張力Tによって、地盤改良体20の上部に引張応力が導入される可能性がある。この場合、地盤改良体20の上部のせん断強度が低下し、地震時に地盤改良体20の上部がせん断破壊し易くなる。   Further, the compressive force C introduced into the ground improvement body 20 by the dead weight of the ground improvement body 20 and the peripheral surface frictional force F becomes smaller toward the upper end of the ground improvement body 20. Therefore, for example, if the filling material W is filled in the entire through-hole 22 and a fixing portion is formed also on the upper portion of the ground improvement body 20, it is directly transmitted from the tensile material 24 to the ground improvement body 20 via the fixing portion. There is a possibility that tensile stress is introduced into the upper portion of the ground improvement body 20 by the tensile force T. In this case, the shear strength of the upper part of the ground improvement body 20 is lowered, and the upper part of the ground improvement body 20 is easily sheared and destroyed during an earthquake.

これに対して本実施形態では、貫通孔22の全体に充填材Wを充填せずに、地盤改良体20における構造物12側(地盤改良体20の上部)に未定着部50を形成している。そのため、地盤改良体20における構造物12側には、引張材24から直接的に引張力Tが伝達されず、基本的に引張応力が導入されない。したがって、地盤改良体20における構造物12側のせん断破壊が抑制される。つまり、本実施形態では、地盤改良体20に引張応力が作用しないように、定着部40及び未定着部50を設定することにより、地震時における地盤改良体20のせん断破壊を効率的に抑制することができる。   On the other hand, in the present embodiment, the unfixed portion 50 is formed on the structure 12 side (upper portion of the ground improvement body 20) in the ground improvement body 20 without filling the entire through hole 22 with the filler W. Yes. Therefore, the tensile force T is not directly transmitted from the tensile material 24 to the structure 12 side in the ground improvement body 20, and basically no tensile stress is introduced. Therefore, the shear failure on the structure 12 side in the ground improvement body 20 is suppressed. That is, in this embodiment, by setting the fixing portion 40 and the non-fixed portion 50 so that tensile stress does not act on the ground improvement body 20, shear failure of the ground improvement body 20 during an earthquake is efficiently suppressed. be able to.

次に、上記実施形態の変形例について説明する。   Next, a modification of the above embodiment will be described.

上記実施形態では、基礎14の下に1本の地盤改良体20を形成した例を示したが、これに限らない。例えば、図3に示されるように、基礎14の下には、柱状の地盤改良体20を間隔を空けて複数形成しても良い。この際、例えば、隣接する地盤改良体20の上端部同士を基礎コンクリート体60で連結しても良い。これにより、複数の地盤改良体20のせん断抵抗力を高めることができる。   In the said embodiment, although the example which formed the one ground improvement body 20 under the foundation 14 was shown, it is not restricted to this. For example, as shown in FIG. 3, a plurality of columnar ground improvement bodies 20 may be formed below the foundation 14 at intervals. At this time, for example, the upper ends of the adjacent ground improvement bodies 20 may be connected by the foundation concrete body 60. Thereby, the shear resistance force of a plurality of ground improvement objects 20 can be raised.

また、図3に二点鎖線で示されるコーン状破壊に対しては、隣接する柱16の下に形成された他の地盤改良体20を抵抗要素として用いることにより、効率的にコーン状破壊を抑制することができる。   Further, with respect to the cone-shaped fracture indicated by the two-dot chain line in FIG. 3, the other ground improvement body 20 formed under the adjacent pillar 16 is used as a resistance element, so that the cone-shaped fracture can be efficiently performed. Can be suppressed.

また、上記実施形態では、地盤改良体20を柱状(柱状地盤改良体)に形成した例を示したが、これに限らない。地盤改良体は、壁状(壁状地盤改良体)に形成しても良いし、平面視にて格子状(格子状地盤改良体)に形成しても良い。また、地盤改良体には、引張力に抵抗する鉄筋やH鋼等の心材を埋設しても良い。   Moreover, in the said embodiment, although the example which formed the ground improvement body 20 in columnar shape (columnar ground improvement body) was shown, it does not restrict to this. The ground improvement body may be formed in a wall shape (wall-like ground improvement body), or may be formed in a lattice shape (lattice-like ground improvement body) in plan view. Moreover, you may embed core materials, such as a reinforcing bar and H steel which resist tensile force, in a ground improvement body.

また、上記実施形態では、地盤改良体20に定着部40及び受圧部42を設けた例を示したが、これに限らない。定着部40及び受圧部42は必要に応じて設ければ良く、定着部40及び受圧部42の少なくとも一方を省略しても良い。また、未定着部50を省略することも可能である。   Moreover, in the said embodiment, although the example which provided the fixing | fixed part 40 and the pressure receiving part 42 in the ground improvement body 20 was shown, it is not restricted to this. The fixing unit 40 and the pressure receiving unit 42 may be provided as necessary, and at least one of the fixing unit 40 and the pressure receiving unit 42 may be omitted. Further, the unfixed portion 50 can be omitted.

以上、本発明の一実施形態について説明したが、本発明はこうした実施形態に限定されるものでなく、一実施形態及び各種の変形例を適宜組み合わせて用いても良いし、本発明の要旨を逸脱しない範囲において、種々なる態様で実施し得ることは勿論である。   As mentioned above, although one embodiment of the present invention was described, the present invention is not limited to such an embodiment, and one embodiment and various modifications may be used in combination as appropriate, and the gist of the present invention will be described. Of course, various embodiments can be implemented without departing from the scope.

10 地盤改良構造
12 構造物
22 貫通孔
20 地盤改良体
20L 下面(地盤改良体の下面)
24 引張材
30 支圧体
10 Ground improvement structure 12 Structure 22 Through hole 20 Ground improvement body 20L Lower surface (lower surface of the ground improvement body)
24 Tensile material 30 Bearing body

Claims (2)

構造物の下に形成される地盤改良体と、
前記地盤改良体の下面に設けられる支圧体と、
前記地盤改良体を貫通し、前記構造物と前記支圧体とを連結する引張材と、
を備える地盤改良構造。
A ground improvement body formed under the structure;
A bearing member provided on the lower surface of the ground improvement body;
A tensile material that penetrates the ground improvement body and connects the structure and the bearing body;
Improved ground structure.
前記引張材が、前記地盤改良体に形成された貫通孔に挿入され、
前記貫通孔には、前記地盤改良体と前記引張材とを結合する充填材が途中まで充填される、
請求項1に記載の地盤改良構造。
The tensile material is inserted into a through hole formed in the ground improvement body,
The through hole is filled with a filler for bonding the ground improvement body and the tensile material partway,
The ground improvement structure according to claim 1.
JP2014083080A 2014-04-14 2014-04-14 Ground improvement structure Active JP6317615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014083080A JP6317615B2 (en) 2014-04-14 2014-04-14 Ground improvement structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014083080A JP6317615B2 (en) 2014-04-14 2014-04-14 Ground improvement structure

Publications (2)

Publication Number Publication Date
JP2015203233A true JP2015203233A (en) 2015-11-16
JP6317615B2 JP6317615B2 (en) 2018-04-25

Family

ID=54596858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014083080A Active JP6317615B2 (en) 2014-04-14 2014-04-14 Ground improvement structure

Country Status (1)

Country Link
JP (1) JP6317615B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0264998A1 (en) * 1986-10-06 1988-04-27 Ballast-Nedam Groep N.V. Method of manufacturing a foundation
JPH05311678A (en) * 1992-05-12 1993-11-22 Chiyoda Corp Foundation combined with pile
JPH09256390A (en) * 1996-03-18 1997-09-30 Geotop Corp Vibration-isolation pile foundation
JP2002081081A (en) * 2000-06-22 2002-03-22 Shimizu Corp Building
JP2008223430A (en) * 2007-03-15 2008-09-25 Ohbayashi Corp Reinforcement method for existing building and reinforcement structure of existing building

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0264998A1 (en) * 1986-10-06 1988-04-27 Ballast-Nedam Groep N.V. Method of manufacturing a foundation
JPH05311678A (en) * 1992-05-12 1993-11-22 Chiyoda Corp Foundation combined with pile
JPH09256390A (en) * 1996-03-18 1997-09-30 Geotop Corp Vibration-isolation pile foundation
JP2002081081A (en) * 2000-06-22 2002-03-22 Shimizu Corp Building
JP2008223430A (en) * 2007-03-15 2008-09-25 Ohbayashi Corp Reinforcement method for existing building and reinforcement structure of existing building

Also Published As

Publication number Publication date
JP6317615B2 (en) 2018-04-25

Similar Documents

Publication Publication Date Title
JP6021993B1 (en) Rigid connection structure of lower end of support and concrete pile
JP2016070028A (en) Substructure
JP5319266B2 (en) Ground reinforcement method and improved ground structure
JP2009293349A (en) Joint structure between pile and foundation, construction method thereof, and joint method of pile to foundation
KR101489387B1 (en) End supporting multi micro pile and method for constructing the same
JP6317615B2 (en) Ground improvement structure
KR101714610B1 (en) Steel pipe pile construction method of sacrificial steel pipe casing partial pullout
JP2018059357A (en) Method for introducing prestress to cast in-situ concrete
JP2009007865A (en) Building structure
JP6368547B2 (en) Joint structure of precast concrete wall and beam
JP5331268B1 (en) Fixing device for shear force transmission with tensile resistance function
JP2016132948A (en) Connection structure
JP2009114696A (en) Knotted pile
KR20150085602A (en) Foundation structure and construction method thereof
JP6895740B2 (en) Horizontal force restraint structure
JP2013057240A (en) Joint structure of pile and skeleton, joint method of pile and skeleton, precast concrete member and steel pipe
JP5684069B2 (en) Pile structure
JP2016223092A (en) Pile foundation structure
JP2020172809A (en) Reinforcement structure and reinforcement method for masonry structure
KR20170129327A (en) Phc pile
JP2010270442A (en) Method for constructing underground wall body, and the underground wall body
JP4762618B2 (en) Pile foundation structure and construction method
JP2010090596A (en) Joint structure of pile and foundation skeleton, joining method for pile and foundation skeleton, and pc member
JP2003227138A (en) Connecting structure between pile head and foundation
JP6774774B2 (en) Pile foundation structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180330

R150 Certificate of patent or registration of utility model

Ref document number: 6317615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150