JP2015203071A - Copolymer having branch structure and copolymer composition - Google Patents

Copolymer having branch structure and copolymer composition Download PDF

Info

Publication number
JP2015203071A
JP2015203071A JP2014083058A JP2014083058A JP2015203071A JP 2015203071 A JP2015203071 A JP 2015203071A JP 2014083058 A JP2014083058 A JP 2014083058A JP 2014083058 A JP2014083058 A JP 2014083058A JP 2015203071 A JP2015203071 A JP 2015203071A
Authority
JP
Japan
Prior art keywords
copolymer
divinylbenzene
aromatic hydrocarbon
vinyl aromatic
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014083058A
Other languages
Japanese (ja)
Inventor
享一 井上
Kyoichi Inoue
享一 井上
佐藤 英次
Eiji Sato
英次 佐藤
高橋 淳
Atsushi Takahashi
淳 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2014083058A priority Critical patent/JP2015203071A/en
Publication of JP2015203071A publication Critical patent/JP2015203071A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polymerization Catalysts (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a new copolymer having a branch structure for improving moldability of a resin; and a copolymer composition.SOLUTION: There are provided: (1) a copolymer resin composition of a copolymer which is obtained by simultaneously adding a divinylbenzene derivative and a conjugated diene or a divinylbenzene derivative as a branching step and in which an anionic polymer of a vinyl aromatic hydrocarbon monomer has a weight average molecular weight as measured by a GPC method of 20000 to 2000000 using an initiator in which the molar ratio between a divinylbenzene derivative and an alkyl lithium is 3/97 to 80/20, wherein (2) the mass ratio between the copolymer described in (1) and a vinyl aromatic hydrocarbon-based resin is 0.1/99.9 to 20/80; and a method for producing the same.

Description

本発明は、分岐構造を有する共重合体及び共重合体組成物に関する。   The present invention relates to a copolymer having a branched structure and a copolymer composition.

ジビニルベンゼン誘導体を用いることで、分岐構造を有する共重合体組成物を合成することが出来る。ジビニルベンゼン誘導体のアニオン重合で分岐構造を生成する場合、ジビニルベンゼン誘導体の重合順序により大きく二つに別けることが出来る。   By using a divinylbenzene derivative, a copolymer composition having a branched structure can be synthesized. When a branched structure is formed by anionic polymerization of a divinylbenzene derivative, it can be roughly divided into two depending on the polymerization order of the divinylbenzene derivative.

一つは、分岐構造の核(Core)を先に合成する方法であって(Core First法)、ジビニルベンゼン誘導体をアニオン重合させた後にビニル芳香族炭化水素単量体等を重合させる方法(特許文献1、非特許文献1)や、ジビニルベンゼン誘導体と他の単量体をアニオン共重合させた後にビニル芳香族炭化水素単量体等を重合させる方法(特許文献2、3)が知られている。   One is a method of first synthesizing a core having a branched structure (Core First method), and a method in which a vinyl aromatic hydrocarbon monomer or the like is polymerized after anionic polymerization of a divinylbenzene derivative (patent) Document 1, Non-Patent Document 1) and methods (Patent Documents 2 and 3) of polymerizing vinyl aromatic hydrocarbon monomers after anionic copolymerization of divinylbenzene derivatives and other monomers are known. Yes.

もう一つは、枝となる高分子鎖(Arm)を先に重合させる方法であって(Arm First法)、ビニル芳香族炭化水素単量体等を重合させてからジビニルベンゼン誘導体をアニオン重合させる方法(特許文献4〜6)や、ビニル芳香族炭化水素単量体等を重合させてからジビニルベンゼン誘導体をアニオン重合し、更に別の単量体を重合させる方法(特許文献7、8)が知られている。 The other is a method in which a polymer chain (Arm) to be branched is polymerized first (Arm First method), and a vinyl aromatic hydrocarbon monomer or the like is polymerized and then a divinylbenzene derivative is anionically polymerized. A method (Patent Documents 4 to 6), a method of polymerizing a vinyl aromatic hydrocarbon monomer and the like, anion polymerization of a divinylbenzene derivative, and a polymerization of another monomer (Patent Documents 7 and 8). Are known.

特開平3−79606号公報JP-A-3-79606 特表平11−513715号公報Japanese National Patent Publication No. 11-513715 特表2004−517202号公報JP-T-2004-517202 特開平10−25395号公報Japanese Patent Laid-Open No. 10-25395 特開2010−255008号公報JP 2010-255008 A 特開2001−139647号公報JP 2001-139647 A 特表平8−504865号公報Japanese National Patent Publication No. 8-504865 特開平8−81514号公報JP-A-8-81514

H.Eschwey et al.「Starpolymers from styreneand divinylbenzene」Polymer,1975,Vol.16,p.180H. Eschwey et al. “Starpolymers from styrene and divinylbenzene”, Polymer, 1975, Vol. 16, p. 180

本発明は、樹脂の成形性向上のための新規な分岐構造を有する共重合体及び共重合体組成物を提供することを課題とする。
An object of the present invention is to provide a copolymer and a copolymer composition having a novel branched structure for improving the moldability of a resin.

即ち、本発明は、(1) ジビニルベンゼン誘導体とアルキルリチウムのモル比が3/97〜80/20である開始剤を用いて、ビニル芳香族炭化水素単量体のアニオン重合を行い、得られた重合体がGPC法により求めた重量平均分子量が20,000〜2,000,000であり、分岐化工程として、ジビニルベンゼン誘導体及び共役ジエンを同時に添加することにより得られる共重合体、(2)ジビニルベンゼン誘導体とアルキルリチウムのモル比が3/97〜80/20である開始剤を用いて、ビニル芳香族炭化水素単量体のアニオン重合を行い、得られた重合体がGPC法により求めた重量平均分子量が20,000〜2,000,000であり、分岐化工程として、ジビニルベンゼン誘導体を添加することにより得られる共重合体、(3)(1)または(2)に記載の共重合体と、ビニル芳香族炭化水素系樹脂の質量比が0.1/99.9〜20/80であることを特徴とする共重合体樹脂組成物、(4)ジビニルベンゼン誘導体とアルキルリチウムのモル比が3/97〜80/20である開始剤を用いて、ビニル芳香族炭化水素単量体のアニオン重合体がGPC法により求めた重量平均分子量が20,000〜2,000,000であることを特徴とし、分岐化工程として、ジビニルベンゼン誘導体及び共役ジエン、又はジビニルベンゼン誘導体を同時に添加することにより得られる共重合体の製造方法である。   That is, the present invention is obtained by (1) anionic polymerization of a vinyl aromatic hydrocarbon monomer using an initiator having a molar ratio of divinylbenzene derivative to alkyllithium of 3/97 to 80/20. The polymer obtained by GPC method has a weight average molecular weight of 20,000 to 2,000,000, and a copolymer obtained by simultaneously adding a divinylbenzene derivative and a conjugated diene as a branching step, (2 ) Anionic polymerization of vinyl aromatic hydrocarbon monomer is carried out using an initiator having a molar ratio of divinylbenzene derivative and alkyllithium of 3/97 to 80/20, and the resulting polymer is obtained by GPC method. Copolymer having a weight average molecular weight of 20,000 to 2,000,000 and obtained by adding a divinylbenzene derivative as a branching step. , (3) The weight ratio of the copolymer according to (1) or (2) and the vinyl aromatic hydrocarbon resin is 0.1 / 99.9 to 20/80 Combined resin composition, (4) An anionic polymer of vinyl aromatic hydrocarbon monomer is obtained by GPC method using an initiator having a molar ratio of divinylbenzene derivative to alkyllithium of 3/97 to 80/20. And a copolymer obtained by simultaneously adding a divinylbenzene derivative and a conjugated diene or a divinylbenzene derivative as a branching step, wherein the weight average molecular weight is 20,000 to 2,000,000. Is the method.

本発明の分岐構造を有する共重合体及び共重合体樹脂組成物は、溶融張力が高く、また歪み硬化性が高いために、発泡成形時にセル径が均一になりやすい等の効果を奏することができる。   Since the copolymer and copolymer resin composition having a branched structure of the present invention have a high melt tension and a high strain-hardening property, the cell diameter can be easily uniformed during foam molding. it can.

本明細書では、ジビニルベンゼン誘導体とは、1,3−ジビニルベンゼンや1,4−ジビニルベンゼン、1,3−ジイソプロペニルベンゼン、1,4−ジイソプロペニルベンゼン、m−イソプロペニルスチレン、p−イソプロペニルスチレン等のことであり、好ましくは1,3−ジビニルベンゼンや1,4−ジビニルベンゼンである。これらジビニルベンゼン誘導体を、1種又は2種類以上の混合物として用いても良い。 In this specification, the divinylbenzene derivative means 1,3-divinylbenzene, 1,4-divinylbenzene, 1,3-diisopropenylbenzene, 1,4-diisopropenylbenzene, m-isopropenylstyrene, p. -Isopropenyl styrene and the like, preferably 1,3-divinylbenzene and 1,4-divinylbenzene. You may use these divinylbenzene derivatives as a 1 type, or 2 or more types of mixture.

本明細書では、アルキルリチウムとは、n−ブチルリチウムやsec−ブチルリチウム、tert−ブチルリチウム、エチルリチウム、1,1−ジフェニルヘキシルリチウム等が挙げられ、好ましくはn−ブチルリチウムである。 In the present specification, the alkyl lithium includes n-butyl lithium, sec-butyl lithium, tert-butyl lithium, ethyl lithium, 1,1-diphenylhexyl lithium, and preferably n-butyl lithium.

ジビニルベンゼン誘導体とアルキルリチウムのモル比は、3/97〜80/20である。溶融張力や歪み硬化性の向上効果を大きく高めたければ、15/85〜50/50である。この割合が3/97未満であると、溶融張力や歪み硬化性の向上効果が少ない。
The molar ratio of the divinylbenzene derivative to the alkyl lithium is 3/97 to 80/20. If the effect of improving the melt tension and strain curability is greatly increased, the ratio is 15/85 to 50/50. When this ratio is less than 3/97, the effect of improving melt tension and strain curability is small.

本明細書では、ビニル芳香族炭化水素単量体とは、スチレンやα-メチルスチレン、α-エチルスチレン、o−メチルスチレン、p−メチルスチレン、o−エチルスチレン、p−エチルスチレン、p−tert−ブチルスチレン、2,4−ジメチルスチレン、2,5−ジメチルスチレン、p−tert-ブトキシスチレン、ビニルナフタレン、ビニルアントラセン、インデン等が挙げられ、好ましくはスチレンである。 In this specification, the vinyl aromatic hydrocarbon monomer is styrene, α-methylstyrene, α-ethylstyrene, o-methylstyrene, p-methylstyrene, o-ethylstyrene, p-ethylstyrene, p- Examples include tert-butyl styrene, 2,4-dimethyl styrene, 2,5-dimethyl styrene, p-tert-butoxy styrene, vinyl naphthalene, vinyl anthracene, and indene, and styrene is preferable.

ジビニルベンゼン誘導体とアルキルリチウムからなる開始剤を用いて、ビニル芳香族炭化水素単量体のアニオン重合を行うと、直鎖状、分子量が倍の直鎖状、星型等の混合物が得られる(分岐化行程前のアニオン重合体)。   When an anionic polymerization of a vinyl aromatic hydrocarbon monomer is carried out using an initiator composed of a divinylbenzene derivative and an alkyl lithium, a mixture of linear, linear double molecular weight, star, etc. is obtained ( Anionic polymer before branching process).

ジビニルベンゼン誘導体とアルキルリチウムからのアニオン重合体を分岐化(分岐化工程)すると、直鎖状、星型、星型が2つ繋がったPom−Pom型(Star−Linear−Star型)や、星型が3つ以上繋がった形状(star−Linear−Star−Linear−Star)等の混合物が得られる。対して、分岐化行程前のアニオン重合体をジビニルベンゼン誘導体を用いずに合成し、分岐化すると、直鎖状、星型しか得られない。 When an anionic polymer from a divinylbenzene derivative and an alkyl lithium is branched (branching step), a Pom-Pom type (Star-Linear-Star type) in which two linear, star, and star shapes are connected, A mixture such as a shape in which three or more molds are connected (star-Linear-Star-Linear-Star) is obtained. On the other hand, when the anionic polymer before the branching process is synthesized without using a divinylbenzene derivative and branched, only a linear and star shape can be obtained.

共役ジエンとは、1,3−ブタジエンやイソプレン、2,3−ジメチル−1,3−ブタジエン、1,3−ペンタジエン、1,3−ヘキサジエン、1,3−シクロヘキサジエン等が挙げられるが、好ましくは1,3−ブタジエンやイソプレンである。 Examples of the conjugated diene include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, 1,3-cyclohexadiene, and the like. Is 1,3-butadiene or isoprene.

共役ジエンであるイソプレンのアニオンとジビニルベンゼン誘導体であるジビニルベンゼンの反応の速度定数は、ジビニルベンゼンのアニオンとジビニルベンゼンの反応の速度定数と比べ1/10以下である(ANIONIC POLYMERIZATION PRINCIPLES AND PRACTICAL APPLICATIONS,MARCEL DEKKER,INC.,1996,p337))。そのため、分岐化行程において、ジビニルベンゼンの連鎖が長くなりやすく、多分岐化しやすくなる傾向があり、高分子量化しやすくなる。 The rate constant of the reaction between the isoprene anion conjugated diene and the divinylbenzene derivative divinylbenzene is 1/10 or less compared to the rate constant of the divinylbenzene anion and divinylbenzene (ANIONIC POLYMERISATION PRINCIPLES AND PRACTICAL APPLICATIONS, MARCEL DEKKER, INC., 1996, p337)). Therefore, in the branching process, the divinylbenzene chain tends to be long, tends to be multi-branched, and tends to have a high molecular weight.

分岐構造を有する共重合体は、共重合体のみで利用することも出来るが、ビニル芳香族炭化水素樹脂と混練して用いることも出来る。それにより、混練前のビニル芳香族炭化水素樹脂と比較して、溶融張力や歪み硬化性が向上し、発泡成形時には均一なセルが得やすくなる。 A copolymer having a branched structure can be used only as a copolymer, but can also be used by kneading with a vinyl aromatic hydrocarbon resin. Thereby, compared with the vinyl aromatic hydrocarbon resin before kneading | mixing, melt tension and distortion sclerosis | hardenability improve, and it becomes easy to obtain a uniform cell at the time of foam molding.

本明細書では、ビニル芳香族炭化水素樹脂とは、ポリスチレンやポリ(α−メチルスチレン)、ポリ(α−エチルスチレン)、ポリ(o−メチルスチレン)、ポリ(p−メチルスチレン)、ポリ(o−エチルスチレン)、ポリ(p−エチルスチレン)、ポリ(p−tert−ブチルスチレン)、ポリ(2,4−ジメチルスチレン)、ポリ(2,5−ジメチルスチレン)、ポリ(p−tert-ブトキシスチレン)、ポリビニルナフタレン、ポリビニルアントラセン、ポリインデン等が挙げられ、好ましくはポリスチレンである。 In this specification, the vinyl aromatic hydrocarbon resin means polystyrene, poly (α-methylstyrene), poly (α-ethylstyrene), poly (o-methylstyrene), poly (p-methylstyrene), poly ( o-ethylstyrene), poly (p-ethylstyrene), poly (p-tert-butylstyrene), poly (2,4-dimethylstyrene), poly (2,5-dimethylstyrene), poly (p-tert- Butoxystyrene), polyvinyl naphthalene, polyvinyl anthracene, polyindene and the like, and polystyrene is preferable.

本発明の共重合体と、ビニル芳香族炭化水素樹脂の質量比が0.1/99.9〜20/80であり、好ましくは0.5/99.5〜20/80である。共重合体の質量比が0.1未満では溶融張力や歪み硬化性の向上効果が少なく、20より大きい場合は溶融張力が大きくなりすぎて成形性が悪くなるため好ましくない。 The mass ratio of the copolymer of the present invention and the vinyl aromatic hydrocarbon resin is 0.1 / 99.9 to 20/80, preferably 0.5 / 99.5 to 20/80. When the mass ratio of the copolymer is less than 0.1, the effect of improving the melt tension and strain curability is small, and when it is more than 20, the melt tension becomes too large and the moldability is deteriorated, which is not preferable.

本発明の分岐化工程前のアニオン重合体の重量平均分子量とは、ゲルパーミエーションクロマトグラフィー(以下、GPCと記す)により測定された分子量分布曲線のピーク部の重量平均分子量を示すものである。これは、分子量既知の標準ポリスチレンのGPCを測定し、そのピーク位置の保持容量を求めて重量平均分子量と保持容量との相関曲線を作図した検量線より求められる。 The weight average molecular weight of the anionic polymer before the branching step of the present invention indicates the weight average molecular weight of the peak portion of the molecular weight distribution curve measured by gel permeation chromatography (hereinafter referred to as GPC). This is obtained from a calibration curve obtained by measuring GPC of standard polystyrene having a known molecular weight, obtaining a retention capacity at the peak position, and drawing a correlation curve between the weight average molecular weight and the retention capacity.

本発明の分岐化工程前のアニオン重合体の重量平均分子量は20,000〜2,000,000であり、好ましくは40,000〜1,500,000であり、更に好ましくは100,000〜1,500,000である。ビニル芳香族炭化水素単量体であるスチレンのアニオン重合体の絡み合い点間分子量は約20,000であり(非特許文献:Physical. Chem.,1968年,vol.349,p.433)、分岐を有する高分子の粘弾性的性質に大きな影響を及ぼすのは、枝の分子量が絡み合い点間分子量の2倍以上の時であり、顕著に現れるのは5倍以上の時である。そのため、重量平均分子量が20,000未満では絡み合いが不十分となり、40,000では絡み合い点間分子量の2倍となるため絡み合いやすくなり、5倍となる100,000以上であることが望ましい。また、2,000,000を超えると成形性が著しく悪くなることから、好ましくない。 The weight average molecular weight of the anionic polymer before the branching step of the present invention is 20,000 to 2,000,000, preferably 40,000 to 1,500,000, more preferably 100,000 to 1. , 500,000. The molecular weight between entanglement points of the anionic polymer of styrene, which is a vinyl aromatic hydrocarbon monomer, is about 20,000 (Non-Patent Document: Physical. Chem., 1968, vol. 349, p. 433) and branched. The viscoelastic property of the polymer having a large influence is exerted when the molecular weight of the branch is 2 times or more of the molecular weight between the entanglement points, and when the molecular weight appears more than 5 times. Therefore, when the weight average molecular weight is less than 20,000, the entanglement becomes insufficient, and when it is 40,000, the molecular weight between the entanglement points becomes twice, so that the entanglement becomes easy. On the other hand, if it exceeds 2,000,000, the moldability is remarkably deteriorated.

溶融張力(メルトテンション)とは、加熱・溶融した樹脂を引張った際に発生する張力のことである。メルトフローレートが粘性の指標であるのに対し、弾性の指標として、紡糸性、ブロー成形性などの成形加工性の一次評価として用いられる。溶融張力が低いと、インフレーションフィルム成形では樹脂が垂れやすくなりドローダウン性が悪くなり、発泡成形においては破泡しやすくなる。逆に、溶融張力が高すぎると、高速成形の際に破断しやすくなる。 The melt tension (melt tension) is a tension generated when a heated and melted resin is pulled. While melt flow rate is an index of viscosity, it is used as a primary evaluation of moldability such as spinnability and blow moldability as an index of elasticity. When the melt tension is low, the resin tends to sag in the blown film molding and the drawdown property is deteriorated, and the foam is easily broken in the foam molding. Conversely, if the melt tension is too high, it tends to break during high speed molding.

伸長粘度は、一定の歪速度、一定温度下での溶融樹脂の伸長変形下の粘度のことである。溶融紡糸、フィルム成形、ブロー成形、熱成形などのダイを出た以降の自由表面下での変形のしやすさを評価する方法として、伸長粘度が用いられている。 The elongational viscosity is the viscosity under elongational deformation of the molten resin at a constant strain rate and a constant temperature. Elongation viscosity is used as a method for evaluating the ease of deformation under the free surface after exiting a die such as melt spinning, film molding, blow molding, and thermoforming.

歪み硬化性とは伸長変形において歪の増加と共に変形抵抗が急激に増加する弾性現象のことである。歪み硬化性が顕著であると、偏肉が生じ難いため、変形が均質に生じることが知られている。その結果、厚みが均一のシートが得やすい事や、気泡成長における破泡が低減することから発泡成形性が向上する。 Strain hardenability is an elastic phenomenon in which deformation resistance increases rapidly as strain increases in elongation deformation. It is known that when the strain hardenability is remarkable, uneven thickness hardly occurs, so that the deformation occurs uniformly. As a result, foam formability is improved because a sheet having a uniform thickness is easily obtained, and bubble breakage in bubble growth is reduced.

歪み硬化性において、延伸倍率e1倍(eはネピアの定数)での伸長粘度をη、延伸倍率e2倍での伸長粘度をηとし、その伸長粘度の比η/ηを指標とする。 In the strain hardening property, the elongation viscosity at a stretching ratio e 1 times (e is a Napier constant) is η 1 , the elongation viscosity at a stretching ratio e 2 times is η 2, and the ratio η 2 / η 1 of the elongation viscosity is Use as an indicator.

歪み硬化性比とは、用いるビニル芳香族炭化水素系樹脂の歪み硬化性からの上昇の程度が問題となるため、共重合体とビニル芳香族炭化水素系樹脂からなる共重合体樹脂組成物の伸長粘度の比η/ηとビニル芳香族炭化水素系樹脂の伸長粘度の比η/ηの比とした。 The strain-hardening ratio is a problem of the degree of increase from the strain-hardening property of the vinyl aromatic hydrocarbon resin to be used, so the copolymer resin composition comprising the copolymer and the vinyl aromatic hydrocarbon-based resin The ratio of the extension viscosity η 2 / η 1 and the ratio of the extension viscosity of the vinyl aromatic hydrocarbon resin η 2 / η 1 were used.

以下に実施例をもって本発明を更に説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES The present invention will be further described below with reference to examples, but the present invention is not limited to these examples.

<混練方法>
混練は二種類の方法で行った。一つ目の方法は、ブラベンダー社製プラスチコーダPL2000(ニーダアタッチメント:内容積60mL、2枚のシグマブレード)を用いて、混合槽温度200℃、ブレード回転数70rpm、混練時間10分間で行った。二つ目の方法は、田端社製40mmφ押出機(単軸ダルメージスクリュー)を用いて、温度200℃で押出、ペレットを得た。
<Kneading method>
Kneading was performed by two kinds of methods. The first method was performed using a Brabender Plasticorder PL2000 (kneader attachment: internal volume 60 mL, two sigma blades) at a mixing bath temperature of 200 ° C., a blade rotation speed of 70 rpm, and a kneading time of 10 minutes. . The second method was extrusion and pellets obtained at a temperature of 200 ° C. using a 40 mmφ extruder (single screw dull screw) manufactured by Tabata Corporation.

混錬する樹脂は、合成した共重合体とビニル芳香族炭化水素系樹脂のポリスチレンである。ポリスチレンは、東洋スチレン社製HRM−10Nを用いた。例えば、10質量%の混練物では、合成した共重合体5gとHRM−10N45gを用いた。   The resin to be kneaded is a synthesized copolymer and polystyrene of vinyl aromatic hydrocarbon resin. As the polystyrene, HRM-10N manufactured by Toyo Styrene Co., Ltd. was used. For example, in a 10% by mass kneaded product, 5 g of the synthesized copolymer and 45 g of HRM-10N were used.

<測定方法>
溶融張力は、東洋精機社製キャピログラフ1D(キャピラリー寸法:直径1mm、長さ40mm、バレル寸法:直径9.55mm、有効長さ250mm)を用いて測定を行った。ペレット状のサンプル約25gをバレルに詰め、バレル温度200℃で3分間予熱を行った。その後、200℃でピストンスピード5mm/minで溶融樹脂を押し出し、引取速度5mm/minで引取時の張力を溶融張力の値として記載した。
<Measurement method>
The melt tension was measured using a Capillograph 1D (capillary dimension: diameter 1 mm, length 40 mm, barrel dimension: diameter 9.55 mm, effective length 250 mm) manufactured by Toyo Seiki Co., Ltd. About 25 g of the pellet-shaped sample was packed in a barrel and preheated at a barrel temperature of 200 ° C. for 3 minutes. Thereafter, the molten resin was extruded at a piston speed of 5 mm / min at 200 ° C., and the tension at the time of take-up at a take-up speed of 5 mm / min was described as the value of the melt tension.

歪み硬化性の評価は伸長粘度を用いており、伸長粘度は東洋精機社製マイスナー型伸長粘度計メルテンレオメーターを用いて測定した。直径約1mm、長さ約30cmの棒状試料を用いて、シリコンオイル中で溶融させ、3分間放置した後、回転式クランプに両端を挟み、一軸方向に伸長させる方法で測定した。測定温度は140℃で、伸長速度0.05sec−1で測定した。 The evaluation of strain curability used elongation viscosity, and the elongation viscosity was measured using a Meissner type elongation viscometer melten rheometer manufactured by Toyo Seiki Co., Ltd. A rod-like sample having a diameter of about 1 mm and a length of about 30 cm was melted in silicon oil, allowed to stand for 3 minutes, then measured by a method in which both ends were sandwiched between rotary clamps and stretched in a uniaxial direction. The measurement temperature was 140 ° C. and the elongation rate was 0.05 sec −1 .

重量平均分子量の測定は、東ソー社製HLC−8220GPC(カラム:昭和電工社製KF−404HQ)を用いて、溶媒はテトラヒドロフラン、40℃で示差屈折計により検出を行った。米国標準技術局認証の標準物質としてSRM705Aを用いて、重量平均分子量を求めた。   The weight average molecular weight was measured by using a differential refractometer at 40 ° C. with tetrahydrofuran as a solvent, using HLC-8220GPC (column: KF-404HQ manufactured by Showa Denko KK) manufactured by Tosoh Corporation. The weight average molecular weight was determined using SRM705A as a standard substance certified by the US National Institute of Standards and Technology.

<製造方法>
内容積3L又は10Lの重合缶で、攪拌翼はマックスブレンド翼を用いて、攪拌数は約200rpmで重合を行った。缶内は窒素置換されており、外気が入らないように缶内圧は大気圧以上とした。原料は脱水缶から窒素による圧送又は窒素雰囲気のグローブ ボックス内で計量し、重合缶内へ窒素による圧送で添加した。原料とは、シクロヘキサン、スチレン、ジビニルベンゼン、n−ブチルリチウム及びイソプレンである。
<Manufacturing method>
Polymerization was carried out at a stirring speed of about 200 rpm using a MaxBlend blade with a stirring blade having a 3 L or 10 L internal volume. The inside of the can was purged with nitrogen, and the inside pressure of the can was set to atmospheric pressure or higher so that outside air could not enter. The raw materials were weighed from a dewatering can by nitrogen or measured in a glove box in a nitrogen atmosphere and added to the polymerization can by nitrogen. The raw materials are cyclohexane, styrene, divinylbenzene, n-butyllithium and isoprene.

<脱水法>
シクロヘキサン、スチレン及びジビニルベンゼンは、脱水缶内で窒素バブリングすることにより脱水を行い(室温)、水分量が10ppm以下になるまで脱水した。イソプレンは、真空乾燥した3Aのモレキュラーシーブを用いて、水分量が10ppm以下になるまで脱水した。
<Dehydration method>
Cyclohexane, styrene, and divinylbenzene were dehydrated by bubbling nitrogen in a dehydration can (room temperature) and dehydrated until the water content was 10 ppm or less. Isoprene was dehydrated using vacuum dried 3A molecular sieves until the water content was 10 ppm or less.

[実施例1]
10L重合缶に300ppmのテトラヒドロフランを含むシクロヘキサン(表中の表記をCHx−1とする)5.67kg及びジビニルベンゼン(表中の表記をDVB−1とする)21.3mg加えた。その後、30℃に昇温し、濃度0.236mol/Lのn−ブチルリチウム(表中の表記をBuLiとする)を含むシクロヘキサン溶液を23.1mL添加し30分間反応させた。次いで、スチレン(表中の表記をSt−1とする)10gを添加し30℃で30分間反応させた後、600gのスチレン(表中の表記をSt−2とする)を更に添加し、内温が40℃になるようにして1時間重合させた(分岐化工程前のアニオン重合体)。この重合溶液をサンプリングし、GPCにより重量平均分子量を測定した。更に、ジビニルベンゼン(表中の表記をDVB−2とする)15.7gとイソプレン(表中の表記をIspとする)33.4gをシクロヘキサン(表中の表記をCHx−2とする)700gで溶解させ、70℃に昇温した反応容器に添加し5時間反応させた。少量の水により反応を停止させ、メタノール中に重合溶液を滴下することにより析出を行った。得られた共重合体5gとポリスチレン(HRM−10N)45gをブラベンダー社製プラスチコーダPL2000にて混練し、溶融張力や伸長粘度の測定を行った。測定結果は表2に記載した。
[Example 1]
To a 10 L polymerization vessel, 5.67 kg of cyclohexane (indicated in the table as CHx-1) containing 300 ppm of tetrahydrofuran and 21.3 mg of divinylbenzene (indicated in the table as DVB-1) were added. Thereafter, the temperature was raised to 30 ° C., 23.1 mL of a cyclohexane solution containing n-butyllithium having a concentration of 0.236 mol / L (indicated in the table as BuLi) was added and reacted for 30 minutes. Next, after adding 10 g of styrene (indicated in the table as St-1) and reacting at 30 ° C. for 30 minutes, 600 g of styrene (indicated in the table as St-2) was further added. Polymerization was carried out for 1 hour at a temperature of 40 ° C. (anionic polymer before the branching step). This polymerization solution was sampled and the weight average molecular weight was measured by GPC. Furthermore, 15.7 g of divinylbenzene (the notation in the table is DVB-2) and 33.4 g of isoprene (the notation in the table is Isp) are 700 g of cyclohexane (the notation in the table is CHx-2). It was dissolved and added to a reaction vessel heated to 70 ° C. and reacted for 5 hours. The reaction was stopped with a small amount of water, and precipitation was performed by dropping the polymerization solution into methanol. 5 g of the obtained copolymer and 45 g of polystyrene (HRM-10N) were kneaded with a plastic coder PL2000 manufactured by Brabender, and the melt tension and elongational viscosity were measured. The measurement results are shown in Table 2.

[実施例2〜9]
表1に示した原料配合以外は実施例1と同様な操作を行なった。測定結果は表2に記載した。
[Examples 2 to 9]
The same operation as Example 1 was performed except the raw material mixing | blending shown in Table 1. The measurement results are shown in Table 2.

[実施例10]
イソプレンは使用せずに、それ以外は、実施例1と同様に、分岐化工程前のアニオン重合体を合成し、重量平均分子量を測定した。その後も実施例1と同様に、ジビニルベンゼンを用いて共重合体を合成し、停止、析出を行い、混練及び測定を行った。用いた原料量を表3に記載した。
[Example 10]
The isoprene was not used, and except that, an anionic polymer before the branching step was synthesized and the weight average molecular weight was measured in the same manner as in Example 1. Thereafter, as in Example 1, a copolymer was synthesized using divinylbenzene, stopped and precipitated, and kneaded and measured. The amount of raw material used is shown in Table 3.

[実施例11、12]
表1に示した原料量で実施例10と同様な操作を行なった。測定結果は表3に記載した。
[Examples 11 and 12]
The same operation as in Example 10 was performed with the amount of raw materials shown in Table 1. The measurement results are shown in Table 3.

[実施例13、14]
実施例13では、実施例8で得られた共重合体を、実施例14では、実施例12で得られた共重合体を使用し、ポリスチレン(HRM−10N)との樹脂組成物を表4記載の量比で、田端社製40mmφ押出機にて押出を行い作製した。
[Examples 13 and 14]
In Example 13, the copolymer obtained in Example 8 was used, and in Example 14, the copolymer obtained in Example 12 was used. Table 4 shows the resin composition with polystyrene (HRM-10N). Extrusion was carried out using a 40 mmφ extruder manufactured by Tabata Co., Ltd. at the stated quantity ratio.

[比較例1、2]
ジビニルベンゼンを用いずに、それ以外は、実施例1と同様に、分岐化工程前のアニオン重合体を合成し、重量平均分子量を測定した。その後も同様に、イソプレン及びジビニルベンゼンを用いて共重合体を合成し、停止、析出を行い、混練及び測定を行った。用いた原料量を表1に、測定結果は表2に記載した。
[Comparative Examples 1 and 2]
Anionic polymer before the branching step was synthesized and the weight average molecular weight was measured in the same manner as in Example 1 except that divinylbenzene was not used. Similarly, a copolymer was synthesized using isoprene and divinylbenzene, stopped, precipitated, kneaded and measured. The amounts of raw materials used are shown in Table 1, and the measurement results are shown in Table 2.

[比較例3、4]
ジビニルベンゼンを用いずに、それ以外は、実施例1と同様に、分岐化工程前のアニオン重合体を合成し、重量平均分子量を測定した。その後、イソプレンは用いずに、同様に共重合体を合成し、停止、析出を行い、混練及び測定を行った。用いた原料量を表1に、測定結果は表2に記載した。
[Comparative Examples 3 and 4]
Anionic polymer before the branching step was synthesized and the weight average molecular weight was measured in the same manner as in Example 1 except that divinylbenzene was not used. Thereafter, a copolymer was synthesized in the same manner without using isoprene, stopped and precipitated, and kneaded and measured. The amounts of raw materials used are shown in Table 1, and the measurement results are shown in Table 2.

Figure 2015203071
Figure 2015203071

Figure 2015203071
Figure 2015203071

Figure 2015203071
Figure 2015203071

Figure 2015203071
Figure 2015203071

表3では、開始剤比は、ジビニルベンゼン誘導体とアルキルリチウムのそれぞれのmol%を示している。ただし、アルキルリチウムは溶媒や単量体中の不純物で不活性化するため、用いた量ではなく、{用いた単量体M(g)}/{重合体の数平均分子量Mn(g/mol)}で算出した値を用いている。 In Table 3, the initiator ratio indicates each mol% of the divinylbenzene derivative and the alkyl lithium. However, since alkyllithium is inactivated by impurities in the solvent or monomer, it is not the amount used, but {used monomer M (g)} / {number average molecular weight Mn of polymer (g / mol). )} Is used.

分子量は、分岐化工程前のアニオン重合体の構造をGPC法により求めた重量平均分子量のことである。 The molecular weight is a weight average molecular weight obtained by a GPC method to determine the structure of the anionic polymer before the branching step.

実施例の樹脂は、発泡成形性に影響を与える、溶融張力、歪み硬化性が向上した。 The resins of the examples have improved melt tension and strain curability that affect foam moldability.

本発明の分岐構造を有する共重合体及び共重合体組成物は、発泡成形用加工助剤として有効に働くことがわかった。また、他に、シートや発泡シートの加工助剤の用途にも適用できる。
It has been found that the copolymer and copolymer composition having a branched structure of the present invention work effectively as a processing aid for foam molding. In addition, the present invention can be applied to the use of processing aids for sheets and foamed sheets.

Claims (4)

ジビニルベンゼン誘導体とアルキルリチウムのモル比が3/97〜80/20である開始剤を用いて、ビニル芳香族炭化水素単量体のアニオン重合を行い、得られた重合体がGPC法により求めた重量平均分子量が20,000〜2,000,000であり、分岐化工程として、ジビニルベンゼン誘導体及び共役ジエンを同時に添加することにより得られる共重合体。   Using an initiator having a molar ratio of divinylbenzene derivative to alkyllithium of 3/97 to 80/20, anionic polymerization of vinyl aromatic hydrocarbon monomer was performed, and the obtained polymer was determined by GPC method. A copolymer having a weight average molecular weight of 20,000 to 2,000,000 and obtained by simultaneously adding a divinylbenzene derivative and a conjugated diene as a branching step. ジビニルベンゼン誘導体とアルキルリチウムのモル比が3/97〜80/20である開始剤を用いて、ビニル芳香族炭化水素単量体のアニオン重合を行い、得られた重合体がGPC法により求めた重量平均分子量が20,000〜2,000,000であり、分岐化工程として、ジビニルベンゼン誘導体を添加することにより得られる共重合体。 Using an initiator having a molar ratio of divinylbenzene derivative to alkyllithium of 3/97 to 80/20, anionic polymerization of vinyl aromatic hydrocarbon monomer was performed, and the obtained polymer was determined by GPC method. A copolymer having a weight average molecular weight of 20,000 to 2,000,000 and obtained by adding a divinylbenzene derivative as a branching step. 請求項1または2記載の共重合体と、ビニル芳香族炭化水素系樹脂の質量比が0.1/99.9〜20/80である樹脂組成物。   The resin composition whose mass ratio of the copolymer of Claim 1 or 2 and vinyl aromatic hydrocarbon-type resin is 0.1 / 99.9-20 / 80. ジビニルベンゼン誘導体とアルキルリチウムのモル比が3/97〜80/20である開始剤を用いて、ビニル芳香族炭化水素単量体のアニオン重合体がGPC法により求めた重量平均分子量が20,000〜2,000,000であることを特徴とし、分岐化工程として、ジビニルベンゼン誘導体及び共役ジエン、又はジビニルベンゼン誘導体を同時に添加することによる共重合体の製造方法。 Using an initiator having a molar ratio of divinylbenzene derivative to alkyllithium of 3/97 to 80/20, an anionic polymer of vinyl aromatic hydrocarbon monomer has a weight average molecular weight determined by GPC method of 20,000. A method for producing a copolymer by simultaneously adding a divinylbenzene derivative and a conjugated diene, or a divinylbenzene derivative as a branching step.
JP2014083058A 2014-04-14 2014-04-14 Copolymer having branch structure and copolymer composition Pending JP2015203071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014083058A JP2015203071A (en) 2014-04-14 2014-04-14 Copolymer having branch structure and copolymer composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014083058A JP2015203071A (en) 2014-04-14 2014-04-14 Copolymer having branch structure and copolymer composition

Publications (1)

Publication Number Publication Date
JP2015203071A true JP2015203071A (en) 2015-11-16

Family

ID=54596729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014083058A Pending JP2015203071A (en) 2014-04-14 2014-04-14 Copolymer having branch structure and copolymer composition

Country Status (1)

Country Link
JP (1) JP2015203071A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022065399A1 (en) * 2020-09-25 2022-03-31 株式会社クラレ Resin composition and molded article

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52995B1 (en) * 1969-01-24 1977-01-11
JPS5296695A (en) * 1976-02-10 1977-08-13 Shell Int Research Hydrogenated polymer
JPS58120622A (en) * 1982-01-04 1983-07-18 ザ・グツドイヤ−・タイヤ・アンド・ラバ−・カンパニ− Manufacture of thermoplastic block polymer
JPS63308011A (en) * 1987-06-10 1988-12-15 Nippon Erasutomaa Kk Novel styrene-butadiene copolymer and composition thereof
JP2014129525A (en) * 2012-12-28 2014-07-10 Chi Mei Corp Modified diene-vinyl aromatic hydrocarbon copolymer and polymerization method of the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52995B1 (en) * 1969-01-24 1977-01-11
JPS5296695A (en) * 1976-02-10 1977-08-13 Shell Int Research Hydrogenated polymer
JPS58120622A (en) * 1982-01-04 1983-07-18 ザ・グツドイヤ−・タイヤ・アンド・ラバ−・カンパニ− Manufacture of thermoplastic block polymer
JPS63308011A (en) * 1987-06-10 1988-12-15 Nippon Erasutomaa Kk Novel styrene-butadiene copolymer and composition thereof
JP2014129525A (en) * 2012-12-28 2014-07-10 Chi Mei Corp Modified diene-vinyl aromatic hydrocarbon copolymer and polymerization method of the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022065399A1 (en) * 2020-09-25 2022-03-31 株式会社クラレ Resin composition and molded article
CN116234846A (en) * 2020-09-25 2023-06-06 株式会社可乐丽 Resin composition and molded article
JP7462061B2 (en) 2020-09-25 2024-04-04 株式会社クラレ Resin composition and molded article

Similar Documents

Publication Publication Date Title
JP3953522B2 (en) Thermoplastic molding material
US7064164B2 (en) Transparent styrol-butadiene block copolymer mixtures
US7288612B2 (en) Initiator composition and method for anionic polymerisation
JP5168460B2 (en) Block copolymer and method for producing the same
JP4714019B2 (en) Block copolymer mixture containing branched block copolymer
JP5240984B2 (en) Process for producing block copolymer composition or hydrogenated product thereof
JP5240985B2 (en) Block copolymer composition and method for producing hydrogenated product thereof
BR112016026643B1 (en) PROCESSES FOR PREPARING A BRANCHED CONJUGATED DIENE POLYMER AND CONJUGATED DIENE POLYMER LATEX, BRANCHED CONJUGATED DIENE POLYMER, CONJUGATED DIENE POLYMER LATEX, AND, ARTICLE
JP2015203071A (en) Copolymer having branch structure and copolymer composition
US20060160971A1 (en) Method for anionic polymerisation of $g(a)-methylstyrene
TWI660975B (en) Hydrogenated block copolymer and composition thereof
WO2016136889A1 (en) Method for preparing modified conjugated diene rubber
JPS5938209A (en) Branched conjugated diene polymer
CN114478954B (en) Preparation method of wide-distribution four-arm comb-shaped star-branched butyl rubber
JP6851585B2 (en) Multi-branched styrene polymer
CN114478956B (en) Preparation method of high-width-distribution three-hetero-arm comb-shaped star-shaped branched butyl rubber
JP6426888B2 (en) Branching material, method for producing polymer composition and polymer composition
CN114478951B (en) Preparation method of wide-distribution three-arm comb-shaped star-branched butyl rubber
JP5481131B2 (en) Vinyl aromatic hydrocarbon resin composition suitable for blow molding
CN114163585B (en) Preparation method of ultra-wide-distribution four-hetero-arm comb-shaped star-shaped branched butyl rubber
CN114478955B (en) Preparation method of wide-distribution four-arm comb-shaped star-branched butyl rubber
CN114478949B (en) Preparation method of wide-distribution three-arm comb-shaped star-branched butyl rubber
JP6568275B2 (en) Branching material, method for producing polymer composition, and polymer composition
JP2006249125A (en) Thermoplastic resin composition
JP4386665B2 (en) Branched block copolymer and resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181120