JP2015202499A - Estimation method of nugget diameter of resistance spot welding - Google Patents

Estimation method of nugget diameter of resistance spot welding Download PDF

Info

Publication number
JP2015202499A
JP2015202499A JP2014081734A JP2014081734A JP2015202499A JP 2015202499 A JP2015202499 A JP 2015202499A JP 2014081734 A JP2014081734 A JP 2014081734A JP 2014081734 A JP2014081734 A JP 2014081734A JP 2015202499 A JP2015202499 A JP 2015202499A
Authority
JP
Japan
Prior art keywords
welding
point
nugget diameter
current
already
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014081734A
Other languages
Japanese (ja)
Other versions
JP6299356B2 (en
Inventor
学 福本
Manabu Fukumoto
学 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2014081734A priority Critical patent/JP6299356B2/en
Publication of JP2015202499A publication Critical patent/JP2015202499A/en
Application granted granted Critical
Publication of JP6299356B2 publication Critical patent/JP6299356B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an estimation method of a nugget diameter of resistance spot welding capable of predicting a weld lobe under a condition of requiring consideration of a distributary of an electric current, on a desk, by using the weld lobe of already acquired single point welding.SOLUTION: In an estimation method of a nugget diameter of resistance spot welding, kof I=k×Iis determined by using a thickness (t) of a welding object material, an electric current Iflowing between electrodes for sandwiching the welding object material, an electric current Iflowing in a welding point, a distance (b) between the welding point and an already dotted point, a nugget diameter dof the welding point in the case of single point welding, a nugget diameter dof the welding point and the already dotted point when welded under the same welding condition as the single point welding, specific resistance ρof a welding part and specific resistance ρof a distributary part, and the determined kis substituted in a relational expression of dand d, and the nugget diameter in the already-known weld lobe of the single point welding is substituted in dof the relational expression, so that the nugget diameter is estimated when having the already dotted point corresponding to a current condition.

Description

本発明は、抵抗スポット溶接における、ナゲット径の推定方法に関する。より詳しくは、抵抗スポット溶接により溶接すべき溶接点を流れる電流が、当該溶接点の近傍に存在する既に溶接された既打点へと分流する条件における、抵抗スポット溶接のナゲット径の推定方法に関する。   The present invention relates to a method for estimating a nugget diameter in resistance spot welding. More specifically, the present invention relates to a method for estimating a nugget diameter of resistance spot welding under a condition in which a current flowing through a welding point to be welded by resistance spot welding is diverted to an already welded spot existing in the vicinity of the welding point.

自動車等の各種工業部材における材料同士の接合方法の1つとして、抵抗スポット溶接が用いられている。抵抗スポット溶接では、接合される二以上の被溶接材を電極間に挟み、この電極によって被溶接材を押圧しつつ通電する。これにより、通電された二以上の被溶接材の接触界面の一部が溶融されて接合される。   As one method for joining materials in various industrial members such as automobiles, resistance spot welding is used. In resistance spot welding, two or more workpieces to be joined are sandwiched between electrodes, and electricity is applied while pressing the workpieces with these electrodes. Thereby, a part of contact interface of the to-be-welded two or more to-be-welded materials is fuse | melted and joined.

このような抵抗スポット溶接に関する技術として、例えば非特許文献1、p.11の図4には、スポット溶接での典型的なナゲット成長過程が示されている。ここで、電流と加圧力、または電流と溶接時間をそれぞれ変数として、それらの組み合わせで適切な溶接範囲を二次元的に表示した図(例えば非特許文献1、p.87の図5)を「ウェルドローブ」といい、電流を横軸としナゲット径を縦軸とする座標平面に記載した曲線に対しても一般に「ウェルドローブ」という表現が使用されている。   As a technique regarding such resistance spot welding, for example, Non-Patent Document 1, p. FIG. 4 of 11 shows a typical nugget growth process in spot welding. Here, a diagram (for example, FIG. 5 of Non-Patent Document 1, p. 87) in which an appropriate welding range is displayed two-dimensionally by combining current and pressure, or current and welding time as variables, and combining them. The expression “weld lobe” is generally used for a curve described on a coordinate plane called “weld lobe” and having a current on the horizontal axis and a nugget diameter on the vertical axis.

一般社団法人溶接学会 軽構造接合加工研究委員会編、「薄鋼板及びアルミニウム合金板の抵抗スポット溶接」、p.11、87Edited by the Light Welding Society of Japan, “Resistance spot welding of thin steel plates and aluminum alloy plates”, p. 11, 87

抵抗スポット溶接では、溶接点の間隔が狭い場合、溶接点に通電した電流が、その近傍の既打点に分流し、溶融部(ナゲット)形成を遅延させる、あるいは健全なナゲットが得られない問題がある。一方、部品の剛性向上の観点からは、適切な位置にスポット溶接点を配置することが求められ、場合によってはスポット溶接点の打点間隔を狭くする(短ピッチ化する)ことが有効となる。このような分流が不可避となる条件では、実験室的に得た単点溶接でのウェルドローブから適正溶接条件を決定することが困難となり、分流を考慮した実験を別途追加で実施し、打点ピッチ(分流量)に応じたウェルドローブを採取する必要がある。しかしながら、抵抗スポット溶接により溶接され得る被溶接材の組み合わせは膨大であるため、それぞれの組み合わせ毎に、溶接点と既打点との距離に応じて、分流を考慮した実験を実施してウェルドローブを採取することは、作業時間等の観点から極めて困難である。   In resistance spot welding, when the interval between welding points is narrow, the current applied to the welding point is diverted to the hitting point in the vicinity, delaying the formation of the melted part (nugget), or a sound nugget cannot be obtained. is there. On the other hand, from the viewpoint of improving the rigidity of the parts, it is required to arrange spot welding points at appropriate positions. In some cases, it is effective to narrow the spot welding point interval (to reduce the pitch). Under such conditions where shunting is unavoidable, it is difficult to determine the appropriate welding conditions from the weld lobe obtained by laboratory single-point welding. It is necessary to collect a weld lobe according to the (divided flow rate). However, since there are a large number of materials to be welded that can be welded by resistance spot welding, an experiment that considers the diversion is performed for each combination according to the distance between the welding point and the hit point, and the weld lobe is Collecting is extremely difficult from the viewpoint of working time and the like.

分流を考慮しない、既に得られている単点溶接のウェルドローブを用いて、分流の考慮が必要な条件におけるウェルドローブを机上で予測することができれば、実験を実施してウェルドローブを採取する場合よりも短時間で、必要なウェルドローブを得ることが可能になると考えられる。しかしながら、これまでに、このような予測技術は報告されていない。   If the weld lobe can be predicted on the desk using the already obtained single-point welding weld lobe without considering the split flow, and if the weld lobe is collected by conducting an experiment It is considered that the required weld lobe can be obtained in a shorter time. However, no such prediction technology has been reported so far.

そこで本発明は、既に得られている単点溶接のウェルドローブを用いて、電流の分流の考慮が必要な条件におけるウェルドローブを机上で予測することが可能な、抵抗スポット溶接のナゲット径の推定方法を提供することを課題とする。   Therefore, the present invention uses the already obtained single-point welding weld lobe to estimate the resistance lobe welding nugget diameter in which the weld lobe in a condition that requires consideration of current shunting can be predicted on a desk. It is an object to provide a method.

本発明者は、鋭意検討の結果、同種同厚、同種異厚、および、異種異厚の2枚重ね板組に対して、通常、実験室的に採取されている単点溶接時のウェルドローブがあれば、溶接点近傍に1点の既打点が有る場合、および、溶接点近傍の両側等距離に2点の既打点が溶接点を含んだ直線上に有る場合に、分流の影響を考慮したウェルドローブを机上で簡便に予測することが可能であることを知見した。また、予測されたウェルドローブと、必要ナゲット径とを比較することにより、適正溶接条件(適正電流条件)を簡便に推定することが可能であることを知見した。本発明は、このような知見に基づいて完成させた。以下、本発明について説明する。   As a result of intensive studies, the inventor of the present invention has made a welded lobe at the time of single-point welding, which is usually taken in a laboratory for two-layered plate sets of the same thickness, the same thickness, and the different thickness. If there is a single spot near the weld point, and if there are two spot hits on the straight line including the weld point at the same distance on both sides near the weld point, consider the effect of diversion It was found that the welded lobe can be easily predicted on a desk. It was also found that the appropriate welding conditions (appropriate current conditions) can be easily estimated by comparing the predicted weld lobe and the required nugget diameter. The present invention has been completed based on such findings. The present invention will be described below.

本発明の第1の態様は、抵抗スポット溶接により溶接すべき溶接点を流れる電流が、溶接点から所定の距離の位置に存在する、既に溶接された既打点へと分流することを考慮しつつ、溶接点における通電電流とナゲット径との関係であるウェルドローブを推定する際に、抵抗スポット溶接により溶接される2枚の被溶接材それぞれの厚さをt[mm]、上記2枚の被溶接材を挟む電極間を流れる電流をI[kA]、溶接点を流れる電流をI[kA]、上記所定の距離をb[mm]、既打点が存在しない単点溶接の場合における溶接点のナゲット径をd[mm]、該単点溶接と同じ溶接条件で溶接した場合における溶接点および既打点のナゲット径をd[mm]、溶接部の平均的な比抵抗をρ[Ω・m]、分流部の平均的な比抵抗をρ[Ω・m]、とするとき、既打点が1点の場合は、I=k・Iのkが下記式(X)で表され、既打点が2点の場合は、I=k・Iのkが下記式(Y)で表され、ナゲット径dの関数で表されるkをk(d)と表すとき、既打点が1点の場合には、単点溶接でk通り(kは1より大きい整数)の電流条件I0、kに対してそれぞれ得られたナゲット径d0、kの組み合わせである既知のウェルドローブにおけるd0、kを下記式(Z)のdへと代入し、且つ、下記式(X)で表されるkを下記式(Z)におけるk(d)へと代入することにより、電流条件I0、kに対応する、既打点を有する場合のナゲット径da、kを推定し、既打点が2点の場合には、単点溶接でk通り(kは1より大きい整数)の電流条件I0、kに対してそれぞれ得られたナゲット径d0、kの組み合わせである既知のウェルドローブにおけるd0、kを下記式(Z)のdへと代入し、且つ、下記式(Y)で表されるkを下記式(Z)におけるk(d)へと代入することにより、電流条件I0、kに対応する、既打点を有する場合のナゲット径da、kを推定するナゲット径推定工程を有する、抵抗スポット溶接のナゲット径の推定方法である。
The first aspect of the present invention considers that the current flowing through the welding point to be welded by resistance spot welding is shunted to the already welded hit point existing at a predetermined distance from the welding point. When the weld lobe, which is the relationship between the energizing current and the nugget diameter at the welding point, is estimated, the thickness of each of the two workpieces to be welded by resistance spot welding is t [mm], Welding in the case of single point welding where the current flowing between the electrodes sandwiching the welding material is I 0 [kA], the current flowing through the welding point is I a [kA], the predetermined distance is b [mm], and there is no hit point. The nugget diameter of the point is d 0 [mm], the nugget diameter of the weld point and the hit point when the welding is performed under the same welding conditions as the single point welding is d a [mm], and the average specific resistance of the weld is ρ a [Ω ・ m], average ratio of shunt Anti the ρ b [Ω · m], that when, in the case of already hitting point 1 point, k a of I a = k a · I 0 is represented by the following formula (X), already hitting point two points If, k a of I a = k a · I 0 is represented by the following formula (Y), to represent a k a, represented by a function of the nugget diameter d a and k a (d a), is already RBI In the case of one point, in a known weld lobe, which is a combination of kugget diameters d 0 and k obtained for k current conditions I 0 and k in single-point welding (k is an integer greater than 1), respectively. the d 0, k is substituted into d 0 of the formula (Z), and, by substituting k a represented by the following formula (X) to k a (d a) of the following formula (Z) The nugget diameter da , k when there are already hit points corresponding to the current conditions I 0, k is estimated, and when there are 2 hit points, k types (k The a d 0, k at a known weld lobe is a combination of nugget diameter d 0, k respectively obtained with respect to the current condition I 0, k of an integer greater than 1) to d 0 of the formula (Z) assignment was, and, by substituting k a represented by the following formula (Y) to k a (d a) of the following formula (Z), corresponding to the current condition I 0, k, having already RBI This is a method for estimating the nugget diameter of resistance spot welding, which includes a nugget diameter estimation step of estimating the nugget diameter da , k in the case.

ここで、本発明の第1の態様および本発明の他の態様において、「電流」は、交流の場合には実効電流を意味する。また、「溶接部」とは、2枚の被溶接材を挟む一対の電極を構成する一方の電極から出発した電流が、溶接される直径dの接合界面を通過し、他方の電極へと至る、略円柱状の通電領域をいう。また、「分流部」とは、2枚の被溶接材を挟む一対の電極を構成する一方の電極から出発した電流が、既打点を経由して他方の電極へと至るまでに通る領域をいう。すなわち、「溶接部」と「分流部」を通過する電流の和が、二つの電極間に通電した電流量になる。また、「平均的な比抵抗」とは、溶接開始から終了までの、溶接部および分流部における温度変化にともなって変化する、当該部の比抵抗変化の時間平均を表す。より詳しくは、式(X)や式(Y)に含まれる、(ρ/ρ)の形式での時間平均を与えるために導入した概念で、通電部の比抵抗ρは、一般に被溶接部が溶融する温度まで急速に加熱され、本発明が対象とする鋼板を考えた場合、キュリー点(約770℃)以上での温度上昇に伴い漸増すると考えられること、および、分流部の比抵抗ρは、分流部が通電部に対して温度上昇が緩慢であり、そのため該温度上昇に対しる変化もやはり漸増すると考えられること、すなわち、通電部においても、分流部においても比抵抗は共に漸増するため、その比(ρ/ρ)の時間変化は小さく、被溶接材の組み合わせ毎にほぼ均一な平均的値として概略取り扱えるとの考えを意味している。また、溶接点と既打点のナゲット径を、ともにdとしている(近似している)理由は、通常、分流が影響するほどの近接打点では、当然、板組も同一と考えられ、同一の板組に対しては、品質管理上、同一ナゲット径の形成が期待されていると考えて、実用上は差し支えないと考えたためである。
本発明の第1の態様では、単点溶接の場合における既知のウェルドローブを用いて、電流条件I0、kに対応する、既打点が1点又は2点の場合における溶接点のナゲット径da、kを推定する。複数の電流条件のそれぞれに対応する溶接点のナゲット径を推定することにより、既打点が1点又は2点の場合におけるウェルドローブを推定することが可能である。したがって、このような形態にすることにより、板厚が同じである2枚の被溶接材を抵抗スポット溶接する場合に、既に得られている単点溶接のウェルドローブを用いて、電流の分流の考慮が必要な条件におけるウェルドローブを机上で簡便に予測することが可能な、抵抗スポット溶接のナゲット径の推定方法を提供することができる。
Here, in the first aspect of the present invention and the other aspects of the present invention, “current” means effective current in the case of alternating current. In addition, the “welded portion” means that a current starting from one electrode constituting a pair of electrodes sandwiching two materials to be welded passes through a joining interface having a diameter da to be welded, to the other electrode. This refers to a substantially cylindrical energized region. In addition, the “diversion portion” refers to a region in which a current starting from one electrode constituting a pair of electrodes sandwiching two materials to be welded passes through to the other electrode via a hit point. . That is, the sum of the currents passing through the “welded part” and the “diversion part” is the amount of current passed between the two electrodes. The “average specific resistance” represents the time average of the specific resistance change of the part, which changes with the temperature change in the welded part and the shunt part from the start to the end of welding. More specifically, included in the formula (X) or formula (Y), a concept has been introduced to provide a time average in the form of (ρ b / ρ a), the specific resistance [rho a current-carrying part is typically the When considering a steel sheet that is rapidly heated to a temperature at which the weld is melted and the present invention is intended, it is considered that it gradually increases as the temperature rises above the Curie point (about 770 ° C.), and the ratio of the flow-dividing part resistance [rho b, the temperature rise diverter is relative to the conductive portion is the slow, be considered also again gradually increases changes that for that reason the temperature rises, i.e., even in the energizing unit, specific resistance in shunt unit Since both increase gradually, the time change of the ratio (ρ b / ρ a ) is small, meaning that it can be roughly handled as an almost uniform average value for each combination of materials to be welded. Also, the nugget diameter of the welding point and already RBI, both have a d a (approximate) because, usually, in the proximity RBI enough diversion affects, of course, the plate pairs also believed the same, the same This is because the plate assembly is expected to have the same nugget diameter for quality control and is considered to be practically acceptable.
In the first aspect of the present invention, using a known weld lobe in the case of single-point welding, the nugget diameter d of the welding point corresponding to the current condition I 0, k when the number of hit points is one or two points. a, k are estimated. By estimating the nugget diameter of the welding point corresponding to each of a plurality of current conditions, it is possible to estimate the weld lobe when the number of hit points is one or two. Therefore, by adopting such a configuration, when two workpieces having the same thickness are to be resistance spot welded, current splitting of current can be performed using a welded lobe of single point welding already obtained. It is possible to provide a resistance spot welding nugget diameter estimation method capable of easily predicting a weld lobe in a condition requiring consideration on a desk.

本発明の第2の態様は、抵抗スポット溶接により溶接すべき溶接点を流れる電流が、溶接点から所定の距離の位置に存在する、既に溶接された既打点へと分流することを考慮しつつ、溶接点における通電電流とナゲット径との関係であるウェルドローブを推定する際に、抵抗スポット溶接により溶接される第1被溶接材および第2被溶接材の厚さをそれぞれt[mm]およびt[mm]、第1被溶接材および第2被溶接材を挟む電極間を流れる電流をI[kA]、溶接点を流れる電流をI[kA]、上記所定の距離をb[mm]、既打点が存在しない単点溶接の場合における溶接点のナゲット径をd[mm]、該単点溶接と同じ溶接条件で溶接した場合における溶接点および既打点のナゲット径をd[mm]、溶接部の平均的な比抵抗をρ[Ω・m]、分流部の平均的な比抵抗をρ[Ω・m]、第1被溶接材に対するρ/ρを(ρ/ρ、第2被溶接材に対するρ/ρを(ρ/ρとし、t、t、(ρ/ρ、および、(ρ/ρを用いて下記式(W)で表される値をρab、とするとき、既打点が1点の場合は、I=k・Iのkが下記式(X)’で表され、既打点が2点の場合は、I=k・Iのkが下記式(Y)’で表され、ナゲット径dの関数で表されるkをk(d)と表すとき、既打点が1点の場合には、単点溶接でk通り(kは1より大きい整数)の電流条件I0、kに対してそれぞれ得られたナゲット径d0、kの組み合わせである既知のウェルドローブにおけるd0、kを下記式(Z)のdへと代入し、且つ、下記式(X)’で表されるkを下記式(Z)におけるk(d)へと代入することにより、電流条件I0、kに対応する、既打点を有する場合のナゲット径da、kを推定し、既打点が2点の場合には、単点溶接でk通り(kは1より大きい整数)の電流条件I0、kに対してそれぞれ得られたナゲット径d0、kの組み合わせである既知のウェルドローブにおけるd0、kを下記式(Z)のdへと代入し、且つ、下記式(Y)’で表されるkを下記式(Z)におけるk(d)へと代入することにより、電流条件I0、kに対応する、既打点を有する場合のナゲット径da、kを推定するナゲット径推定工程を有する、抵抗スポット溶接のナゲット径の推定方法である。
The second aspect of the present invention considers that the current flowing through the welding point to be welded by resistance spot welding is shunted to the already welded hit point existing at a predetermined distance from the welding point. When the weld lobe, which is the relationship between the energizing current and the nugget diameter at the welding point, is estimated, the thicknesses of the first and second welded materials to be welded by resistance spot welding are t 1 [mm], respectively. And t 2 [mm], I 0 [kA] as the current flowing between the electrodes sandwiching the first and second welded materials, I a [kA] as the current flowing through the welding point, and b as the predetermined distance [Mm], the nugget diameter of the welding point in the case of single-point welding where there is no hit point d 0 [mm], and the nugget diameter of the welding point and the hit point in the case of welding under the same welding conditions as the single point welding is d a [mm], of the weld Hitoshiteki a resistivity ρ a [Ω · m], the average resistivity of the diverter ρ b [Ω · m], the ρ b / ρ a relative first workpieces (ρ b / ρ a) 1 , ρ b / ρ a for the second workpiece is (ρ b / ρ a ) 2, and t 1 , t 2 , (ρ b / ρ a ) 1 , and (ρ b / ρ a ) 2 when the [rho ab, the value represented by the following formula (W) by using, in the case of already hitting point 1 point, k a of I a = k a · I 0 is represented by the following formula (X) ' , if already hitting point 2 points, I a = k k a of a · I 0 is represented by the following formula (Y) ', a k a, represented by a function of the nugget diameter d a k a (d a ), When the number of hit points is one point, the nugget diameters d 0 and k obtained for k current conditions I 0 and k (k is an integer larger than 1) by single-point welding, respectively. A known weld draw that is a combination The d 0, k at blanking substituted into d 0 of the formula (Z), and, substituting k a represented by the following formula (X) 'to k a (d a) of the formula (Z) Thus, the nugget diameter da , k when there are already hit points corresponding to the current conditions I 0, k is estimated, and when there are two hit points, k types (k is 1) by single-point welding. the d 0, k is substituted into d 0 of the formula (Z) in an integer greater than) the known weld lobe is a combination of nugget diameter d 0, k respectively obtained with respect to the current condition I 0, k of In addition, by substituting k a represented by the following formula (Y) ′ into k a (d a ) in the following formula (Z) , there is an already hit point corresponding to the current condition I 0, k Nugget diameter estimation of resistance spot welding having a nugget diameter estimation step for estimating the nugget diameter da , k It is a regular method.

本発明の第2の態様では、板厚tの第1被溶接材および板厚tの第2被溶接材の単点溶接の場合における既知のウェルドローブを用いて、電流条件I0、kに対応する、既打点が1点又は2点の場合における溶接点のナゲット径da、kを推定する。複数の電流条件のそれぞれに対応する溶接点のナゲット径を推定することにより、既打点が1点又は2点の場合におけるウェルドローブを推定することが可能である。したがって、このような形態にすることにより、板厚の異なる2枚の被溶接材を抵抗スポット溶接する場合であっても、既に得られている単点溶接のウェルドローブを用いて、電流の分流の考慮が必要な条件におけるウェルドローブを机上で簡便に予測することが可能な、抵抗スポット溶接のナゲット径の推定方法を提供することができる。 In the second aspect of the present invention, the current condition I 0, using a known weld lobe in the case of single-point welding of the first welded material having the thickness t 1 and the second welded material having the thickness t 2 , The nugget diameter da , k of the welding point when the number of hit points corresponding to k is 1 or 2 is estimated. By estimating the nugget diameter of the welding point corresponding to each of a plurality of current conditions, it is possible to estimate the weld lobe when the number of hit points is one or two. Therefore, by adopting such a configuration, even when two materials to be welded having different plate thicknesses are resistance spot welded, current splitting of current can be performed by using the already obtained single-point welding weld lobe. Therefore, it is possible to provide a method for estimating the nugget diameter of resistance spot welding, in which a weld lobe in a condition that needs to be considered can be easily predicted on a desk.

また、上記本発明の第1の態様および上記本発明の第2の態様において、上記単点溶接で電流Iを流す溶接条件下でナゲット径dが得られる通電時間をτ、上記溶接点を流れる電流が上記既打点へと分流する場合に、単点溶接で電流Iを通電時間τに亘って流すことによりナゲット径dとなる溶接条件と同じ加圧力および通電時間τでナゲット径dを得るために必要な電流をI 、とするとき、さらに、下記式(V)を用いて、電流I を推定する電流推定工程を有していても良い。
In the first aspect of the present invention and the second aspect of the present invention, the energization time during which the nugget diameter d 0 is obtained under welding conditions in which the current I 0 is passed by the single point welding is τ e , When the current flowing through the point is shunted to the previously hit point, the same pressure and energization time τ e as those under the welding conditions in which the nugget diameter d 0 is obtained by flowing the current I 0 over the energization time τ e by single-point welding. When the current required to obtain the nugget diameter d 0 is I 0 * , a current estimation step for estimating the current I 0 * using the following formula (V) may be further included.

ここに、「k(d)」は、ナゲット径dの関数で表されるkである。
かかる形態にすることにより、溶接点を流れるべき電流が既打点へと分流する場合に、単点溶接の場合と同じナゲット径dを得るために必要な、電流I を簡便に予測することも可能になる。
Here, “k a (d 0 )” is k a expressed as a function of the nugget diameter d 0 .
By adopting such a configuration, when the current that should flow through the welding point is shunted to the hit point, the current I 0 * necessary for obtaining the same nugget diameter d 0 as in the case of single point welding is easily predicted. It becomes possible.

本発明によれば、既に得られている単点溶接のウェルドローブを用いて、電流の分流の考慮が必要な条件におけるウェルドローブを机上で予測することが可能な、抵抗スポット溶接のナゲット径の推定方法を提供することができる。   According to the present invention, the resistance of the spot welding nugget diameter can be predicted on the desk using the already obtained single-point welding weld lobe, in which it is possible to predict the weld lobe in a condition that requires consideration of current shunting. An estimation method can be provided.

本発明の抵抗スポット溶接のナゲット径の推定方法を説明する図である。It is a figure explaining the estimation method of the nugget diameter of resistance spot welding of this invention. 電流I の補間を説明する図である。Is a diagram illustrating a current I 0 * interpolation. 分流評価数値モデルの導出過程を説明する図である。It is a figure explaining the derivation process of a shunt evaluation numerical model. 間隔bで一列に取り付けた導体1、2、3を示す図である。It is a figure which shows the conductors 1, 2, and 3 attached to the line by the space | interval b. 通電部の断面を模式的に示す図である。図5(a)は単点溶接の通電部の断面を模式的に示す図であり、図5(b)は分流溶接の通電部の断面を模式的に示す図である。It is a figure which shows the cross section of an electricity supply part typically. Fig.5 (a) is a figure which shows typically the cross section of the electricity supply part of single point welding, and FIG.5 (b) is a figure which shows typically the cross section of the electricity supply part of shunt welding. 本発明により予測した条件1のウェルドローブと実験により求めた条件1のウェルドローブとを比較する図である。It is a figure which compares the weld lobe of the condition 1 estimated by this invention with the weld lobe of the condition 1 calculated | required by experiment. 本発明により予測した条件2のウェルドローブと実験により求めた条件2のウェルドローブとを比較する図である。It is a figure which compares the weld lobe of the condition 2 estimated by this invention with the weld lobe of the condition 2 calculated | required by experiment. 本発明により予測した条件3のウェルドローブと3次元有限要素法解析により求めた条件3のウェルドローブとを比較する図である。It is a figure which compares the weld lobe of the condition 3 estimated by this invention with the weld lobe of the condition 3 calculated | required by the three-dimensional finite element method analysis. 本発明により予測した条件4のウェルドローブと3次元有限要素法解析により求めた条件4のウェルドローブとを比較する図である。It is a figure which compares the weld lobe of the condition 4 estimated by this invention with the weld lobe of the condition 4 calculated | required by the three-dimensional finite element method analysis. 本発明により予測した条件5のウェルドローブと3次元有限要素法解析により求めた条件5のウェルドローブとを比較する図である。It is a figure which compares the weld lobe of the condition 5 estimated by this invention with the weld lobe of the condition 5 calculated | required by the three-dimensional finite element method analysis. 本発明により予測した条件6のウェルドローブと3次元有限要素法解析により求めた条件6のウェルドローブとを比較する図である。It is a figure which compares the weld lobe of the condition 6 estimated by this invention with the weld lobe of the condition 6 calculated | required by the three-dimensional finite element method analysis.

以下、本発明の実施の形態について説明する。なお、以下の説明は、本発明の例示であり、本発明は以下に例示する形態に限定されない。   Embodiments of the present invention will be described below. In addition, the following description is an illustration of this invention and this invention is not limited to the form illustrated below.

1.本発明の構成
図1は、本発明の抵抗スポット溶接のナゲット径の推定方法S10を説明する図である。図1に示した本発明は、ナゲット径推定工程(S1)と、電流推定工程(S2)と、を有している。本発明の構成について後述する(i)〜(v)のうち、(i)〜(iii)がナゲット径推定工程に関する説明であり、(iv)が電流推定工程に関する説明である。また、(v)は、溶接される2枚の被溶接材(鋼板)の板厚が異なる場合に関する説明である。
1. Configuration of the Present Invention FIG. 1 is a diagram for explaining a nugget diameter estimation method S10 of resistance spot welding according to the present invention. The present invention shown in FIG. 1 includes a nugget diameter estimation step (S1) and a current estimation step (S2). Of the configurations (i) to (v) described later, (i) to (iii) are descriptions relating to the nugget diameter estimation step, and (iv) is a description regarding the current estimation step. Moreover, (v) is an explanation regarding a case where the thicknesses of the two welded materials (steel plates) to be welded are different.

1.1.ナゲット径推定工程(S1)
(i)板厚がtで同材質の2枚の鋼板を重ね、電極間に通電量Iを通じて抵抗スポット溶接する場合、溶接点から距離bの位置に(A)既打点が1点有る場合、および、(B)既打点が2点有る場合、溶接点に流れる電流IはI=k・Iで表わされ、kは、条件(A)に対しては下記の式(1)で与えられ、条件(B)に対しては下記の式(2)で与えられる。
1.1. Nugget diameter estimation process (S1)
(I) When two steel plates of the same material with a thickness of t are stacked and resistance spot welding is performed between the electrodes through an energization amount I 0 , (A) When there is one hit point at a distance b from the welding point And (B) When there are two hit points, the current I a flowing through the welding point is represented by I a = k a · I 0 , and k a is the following formula for the condition (A): It is given by (1), and for condition (B), it is given by the following equation (2).

ここに、dは溶接点および既打点のナゲット径であり、(ρ/ρ)は板組(鋼板の材質)毎に実験的に決めることができる材料パラメータで、例えば、JSC270DおよびJSC590Rでは表1の値である。(ρ/ρ)の決定方法については、後述する。 Here, d a is the nugget diameter of the weld point and the hit point, and (ρ b / ρ a ) is a material parameter that can be experimentally determined for each plate set (steel plate material), for example, JSC270D and JSC590R. Then, it is the value of Table 1. A method for determining (ρ b / ρ a ) will be described later.

(ii)単点溶接でのナゲット径をdとした場合、該単点溶接と同じ溶接条件(同じ加圧力、電流値、通電時間)において、溶接点から距離bの位置に既打点が有る場合に溶接点に得られるナゲット径dは、 (Ii) When the nugget diameter in single-point welding is d 0 , there is a hit point at a distance b from the welding point under the same welding conditions (same pressure, current value, energization time) as the single-point welding. nugget diameter d a obtained in welds case,

の解として与えられる。ただし、k(d)は既打点が1点の場合は式(1)で、また既打点が2点の場合は式(2)で与えられる。 Is given as a solution. However, k a (d a ) is given by Equation (1) when the number of hit points is one, and by Equation (2) when the number of hit points is two.

(iii)単点溶接でk通りの電流条件I0、k(kは1より大きい整数)に対してそれぞれ得られたナゲット径d0、kの組み合わせ(いわゆる、ウェルドローブ)が既知である場合、上記(ii)に記載した式(3)のdにd0、kを用いることで、電流条件I0、kに対応する、既打点が有る場合のナゲット径da、k、すなわち、既打点がある場合のウェルドローブを推定することができる。 (Iii) A combination (so-called weld lobe) of nugget diameters d 0 and k obtained for each of k current conditions I 0 and k (k is an integer greater than 1) in single point welding is known. By using d 0, k for d 0 in equation (3) described in (ii) above, the nugget diameter d a, k when there is a hit point corresponding to the current condition I 0 , k , that is, It is possible to estimate the weld lobe when there is a hit point.

1.2.電流推定工程(S2)
(iv)電流=I、通電時間=τの溶接条件のもと、単点溶接でナゲット径dが得られたとする。これに対し、既打点に電流が分流する分流溶接においても同じ加圧力および通電時間でナゲット径d(狙いナゲット径)を得るために必要な電流をI とする。このとき、単点溶接ではN通りの電流条件I0、j(j=1〜N)に対するウェルドローブd0、j(j=1〜N)が実験より既知であるとすると、上記(iii)により、I0、jに対応する分流溶接時のウェルドローブda、j(j=1〜N)も直ちに予測できるから、図2に示すように、da、1≦d≦da、Nの場合には式(4)から線形補間によりI を求めることができる。
1.2. Current estimation step (S2)
(Iv) It is assumed that the nugget diameter d 0 is obtained by single-point welding under the welding conditions of current = I 0 and energization time = τ e . On the other hand, the current required to obtain the nugget diameter d 0 (target nugget diameter) with the same pressure and energization time in the shunt welding in which the current is diverted to the hit point is I 0 * . At this time, in the single point welding, if the weld lobe d 0, j (j = 1 to N) for N current conditions I 0, j (j = 1 to N) is known from the experiment, the above (iii) Therefore, the weld lobe d a, j (j = 1 to N) at the time of shunt welding corresponding to I 0, j can also be predicted immediately, so that d a, 1 ≦ d 0 ≦ d a, In the case of N , I 0 * can be obtained from the equation (4) by linear interpolation.

ただし、
a、j≦d≦da、j+1 (j=1、2、…、N−1)
である。
ところで、d>da、Nの場合には、前述のような既知点からの補間でI を求めることはできない。この場合には、単点溶接のウェルドローブを実測結果から関数近似し、高電流域(>I0、N)のdを補外すればよい。例えば、既知のウェルドローブ(I0、j、d0、j;j=1〜N)が、ある関数fを用いて
However,
d a, j ≦ d 0 ≦ d a, j + 1 (j = 1, 2,..., N−1)
It is.
By the way, when d 0 > d a, N , I 0 * cannot be obtained by interpolation from known points as described above. In this case, it is only necessary to approximate the weld lobe of single-point welding from the actual measurement result and extrapolate d 0 in the high current region (> I 0, N ). For example, a known weld lobe (I 0, j , d 0, j ; j = 1 to N) is obtained using a function f

のように近似できるとすると、任意の電流I に対するナゲット径d は、 When can be approximated as, nugget diameter d 0 * is for any current I 0 *,

より求めることができる。一方、分流溶接時にナゲット径dを得るために必要な電流がI であるとすると、式(3)でdをdに変更し、且つ、dをd に変更し、さらにd に式(6)の関係を適用することで、次の関係式が得られる。 It can be obtained more. On the other hand, when the current required to obtain a nugget diameter d 0 during shunting the welding is to be I 0 *, and change the d a to d 0 in equation (3), and changes the d 0 to d 0 * Further, the following relational expression is obtained by applying the relation of the expression (6) to d 0 * .

式(7)をI について解くことにより、求めるべき電流は次式のように表される。 By solving Equation (7) for I 0 * , the current to be obtained is expressed as:

勿論この手順は、da、1≦d≦da、Nの場合にも適用できるので、単点溶接でのウェルドローブで実測点(電流水準)が十分に存在する場合には、狙いナゲット径dの大きさに関係なく適用することができる。 Of course, this procedure can also be applied to the cases of da , 1 ≦ d 0 ≦ da , N , so if there are enough measured points (current levels) in the weld lobe in single point welding, the target nugget it can be applied regardless of the size of the diameter d 0.

(v)上記(i)〜(iv)に記載の技術は、異種材および同種材を問わず、異厚の二枚板組溶接に拡張できる。いま、板厚がtの被溶接材1と、板厚がtの被溶接材2を考える。被溶接材1および被溶接材2は、同じ材質でも良いし、異なる材質でもよい。このとき、式(1)および式(2)のkを、それぞれ以下の式(9)および式(10)と設定することで、上記(i)〜(iii)の技術を、異厚の二枚板組溶接にそのまま利用することができる。 (V) The techniques described in (i) to (iv) above can be extended to two-plate assembly welding with different thicknesses regardless of different materials and the same materials. Now, a material to be welded first plate thickness t 1, the plate thickness is considered to be welded material 2 t 2. The welded material 1 and the welded material 2 may be the same material or different materials. In this case, the k a of formula (1) and (2), by setting the respective following equations (9) and (10), the techniques described above (i) ~ (iii), of different thickness It can be used as it is for double plate welding.

ここに、被溶接材1および被溶接材2に対する(ρ/ρ)を、それぞれ、(ρ/ρ、および(ρ/ρとしたとき、式(9)および式(10)におけるρabは、以下の式(11)で表される。 Here, when (ρ b / ρ a ) for the workpiece 1 and the workpiece 2 are (ρ b / ρ a ) 1 and (ρ b / ρ a ) 2 respectively, the equation (9) Ρ ab in the equation (10) is represented by the following equation (11).

2.式の導出
本発明で取り扱う同材質同板厚の2枚重ね板組に対し、分流溶接時の通電経路についてモデル化することを考える。図3は、(A)溶接点から距離bの位置に既打点が1点有る場合、および(B)溶接点から距離bの位置に、溶接点を挟んで両側に既打点が2点ある場合に、それぞれ2枚の鋼板を一対の電極で挟持しつつ通電した場合の通電経路を模式的に示した図である。
2. Derivation of Formula Consider a modeling of a current-carrying path during shunt welding for a two-ply plate set of the same material and the same thickness handled in the present invention. 3A shows a case where there is one hit point at a position b from the welding point, and FIG. 3B shows a case where there are two hit points on both sides of the welding point at a position b from the welding point. FIG. 5 is a diagram schematically showing an energization path when energizing each of the two steel plates while being sandwiched between a pair of electrodes.

図3に示した(A)および(B)のそれぞれのモデルについて、電極間の電気抵抗について考える。溶接中の溶接点および既打点の通電径(直径)が、何れもd(=2r)で一定と仮定し、板間の接触抵抗を無視すると、板1枚あたりの溶接部の抵抗Rおよび分流部の抵抗Rは、モデル(A)の場合は以下の式(12)および式(13)で表され、モデル(B)の場合は以下の式(14)および式(15)で表される。 The electrical resistance between the electrodes is considered for each of the models (A) and (B) shown in FIG. Assuming that the current-carrying diameter (diameter) of the welding point and the hit point during welding is constant at d a (= 2r) and the contact resistance between the plates is ignored, the resistance R a of the welded portion per plate And the resistance R b of the shunt portion is expressed by the following equations (12) and (13) in the case of the model (A), and in the following equations (14) and (15) in the case of the model (B). expressed.

ここに、ρおよびρは、それぞれ溶接部および分流部の平均的な比抵抗[Ω・m]、bは溶接点と既打点との距離[mm]、tは板厚[mm]である。図3に示したように、通電部の抵抗Rは、厚さがt、断面積がπrの円柱の抵抗で近似している。一方で分流部の抵抗Rは、例えばモデル(B)の場合(既打点が2点の場合)には、以下のように導出した。 Here, ρ a and ρ b are the average specific resistance [Ω · m] of the welded portion and the diverted portion, b is the distance [mm] between the weld point and the hit point, and t is the plate thickness [mm], respectively. is there. As shown in FIG. 3, the resistance R a of the energization part is approximated by the resistance of a cylinder having a thickness t and a cross-sectional area of πr 2 . On the other hand, the resistance Rb of the flow dividing portion is derived as follows, for example, in the case of the model (B) (when there are two hit points).

いま、図4に示したように、半径rの円筒形の導体3つ(1、2、3)を、厚さtの薄鋼板にそれぞれの間隔がbとなるよう一列に取り付けることを考える。ただし、t≪r≪bと仮定する。いま、導体の比抵抗は鋼板の比抵抗ρより十分大きい場合を考えると、導体の電位が全長にわたって一定であり、電場を決定するに際しては近似的に静電的な問題と考えることができる。図4に示した導体1、2、3上の線電荷密度q、q、qを、それぞれ、q=2q、q=q=−qと仮定する。ガウスの定理より、導体1、2、3が作る電場の強さE、E、Eは、導体軸からの距離をr、真空の誘電率をεとすると、それぞれ、 Now, as shown in FIG. 4, consider attaching one conductor 3 of the cylindrical radius r 0 of the (1,2,3), in a row so that each interval thin steel plate having a thickness of t is b . However, it is assumed that t << r 0 << b. Considering the case where the specific resistance of the conductor is sufficiently larger than the specific resistance ρ of the steel sheet, the potential of the conductor is constant over the entire length, and can be considered as an approximate electrostatic problem when determining the electric field. Assume that the line charge densities q 1 , q 2 , and q 3 on the conductors 1, 2, and 3 shown in FIG. 4 are q 1 = 2q and q 2 = q 3 = −q, respectively. According to Gauss's theorem, the electric field strengths E 1 , E 2 , and E 3 created by the conductors 1 , 2 , and 3 are expressed as follows: r is the distance from the conductor axis, and ε 0 is the dielectric constant of the vacuum.

である。したがって、導体1と導体2(および導体3)との間の電位差は、 It is. Therefore, the potential difference between conductor 1 and conductor 2 (and conductor 3) is

と書ける。ここで、b≫rより、各導体近くの電位は他の導体上の電荷に依存しないことを考慮し、鋼板の厚みのどの部分をとっても電流密度jが一定と仮定すると、導体1から流れる全電流に対し次式が成り立つ。 Can be written. Here, from b >> r 0 , considering that the potential near each conductor does not depend on the charges on the other conductors, assuming that the current density j is constant regardless of the thickness of the steel sheet, the current flows from the conductor 1. The following equation holds for all currents.

したがって、導体1と導体2(および導体3)との間の抵抗として、以下の式(20)が得られる。 Therefore, the following equation (20) is obtained as the resistance between the conductor 1 and the conductor 2 (and the conductor 3).

式(20)でrをd/2、ρをρと表記し直したものが、図3に示したモデル(B)における分流部の抵抗R(式(15))となる。同様に、既打点が1点の場合(図3に示したモデル(A))における分流部の抵抗R(式(13))も導出することができる。 In Equation (20), r 0 is rewritten as d a / 2 and ρ is expressed as ρ b , which is the resistance R b (Equation (15)) of the shunt portion in the model (B) shown in FIG. Similarly, the resistance R b (formula (13)) of the flow dividing portion in the case where the number of hit points is one (model (A) shown in FIG. 3) can also be derived.

結局、電極間の抵抗を溶接部の抵抗Rと分流部の抵抗Rとが並列となった合成抵抗と考え、通電した全電流のうち溶接部に流れる電流の割合(通電割合)kを計算すると、既打点が1点の場合は式(1)になり、既打点が2点の場合は式(2)になる。 After all, considered Synthesis and resistor R b of the resistance between the electrodes and the resistance R a weld diverter becomes parallel resistance, the ratio (power ratio) of the current flowing through the weld of the total current energized k a Is calculated, the equation (1) is obtained when the number of hit points is one, and the equation (2) is obtained when the number of hit points is two.

次に、図3に示した分流評価数値モデルをより積極的に活用することを考え、単点溶接のナゲット成長曲線(ウェルドローブ)から分流溶接時のウェルドローブを予測する手法について説明する。はじめに、単点溶接および分流溶接における発熱量に着目し、いくつかの簡便化および仮定を設定することで、分流溶接時のウェルドローブを予測する基本ロジックを導出する。   Next, a method for predicting the weld lobe at the time of the shunt welding from the nugget growth curve (weld lobe) of the single-point welding will be described in consideration of more proactive use of the shunt evaluation numerical model shown in FIG. First, focusing on the amount of heat generated in single-point welding and shunt welding, the basic logic for predicting the weld lobe during shunt welding is derived by setting some simplifications and assumptions.

単点溶接および分流溶接について、同一溶接条件(電流I、溶接時間τ)にて得られるナゲット径を、それぞれ、dおよびdとし、以下のような近似を設定する。
・板組み、電極形状、加圧力が同じ条件下では、通電面積S(通電部の体積)は等しい(図5)
・通電部の熱拡散(熱伝導)、および通電割合kの時間変化は無視できる
・通電部の比抵抗ρは一定かつ一様と見なせる(通電部の温度がキュリー点以上と近似)
・分流の有無に関わらず、ナゲット形状は3次元的に相似である
このとき、単点溶接および分流溶接の通電部における発熱量QおよびQは、それぞれ図4を参照すれば以下のように書ける。
For single-point welding and shunt welding, nugget diameters obtained under the same welding conditions (current I 0 , welding time τ e ) are d 0 and d a , respectively, and the following approximation is set.
-Under the same conditions of plate assembly, electrode shape, and applied pressure, the current-carrying area S (volume of the current-carrying part) is the same (Fig. 5).
And thermal diffusion of the conductive portion (heat conduction), and the specific resistance [rho a of-energizing portion time variation negligible current ratio k a constant and uniform and can be regarded (temperature of the conductive portion is approximate to Curie point)
- with or without diversion, this time nugget shape is three-dimensionally similar, the calorific value Q 0 and Q a in the conductive portion of the single-point welding and shunt welding, as follows referring to FIG. 4, respectively You can write

ここで、式(21)および式(22)で表される発熱量の比が、形成されるナゲットの体積比に等しいと仮定すると、 Here, when it is assumed that the ratio of the calorific values represented by the equations (21) and (22) is equal to the volume ratio of the nugget to be formed,

なる関係が得られる。上式をkについて解くことにより、次の重要な式(24)が得られる。 The following relationship is obtained. By solving the above equation for k a, the following important formula (24) is obtained.

ここに、kaは板厚t、打点間隔b、ナゲット径d、および、ρ/ρの関数であり、tおよびbが既知の場合にはdおよびρ/ρのみの関数となる。この式は、式(3)に他ならない。 Here, ka is a function of the plate thickness t, the hitting point distance b, the nugget diameter d a , and ρ b / ρ a , and when t and b are known, the function is only d a and ρ b / ρ a. It becomes. This expression is nothing but Expression (3).

次に、式(1)〜式(3)に含まれるρ/ρを同定する。基本的な考え方は、実験(またはスポット溶接時のナゲット径を予測できる数値解析:以下単に解析)より得られる単点溶接時のナゲット径dと、実験(または解析)より得られる分流溶接時のナゲット径dの組{d、d}について、いくつかの溶接条件で結果を準備し、これらが式(1)〜式(3)を満足するようにρ/ρを決定する。このとき、{d、d}の選び方としては、式(1)および式(2)に含まれる板厚tおよびbに対して、できるだけ多くの条件(水準)で準備しておくことが好ましい。 Next, ρ b / ρ a included in the equations (1) to (3) is identified. The basic idea is that the nugget diameter d 0 at the single point welding obtained from the experiment (or numerical analysis that can predict the nugget diameter at the time of spot welding: hereinafter simply analysis) and the shunt welding obtained from the experiment (or analysis) For the set of nugget diameters d a of {d 0 , d a }, the results are prepared under several welding conditions, and ρ b / ρ a is determined so that these satisfy Expressions (1) to (3). To do. At this time, as a way of selecting {d 0 , d a }, preparation is made under as many conditions (levels) as possible with respect to the plate thicknesses t and b included in the expressions (1) and (2). preferable.

いま、鋼板Mについて、単点溶接と分流溶接(打点距離bは任意)で同一の溶接条件(加圧力、電流、通電時間)で得られたそれぞれのナゲット径dおよびdの組み合わせ{d0、k、da、k}がN組(k=1、2、・・・、N)既知である場合、鋼板Mについてのパラメータ(ρ/ρは、下記の最小化問題の解として求めることができる。 Now, for the steel sheet M, combinations of the respective nugget diameters d 0 and d a obtained under the same welding conditions (pressing force, current, energization time) in single point welding and shunt welding (the hitting point distance b is arbitrary) {d When N , 0, k , da , k } are known (k = 1, 2,..., N), the parameter (ρ b / ρ a ) M for the steel plate M is the following minimization problem: It can be obtained as a solution of

例えば、JSC270DおよびJSC590Rの2材料について具体的に求めた値は、前述の表1のとおりである。 For example, the values specifically obtained for the two materials JSC270D and JSC590R are as shown in Table 1 above.

本発明に関する上記説明では、ナゲット径推定工程および電流推定工程を有する形態を例示したが、本発明は当該形態に限定されない。本発明は、電流推定工程を有しない形態とすることも可能である。ただし、分流溶接時に単点溶接時と同じ狙いナゲット径を得るために必要な電流値を把握可能な形態にする観点からは、ナゲット径推定工程および電流推定工程を有する形態にすることが好ましい。   In the said description regarding this invention, although the form which has a nugget diameter estimation process and an electric current estimation process was illustrated, this invention is not limited to the said form. The present invention may be configured without the current estimation step. However, from the viewpoint of making it possible to grasp the current value necessary for obtaining the same target nugget diameter at the time of single-point welding at the time of shunt welding, it is preferable to have a form having a nugget diameter estimation step and a current estimation step.

<実施例1>
表2に示す条件1および条件2について、分流溶接時のウェルドローブを、実験結果と本発明による予測結果とで比較した。具体的には、式(3)のdには実験より得られた単点溶接のウェルドローブを用い、得られた分流溶接時の予測ウェルドローブd Predを実測のウェルドローブd Expと比較した。条件1についての結果を表3および図6に、条件2についての結果を表4および図7に、それぞれ示す。なお、条件1は、厚さ1.4mmの2枚のJSC270Dを溶接する条件であり、条件2は、厚さ1.0mmの2枚のJSC590Rを溶接する条件である。また、上付き文字「Exp」は実験結果であることを意味し、上付き文字「Pred」は本発明による予測結果であることを意味する。
<Example 1>
For condition 1 and condition 2 shown in Table 2, the weld lobe during shunt welding was compared between the experimental result and the predicted result according to the present invention. Specifically, the weld lobe of single-point welding obtained from an experiment is used as d 0 in equation (3), and the predicted weld lobe d a Pred at the time of the diverted welding is obtained as the measured weld lobe d a Exp . Compared. The results for Condition 1 are shown in Table 3 and FIG. 6, and the results for Condition 2 are shown in Table 4 and FIG. The condition 1 is a condition for welding two JSC270D having a thickness of 1.4 mm, and the condition 2 is a condition for welding two JSC590R having a thickness of 1.0 mm. The superscript “Exp” means an experimental result, and the superscript “Pred” means a prediction result according to the present invention.

表3および図6、ならびに、表4および図7に示したように、条件1、条件2ともに、分流溶接時のウェルドローブを良好な精度で予測できていることから、本発明により分流溶接でのウェルドローブを机上で予測可能である。 As shown in Table 3 and FIG. 6 and Table 4 and FIG. 7, the weld lobe at the time of shunt welding can be predicted with good accuracy in both conditions 1 and 2, so that the present invention enables shunt welding. Can be predicted on the desk.

<実施例2>
JSC270DおよびJSC590Rを含む異材同厚(条件3〜条件4)および異材異厚(条件5〜条件6)の4つの板組みを対象に、本発明を用いて分流溶接時のウェルドローブを予測した。ここでは式(3)のdに2次元有限要素法(2D FEM)解析より得た単点溶接時のナゲット径を用いた。また、本発明による予測結果と比較する分流溶接時のナゲット径dは、実験結果の代わりに3次元有限要素法(3D FEM)解析の結果を用いた。具体的な解析条件を表5および表6に、結果を図8〜図11に、それぞれ示す。なお、条件3は、厚さ1.0mmのJSC270Dと厚さ1.0mmのJSC590Rとを溶接する条件であり、条件4は、厚さ1.4mmのJSC270Dと厚さ1.4mmのJSC590Rとを溶接する条件であり、条件5は、厚さ0.7mmのJSC270Dと厚さ2.3mmのJSC590Rとを溶接する条件であり、条件6は、厚さ0.7mmのJSC590Rと厚さ2.3mmのJSC270Dとを溶接する条件である。
<Example 2>
Weld lobes at the time of shunt welding were predicted using the present invention for four plate assemblies having different thicknesses (conditions 3 to 4) and different thicknesses (conditions 5 to 6) including JSC270D and JSC590R. Here, the nugget diameter at the time of single-point welding obtained from the two-dimensional finite element method (2D FEM) analysis was used as d 0 in Equation (3). Also, the nugget diameter d a of at shunt welding comparing the predicted results of the invention, using a three-dimensional finite-element method, instead of the experimental results (3D FEM) results of the analysis. Specific analysis conditions are shown in Tables 5 and 6, and the results are shown in FIGS. Condition 3 is a condition for welding a 1.0 mm thick JSC270D and a 1.0 mm thick JSC590R. Condition 4 is a 1.4 mm thick JSC270D and a 1.4 mm thick JSC590R. Condition 5 is a condition for welding JSC270D having a thickness of 0.7 mm and JSC590R having a thickness of 2.3 mm, and condition 6 is JSC590R having a thickness of 0.7 mm and a thickness of 2.3 mm. Of JSC270D.

図8〜図11に示したように、いずれの板組みにおいても、本発明により予測されたウェルドローブは3次元有限要素法解析の結果と良好に一致しているといえる。これらの結果より、異材異厚板組みに対しても、本発明により分流溶接時のウェルドローブを予測可能である。   As shown in FIGS. 8 to 11, it can be said that the weld lobe predicted by the present invention is in good agreement with the result of the three-dimensional finite element method analysis in any plate assembly. From these results, it is possible to predict the weld lobe at the time of the shunt welding according to the present invention even for the different material different thickness plate assembly.

Claims (3)

抵抗スポット溶接により溶接すべき溶接点を流れる電流が、前記溶接点から所定の距離の位置に存在する、既に溶接された既打点へと分流することを考慮しつつ、前記溶接点における通電電流とナゲット径との関係であるウェルドローブを推定する際に、
抵抗スポット溶接により溶接される2枚の被溶接材それぞれの厚さをt、
前記2枚の被溶接材を挟む電極間を流れる電流をI
前記溶接点を流れる電流をI
前記所定の距離をb、
前記既打点が存在しない単点溶接の場合における前記溶接点のナゲット径をd
前記単点溶接と同じ溶接条件で溶接した場合における前記溶接点および前記既打点のナゲット径をd
溶接部の平均的な比抵抗をρ
分流部の平均的な比抵抗をρ、とするとき、
前記既打点が1点の場合は、I=k・Iのkが下記式(X)で表され、
前記既打点が2点の場合は、I=k・Iのkが下記式(Y)で表され、
前記ナゲット径dの関数で表される前記kをk(d)と表すとき、
前記既打点が1点の場合には、
単点溶接でk通り(kは1より大きい整数)の電流条件I0、kに対してそれぞれ得られたナゲット径d0、kの組み合わせである既知のウェルドローブにおける前記d0、kを下記式(Z)のdへと代入し、且つ、下記式(X)で表されるkを下記式(Z)におけるk(d)へと代入することにより、電流条件I0、kに対応する、既打点を有する場合のナゲット径da、kを推定し、
前記既打点が2点の場合には、
単点溶接でk通り(kは1より大きい整数)の電流条件I0、kに対してそれぞれ得られたナゲット径d0、kの組み合わせである既知のウェルドローブにおける前記d0、kを下記式(Z)のdへと代入し、且つ、下記式(Y)で表されるkを下記式(Z)におけるk(d)へと代入することにより、電流条件I0、kに対応する、既打点を有する場合のナゲット径da、kを推定するナゲット径推定工程を有する、抵抗スポット溶接のナゲット径の推定方法。
Considering that the current flowing through the welding point to be welded by resistance spot welding is diverted to the already welded spot existing at a predetermined distance from the welding point, When estimating the weld lobe that is related to the nugget diameter,
The thickness of each of the two workpieces to be welded by resistance spot welding is t,
I 0 , the current flowing between the electrodes sandwiching the two materials to be welded,
I a , the current flowing through the weld point,
The predetermined distance is b,
The nugget diameter of the welding point in the case of single-point welding where there is no existing spot is d 0 ,
The nugget diameter of the welding point and the already dotting when welded under the same welding condition as the single point welding d a,
The average specific resistance of the weld is ρ a ,
When the average specific resistance of the shunt is ρ b ,
Wherein if already hitting point of 1 point, k a of I a = k a · I 0 is represented by the following formula (X),
Wherein if already hitting point two points, k a of I a = k a · I 0 is represented by the following formula (Y),
When the k a expressed as a function of the nugget diameter d a is expressed as k a (d a ),
When the hit point is 1 point,
K as a single point welding (k is an integer greater than 1) below the d 0, k at a known weld lobe is a combination of nugget diameter d 0, k respectively obtained with respect to the current condition I 0, k of By substituting into d 0 of the formula (Z) and substituting k a represented by the following formula (X) into k a (d a ) in the following formula (Z), current conditions I 0, corresponding to k, and estimates a nugget diameter d a, k when having already RBI
When the hit points are 2 points,
K as a single point welding (k is an integer greater than 1) below the d 0, k at a known weld lobe is a combination of nugget diameter d 0, k respectively obtained with respect to the current condition I 0, k of By substituting into d 0 of the formula (Z) and substituting k a represented by the following formula (Y) into k a (d a ) in the following formula (Z), current conditions I 0, A method for estimating the nugget diameter of resistance spot welding, which includes a nugget diameter estimation step for estimating the nugget diameter da , k in the case of having a hit point corresponding to k .
抵抗スポット溶接により溶接すべき溶接点を流れる電流が、前記溶接点から所定の距離の位置に存在する、既に溶接された既打点へと分流することを考慮しつつ、前記溶接点における通電電流とナゲット径との関係であるウェルドローブを推定する際に、
抵抗スポット溶接により溶接される第1被溶接材および第2被溶接材の厚さをそれぞれtおよびt
前記第1被溶接材および前記第2被溶接材を挟む電極間を流れる電流をI
前記溶接点を流れる電流をI
前記所定の距離をb、
前記既打点が存在しない単点溶接の場合における前記溶接点のナゲット径をd
前記単点溶接と同じ溶接条件で溶接した場合における前記溶接点および前記既打点のナゲット径をd
溶接部の平均的な比抵抗をρ
分流部の平均的な比抵抗をρ
前記第1被溶接材に対するρ/ρを(ρ/ρ
前記第2被溶接材に対するρ/ρを(ρ/ρ
前記t、t、(ρ/ρ、および、(ρ/ρを用いて下記式(W)で表される値をρab、とするとき、
前記既打点が1点の場合は、I=k・Iのkが下記式(X)’で表され、
前記既打点が2点の場合は、I=k・Iのkが下記式(Y)’で表され、
前記ナゲット径dの関数で表される前記kをk(d)と表すとき、
前記既打点が1点の場合には、
単点溶接でk通り(kは1より大きい整数)の電流条件I0、kに対してそれぞれ得られたナゲット径d0、kの組み合わせである既知のウェルドローブにおける前記d0、kを下記式(Z)のdへと代入し、且つ、下記式(X)’で表されるkを下記式(Z)におけるk(d)へと代入することにより、電流条件I0、kに対応する、既打点を有する場合のナゲット径da、kを推定し、
前記既打点が2点の場合には、
単点溶接でk通り(kは1より大きい整数)の電流条件I0、kに対してそれぞれ得られたナゲット径d0、kの組み合わせである既知のウェルドローブにおける前記d0、kを下記式(Z)のdへと代入し、且つ、下記式(Y)’で表されるkを下記式(Z)におけるk(d)へと代入することにより、電流条件I0、kに対応する、既打点を有する場合のナゲット径da、kを推定するナゲット径推定工程を有する、抵抗スポット溶接のナゲット径の推定方法。
Considering that the current flowing through the welding point to be welded by resistance spot welding is diverted to the already welded spot existing at a predetermined distance from the welding point, When estimating the weld lobe that is related to the nugget diameter,
The thicknesses of the first workpiece and the second workpiece to be welded by resistance spot welding are t 1 and t 2 , respectively.
I 0 , the current flowing between the electrodes sandwiching the first welded material and the second welded material,
I a , the current flowing through the weld point,
The predetermined distance is b,
The nugget diameter of the welding point in the case of single-point welding where there is no existing spot is d 0 ,
The nugget diameter of the welding point and the already dotting when welded under the same welding condition as the single point welding d a,
The average specific resistance of the weld is ρ a ,
The average specific resistance of the shunt is ρ b ,
Ρ b / ρ a for the first workpiece (ρ b / ρ a ) 1 ,
Ρ b / ρ a for the second work piece is (ρ b / ρ a ) 2 ,
When t 1 , t 2 , (ρ b / ρ a ) 1 and (ρ b / ρ a ) 2 are used and the value represented by the following formula (W) is ρ ab ,
Wherein if already hitting point of 1 point, k a of I a = k a · I 0 is represented by the following formula (X) ',
Wherein if already hitting point two points, k a of I a = k a · I 0 is represented by the following formula (Y) ',
When the k a expressed as a function of the nugget diameter d a is expressed as k a (d a ),
When the hit point is 1 point,
K as a single point welding (k is an integer greater than 1) below the d 0, k at a known weld lobe is a combination of nugget diameter d 0, k respectively obtained with respect to the current condition I 0, k of By substituting into d 0 of the formula (Z) and substituting k a represented by the following formula (X) ′ into k a (d a ) in the following formula (Z), the current condition I 0 , K , and estimate the nugget diameter da , k when having hit points,
When the hit points are 2 points,
K as a single point welding (k is an integer greater than 1) below the d 0, k at a known weld lobe is a combination of nugget diameter d 0, k respectively obtained with respect to the current condition I 0, k of substituted into d 0 of the formula (Z), and, by substituting k a represented by the following formula (Y) 'to k a (d a) of the following formula (Z), the current condition I 0 , K , and a nugget diameter estimation step for estimating the nugget diameter da , k in the case of having already hit points.
前記単点溶接で前記電流Iを流す溶接条件下で前記ナゲット径dが得られる通電時間をτ
前記溶接点を流れる電流が前記既打点へと分流する場合に前記溶接条件および前記通電時間τで前記ナゲット径dを得るために必要な電流をI 、とするとき、
さらに、下記式(V)を用いて、前記電流I を推定する電流推定工程を有する、請求項1又は2に記載の抵抗スポット溶接のナゲット径の推定方法。
The energization time during which the nugget diameter d 0 is obtained under welding conditions in which the current I 0 is passed in the single point welding is represented by τ e ,
When a current required to obtain the nugget diameter d 0 under the welding conditions and the energization time τ e when the current flowing through the welding point is shunted to the hit point is I 0 * ,
The resistance spot welding nugget diameter estimation method according to claim 1, further comprising a current estimation step of estimating the current I 0 * using the following formula (V).
JP2014081734A 2014-04-11 2014-04-11 Nugget diameter estimation method for resistance spot welding Active JP6299356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014081734A JP6299356B2 (en) 2014-04-11 2014-04-11 Nugget diameter estimation method for resistance spot welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014081734A JP6299356B2 (en) 2014-04-11 2014-04-11 Nugget diameter estimation method for resistance spot welding

Publications (2)

Publication Number Publication Date
JP2015202499A true JP2015202499A (en) 2015-11-16
JP6299356B2 JP6299356B2 (en) 2018-03-28

Family

ID=54596303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014081734A Active JP6299356B2 (en) 2014-04-11 2014-04-11 Nugget diameter estimation method for resistance spot welding

Country Status (1)

Country Link
JP (1) JP6299356B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019038021A (en) * 2017-08-25 2019-03-14 新日鐵住金株式会社 Function determination method, function determination device, function determination program, and breakage prediction program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0999379A (en) * 1995-10-02 1997-04-15 Nas Toa Co Ltd Welding current controller of resistance welding machine
JP2000126872A (en) * 1998-10-26 2000-05-09 Matsushita Electric Ind Co Ltd Control method of resistance welding machine
JP2012115888A (en) * 2010-12-02 2012-06-21 Honda Motor Co Ltd Method of setting welding condition in spot welding apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0999379A (en) * 1995-10-02 1997-04-15 Nas Toa Co Ltd Welding current controller of resistance welding machine
JP2000126872A (en) * 1998-10-26 2000-05-09 Matsushita Electric Ind Co Ltd Control method of resistance welding machine
JP2012115888A (en) * 2010-12-02 2012-06-21 Honda Motor Co Ltd Method of setting welding condition in spot welding apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019038021A (en) * 2017-08-25 2019-03-14 新日鐵住金株式会社 Function determination method, function determination device, function determination program, and breakage prediction program

Also Published As

Publication number Publication date
JP6299356B2 (en) 2018-03-28

Similar Documents

Publication Publication Date Title
JP5127788B2 (en) Resistance welding method, resistance welding member, resistance welding machine, resistance welding machine control method and control program and control device thereof, resistance welding evaluation method and evaluation program and evaluation device thereof
KR20170129268A (en) Resistance spot welding method
JPWO2015099192A1 (en) Resistance spot welding method
KR100857048B1 (en) Method for monitoring and controlling characteristics of the heat affected zone in a weld of metals
JP2011104628A (en) Resistance welding method, resistance welding material, resistance welding device and control device for the same, control method and program for resistance welding device, and evaluation method and program for resistance welding
Zhang et al. Effects of filler wire on residual stress in electron beam welded QCr0. 8 copper alloy to 304 stainless steel joints
Wang et al. Development of a new combined heat source model for welding based on a polynomial curve fit of the experimental fusion line
JP2015090673A (en) Method for predicting fatigue life of laser lap-welded joint
JP2017013078A (en) Simulation program
US9868175B2 (en) Seam welding method and seam welding device
JP6299356B2 (en) Nugget diameter estimation method for resistance spot welding
JP2000126872A (en) Control method of resistance welding machine
Zähr et al. Numerical and experimental studies of the influence of process gases in TIG welding
Schmalen et al. Resistance measurement of laser welded dissimilar Al/Cu joints
JP5841626B2 (en) One side resistance welding method
Wang et al. Finite element analysis of clamping form in wire and arc additive manufacturing
JP2016198805A (en) Welding quality determination method and welding equipment comprising welding quality determination mechanism
Deshmukh et al. Optimization of welding parameters using Taguchi method for submerged arc welding on spiral pipes
JP2018153818A (en) Resistance spot welding method
CN105537820B (en) welding system and welding method
Rasheed et al. A Review on different optimization techniques used to optimize the process parameters of resistance spot welding
JP7059665B2 (en) Material property data calculation method, material property data calculation program, and material property data calculation device
JP4595760B2 (en) Spot welding monitoring method
CN109689269A (en) For cleaning and engaging joint element to the method and apparatus on workpiece
Cohal Some aspects of modelling and simulation of spot welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180212

R151 Written notification of patent or utility model registration

Ref document number: 6299356

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350