JP2015202455A - Ending determination method of washing processing of pcb contaminated equipment, completion determination method of pcb detoxification processing by washing and estimation method of pcb concentration of washing liquid after washing - Google Patents

Ending determination method of washing processing of pcb contaminated equipment, completion determination method of pcb detoxification processing by washing and estimation method of pcb concentration of washing liquid after washing Download PDF

Info

Publication number
JP2015202455A
JP2015202455A JP2014083207A JP2014083207A JP2015202455A JP 2015202455 A JP2015202455 A JP 2015202455A JP 2014083207 A JP2014083207 A JP 2014083207A JP 2014083207 A JP2014083207 A JP 2014083207A JP 2015202455 A JP2015202455 A JP 2015202455A
Authority
JP
Japan
Prior art keywords
pcb
cleaning
oil
concentration
contaminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014083207A
Other languages
Japanese (ja)
Other versions
JP6324182B2 (en
Inventor
大村 直也
Naoya Omura
直也 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2014083207A priority Critical patent/JP6324182B2/en
Publication of JP2015202455A publication Critical patent/JP2015202455A/en
Application granted granted Critical
Publication of JP6324182B2 publication Critical patent/JP6324182B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/82Recycling of waste of electrical or electronic equipment [WEEE]

Landscapes

  • Cleaning By Liquid Or Steam (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an estimation method of a PCB concentration of washing liquid after washing which can estimate PCB concentration of washing liquid after washing before washing PCB contaminated equipment with washing liquid irrespective of specification and dimensions of the PCB contaminated equipment and has versatility, and to provide a method of determining the completion of washing processing according to the estimation method and determining the completion of PCB detoxification processing by washing.SOLUTION: A method of determining the ending of washing processing and the completion of PCB detoxification processing from PCB concentration of washing liquid when washing PCB contaminated equipment which fills insulation oil containing polychlorobiphenyl (PCB) therein and is contaminated with PCB by means of washing liquid is provided. Further, in relation to a method for estimating PCB concentration of the washing liquid before washing, an estimation method of PCB concentration of the washing liquid after washing for determining PCB estimation concentration of washing liquid after washing according to a prescribed numerical equation from the PCB concentration of the insulation oil before washing the PCB contaminated equipment, a name plate weight of the PCB contaminated equipment and a name plate oil quantity of the PCB contaminated equipment is provided.

Description

本発明は、PCB汚染機器の洗浄処理の終了判定方法、及び洗浄によるPCB無害化処理の完了判定方法、並びに洗浄後の洗浄液のPCB濃度の予測方法に関する。   The present invention relates to a method for determining the end of a cleaning process for a PCB-contaminated device, a method for determining the completion of a PCB detoxification process by cleaning, and a method for predicting the PCB concentration of a cleaning liquid after cleaning.

平成14年7月にポリ塩化ビフェニル(PCB)を使用していないはずの変圧器等の重電機器の絶縁油から微量のPCBが検出された。前記PCBの濃度は微量(ppmオーダー)であるが、PCB混入が疑われるPCB汚染機器は多種多量であり、現在600万台程度の膨大な台数存在すると予測され、更に機器保有先が多業種にわたっていることから、PCB汚染機器の安全で経済的な処理の実現が強く望まれている。   In July 2002, a small amount of PCB was detected in the insulating oil of heavy electrical equipment such as a transformer that should not use polychlorinated biphenyl (PCB). Although the PCB concentration is very small (ppm order), there are a large number of PCB-contaminated devices suspected of PCB contamination, and it is predicted that there will be an enormous number of about 6 million units. Therefore, realization of safe and economical processing of PCB contaminated equipment is strongly desired.

国は平成15年に「低濃度PCB汚染物対策検討委員会」を設置して問題解決に向けた検討を始め、平成21年に「中央環境審議会 廃棄物・リサイクル部会 微量PCB混入廃重電機器の処理に関する専門委員会」において微量PCB混入廃電気機器等の処理方策の検討結果をまとめた。骨子として、焼却施設における焼却実証試験の推進や、保管場所において電気機器等の絶縁油を入れ替えて一定期間の課電などによりPCBを除去する方法の技術検証と処理を行う制度上の検討を進めることなどが挙げられている。これを受けて環境省は焼却実証試験を進め、環境大臣による無害化処理認定制度の導入により、PCB汚染物を焼却により無害化する施設が設置され始めている。
一方、新たなPCB除去技術の検証は国として未だ着手されていない。平成23年度から「PCB廃棄物適正処理推進に関する検討委員会」にて検討されてきたPCB廃棄物の処理期限が平成24年に「ポリ塩化ビフェニル廃棄物の適正な処理の推進に関する特別措置法施行令の一部を改正する政令」として閣議決定され、事業者によるPCB廃棄物の処分の期間が平成39年3月31日となった。PCB廃棄物の処理期限が明確となったことから、新たなPCB除去技術の検証と制度上の検討が喫緊の課題となっている。
The national government established the “Low Concentration PCB Contamination Countermeasures Review Committee” in 2003 and began studying to solve the problem. In 2009, the Central Environmental Council, Waste and Recycling Subcommittee. In the “Special Committee on Disposal of Disposal Equipment”, the results of examination of disposal measures for waste electrical equipment mixed with trace amounts of PCB were compiled. As the main point, we will promote the incineration demonstration test at the incineration facility, and the technical examination and processing of the method to remove the PCB by replacing the insulating oil of electrical equipment etc. in the storage place and applying the power for a certain period, etc. It is mentioned. In response to this, the Ministry of the Environment has proceeded with incineration demonstration tests, and the introduction of a detoxification treatment certification system by the Minister of the Environment has begun to install facilities for detoxifying PCB contaminants by incineration.
On the other hand, verification of new PCB removal technology has not yet started as a country. The disposal period for PCB waste, which has been studied by the “Examination Committee for Promotion of Proper Treatment of PCB Waste” since 2011, is the “Special Measures Law Enforcement on Promotion of Proper Treatment of Polychlorinated Biphenyl Waste” The cabinet was decided as a “decree to revise part of the decree”, and the period of disposal of PCB waste by businesses was March 31, 39. Since PCB waste disposal deadlines have become clear, verification of new PCB removal technologies and institutional considerations are urgent issues.

本願出願人は、前記課題を解決するため鋭意検討を重ねた結果、微量PCB汚染変圧器の経済的かつ安全な無害化処理技術として、PCB汚染油を抜油し、PCB非含有洗浄油への入れ替えに続いてPCB非含有洗浄油で前記微量PCB汚染変圧器を洗浄する加熱強制循環洗浄及び課電自然循環洗浄について検討し、既に提案している(特許文献1及び2参照)。   As a result of intensive studies to solve the above problems, the applicant of the present application has removed PCB contaminated oil and replaced it with PCB-free cleaning oil as an economical and safe detoxification treatment technology for trace PCB contaminated transformers. Subsequently, the forced forced circulation cleaning for cleaning the trace PCB-contaminated transformer with PCB-free cleaning oil and the self-charging natural circulation cleaning have already been proposed (see Patent Documents 1 and 2).

前記加熱強制循環洗浄においては、これまでに小型変圧器及び中型変圧器を用いた試験から洗浄油の加熱循環により、内部部材から洗浄油へのPCBの溶出が促進され、変圧器の容器及び内部部材についてPCB無害化処理基準を満足するまで洗浄できる原理が立証されている。
前記課電自然循環洗浄においては、これまでに小型変圧器及び中型変圧器を用いた試験から課電により内部部材から洗浄油へのPCBの溶出が促進され、変圧器の容器及び内部部材についてPCB無害化処理基準を満足するまで洗浄できる原理が立証されている。
これらの洗浄技術について汚染油の洗浄油への入れ替えに続いて一定期間洗浄を行うサイクルを2回繰り返すことで、微量PCB汚染機器としては比較的高いPCB濃度の汚染機器まで洗浄可能であることも示されている。
In the heating forced circulation cleaning, the elution of PCB from the internal member to the cleaning oil is promoted by the heating circulation of the cleaning oil from the tests using the small transformer and the medium transformer so far. The principle of being able to clean the parts until they meet the PCB detoxification criteria has been demonstrated.
In the electric charging natural circulation cleaning, the elution of PCB from the internal member to the cleaning oil is promoted by the electric power from the tests using the small transformer and the medium size transformer so far. The principle of cleaning until the detoxification treatment standard is satisfied has been proven.
Regarding these cleaning technologies, it is possible to clean even a relatively high PCB concentration of contaminated equipment by repeating the cycle of cleaning for a certain period of time following replacement of the contaminated oil with cleaning oil, as a trace PCB contaminated equipment. It is shown.

更に、前記加熱強制循環洗浄及び前記課電自然循環洗浄について、実際の保管又は設置(使用)場所で微量PCB混入大型変圧器を対象とした実証が行われた。その結果として、PCB汚染機器からPCBで汚染された絶縁油の抜油、洗浄液の注入、一定期間の移動式洗浄装置による加熱強制循環洗浄、又は商用運転による課電自然循環洗浄に加え、洗浄液の抜液の操作を行うことで周辺環境に影響を及ぼすことなく、PCB汚染機器を構成する容器や内部部材について該当するPCB無害化処理における汚染基準未満となるまでPCBの除去が可能であることが実証された。   In addition, the heat forced circulation cleaning and the electricity-charging natural circulation cleaning were demonstrated for a large amount of PCB-mixed large transformer at the actual storage or installation (use) location. As a result, in addition to draining insulating oil contaminated with PCB from PCB-contaminated equipment, injecting cleaning liquid, heating forced circulation cleaning with a mobile cleaning device for a certain period of time, or charging natural circulation cleaning by commercial operation, draining of cleaning liquid Demonstrating that it is possible to remove PCBs until they are less than the contamination standard in the corresponding PCB detoxification process for containers and internal components that constitute PCB contamination equipment without affecting the surrounding environment by operating the liquid. It was done.

一方、前記加熱強制循環洗浄及び前記課電自然循環洗浄の実用にあたっては、洗浄後にPCB汚染機器を構成する容器や内部部材が該当するPCB無害化処理の基準を満足することを適切かつ効率的に確認する手段の開発が重要である。
現在では、洗浄後にPCB汚染機器を構成する金属、紙、木等の構成部材の検定分析を行って、PCB無害化処理の基準を満足することを確認することが行われている。しかし、600万台程度の膨大な台数の処理が想定される微量PCB汚染機器においては、機器毎に内部部材を採取し、検定分析を行うことは実現性がなく、その手間や費用が処理の効率や経済性を低下させるばかりでなく、処理期間の長期化を招いてしまう。故に、PCB無害化処理の基準を満足することを効率的に判定する手段が課題解決には不可欠である。
On the other hand, in practical use of the heating forced circulation cleaning and the electrical charging natural circulation cleaning, it is appropriate and efficient that containers and internal members constituting the PCB-contaminated equipment satisfy the corresponding PCB detoxification treatment standards after cleaning. It is important to develop a means of confirmation.
At present, after the cleaning, a verification analysis of components such as metal, paper, and wood constituting the PCB-contaminated equipment is performed to confirm that the PCB detoxification processing standard is satisfied. However, it is not feasible to collect internal members for each device and perform a verification analysis for a small amount of PCB-contaminated devices that are expected to handle a huge number of units of about 6 million units. Not only will efficiency and economy be reduced, but the processing period will be lengthened. Therefore, means for efficiently determining that the standard for PCB detoxification processing is satisfied is indispensable for solving the problem.

このためには、PCBで汚染されたPCB汚染機器の洗浄工程における何らかの指標により、簡易かつ実用的にPCB汚染機器の洗浄処理の終了と、洗浄後のPCB汚染機器のPCB無害化処理の完了を判定する方法が必要である。そこで、本発明においては、判定の指標として洗浄液のPCB濃度に着目した。即ち、予め洗浄前に洗浄後の洗浄液のPCB濃度を予測し、予測濃度が設定した管理濃度を超えない場合に、PCB汚染機器の洗浄処理の終了と同時に洗浄後のPCB汚染機器のPCB無害化処理の完了を判定できることを知見した。よって、PCB汚染機器の仕様や大きさに関わらず、洗浄前に洗浄後の洗浄液のPCB濃度が予測でき、洗浄後のPCB汚染機器がPCB無害化基準を満足することを、汎用的・普遍的に示すことが必要である。   For this purpose, the end of the cleaning process of the PCB contaminated equipment and the completion of the PCB detoxification process of the PCB contaminated equipment after the cleaning are simply and practically performed according to some index in the cleaning process of the PCB contaminated equipment contaminated with the PCB. A method of judging is needed. Therefore, in the present invention, attention is paid to the PCB concentration of the cleaning liquid as a determination index. That is, when the PCB concentration of the cleaning solution after cleaning is predicted before cleaning, and the predicted concentration does not exceed the set control concentration, the PCB contamination device after cleaning is rendered harmless at the same time as the cleaning processing of the PCB contamination device is completed. It was found that the completion of the treatment can be determined. Therefore, regardless of the specifications and size of the PCB contaminated equipment, it is possible to predict the PCB concentration of the cleaning liquid after cleaning before cleaning, and that the PCB contaminated equipment after cleaning satisfies the PCB detoxification standard. It is necessary to show in

一方、PCB汚染機器の洗浄において、洗浄後のPCB汚染機器の内部に残るPCB量を推定する計算方法が検討されている。例えば、特許文献3では、PCB汚染変圧器を、前記変圧器内部の構成と処理条件による溶出率を考慮して、所定の計算式を用いた計算により処理後の状態を求め、初期のPCB量から処理により溶出したPCB量を差し引いて処理後のPCB量を求める方法が提案されている。この提案の方法は、洗浄処理工程において、PCB除去の程度を推定することに利用されうる。しかしながら、実態としてPCB汚染機器全体としてのPCBの除去の程度と、洗浄液のPCB濃度の相対関係が不明確であることから「PCB汚染機器を洗浄液で洗浄した後、洗浄液のPCB濃度から洗浄処理の終了を判定すること」の指標として洗浄液のPCB濃度が知見されていない。また同様に、PCB汚染機器全体としてのPCB除去の程度と、PCB汚染機器の容器や内部部材などのPCB除去の程度と、洗浄液のPCB濃度の相対関係が不明確であることから「洗浄によるPCB無害化処理を判定すること」の指標として洗浄液のPCB濃度が知見されていない。
したがって、前記提案の方法は、洗浄後のPCB量を算出してPCBを除去する方法にすぎず、PCB汚染変圧器の仕様や大きさに依存しない汎用性のある洗浄後の洗浄液のPCB濃度の予測するものではなく、「PCB汚染機器を洗浄液で洗浄した後、洗浄液のPCB濃度から、洗浄処理の終了を判定すること」、及び「洗浄によるPCB無害化処理を判定すること」は到底できないものである。
On the other hand, in the cleaning of PCB contaminated equipment, a calculation method for estimating the amount of PCB remaining inside the PCB contaminated equipment after cleaning has been studied. For example, in Patent Document 3, a PCB-contaminated transformer is obtained by calculating a state after processing by a calculation using a predetermined calculation formula in consideration of an elution rate depending on a configuration inside the transformer and processing conditions, and an initial PCB amount. A method has been proposed in which the amount of PCB after processing is determined by subtracting the amount of PCB eluted from the processing. This proposed method can be used to estimate the degree of PCB removal in the cleaning process. However, since the relative relationship between the degree of PCB removal as a whole of the PCB-contaminated equipment and the PCB concentration of the cleaning liquid is unclear as a matter of fact, after cleaning the PCB-contaminated equipment with the cleaning liquid, The PCB concentration of the cleaning liquid is not known as an index for “determining the end”. Similarly, since the relative relationship between the degree of PCB removal as a whole of the PCB-contaminated equipment, the degree of PCB removal of the containers and internal members of the PCB-contaminated equipment, and the PCB concentration of the cleaning liquid is unclear, “PCB by Cleaning The PCB concentration of the cleaning liquid is not known as an indicator of “determination of detoxification treatment”.
Therefore, the proposed method is merely a method for removing the PCB by calculating the amount of PCB after cleaning, and the PCB concentration of the cleaning solution after general cleaning that does not depend on the specification or size of the PCB-contaminated transformer. It is not something to be predicted. “After the PCB-contaminated equipment is cleaned with the cleaning liquid, the end of the cleaning process is determined from the PCB concentration of the cleaning liquid” and “the determination of the PCB detoxification process by the cleaning” cannot be achieved. It is.

特許第4889557号公報Japanese Patent No. 4889557 特許第5436889号公報Japanese Patent No. 5436889 特許第4898507号公報Japanese Patent No. 4898507

本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、PCBで汚染されたPCB汚染機器の仕様や大きさに関わらず、前記PCB汚染機器の洗浄処理の終了と同時に洗浄によるPCB無害化処理の完了を判定することができる汎用性のある方法と、前記方法を裏付け・実現するために、PCB汚染機器を洗浄液で洗浄する前に洗浄後の洗浄液のPCB濃度を予測することができる汎用性のある方法を提供することを目的とする。   An object of the present invention is to solve the above-described problems and achieve the following objects. That is, the present invention is versatile enough to determine the completion of the PCB detoxification process by cleaning at the same time as the completion of the cleaning process of the PCB contaminated apparatus, regardless of the specification and size of the PCB contaminated apparatus contaminated with PCB. It is an object of the present invention to provide a versatile method capable of predicting the PCB concentration of the cleaning liquid after cleaning before cleaning the PCB-contaminated equipment with the cleaning liquid in order to support and realize the method. To do.

前記課題を解決するための手段としては、以下のとおりである。即ち、
本発明のPCB汚染機器の洗浄処理の終了判定方法は、第1の形態では、ポリ塩化ビフェニル(PCB)を含む絶縁油が充填されPCBで汚染されているPCB汚染機器を洗浄液で洗浄した後、洗浄液のPCB濃度から、洗浄処理の終了を判定する。
Means for solving the above-described problems are as follows. That is,
In the first embodiment, the method for determining the completion of the cleaning process for PCB-contaminated equipment according to the present invention, after washing the PCB-contaminated equipment filled with insulating oil containing polychlorinated biphenyl (PCB) and contaminated with PCB with the cleaning liquid, The end of the cleaning process is determined from the PCB concentration of the cleaning liquid.

本発明の洗浄によるPCB無害化処理の完了判定方法は、第1の形態では、ポリ塩化ビフェニル(PCB)を含む絶縁油が充填されPCBで汚染されているPCB汚染機器を洗浄液で洗浄した後、洗浄液のPCB濃度から、PCB無害化処理の完了を判定する。   In the first embodiment, the method for determining the completion of PCB detoxification treatment by washing according to the present invention, after washing PCB contaminated equipment filled with insulating oil containing polychlorinated biphenyl (PCB) and contaminated with PCB with washing liquid, Completion of the PCB detoxification process is determined from the PCB concentration of the cleaning liquid.

本発明の洗浄後の洗浄液のPCB濃度の予測方法は、ポリ塩化ビフェニル(PCB)を含む絶縁油が充填されPCBで汚染されているPCB汚染機器を洗浄液で洗浄する前に洗浄後の洗浄液のPCB濃度を予測する方法であって、
前記PCB汚染機器を洗浄前の絶縁油のPCB濃度、前記PCB汚染機器の銘板重量、及び前記PCB汚染機器の銘板油量から、下記数式3により洗浄後の洗浄液のPCB予測濃度を求めることを特徴とする。
[数式3]
洗浄後の洗浄液のPCB予測濃度=
[(内部部材係数×銘板重量×内部部材含油係数×洗浄前の絶縁油のPCB濃度)+(銘板油量2/3×容器残油係数×洗浄前の絶縁油のPCB濃度)]/(銘板油量×絶縁油比重)
ただし、前記数式3中、前記銘板重量は、前記PCB汚染機器の銘板に記載されている絶縁油を含むPCB汚染機器の総重量を表す。前記銘板油量は、前記PCB汚染機器の銘板に記載されている総油量であり、容器壁面及び容器底面への付着量算出のため油の接触面積を考慮して2/3乗とした。前記内部部材含油係数は、前記PCB汚染機器の内部部材中の油含有量を求める係数を表す。前記内部部材係数は、前記銘板重量から内部部材重量を求める係数を表す。前記容器残油係数は、前記PCB汚染機器から絶縁油を抜油後に前記PCB汚染機器の容器壁面及び容器底面に残存する絶縁油量を算出する係数を表す。
The method for predicting the PCB concentration of the cleaning liquid after cleaning according to the present invention is that the PCB of the cleaning liquid after cleaning is cleaned before the PCB-contaminated equipment filled with insulating oil containing polychlorinated biphenyl (PCB) and contaminated with PCB is cleaned with the cleaning liquid. A method for predicting concentration,
From the PCB concentration of the insulating oil before cleaning the PCB-contaminated equipment, the nameplate weight of the PCB-contaminated equipment, and the amount of nameplate oil of the PCB-contaminated equipment, the predicted PCB concentration of the cleaning liquid after cleaning is obtained by the following Equation 3. And
[Formula 3]
PCB predicted concentration of cleaning solution after cleaning =
[(Internal member coefficient x Name plate weight x Internal member oil content coefficient x PCB concentration of insulating oil before cleaning) + (Name plate oil amount 2/3 x Container residual oil coefficient x PCB concentration of insulating oil before washing)] / (Name plate (Oil quantity x Insulating oil specific gravity)
However, in said Numerical formula 3, the said nameplate weight represents the total weight of the PCB contamination apparatus containing the insulating oil described in the nameplate of the said PCB contamination apparatus. The amount of the nameplate oil is the total amount of oil described on the nameplate of the PCB-contaminated equipment, and is set to 2/3 power in consideration of the contact area of the oil for calculating the amount of adhesion to the container wall surface and the container bottom surface. The internal member oil impregnation coefficient represents a coefficient for obtaining the oil content in the internal member of the PCB-contaminated equipment. The internal member coefficient represents a coefficient for obtaining the internal member weight from the nameplate weight. The container residual oil coefficient represents a coefficient for calculating the amount of insulating oil remaining on the container wall surface and the container bottom surface of the PCB-contaminated equipment after the insulating oil is extracted from the PCB-contaminated equipment.

本発明のPCB汚染機器の洗浄処理の終了判定方法は、第2の形態では、本発明の前記洗浄後の洗浄液のPCB濃度の予測方法により求めた洗浄後の洗浄液のPCB予測濃度から、洗浄処理の終了を判定する。   In the second embodiment, the method for determining the completion of the cleaning process for the PCB-contaminated equipment according to the present invention is based on the predicted PCB concentration of the cleaning liquid after the cleaning obtained by the method for predicting the PCB concentration of the cleaning liquid after the cleaning according to the present invention. Determine the end of.

本発明の洗浄によるPCB無害化処理の完了判定方法は、第2の形態では、本発明の前記洗浄後の洗浄液のPCB濃度の予測方法により求めた洗浄後の洗浄液のPCB予測濃度から、PCB無害化処理の完了を判定する。   In the second embodiment, the method for determining the completion of PCB detoxification by cleaning according to the present invention is the PCB harmless from the predicted PCB concentration of the cleaning liquid after cleaning obtained by the method for predicting the PCB concentration of the cleaning liquid after cleaning according to the present invention. The completion of the conversion process is determined.

本発明によると、従来における前記諸問題を解決し、前記目的を達成することができ、PCBで汚染されたPCB汚染機器の仕様や大きさに関わらず、前記PCB汚染機器を洗浄液で洗浄する前に洗浄後の洗浄液のPCB濃度を予測することができる汎用性のある洗浄後の洗浄液のPCB濃度の予測方法、及び前記予測方法により、PCB汚染機器の洗浄処理の終了と同時に洗浄によるPCB無害化処理の完了を判定する方法を提供することができる。   According to the present invention, the above-described problems can be solved and the object can be achieved, and before the PCB-contaminated equipment is cleaned with a cleaning liquid, regardless of the specification and size of the PCB-contaminated equipment contaminated with PCB. The PCB concentration of the cleaning liquid after the cleaning that can predict the PCB concentration of the cleaning liquid after cleaning at the same time, and the PCB decontamination by the cleaning simultaneously with the completion of the cleaning process of the PCB contaminated equipment by the prediction method A method for determining completion of processing can be provided.

図1は、本発明の洗浄後の洗浄液のPCB濃度の予測方法の考え方の一例を示す概略図である。FIG. 1 is a schematic diagram showing an example of the concept of the method for predicting the PCB concentration of the cleaning liquid after cleaning according to the present invention. 図2は、実測した洗浄油のPCB濃度と、予測した洗浄油のPCB予測濃度との関係を示すグラフである。FIG. 2 is a graph showing the relationship between the actually measured PCB concentration of the cleaning oil and the predicted PCB predicted concentration of the cleaning oil. 図3Aは、実測した洗浄前の絶縁油のPCB濃度(元油PCB濃度)と、予測した洗浄油のPCB予測濃度との関係を示すグラフである。FIG. 3A is a graph showing the relationship between the actually measured PCB concentration of the insulating oil before cleaning (base oil PCB concentration) and the predicted predicted predicted PCB concentration of the cleaning oil. 図3Bは、図3Aの部分拡大図である。FIG. 3B is a partially enlarged view of FIG. 3A. 図4は、巻形鉄心を有する外鉄形コアの構造及び銅コイルの構造の一例を示す図面である。FIG. 4 is a drawing showing an example of the structure of an outer iron core having a wound iron core and the structure of a copper coil. 図5は、巻形鉄心を有する内鉄形コアの構造及び銅コイルの構造の一例を示す図面である。FIG. 5 is a drawing showing an example of the structure of an inner iron core having a wound iron core and the structure of a copper coil.

(洗浄後の洗浄液のPCB濃度の予測方法)
本発明の洗浄後の洗浄液のPCB濃度の予測方法は、ポリ塩化ビフェニル(PCB)を含む絶縁油が充填されPCBで汚染されているPCB汚染機器を洗浄液で洗浄する前に洗浄後の洗浄液のPCB濃度を予測する方法であって、
前記PCB汚染機器を洗浄前の絶縁油のPCB濃度、前記PCB汚染機器の銘板重量、及び前記PCB汚染機器の銘板油量から、下記数式3により洗浄後の洗浄液のPCB予測濃度を求めるものである。
[数式3]
洗浄後の洗浄液のPCB予測濃度=
[(内部部材係数×銘板重量×内部部材含油係数×洗浄前の絶縁油のPCB濃度)+(銘板油量2/3×容器残油係数×洗浄前の絶縁油のPCB濃度)]/(銘板油量×絶縁油比重)
ただし、前記数式3中、前記銘板重量は、前記PCB汚染機器の銘板に記載されている絶縁油を含むPCB汚染機器の総重量を表す。前記銘板油量は、前記PCB汚染機器の銘板に記載されている総油量であり、容器壁面及び容器底面への付着量算出のため油の接触面積を考慮して2/3乗とした。前記内部部材含油係数は、前記PCB汚染機器の内部部材中の油含有量を求める係数を表す。前記内部部材係数は、前記銘板重量から内部部材重量を求める係数を表す。前記容器残油係数は、前記PCB汚染機器から絶縁油を抜油後に前記PCB汚染機器の容器壁面及び容器底面に残存する絶縁油量を算出する係数を表す。
(Prediction method of PCB concentration of cleaning liquid after cleaning)
The method for predicting the PCB concentration of the cleaning liquid after cleaning according to the present invention is that the PCB of the cleaning liquid after cleaning is cleaned before the PCB-contaminated equipment filled with insulating oil containing polychlorinated biphenyl (PCB) and contaminated with PCB is cleaned with the cleaning liquid. A method for predicting concentration,
From the PCB concentration of the insulating oil before cleaning the PCB-contaminated equipment, the nameplate weight of the PCB-contaminated equipment, and the amount of nameplate oil of the PCB-contaminated equipment, the predicted PCB concentration of the cleaning liquid after cleaning is obtained by the following Equation 3. .
[Formula 3]
PCB predicted concentration of cleaning solution after cleaning =
[(Internal member coefficient x Name plate weight x Internal member oil content coefficient x PCB concentration of insulating oil before cleaning) + (Name plate oil amount 2/3 x Container residual oil coefficient x PCB concentration of insulating oil before washing)] / (Name plate (Oil quantity x Insulating oil specific gravity)
However, in said Numerical formula 3, the said nameplate weight represents the total weight of the PCB contamination apparatus containing the insulating oil described in the nameplate of the said PCB contamination apparatus. The amount of the nameplate oil is the total amount of oil described on the nameplate of the PCB-contaminated equipment, and is set to 2/3 power in consideration of the contact area of the oil for calculating the amount of adhesion to the container wall surface and the container bottom surface. The internal member oil impregnation coefficient represents a coefficient for obtaining the oil content in the internal member of the PCB-contaminated equipment. The internal member coefficient represents a coefficient for obtaining the internal member weight from the nameplate weight. The container residual oil coefficient represents a coefficient for calculating the amount of insulating oil remaining on the container wall surface and the container bottom surface of the PCB-contaminated equipment after the insulating oil is extracted from the PCB-contaminated equipment.

前記課題を解決するため本発明者らが、加熱強制循環洗浄及び課電自然循環洗浄の開発や実証の段階において鋭意検討を重ねた結果、温度や期間等の洗浄条件を満たし、かつ洗浄後の洗浄液のPCB濃度が所定の範囲となることによって、洗浄後のPCB汚染機器の容器及び内部部材について該当する検定分析を実施し、PCB無害化処理の基準を満足することを確かめ、PCB汚染機器の洗浄処理の終了と同時に洗浄後の機器のPCB無害化処理の完了を判定できることを知見した。また、PCB汚染機器を洗浄後の洗浄液のPCB濃度を洗浄前に予測する方法が必要であることを知見した。
そして、前記知見から本発明者らが更に鋭意検討を進めた結果、PCB汚染機器を洗浄前の絶縁油のPCB濃度、PCB汚染機器の銘板重量、及びPCB汚染機器の銘板油量から、前記数式3により洗浄後の洗浄液のPCB予測濃度を求める方法を見出し、本発明をなすに至った。
本発明の洗浄後の洗浄液のPCB濃度の予測方法は、洗浄後の洗浄液のPCB予測濃度によるPCB汚染機器の無害化処理の判定の確からしさを示す科学的知見であるばかりでなく、洗浄前に洗浄結果を予測できるので、PCB汚染濃度による効率的な洗浄順位、洗浄液の準備、洗浄液の節約などの洗浄処理の実用上も極めて有用である。
In order to solve the above-mentioned problems, the present inventors have conducted extensive studies at the development and demonstration stage of heating forced circulation cleaning and electric charging natural circulation cleaning, satisfying the cleaning conditions such as temperature and period, and after cleaning. When the PCB concentration of the cleaning liquid falls within the specified range, the corresponding verification analysis is performed on the container and internal parts of the PCB contaminated equipment after cleaning, and it is confirmed that the PCB decontamination processing standards are satisfied. It was found that the completion of the PCB detoxification process of the device after cleaning can be determined simultaneously with the end of the cleaning process. Moreover, it discovered that the method of estimating the PCB density | concentration of the washing | cleaning liquid after washing | cleaning a PCB contaminated apparatus before washing | cleaning is required.
And, as a result of further diligent investigation by the present inventors from the above knowledge, from the PCB concentration of the insulating oil before cleaning the PCB-contaminated equipment, the nameplate weight of the PCB-contaminated equipment, and the nameplate oil amount of the PCB-contaminated equipment, No. 3 found a method for obtaining the predicted PCB concentration of the cleaning liquid after cleaning, and the present invention was made.
The method for predicting the PCB concentration of the cleaning liquid after the cleaning according to the present invention is not only scientific knowledge showing the accuracy of the determination of the detoxification treatment of the PCB-contaminated equipment by the predicted PCB concentration of the cleaning liquid after the cleaning, but also before the cleaning. Since the cleaning result can be predicted, the cleaning process such as efficient cleaning order according to the PCB contamination concentration, preparation of the cleaning liquid, and saving of the cleaning liquid is extremely useful in practical use.

以下に、前記PCB汚染機器を洗浄前の絶縁油のPCB濃度、前記PCB汚染機器の銘板重量、及び前記PCB汚染機器の銘板油量から、洗浄後の洗浄液のPCB予測濃度を求める方法について説明する。   Hereinafter, a method for obtaining the predicted PCB concentration of the cleaning liquid after cleaning from the PCB concentration of the insulating oil before cleaning the PCB-contaminated equipment, the nameplate weight of the PCB-contaminated equipment, and the amount of nameplate oil of the PCB-contaminated equipment will be described. .

まず、前記PCB汚染機器の内部部材を含浸している洗浄前の絶縁油に含まれるPCB量は、下記数式1から求めることができる。
[数式1]
内部部材中のPCB量(mg)=銘板重量×洗浄前の絶縁油のPCB濃度×内部部材係数×内部部材含油係数
ただし、前記数式1中、前記銘板重量は、前記PCB汚染機器の銘板に記載されている絶縁油を含むPCB汚染機器の総重量を表す。前記内部部材係数は、前記銘板重量から内部部材重量を求める係数を表す。前記内部部材含油係数は、前記PCB汚染機器の内部部材中の油含有量を求める係数を表す。
First, the amount of PCB contained in the insulating oil before cleaning impregnating the internal member of the PCB contaminated device can be obtained from the following formula 1.
[Formula 1]
PCB amount in internal member (mg) = nameplate weight × PCB concentration of insulating oil before cleaning × internal member coefficient × internal member oil impregnation coefficient In the formula 1, the nameplate weight is described on the nameplate of the PCB contaminated device. Represents the total weight of PCB contaminated equipment containing insulating oil. The internal member coefficient represents a coefficient for obtaining the internal member weight from the nameplate weight. The internal member oil impregnation coefficient represents a coefficient for obtaining the oil content in the internal member of the PCB-contaminated equipment.

前記内部部材としては、PCBが含有・付着する部材であれば特に制限はなく、目的に応じて適宜選択することができ、例えば、前記PCB汚染機器が変圧器であれば、鉄心、コイル(巻線)、絶縁材料、冷却用構造材(ラジエータ)、コンサベータ、エレファントなどが挙げられる。   The internal member is not particularly limited as long as it contains and adheres to PCB, and can be appropriately selected according to the purpose. For example, if the PCB-contaminated equipment is a transformer, an iron core, coil (winding) Wire), insulating material, cooling structural material (radiator), conservator, elephant and the like.

前記洗浄前の絶縁油のPCB濃度は、例えば、高分解能質量分析計(HRGC−HRMS)などにより測定することができる。
前記数式1により、PCB汚染機器の銘板重量から内部部材に含まれる油量を導き、前記内部部材に含まれる油量に洗浄前の絶縁油のPCB濃度を乗ずることで前記内部部材中のPCB量を算出することができる。
The PCB concentration of the insulating oil before washing can be measured by, for example, a high resolution mass spectrometer (HRGC-HRMS).
The amount of PCB in the internal member is calculated by deriving the amount of oil contained in the internal member from the weight of the nameplate of the PCB contaminated device, and multiplying the amount of oil contained in the internal member by the PCB concentration of the insulating oil before cleaning. Can be calculated.

次に、前記PCB汚染機器の容器壁面及び容器底面に残存する洗浄前の絶縁油に含まれるPCB量を下記数式2から求めることができる。
[数式2]
容器壁面及び容器底面に残存するPCB量(mg)=銘板油量2/3×洗浄前の絶縁油のPCB濃度×容器残油係数
ただし、前記数式2中、前記銘板油量は、前記PCB汚染機器の銘板に記載されている総油量であり、容器壁面及び容器底面への付着量算出のため油の接触面積を考慮して2/3乗とした。前記容器残油係数は、洗浄前の絶縁油の抜油後に容器壁面及び容器底面に残存する油量を算出する係数を表す。
Next, the amount of PCB contained in the insulating oil before cleaning remaining on the container wall surface and the container bottom surface of the PCB contaminated device can be obtained from the following Equation 2.
[Formula 2]
PCB amount (mg) remaining on container wall surface and bottom surface of container = nameplate oil amount 2/3 × PCB concentration of insulating oil before washing × container residual oil coefficient However, in equation 2, the nameplate oil amount is the amount of PCB contamination. This is the total amount of oil described on the nameplate of the device, and was set to the 2/3 power in consideration of the contact area of the oil in order to calculate the amount of adhesion to the container wall surface and the container bottom surface. The container residual oil coefficient represents a coefficient for calculating the amount of oil remaining on the container wall surface and the container bottom surface after the insulating oil before washing is drained.

次に、前記数式1及び前記数式2の合計となるPCB量を洗浄時の洗浄液量の目安となる銘板油量と絶縁油比重から求めた洗浄油重量で除することで洗浄後の洗浄液のPCB予測濃度を下記数式3から求めることができる。前記絶縁油の比重は、0.87である。
[数式3]
洗浄後の洗浄液のPCB予測濃度=
[(内部部材係数×銘板重量×内部部材含油係数×洗浄前の絶縁油のPCB濃度)+(銘板油量2/3×容器残油係数×洗浄前の絶縁油のPCB濃度)]/(銘板油量×絶縁油比重)
Next, the PCB amount that is the sum of Equation 1 and Equation 2 is divided by the amount of cleaning oil obtained from the amount of nameplate oil and the specific gravity of the insulating oil, which serves as a guide for the amount of cleaning fluid at the time of cleaning. The predicted concentration can be obtained from Equation 3 below. The specific gravity of the insulating oil is 0.87.
[Formula 3]
PCB predicted concentration of cleaning solution after cleaning =
[(Internal member coefficient x Name plate weight x Internal member oil content coefficient x PCB concentration of insulating oil before cleaning) + (Name plate oil amount 2/3 x Container residual oil coefficient x PCB concentration of insulating oil before washing)] / (Name plate (Oil quantity x Insulating oil specific gravity)

前記数式3における前記「内部部材係数」、前記「内部部材残油係数」、及び前記「容器残油係数」については、実際に各種変圧器を複数台解体し、箇所(コイル、鉄心、容器)、部材(紙類、銅線類、木)別に重量、油含有量、PCB含有・付着量を実測することにより求めることができる。   Regarding the “internal member coefficient”, the “internal member residual oil coefficient”, and the “container residual oil coefficient” in the mathematical formula 3, a plurality of various transformers are actually disassembled, and locations (coils, iron cores, containers) It can be determined by actually measuring the weight, oil content, PCB content and adhesion amount for each member (paper, copper wire, wood).

したがって、本発明の洗浄後の洗浄液のPCB濃度の予測方法によれば、PCB汚染機器の仕様や大きさに関わらず、前記洗浄前の絶縁油のPCB濃度、前記PCB汚染機器の銘板重量、及び前記PCB汚染機器の銘板油量から、前記数式3により、洗浄後の洗浄液のPCB予測濃度を簡易かつ確実に求めることができる。   Therefore, according to the method for predicting the PCB concentration of the cleaning liquid after cleaning according to the present invention, the PCB concentration of the insulating oil before cleaning, the nameplate weight of the PCB contaminated device, and From the amount of nameplate oil of the PCB-contaminated equipment, the predicted PCB concentration of the cleaning liquid after cleaning can be easily and reliably obtained by the equation 3.

本発明の洗浄後の洗浄液のPCB濃度の予測方法は、以下に説明するPCB汚染機器の洗浄処理の終了判定方法及び洗浄によるPCB無害化処理の完了判定方法に好適に適用することができる。
また、洗浄計画においては、例えば、洗浄前の絶縁油のPCB濃度を指標として洗浄するPCB汚染機器の順番の設定や必要な洗浄液量の見積もりなどが挙げられる。
また、洗浄時においては、実測するPCB濃度と合わせて洗浄工程の管理や洗浄終了時間の予想にも役立つものである。
また、実用においては、洗浄条件や抜油の均質性が予測値の変動要因であるため注意が必要であるが、一旦変動要因が把握できれば、PCB汚染機器の大きさや仕様に関わらず広く適用することができる。
The method for predicting the PCB concentration of the cleaning liquid after cleaning according to the present invention can be suitably applied to the method for determining the end of the cleaning process for the PCB-contaminated equipment and the method for determining the completion of the PCB detoxification process by the cleaning described below.
In the cleaning plan, for example, setting of the order of PCB-contaminated equipment to be cleaned using the PCB concentration of the insulating oil before cleaning as an index, estimation of the required amount of cleaning liquid, and the like can be mentioned.
Further, at the time of cleaning, it is useful for management of the cleaning process and prediction of the cleaning end time together with the actually measured PCB concentration.
In practical use, care must be taken because the cleaning conditions and the homogeneity of oil removal are the fluctuation factors of the predicted value. Once the fluctuation factors can be grasped, they should be widely applied regardless of the size and specifications of the PCB contaminated equipment. Can do.

(PCB汚染機器の洗浄処理の終了判定方法及び洗浄によるPCB無害化処理の完了判定方法)
本発明のPCB汚染機器の洗浄処理の終了判定方法は、第1の形態では、ポリ塩化ビフェニル(PCB)を含む絶縁油が充填されPCBで汚染されているPCB汚染機器を洗浄液で洗浄した後、洗浄液のPCB濃度から、洗浄処理の終了を判定する。
(Method for determining completion of cleaning process for PCB contaminated equipment and method for determining completion of PCB detoxification process by cleaning)
In the first embodiment, the method for determining the completion of the cleaning process for PCB-contaminated equipment according to the present invention, after washing the PCB-contaminated equipment filled with insulating oil containing polychlorinated biphenyl (PCB) and contaminated with PCB with the cleaning liquid, The end of the cleaning process is determined from the PCB concentration of the cleaning liquid.

本発明のPCB汚染機器の洗浄処理の終了判定方法は、第2の形態では、本発明の前記洗浄後の洗浄液のPCB濃度の予測方法により求めた洗浄後の洗浄液のPCB予測濃度から、洗浄処理の終了を判定する。   In the second embodiment, the method for determining the completion of the cleaning process for the PCB-contaminated equipment according to the present invention is based on the predicted PCB concentration of the cleaning liquid after the cleaning obtained by the method for predicting the PCB concentration of the cleaning liquid after the cleaning according to the present invention. Determine the end of.

本発明の洗浄によるPCB無害化処理の完了判定方法は、第1の形態では、ポリ塩化ビフェニル(PCB)を含む絶縁油が充填されPCBで汚染されているPCB汚染機器を洗浄液で洗浄した後、洗浄液のPCB濃度から、PCB無害化処理の完了を判定する。   In the first embodiment, the method for determining the completion of PCB detoxification treatment by washing according to the present invention, after washing PCB contaminated equipment filled with insulating oil containing polychlorinated biphenyl (PCB) and contaminated with PCB with washing liquid, Completion of the PCB detoxification process is determined from the PCB concentration of the cleaning liquid.

本発明の洗浄によるPCB無害化処理の完了判定方法は、第2の形態では、本発明の前記洗浄後の洗浄液のPCB濃度の予測方法により求めた洗浄後の洗浄液のPCB予測濃度から、PCB無害化処理の完了を判定する。   In the second embodiment, the method for determining the completion of PCB detoxification by cleaning according to the present invention is the PCB harmless from the predicted PCB concentration of the cleaning liquid after cleaning obtained by the method for predicting the PCB concentration of the cleaning liquid after cleaning according to the present invention. The completion of the conversion process is determined.

前記第1の形態のPCB汚染機器の洗浄処理の終了判定方法、及び前記第1の形態の洗浄によるPCB無害化処理の完了判定方法において、PCB汚染機器を洗浄液で洗浄した後の洗浄液のPCB濃度としては、実測値であっても予測値であっても構わない。前記予測値の場合には、本発明の前記洗浄後の洗浄液のPCB濃度の予測方法により求めた洗浄後の洗浄液のPCB予測濃度であることが好ましい。   The PCB concentration of the cleaning liquid after the PCB-contaminated equipment is cleaned with the cleaning liquid in the method for determining the completion of the cleaning processing of the PCB-contaminated equipment of the first form and the method for determining the completion of the PCB detoxification process by the cleaning of the first form May be an actually measured value or a predicted value. In the case of the predicted value, it is preferable that the predicted PCB concentration of the cleaning liquid after cleaning is obtained by the method for predicting the PCB concentration of the cleaning liquid after cleaning according to the present invention.

前記第1の形態のPCB汚染機器の洗浄処理の終了判定方法、及び前記第1の形態の洗浄によるPCB無害化処理の完了判定方法において、前記PCB汚染機器から絶縁油の抜油と洗浄液の注入とに続いて洗浄するサイクルで、PCB汚染機器を洗浄液で洗浄した後の洗浄液のPCB濃度が0.5ppm以下であれば、PCB汚染機器の洗浄処理の終了と同時に、洗浄によるPCB無害化処理が完了していると判定することができる。
前記洗浄後のPCB汚染機器の容器及び内部部材が、PCB無害化基準を満たしていることは、「特別管理一般廃棄物及び特別管理産業廃棄物に係る基準の検定方法」(平成4年厚生省告示第192号)別表第三の第二(拭き取り試験)の判定基準、同別表第三の第三(部材採取試験)の判定基準、及び同別表第四の判定基準をいずれも満たしていることにより確認することができる。
In the method for determining the completion of the cleaning process for the PCB-contaminated equipment according to the first aspect and the method for determining the completion of the PCB detoxification process by the cleaning according to the first aspect, the insulating oil is extracted from the PCB-contaminated equipment and the cleaning liquid is injected. If the PCB concentration in the cleaning liquid after cleaning the PCB-contaminated equipment with the cleaning liquid in the subsequent cleaning cycle is 0.5 ppm or less, the PCB decontamination processing by the cleaning is completed at the same time as the cleaning processing of the PCB-contaminated equipment is completed. Can be determined.
The fact that the containers and internal components of the PCB-contaminated equipment after washing meet the PCB detoxification criteria is “the method for verifying the standards for specially controlled general waste and specially controlled industrial waste” (Notification by the Ministry of Health, Labor and Welfare in 1992) No. 192) By satisfying both the third (wiping test) judgment standard of the third table, the third (member sampling test) judgment standard of the third table, and the fourth judgment standard of the same table Can be confirmed.

前記第2の形態のPCB汚染機器の洗浄処理の終了判定方法、及び前記第2の形態の洗浄によるPCB無害化処理の完了判定方法において、前記PCB汚染機器から絶縁油の抜油と洗浄液の注入とに続いて洗浄するサイクルで、洗浄後の洗浄液のPCB予測濃度が0.5ppm以下であれば、PCB汚染機器の洗浄処理の終了と同時に、洗浄によるPCB無害化処理が完了していると判定することができる。
この場合、洗浄後の洗浄液のPCB予測濃度が0.5ppmから導かれる洗浄前の絶縁油のPCB濃度は20.9ppmであり、1回の洗浄サイクルの場合には20.9ppmが判定を適用しうる洗浄前の洗浄液のPCB濃度の上限となる。
前記洗浄後のPCB汚染機器の容器及び内部部材が、PCB無害化基準を満たしていることは、「特別管理一般廃棄物及び特別管理産業廃棄物に係る基準の検定方法」(平成4年厚生省告示第192号)別表第三の第二(拭き取り試験)の判定基準、同別表第三の第三(部材採取試験)の判定基準、及び同別表第四の判定基準をいずれも満たしていることにより確認することができる。
In the method for determining the end of the cleaning process for the PCB-contaminated equipment according to the second mode and the method for determining the completion of the PCB detoxification process by the cleaning according to the second mode, the removal of the insulating oil from the PCB-contaminated equipment and the injection of the cleaning liquid If the PCB predicted concentration of the cleaning liquid after cleaning is 0.5 ppm or less in the cleaning cycle subsequent to the cleaning, it is determined that the PCB detoxification processing by cleaning is completed at the same time as the cleaning processing of the PCB contaminated equipment is completed. be able to.
In this case, the PCB concentration of the insulating oil before cleaning, which is derived from the predicted PCB concentration of the cleaning liquid after cleaning of 0.5 ppm, is 20.9 ppm. In the case of one cleaning cycle, 20.9 ppm applies the judgment. This is the upper limit of the PCB concentration of the cleaning liquid before cleaning.
The fact that the containers and internal components of the PCB-contaminated equipment after washing meet the PCB detoxification criteria is “the method for verifying the standards for specially controlled general waste and specially controlled industrial waste” (Notification by the Ministry of Health, Labor and Welfare in 1992) No. 192) By satisfying both the third (wiping test) judgment standard of the third table, the third (member sampling test) judgment standard of the third table, and the fourth judgment standard of the same table Can be confirmed.

<PCB汚染機器>
前記PCB汚染機器としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、小型変圧器、中型変圧器、大型変圧器、超大型変圧器、封じ切り機器(大型ブッシング、OFケーブル)、などが挙げられる。これらの中でも、小型変圧器、中型変圧器、大型変圧器、超大型変圧器が好ましい。
前記小型変圧器とは、銘板重量が1.0t未満のものを意味する。
前記中型変圧器とは、銘板重量が1.0t以上10.0t未満のものを意味する。
前記大型変圧器とは、銘板重量が10.0t以上200t未満のものを意味する。
前記超大型変圧器とは、銘板重量が200t以上のものを意味する。
<PCB contamination equipment>
There is no restriction | limiting in particular as said PCB contamination apparatus, According to the objective, it can select suitably, For example, a small transformer, a medium-sized transformer, a large-sized transformer, a super-large transformer, a sealing device (large-sized bushing, OF Cable), and the like. Among these, a small transformer, a medium transformer, a large transformer, and a super large transformer are preferable.
The small transformer means that the nameplate weight is less than 1.0 t.
The medium-sized transformer means that the nameplate weight is 1.0 t or more and less than 10.0 t.
The large transformer means one having a nameplate weight of 10.0 t or more and less than 200 t.
The ultra-large transformer means one having a nameplate weight of 200 t or more.

<<変圧器>>
前記変圧器の構造としては、例えば、(1)鉄心(コア)関連、(2)巻線(コイル)関連、(3)絶縁関連、(4)タップ切換装置、(5)タンク・塗装関連、(6)付属品関連などが挙げられる。
<< Transformer >>
As the structure of the transformer, for example, (1) iron core (core) related, (2) winding (coil) related, (3) insulation related, (4) tap switching device, (5) tank / painting related, (6) Accessory related.

前記(1)鉄心関連としては、例えば、鉄心材料、巻鉄心、積鉄心、鉄心構造がある。
前記鉄心材料としては、例えば、冷間圧延ケイ素鋼帯、方向性ケイ素鋼帯、磁区制御ケイ素鋼帯、アモルファス鉄心材料などが挙げられる。
前記巻鉄心としては、例えば、ノーカット巻心(NC)、ステップジョイント巻心(1TC)、ダブルステップラップジョイント巻心(DSL)などが挙げられる。
前記積鉄心としては、例えば、短冊形積鉄心、額縁形積鉄心、Vノッチ形積鉄心などが挙げられる。
前記鉄心構造としては、例えば、内鉄形と外鉄形がある。
前記内鉄形は、各相の巻線毎に、1つの独立した閉磁路を有するようにした鉄心形式であり、鉄心が巻線の内側にあるような外観となる。
前記外鉄形は、各相の巻線毎に、2つの独立した閉磁路を有するようにした鉄心形式であり、鉄心が巻線の外側にあるような外観となる。
Examples of (1) iron core-related include iron core materials, wound iron cores, stacked iron cores, and iron core structures.
Examples of the iron core material include a cold rolled silicon steel strip, a directional silicon steel strip, a magnetic domain control silicon steel strip, and an amorphous iron core material.
Examples of the wound core include an uncut core (NC), a step joint core (1TC), a double step lap joint core (DSL), and the like.
Examples of the iron core include a strip-shaped iron core, a frame-shaped iron core, and a V-notch type iron core.
Examples of the iron core structure include an inner iron type and an outer iron type.
The inner iron type is an iron core type having an independent closed magnetic circuit for each phase winding, and has an appearance that the iron core is inside the winding.
The outer iron type is an iron core type having two independent closed magnetic paths for each phase winding, and has an appearance that the iron core is outside the winding.

前記(2)巻線関連としては、例えば、巻線材料、巻線の構造がある。
前記巻線材料としては、例えば、ホルマール銅線(又はホルマールアルミニウム線)、ホルマール平角銅線、紙巻平角銅線、電着塗装平角銅線、転位導体、銅条(アルミニウム条)などが挙げられる。
前記巻線の構造としては、例えば、円筒巻線、板状巻線、インターリーブ巻線、同心配置、交互配置などが挙げられる。
Examples of (2) windings include winding materials and winding structures.
Examples of the winding material include formal copper wire (or formal aluminum wire), formal rectangular copper wire, paper-wrapped rectangular copper wire, electrodeposition-coated rectangular copper wire, dislocation conductor, copper strip (aluminum strip), and the like.
Examples of the structure of the winding include cylindrical winding, plate winding, interleave winding, concentric arrangement, and alternate arrangement.

前記(3)絶縁関連としては、例えば、絶縁材料、絶縁油がある。
前記絶縁材料としては、例えば、コイル絶縁紙、プレスボード、接着絶縁紙などが挙げられる。
前記絶縁油としては、例えば、JIS C2320−1999(電気絶縁油)に規定された絶縁油Aの1種(鉱油)2号を用いることができる。前記絶縁油の比重は、0.87である。
Examples of the (3) insulation related include an insulating material and insulating oil.
Examples of the insulating material include coil insulating paper, press board, and adhesive insulating paper.
As said insulating oil, 1 type (mineral oil) No. 2 of insulating oil A prescribed | regulated to JIS C2320-1999 (electrical insulating oil) can be used, for example. The specific gravity of the insulating oil is 0.87.

前記(4)タップ切換装置としては、例えば、タップ板、無電圧タップ切換器、負荷時タップ切換器がある。
前記タップとは、変圧器の受電する電圧が変動した場合、電圧に適合した巻数が選択できるように、巻線の途中から外部へ引き出した引出線を意味する。
Examples of the (4) tap switching device include a tap plate, a non-voltage tap switching device, and a load tap switching device.
The tap means a lead wire drawn out from the middle of the winding so that the number of turns suitable for the voltage can be selected when the voltage received by the transformer fluctuates.

前記(5)タンク・塗装関連としては、例えば、タンク(容器)、ラジエータ、塗装がある。
前記容器としては、例えば、円筒形、小判形、角形などが挙げられる。
前記ラジエータとしては、例えば、リブ(フィン)式ラジエータ、パネル式ラジエータ、コルゲート式ラジエータなどが挙げられる。
前記塗装としては、例えば、焼付塗装、自然乾燥塗装、普通塗装、耐塩塗装などが挙げられる。
Examples of (5) tank / painting related include tanks (containers), radiators, and painting.
Examples of the container include a cylindrical shape, an oval shape, and a square shape.
Examples of the radiator include a rib (fin) type radiator, a panel type radiator, and a corrugated type radiator.
Examples of the coating include baking coating, natural drying coating, ordinary coating, and salt-resistant coating.

前記(6)付属部品関連としては、例えば、ブッシング、高圧絶縁キャップ、基礎ボルト、接地端子、排油栓、排油弁、油面計、温度計、防振ゴム、耐震性防振架台、車輪、呼吸器がある。
前記ブッシングとは、隔壁(変圧器のカバー、ケース等)を貫通する導体を通す通路を持ち、この導体を隔壁から絶縁すると共に、シール機能を持たせて支持固定する装置をいう。前記ブッシングには、一次ブッシングと二次ブッシングとがある。
(6) Examples of accessories include bushings, high-pressure insulation caps, foundation bolts, ground terminals, oil drain plugs, oil drain valves, oil level gauges, thermometers, anti-vibration rubber, anti-vibration anti-vibration stands, wheels There is a respiratory organ.
The bushing is a device that has a passage through which a conductor passes through a partition wall (transformer cover, case, etc.), insulates the conductor from the partition wall, and supports and fixes the seal function. The bushing includes a primary bushing and a secondary bushing.

ここで、前記変圧器の一例について説明する。前記変圧器は、外缶容器と、該外缶容器に内装された内部部材とを有し、更に必要に応じてその他の部材を有してなる。
前記内部部材としては、図4に示す外鉄形コアと、図5に示す内鉄形コアとに大別される。
Here, an example of the transformer will be described. The transformer includes an outer can container and an internal member housed in the outer can container, and further includes other members as necessary.
The internal member is roughly classified into an outer iron core shown in FIG. 4 and an inner iron core shown in FIG.

前記外鉄形コアは、例えば、図4に示すように、1個の鉄心と、2個の銅コイルとで構成されている。前記鉄心は、薄いケイ素鋼板を巻いた巻鉄心であり、前記銅コイルの内側は二次銅線と紙類であり、前記銅コイルの外側は一次銅線と紙類である。   For example, as shown in FIG. 4, the outer iron core is composed of one iron core and two copper coils. The iron core is a wound iron core wound with a thin silicon steel plate, the inner side of the copper coil is secondary copper wire and papers, and the outer side of the copper coil is primary copper wire and papers.

前記内鉄形コアは、例えば、図5に示すように、2個の鉄心と、1個の銅コイルとで構成されている。ここで、前記鉄心は、薄いケイ素鋼板を巻いた巻鉄心であり、前記銅コイルの外側及び内側は二次銅線と紙類であり、前記銅コイルの中央部は一次銅線と紙類である。   For example, as shown in FIG. 5, the inner iron core includes two iron cores and one copper coil. Here, the iron core is a wound iron core wound with a thin silicon steel plate, the outer side and the inner side of the copper coil are secondary copper wire and papers, and the central part of the copper coil is primary copper wire and papers is there.

本発明のPCB汚染機器の洗浄処理の終了判定方法、本発明の洗浄によるPCB無害化処理の完了判定方法、及び本発明の洗浄後の洗浄液のPCB濃度の予測方法は、いずれも、使用中PCB汚染機器及び使用済みPCB汚染機器の少なくともいずれかの洗浄に用いられることが好ましい。
前記使用中PCB汚染機器とは、現在使用している機器を意味し、洗浄後に使用しない場合も使用を継続する場合も包含する。
The method for determining the end of the cleaning process for the PCB-contaminated equipment according to the present invention, the method for determining the completion of the PCB detoxification process by the cleaning according to the present invention, and the method for predicting the PCB concentration of the cleaning liquid after the cleaning according to the present invention are all used. It is preferably used for cleaning at least one of contaminated equipment and used PCB contaminated equipment.
The in-use PCB-contaminated device means a device that is currently used, and includes cases where the device is not used after cleaning and continues to be used.

本発明のPCB汚染機器の洗浄処理の終了判定方法、本発明の洗浄によるPCB無害化処理の完了判定方法、及び本発明の洗浄後の洗浄液のPCB濃度の予測方法は、いずれも加熱強制循環洗浄及び課電自然循環洗浄の少なくともいずれかに用いられることが好ましい。
これらの中でも、使用中PCB汚染機器の課電自然循環洗浄に用いることが特に好ましい。これは、PCBに汚染されている使用中PCB汚染機器の課電自然循環洗浄においてはPCBを除去した後も機器の余寿命があり、資源リサイクルの観点からも使用の継続が望まれている。それ故、洗浄後にPCB汚染機器の解体により内部部材を採取し、検定分析を行うことは現実的ではない。そこで、特に、前記課電自然循環洗浄の実用にあたっては、洗浄する前に洗浄後の洗浄液中のPCB濃度を予測し、前記予測結果から、PCB汚染機器の洗浄処理の終了を判定し、使用を継続しても再びPCB汚染物となることがないことを担保した上で、洗浄後にPCB汚染機器を構成する容器や内部部材が該当するPCB無害化処理の基準を満足できるか否かを判定できることが必要とされている。
The method for determining the completion of the cleaning process for the PCB-contaminated equipment according to the present invention, the method for determining the completion of the PCB detoxification process by the cleaning according to the present invention, and the method for predicting the PCB concentration of the cleaning liquid after the cleaning according to the present invention are all heated forced circulation cleaning. In addition, it is preferably used for at least one of the electric charge natural circulation cleaning.
Among these, it is particularly preferable to use it for the self-charging natural circulation cleaning of the PCB contaminated equipment during use. This is because, in the electricity-recycling natural circulation cleaning of in-use PCB-contaminated equipment contaminated with PCB, there is a remaining life of the equipment even after the PCB is removed, and it is desired to continue use from the viewpoint of resource recycling. Therefore, it is not practical to collect the internal member by disassembling the PCB-contaminated equipment after cleaning and perform the assay analysis. Therefore, in particular, in the practical application of the electric charging natural circulation cleaning, the PCB concentration in the cleaning liquid after cleaning is predicted before cleaning, and the end of the cleaning process of the PCB contaminated equipment is determined from the predicted result, After ensuring that it does not become a PCB contaminant again even if it continues, it is possible to determine whether or not the containers and internal members constituting the PCB contaminated equipment can satisfy the applicable PCB detoxification criteria after cleaning. Is needed.

<加熱強制循環洗浄>
前記加熱強制循環洗浄は、PCB汚染機器からPCBを含む絶縁油を抜油し、洗浄液に入れ替え後の前記洗浄液を加温してPCB汚染機器内で強制的に循環させることで、PCB汚染機器の容器内壁、容器底面、及び内部部材に付着していたPCBを洗い出す技術である。
前記加熱強制循環洗浄は、抜油工程と、注入工程と、加熱工程とを含み、更に必要に応じてその他の工程を含んでなる。なお、前記抜油工程と、前記注入工程と、前記加熱工程とは任意の順番で行うことができる。
<Heating forced circulation cleaning>
In the forced heating circulation cleaning, the insulating oil containing PCB is drained from the PCB contaminated equipment, and the cleaning liquid after replacement with the cleaning liquid is heated and forcedly circulated in the PCB contaminated equipment, so that the container of the PCB contaminated equipment is obtained. This is a technique for washing out PCBs adhering to the inner wall, the bottom of the container, and the inner member.
The heated forced circulation cleaning includes an oil removal process, an injection process, and a heating process, and further includes other processes as necessary. In addition, the said oil removal process, the said injection | pouring process, and the said heating process can be performed in arbitrary orders.

<<抜油工程>>
前記抜油工程は、PCB汚染機器からPCBを含む絶縁油を抜油する工程である。
前記抜油工程においては、まず、外缶容器と内部部材とを分離する。次いで、前記外缶容器内のPCBで汚染された絶縁油(元油)を、ポンプを用いて金属製タンクに移す。
前記抜油は、上述したように、外缶容器内のPCBで汚染された絶縁油を、ポンプを用いて抜油することに限定されるものではなく、例えば、PCB汚染機器の下部に設けられた抜油口からPCBで汚染された絶縁油を抜油してもよい。
<< Oil removal process >>
The oil removal step is a step of removing the insulating oil containing PCB from the PCB contaminated equipment.
In the oil removal step, first, the outer can container and the inner member are separated. Next, the insulating oil (base oil) contaminated with PCB in the outer can container is transferred to a metal tank using a pump.
As described above, the oil removal is not limited to using the pump to extract the insulating oil contaminated with the PCB in the outer can container. For example, the oil removal is provided at the lower part of the PCB-contaminated equipment. The insulating oil contaminated with PCB may be drained from the mouth.

<<注入工程>>
前記注入工程は、PCB汚染機器に、洗浄液を注入する工程である。
前記注入工程は、まず、内部部材を外缶容器内に設置する。次いで、洗浄液を、PCB汚染機器に注入する。
前記洗浄液としては、特に制限はなく、目的に応じて適宜選択することができるが、PCBを実質的に含まない油、及びPCBを溶解可能な有機溶剤から選択される少なくとも1種であることが好ましい。
前記PCBを実質的に含まない油とは、PCBの含有濃度が規制(基準)範囲内である油を意味し、PCBの含有濃度が0.5mg−PCB/kg−油(0.5ppm)以下の油を示す。
前記PCBを実質的に含まない油としては、例えば、燃料油、潤滑油、食用油等に用いられる天然油、電気絶縁油を含む鉱油、合成油などが挙げられる。なお、廃油、再生油、化学的処理によりPCBを分解した油、物理的処理によりPCBを除去した油であっても構わない
<< Injection process >>
The injection step is a step of injecting a cleaning liquid into the PCB contaminated device.
In the injection step, first, an internal member is installed in an outer can container. The cleaning liquid is then injected into the PCB contaminated equipment.
There is no restriction | limiting in particular as said washing | cleaning liquid, Although it can select suitably according to the objective, It should be at least 1 sort (s) selected from the oil which does not contain PCB substantially, and the organic solvent which can melt | dissolve PCB. preferable.
The oil substantially free of PCB means an oil having a PCB content concentration within a regulation (standard) range, and the PCB content concentration is 0.5 mg-PCB / kg-oil (0.5 ppm) or less. Of oil.
Examples of the oil substantially free of PCB include natural oils used in fuel oils, lubricating oils, edible oils, mineral oils including electrical insulating oils, and synthetic oils. The oil may be waste oil, recycled oil, oil obtained by decomposing PCB by chemical treatment, or oil from which PCB has been removed by physical treatment.

前記PCBを溶解可能な有機溶剤としては、例えば、第2石油類及び第3石油類から選ばれる炭化水素系洗浄剤などが挙げられる。   Examples of the organic solvent capable of dissolving PCB include hydrocarbon-based cleaning agents selected from the second petroleums and the third petroleums.

<<加熱工程>>
前記加熱工程は、前記注入工程で注入された洗浄液の温度が40℃〜90℃となるように、循環洗浄により該洗浄液を加熱する工程である、
前記循環洗浄の全期間において、循環される油の送液速度(循環流速)は、少なくとも変圧器内の油が1時間に1回以上入れ替わる速度が好ましい。
前記洗浄液の温度は、40℃〜90℃が好ましく、50℃〜90℃がより好ましく、50℃〜70℃が更に好ましい。
前記加熱工程における油の昇温速度は、6℃/hr〜8℃/hrが好ましい。
<< Heating process >>
The heating step is a step of heating the cleaning solution by circulation cleaning so that the temperature of the cleaning solution injected in the injection step is 40 ° C. to 90 ° C.
In the whole period of the circulation cleaning, the liquid feeding speed (circulation flow rate) of the circulated oil is preferably a speed at which at least the oil in the transformer is replaced at least once per hour.
The temperature of the cleaning liquid is preferably 40 ° C to 90 ° C, more preferably 50 ° C to 90 ° C, and still more preferably 50 ° C to 70 ° C.
The heating rate of oil in the heating step is preferably 6 ° C / hr to 8 ° C / hr.

<<その他の工程>>
前記その他の工程としては、例えば、洗浄液を30℃〜40℃に温調する温調工程、洗浄液の温度が40℃〜90℃になるように該洗浄液を加熱して自然冷却した後、再度、洗浄液の温度が40℃〜90℃になるように該洗浄液を加熱する第2の加熱工程、PCB汚染機器にPCBに汚染されてない油、又はPCBの含有濃度が規制(基準)範囲内である油を注入する際に、油中の塵あい、水分、溶解ガス等をろ過と真空脱気によって充分に除去する浄油工程などが挙げられる。
<< Other processes >>
As the other steps, for example, a temperature adjustment step for adjusting the temperature of the cleaning liquid to 30 ° C. to 40 ° C., the cleaning liquid is naturally cooled by heating so that the temperature of the cleaning liquid becomes 40 ° C. to 90 ° C., and then again, The second heating step for heating the cleaning liquid so that the temperature of the cleaning liquid is 40 ° C. to 90 ° C., the oil that is not contaminated with PCB in the PCB-contaminated equipment, or the PCB content concentration is within the regulation (standard) range. An oil purification step for sufficiently removing dust, moisture, dissolved gas, and the like in the oil by filtration and vacuum degassing when the oil is injected.

<課電自然循環洗浄>
前記課電自然循環洗浄は、PCB汚染機器からPCBを含む絶縁油を抜油し、洗浄液への入れ替え後にPCB汚染機器を課電することで内部部材の発熱を促し、洗浄液を自然にPCB汚染機器内部で循環させることで、PCB汚染機器の容器内壁、容器底面、及び内部部材に付着していたPCBを洗い出す技術である。
前記課電自然循環洗浄は、抜油工程と、注入工程と、課電工程とを含み、更に必要に応じてその他の工程を含んでなる。なお、前記抜油工程と、前記注入工程と、前記課電工程とは任意の順番で行うことができる。
<Electricity natural circulation cleaning>
The above-mentioned electric charge natural circulation cleaning removes the insulating oil containing PCB from the PCB contaminated equipment, promotes heat generation of the internal members by applying the PCB contaminated equipment after replacement with the cleaning liquid, and naturally causes the cleaning liquid to move inside the PCB contaminated equipment. This is a technique for washing out the PCB adhering to the inner wall of the container, the bottom surface of the container, and the inner member of the PCB contaminated equipment.
The electrical charging natural circulation cleaning includes an oil removal process, an injection process, and an electrical charging process, and further includes other processes as necessary. In addition, the said oil extraction process, the said injection | pouring process, and the said electrical charging process can be performed in arbitrary orders.

<<抜油工程>>
前記抜油工程は、前記加熱強制循環洗浄の前記抜油工程と同様である。
<< Oil removal process >>
The oil removal step is the same as the oil removal step of the forced heating circulation cleaning.

<<注入工程>>
前記注入工程は、前記加熱強制循環洗浄の前記注入工程と同様である。
<< Injection process >>
The injection process is the same as the injection process of the heating forced circulation cleaning.

<<課電工程>>
前記課電工程は、前記PCB汚染機器に課電する工程である。
前記課電工程において、PCB汚染機器内部を発熱させて、PCB汚染機器内の洗浄液の温度を加熱によって変化させる。
前記洗浄液の温度は、外気温〜100℃が好ましく、30℃〜80℃がより好ましい。このように、洗浄液の温度を制御することにより、洗浄の際の発火を抑制することができる。
前記課電工程における課電により、PCB汚染機器内の洗浄液の温度を加熱によって変化させることのみならず、加熱によるPCB汚染機器内の洗浄液の循環、電磁誘導による内部部材の振動などの効果も期待される。
前記課電工程におけるPCB汚染機器への課電は、PCB汚染機器が変圧器である場合には、変圧器を定格負荷で運転した場合に、機器各部の温度上昇が絶縁の種類によって定められた一定限度内にあることを検証する目的で用いられる変圧器の温度試験方法(例えば、返還負荷法、等価負荷法、実負荷法)、又は電気系統への接続により行われる。
前記電気系統への接続は、実際の電気系統に変圧器を接続し、電流値や油の温度を人為的に制御しないで行う。
<< Electricity transmission process >>
The power application step is a step of applying power to the PCB-contaminated equipment.
In the power application step, the inside of the PCB contaminated device is caused to generate heat, and the temperature of the cleaning liquid in the PCB contaminated device is changed by heating.
The temperature of the cleaning liquid is preferably from outside air temperature to 100 ° C, more preferably from 30 ° C to 80 ° C. Thus, by controlling the temperature of the cleaning liquid, ignition during cleaning can be suppressed.
By applying the electric power in the electric charging process, not only the temperature of the cleaning liquid in the PCB-contaminated equipment is changed by heating, but also the effects such as circulation of the cleaning liquid in the PCB-contaminated equipment by heating and vibration of internal members by electromagnetic induction are expected. Is done.
In the case where the PCB-contaminated equipment is a transformer, the electrical power applied to the PCB-contaminated equipment in the power application process is determined by the type of insulation when the transformer is operated at a rated load. It is performed by a transformer temperature test method (for example, return load method, equivalent load method, actual load method) used for the purpose of verifying that it is within a certain limit, or by connection to an electric system.
Connection to the electric system is performed without connecting a transformer to the actual electric system and artificially controlling the current value and the oil temperature.

<<その他の工程>>
前記その他の工程としては、例えば、課電工程後に、PCB汚染機器から、前記注入された洗浄液を抜油する第2の抜油工程、PCBを実質的に含んでいない油を注入する際に油中の塵あい、水分、溶解ガス等をろ過と真空脱気によって充分に除去する浄油工程などが挙げられる。なお、前記抜油工程において、外部加熱乃至保温による油切り工程、前記課電工程において、外部加熱、外部冷却、保温、課電電圧の強弱、課電電流の強弱、課電の断続的実施、及び自然放冷の少なくともいずれかを行う工程なども挙げられる。
<< Other processes >>
As the other steps, for example, a second oil removal step for removing the injected cleaning liquid from the PCB-contaminated equipment after the electric power application step, and when injecting oil that does not substantially contain PCB, An oil purification process that sufficiently removes dust, moisture, dissolved gas, and the like by filtration and vacuum degassing. In addition, in the oil removal step, an oil draining step by external heating or heat retention, in the electric power application step, external heating, external cooling, heat retention, strength of the applied voltage, strength of the applied voltage, intermittent implementation of the applied power, and The process etc. which perform at least any one of natural cooling are also mentioned.

本発明のPCB汚染機器の洗浄処理の終了判定方法及び洗浄によるPCB無害化処理の完了判定方法は、PCB汚染機器を洗浄液で洗浄した後の洗浄液のPCB濃度、又は本発明の前記洗浄後の洗浄液のPCB濃度の予測方法により求めた洗浄後の洗浄液のPCB予測濃度から、PCB汚染機器の洗浄処理の終了と同時に、洗浄後のPCB汚染機器のPCB無害化処理の完了を判定することができる。   The method for determining the completion of the cleaning process for the PCB-contaminated equipment according to the present invention and the method for determining the completion of the PCB detoxification process by cleaning include the PCB concentration of the cleaning liquid after cleaning the PCB-contaminated equipment with the cleaning liquid, or the cleaning liquid after the cleaning according to the present invention. The completion of the PCB detoxification process of the PCB contaminated equipment after cleaning can be determined simultaneously with the completion of the cleaning process of the PCB contaminated equipment from the predicted PCB concentration of the cleaning liquid after the cleaning obtained by the method for predicting the PCB concentration.

以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。
以下に示す実施例において、洗浄対象であるPCB汚染機器としては、「小型変圧器」、「中型変圧器」、及び「大型変圧器」を用いた。変圧器に充填されている「洗浄前の絶縁油」を「元油」と称した。また、「洗浄液」を「洗浄油」と称した。
Examples of the present invention will be described below, but the present invention is not limited to these examples.
In the examples shown below, “small transformer”, “medium transformer”, and “large transformer” were used as PCB contaminated devices to be cleaned. The “insulating oil before cleaning” filled in the transformer is called “source oil”. The “cleaning liquid” was referred to as “cleaning oil”.

<PCB汚染機器の洗浄処理の終了と同時に洗浄後の機器のPCB無害化処理の完了を判定方法及び予測方法の構築に用いた洗浄試験の結果と変圧器情報>
PCB汚染機器の洗浄処理の終了と同時に洗浄後の機器のPCB無害化処理の完了を判定する方法及び洗浄後の洗浄液のPCB濃度の予測方法の構築と検証に用いたPCB無害化処理基準の検定方法を表1にまとめて示した。
<Results of Transformer Testing and Transformer Information Used to Establish Judgment Method and Prediction Method for Completion of PCB Detoxification Processing of Cleaned Device Simultaneously with Completion of Cleaning Processing of PCB Contaminated Device>
Testing of PCB detoxification treatment criteria used for the construction and verification of methods for determining the completion of PCB detoxification processing for devices after cleaning and PCB concentration prediction of cleaning liquid after cleaning at the same time as cleaning of PCB contaminated devices The method is summarized in Table 1.

下記表2−1及び表2−2に示すとおり、これらの変圧器は、加熱強制循環洗浄又は課電自然循環洗浄にて洗浄されたが、洗浄後の洗浄液のPCB濃度の予測方法の構築においては、洗浄方式や洗浄サイクルの違いは区別して用いなかった。   As shown in the following Table 2-1 and Table 2-2, these transformers were cleaned by heating forced circulation cleaning or electricity-charging natural circulation cleaning, but in the construction of a method for predicting the PCB concentration of the cleaning liquid after cleaning. The difference in cleaning method and cleaning cycle was not used separately.

<絶縁油と部材の分析法>
表1に示すように、採取した絶縁油と内部部材は、主に特別管理一般廃棄物及び特定管理産業廃棄物に係る基準の検定方法(平成4年厚告192号)13に記載された方法に従って前処理及び測定を行った。
具体的には、元油と洗浄油は別表第二(油中のPCB分析法)、容器内壁及び鉄心は別表第三の第二(拭き取り試験法)、一次及び二次銅線は別表第三の第三(部材採取試験法)、木及び紙類は別表第四(溶出液試験法)に従って分析した。また、木及び紙類は、別途含有試験法15に従って分析した。
<Insulating oil and component analysis method>
As shown in Table 1, the collected insulating oil and internal components are mainly the methods described in the Standard Examination Method for Specially Controlled General Waste and Specially Controlled Industrial Waste (Heisei 1992 No. 192) Pretreatment and measurement were performed according to
Specifically, base oil and cleaning oil are shown in Appendix 2 (PCB analysis method in oil), container inner wall and iron core are shown in Appendix Table 3 (second wipe method), and primary and secondary copper wires are shown in Appendix 3 The third (member sampling test method), wood and paper were analyzed in accordance with Appendix 4 (eluate test method). In addition, wood and paper were separately analyzed according to the content test method 15.

<PCB汚染機器の洗浄処理の終了判定方法及び洗浄によるPCB無害化処理の完了判定方法の考え方>
PCB汚染機器の洗浄処理の終了判定方法及び洗浄によるPCB無害化処理の完了判定方法において、PCB汚染機器の洗浄処理の終了と同時に洗浄後の機器のPCB無害化処理の完了を判定するには、PCBで汚染された汚染機器の洗浄工程における何らかの指標が必要である。そこで、PCB無害化処理の完了判定の指標として洗浄液のPCB濃度に着目した。即ち、予め洗浄前に洗浄後の洗浄液のPCB濃度を予測し、実際の洗浄液のPCB濃度がこの予測濃度を超えず、かつ洗浄工程の管理濃度として設定する洗浄液のPCB濃度以下である場合に、PCB汚染機器の洗浄処理の終了と同時に洗浄後の機器のPCB無害化処理の完了を判定することとなる。何故なら、予測濃度はPCB汚染機器に含まれているPCBの多くが洗浄液に溶解されることを前提に算出されており、その予測濃度は実際の洗浄工程の管理濃度として実測されることから、予測濃度と実測濃度との整合を求める方法として設計されているからである。このためには、以下に示すPCB汚染機器の仕様や大きさに関わらず、洗浄前に洗浄後の洗浄液のPCB濃度が予測でき、洗浄後のPCB汚染機器がPCB無害化基準を満足することを、汎用的・普遍的に示すことが必要である。
<Concept of the end judgment method of cleaning processing of PCB contaminated equipment and the end judgment method of PCB detoxification processing by cleaning>
In the method for determining the end of the cleaning process for the PCB-contaminated equipment and the method for determining the completion of the PCB detoxification process by the cleaning, in order to determine the completion of the PCB detoxification process for the apparatus after the cleaning simultaneously with the end of the cleaning process for the PCB-contaminated equipment, Some indication is needed in the cleaning process of contaminated equipment contaminated with PCB. Therefore, attention was paid to the PCB concentration of the cleaning liquid as an index for determining the completion of the PCB detoxification process. That is, when the PCB concentration of the cleaning liquid after cleaning is predicted before cleaning, and the actual PCB concentration of the cleaning liquid does not exceed the predicted concentration and is equal to or lower than the PCB concentration of the cleaning liquid set as the management concentration of the cleaning process, The completion of the PCB detoxification process for the apparatus after cleaning is determined simultaneously with the end of the cleaning process for the PCB contaminated apparatus. This is because the predicted concentration is calculated on the assumption that most of the PCB contained in the PCB-contaminated equipment is dissolved in the cleaning liquid, and the predicted concentration is actually measured as the control concentration in the actual cleaning process. This is because it is designed as a method for obtaining matching between the predicted concentration and the actually measured concentration. For this purpose, the PCB concentration of the cleaning liquid after cleaning can be predicted before cleaning regardless of the specifications and size of the PCB contamination equipment shown below, and the PCB contamination equipment after cleaning should satisfy the PCB detoxification standard. It is necessary to show general and universal.

<洗浄後の洗浄油のPCB濃度の予測方法の考え方>
洗浄後の洗浄油のPCB濃度は、洗浄対象となる変圧器において元油の抜油後に変圧器内に残った油に含まれるPCBが洗浄後に注油された洗浄油に溶解することで決まる。
注油量は洗浄工程により管理されており、比較的精度良く計量できるため、単純には洗浄後の洗浄油PCB濃度は洗浄に先立って行う抜油後に変圧器内に残る元油量から予測されるPCB量を注油量で除することで求めることができる。
しかし、実際には抜油後に変圧器内に残る元油量からPCB量を予測することは極めて困難である。何故なら、変圧器内に残る元油量を精度良く算出する手段がないからである。そもそも、変圧器に使用されている絶縁油は運用や補修などにより適宜減量や加量されているため、事実上使われている実油量を正確には把握することは極めて困難である。
なお、実油量の目安としては変圧器の設計時の油量である銘板油量が挙げられるが、大型変圧器では運用において油量を油量計で調整する場合が多いため、実油量と銘板油量は必ずしも一致しない。
したがって、銘板油量から洗浄時に計量した抜油量を減算したとしても、変圧器内に残る元油量は正確には求められない。更に、抜油量が不明な抜油済の保管変圧器が洗浄対象となることも容易に想定される。このような場合、抜油量から変圧器内に残る油量を求めることは不可能である。これらの理由から抜油量から変圧器内に残る油量を算出し、PCB量に換算することは現実的でない。
<Concept of method for predicting PCB concentration of washed oil after washing>
The PCB concentration of the cleaning oil after cleaning is determined by the fact that PCB contained in the oil remaining in the transformer after the base oil is extracted in the transformer to be cleaned dissolves in the cleaning oil poured after the cleaning.
Since the amount of lubrication is controlled by the cleaning process and can be measured with relatively high accuracy, the PCB concentration after cleaning is simply estimated from the amount of base oil remaining in the transformer after oil removal prior to cleaning. It can be determined by dividing the amount by the amount of lubrication.
In practice, however, it is extremely difficult to predict the amount of PCB from the amount of raw oil remaining in the transformer after oil removal. This is because there is no means for accurately calculating the amount of raw oil remaining in the transformer. In the first place, since the insulating oil used in the transformer is reduced or added as appropriate through operation and repair, it is extremely difficult to accurately grasp the actual amount of oil used in practice.
As an indication of the actual oil amount, the nameplate oil amount, which is the oil amount at the time of designing the transformer, can be mentioned, but in large transformers, the oil amount is often adjusted with an oil meter during operation. The amount of oil on the nameplate does not always match.
Therefore, even if the amount of oil extracted during cleaning is subtracted from the amount of nameplate oil, the amount of base oil remaining in the transformer cannot be obtained accurately. Furthermore, it is easily assumed that a storage transformer that has been drained and the amount of draining is unknown is to be cleaned. In such a case, it is impossible to obtain the oil amount remaining in the transformer from the oil removal amount. For these reasons, it is not practical to calculate the amount of oil remaining in the transformer from the amount of oil withdrawal and convert it to the amount of PCB.

以上により、洗浄前に洗浄後の洗浄油のPCB濃度を予測するためには、根本的な発想の転換が必要となるが、現実的には洗浄前に洗浄後の洗浄油のPCB濃度を予測する情報としては、銘板油量、銘板重量、及び元油PCB濃度しかない。
そこで、これらの情報から、洗浄後の洗浄油のPCB濃度を予測する方法について検討した。基本的には、洗浄後の洗浄油のPCB濃度は元油の抜油後に変圧器内に残った元油に含まれるPCBが洗浄油に溶解することで決まることは変わらない。このため、図1に示すように、元油の抜油後に変圧器内部に残る油量を、内部部材に含浸される元油と、変圧器の容器壁面及び容器底面に残存する元油に大別して予測した。
油量が予測できれば、元油PCB濃度を乗ずることでPCB量を算出することができる。
As described above, in order to predict the PCB concentration of the cleaning oil after cleaning before the cleaning, it is necessary to fundamentally change the concept, but in reality, the PCB concentration of the cleaning oil after cleaning is predicted before the cleaning. The only information to be provided is the nameplate oil amount, nameplate weight, and base oil PCB concentration.
Therefore, a method for predicting the PCB concentration of the cleaning oil after cleaning was examined from these information. Basically, the PCB concentration of the cleaning oil after cleaning is determined by the fact that the PCB contained in the base oil remaining in the transformer after the base oil is extracted is dissolved in the cleaning oil. For this reason, as shown in FIG. 1, the amount of oil remaining inside the transformer after the base oil is extracted is roughly divided into the base oil impregnated in the internal members and the base oil remaining on the container wall surface and the container bottom surface of the transformer. Predicted.
If the oil amount can be predicted, the PCB amount can be calculated by multiplying the base oil PCB concentration.

まず、前記PCB汚染機器の内部部材に含浸している元油に含まれるPCB量を下記数式1aから求めた。
[数式1a]
内部部材中のPCB量(mg)=銘板重量×元油PCB濃度×内部部材係数×内部部材含油係数
ただし、前記数式1a中、前記銘板重量は、前記PCB汚染機器の銘板に記載されている絶縁油を含むPCB汚染機器の総重量を表す。前記内部部材係数は、前記銘板重量から内部部材重量を求める係数を表す。前記内部部材含油係数は、前記PCB汚染機器の内部部材中の油含有量を求める係数を表す。
これらの係数から、変圧器の銘板重量から内部部材に含まれる油量を導き、該内部部材に含まれる油量に元油PCB濃度を乗ずることで内部部材中のPCB量を算出した。
First, the amount of PCB contained in the base oil impregnated in the internal member of the PCB contaminated device was determined from the following formula 1a.
[Formula 1a]
PCB amount in internal member (mg) = nameplate weight × source oil PCB concentration × internal member coefficient × internal member oil impregnation coefficient In the formula 1a, the nameplate weight is the insulation described on the nameplate of the PCB contaminated equipment. Represents the total weight of PCB contaminated equipment containing oil. The internal member coefficient represents a coefficient for obtaining the internal member weight from the nameplate weight. The internal member oil impregnation coefficient represents a coefficient for obtaining the oil content in the internal member of the PCB-contaminated equipment.
From these coefficients, the amount of oil contained in the internal member was derived from the weight of the nameplate of the transformer, and the amount of PCB contained in the internal member was calculated by multiplying the amount of oil contained in the internal member by the base oil PCB concentration.

次に、変圧器の容器壁面及び容器底面に残存する元油に含まれるPCB量を下記数式2aから求めた。
[数式2a]
容器壁面及び容器底面に残存するPCB量(mg)=銘板油量2/3×元油PCB濃度×容器残油係数
ただし、前記数式2a中、前記銘板油量は、前記PCB汚染機器の銘板に記載されている総油量であり、容器壁面及び容器底面への付着量算出のため油の接触面積を考慮して2/3乗とした。前記容器残油係数は、元油の抜油後に容器壁面及び容器底面に残存する油量を算出する係数を表す。
得られた油量に元油PCB濃度を乗ずることで、変圧器の容器壁面及び容器底面に残存するPCB量を算出した。
Next, the amount of PCB contained in the base oil remaining on the container wall surface and the container bottom surface of the transformer was determined from the following formula 2a.
[Formula 2a]
PCB amount (mg) remaining on the container wall surface and the bottom surface of the container = nameplate oil amount 2/3 × source oil PCB concentration × container residual oil coefficient However, in the formula 2a, the nameplate oil amount is on the nameplate of the PCB-contaminated equipment. It is the total oil amount described, and was set to 2/3 power in consideration of the contact area of the oil for calculating the amount of adhesion to the container wall surface and the container bottom surface. The container residual oil coefficient represents a coefficient for calculating the amount of oil remaining on the container wall surface and the container bottom surface after the base oil is extracted.
The amount of PCB remaining on the container wall surface and the bottom surface of the transformer was calculated by multiplying the obtained oil amount by the base oil PCB concentration.

前記数式1及び前記数式2の合計となるPCB量を洗浄時の洗浄油量の目安となる銘板油量と絶縁油の比重から求めた洗浄油重量で除することで洗浄後の洗浄油のPCB予測濃度を下記数式3aから求めた。
[数式3a]
洗浄後の洗浄液のPCB予測濃度=
[(内部部材係数×銘板重量×内部部材含油係数×元油PCB濃度)+(銘板油量2/3×容器残油係数×元油PCB濃度)]/(銘板油量×絶縁油比重)
The amount of PCB that is the sum of Equation 1 and Equation 2 is divided by the amount of washing oil obtained from the specific gravity of the nameplate oil amount and the insulating oil, which is a measure of the amount of washing oil at the time of washing. The predicted concentration was determined from Equation 3a below.
[Formula 3a]
PCB predicted concentration of cleaning solution after cleaning =
[(Internal member coefficient x Name plate weight x Internal member oil impregnation coefficient x Base oil PCB concentration) + (Name plate oil amount 2/3 x Container residual oil coefficient x Base oil PCB concentration)] / (Name plate oil amount x Insulating oil specific gravity)

<洗浄油のPCB濃度の予測方法の構築と検証に用いた洗浄試験実績>
洗浄方式としては、加熱強制循環洗浄又は課電自然循環洗浄である。
前記加熱強制循環洗浄は、自作した洗浄装置で行った。
前記課電自然循環洗浄は、仮設及び商用電路に接続して行った。
洗浄油としては、日本工業規格を準ずる電気絶縁油を用いた。
洗浄サイクルは、変圧器からの元油の抜油と洗浄油の注油とに続いて洗浄した場合を1回とし、更に洗浄油の抜油と洗浄油の再注油とに続いて再度洗浄を行った場合を2回とした。
洗浄油のPCB濃度は、洗浄サイクル1回目の場合は洗浄完了時の濃度とした。洗浄サイクル2回目の場合はサイクルの1回目と2回目の洗浄完了時の濃度の合計を洗浄油PCB濃度として記載した。
<Results of cleaning test used for construction and verification of prediction method for PCB concentration of cleaning oil>
As a cleaning method, heating forced circulation cleaning or electric charge natural circulation cleaning is used.
The heating forced circulation cleaning was performed by a self-made cleaning device.
The electrical charging natural circulation cleaning was performed by connecting to temporary and commercial electric circuits.
As the cleaning oil, an electrical insulating oil conforming to Japanese Industrial Standard was used.
The cleaning cycle is a case where the main oil is removed from the transformer and the cleaning oil is added once, and then the cleaning is performed again after the cleaning oil is extracted and the cleaning oil is reapplied. Was made twice.
The PCB concentration of the cleaning oil was the concentration at the completion of cleaning in the first cleaning cycle. In the case of the second washing cycle, the sum of the concentrations at the completion of the first and second washings was described as the washing oil PCB concentration.

<内部部材係数及び内部部材残油係数の決定>
前記数式3aにおける「内部部材係数」と「内部部材残油係数」を以下のようにして求めた。
まず、これまでに実施した洗浄試験に供試した中小型変圧器(変圧器番号4〜34)と大型変圧器(変圧器番号35〜43)の銘板重量と内部部材重量を整理した。なお、変圧器番号は表2−1及び表2−2で共通とした。
前記内部部材重量は、構成する部材を手作業により解体、分解、分別し、部材毎に全重量を実測するか、一部を実測し、その割合から部材毎に全重量を求めた。
前記大型変圧器の場合は、製造元から製造時に使用した部材毎の重量を入手した。
以上の結果から、中小型変圧器と大型変圧器の合計21台について、内部部材重量と銘板重量の間に正の直線関係が認められた。この関係式から、銘板重量から内部部材重量が求められ、前記数式3aの「内部部材係数」を求めた。
なお、前記内部部材に含まれる油量を実測し、これらの部材に含まれる油量の合計を内部部材含油係数とした。
<Determination of internal member coefficient and internal member residual oil coefficient>
The “internal member coefficient” and “internal member residual oil coefficient” in Equation 3a were determined as follows.
First, the nameplate weights and internal member weights of the small and medium-sized transformers (transformer numbers 4 to 34) and large transformers (transformer numbers 35 to 43) that were used in the cleaning tests performed so far were arranged. In addition, the transformer number was made common in Table 2-1 and Table 2-2.
The internal member weight was obtained by manually disassembling, disassembling, and separating the constituent members and measuring the total weight for each member or measuring a part thereof, and determining the total weight for each member from the ratio.
In the case of the large transformer, the weight of each member used at the time of manufacture was obtained from the manufacturer.
From the above results, a positive linear relationship was recognized between the internal member weight and the nameplate weight for a total of 21 small and medium transformers and a large transformer. From this relational expression, the weight of the internal member was determined from the weight of the nameplate, and the “internal member coefficient” of the mathematical formula 3a was determined.
The amount of oil contained in the internal member was measured, and the total amount of oil contained in these members was defined as the internal member oil content coefficient.

<容器残油係数の決定>
前記数式3aにおける「容器残油係数」を以下のようにして求めた。
表2−1及び表2−2に示した中小型変圧器と大型変圧器の合計21台について表2−1及び表2−2から該当する実測した元油PCB濃度と銘板油量及び銘板重量を得た。前記数式3aに代入して洗浄後の洗浄油のPCB予測濃度を求めた。これらの洗浄油のPCB予測濃度を同じく表2−1に示した実測した洗浄後の洗浄油PCB濃度と比較した。得られる正の直線関係から、前記数式3aの未知の係数である容器残油係数を求めた。
以上により、洗浄後の洗浄油のPCB予測濃度は、前記数式3aから求めることができた。
<Determination of container residual oil coefficient>
The “container residual oil coefficient” in Equation 3a was determined as follows.
Measured base oil PCB concentration, name plate oil amount and name plate weight corresponding to Table 2-1 and Table 2-2 for a total of 21 small and medium size transformers and large transformers shown in Table 2-1 and Table 2-2 Got. Substituting it into the formula 3a, the PCB predicted concentration of the washed oil after washing was obtained. The predicted PCB PCB concentrations of these cleaning oils were compared with the actually measured cleaning oil PCB concentrations after cleaning shown in Table 2-1. From the obtained positive linear relationship, the container residual oil coefficient, which is an unknown coefficient of the mathematical formula 3a, was obtained.
As described above, the predicted PCB concentration of the cleaning oil after the cleaning can be obtained from the formula 3a.

<洗浄油PCB濃度における実測値と予測値の比較>
洗浄後の洗浄油のPCB濃度の予測方法の検証のため、前記数式3aから洗浄後の洗浄油のPCB予測濃度を求め、洗浄油又は元油PCB濃度の実測値と比較した。なお、PCB予測濃度は表2−1及び表2−2に示した中小型変圧器と大型変圧器の合計43台について算出した。算出にあたっては表2−1に記載した銘板重量と油量及び元油PCB濃度を前記数式3aに代入した。結果を図2に示した。
図2の結果から、洗浄油のPCB濃度の実測値と、洗浄後の洗浄油のPCB予測濃度との間には、傾き0.9908の正の直線関係が得られ、決定係数は0.7278であった。
同様に、洗浄後の洗浄油のPCB予測濃度と、元油PCB濃度のPCB実測値との関係を調べた。結果を図3A及びその部分拡大図である図3Bに示した。図3A及び図3Bの結果から、両者の間には、正の直線関係が認められ、決定係数は0.9337であった。
<Comparison of measured value and predicted value in cleaning oil PCB concentration>
In order to verify the method for predicting the PCB concentration of the cleaning oil after the cleaning, the predicted PCB concentration of the cleaning oil after the cleaning was obtained from the formula 3a and compared with the actual measured value of the cleaning oil or base oil PCB concentration. The predicted PCB concentration was calculated for a total of 43 small and large transformers shown in Tables 2-1 and 2-2. In the calculation, the nameplate weight, oil amount, and base oil PCB concentration described in Table 2-1 were substituted into Equation 3a. The results are shown in FIG.
From the result of FIG. 2, a positive linear relationship with a slope of 0.9908 is obtained between the measured value of the PCB concentration of the cleaning oil and the predicted PCB concentration of the cleaning oil after cleaning, and the coefficient of determination is 0.7278. Met.
Similarly, the relationship between the predicted PCB concentration of the cleaning oil after cleaning and the actual PCB measurement value of the base oil PCB concentration was examined. The results are shown in FIG. 3A and FIG. 3B, which is a partially enlarged view thereof. From the results of FIG. 3A and FIG. 3B, a positive linear relationship was recognized between the two, and the determination coefficient was 0.9337.

<洗浄後のPCB無害化処理基準の検定>
表2−1及び表2−2に示した加熱強制循環洗浄及び課電自然循環洗浄によって洗浄した変圧器の容器及び内部部材は、下記表3に示した特別管理一般廃棄物及び特定管理産業廃棄物に係る基準の検定方法(平成4年厚告192号)13によって検定した。
<Verification of PCB detoxification standards after cleaning>
Transformer containers and internal components cleaned by forced forced circulation cleaning and electricity-charging natural circulation cleaning shown in Table 2-1 and Table 2-2 are specially controlled general waste and specified controlled industrial waste shown in Table 3 below. Tested according to the standard test method for goods (Heisei 1992 No. 192) 13.

*測定は表1に示した特別管理一般廃棄物及び特定管理産業廃棄物に係る基準の検定方法(平成4年厚告192号)によって行った。 * Measurements were made using the standard verification method for specially controlled municipal solid waste and specially controlled industrial waste shown in Table 1 (Heisei 1992 No. 192).

表3から、全ての変圧器において洗浄後の容器及び内部部材は、該当するPCB無害化処理基準を満足していた。なお、洗浄サイクル2回の場合は、検定は2回目のサイクル終了時の結果である。   From Table 3, the containers and internal members after cleaning in all transformers satisfied the corresponding PCB detoxification treatment standards. In the case of two washing cycles, the test is the result at the end of the second cycle.

以上により、元油PCB濃度、銘板重量、及び油量から、洗浄後の洗浄油のPCB濃度を予測する方法が得られた。前記洗浄後の洗浄油のPCB濃度の予測方法は、洗浄前に洗浄結果の予測や洗浄油の準備や節約に実用上有用である。更に、前記予測方法は、洗浄油中のPCB濃度による無害化処理の判定に確からしさを示すので、極めて有用である。
そこで、前記予測方法から、PCB汚染機器の洗浄処理の終了判定と洗浄によるPCB無害化処理の完了の判定について検討した。
As described above, a method for predicting the PCB concentration of the cleaning oil after cleaning was obtained from the base oil PCB concentration, the nameplate weight, and the oil amount. The method for predicting the PCB concentration of the cleaning oil after cleaning is practically useful for predicting the cleaning result before cleaning and for preparing and saving the cleaning oil. Further, the prediction method is extremely useful because it shows the certainty in the determination of the detoxification process based on the PCB concentration in the cleaning oil.
Therefore, from the prediction method, the end of the cleaning process of the PCB-contaminated equipment and the determination of the completion of the PCB detoxification process by cleaning were examined.

<洗浄油のPCB予測濃度によるPCB汚染機器の洗浄処理の終了判定と洗浄によるPCB無害化処理の完了判定の検証>
洗浄処理の終了判定とは、洗浄後に変圧器を構成する容器や内部部材が該当するPCB無害化処理の基準を満足することを、洗浄後の洗浄油のPCB濃度から判定することを意味する。また、同時に洗浄処理が終了したことも意味する。
前記洗浄処理の終了判定の成立には、一定の洗浄条件を課した加熱強制循環洗浄又は課電自然循環洗浄において、洗浄油のPCB濃度が変化しなくなる時に、主に以下の点を検証した。
(1)判定する洗浄後の洗浄油のPCB予測濃度の設定
(2)判定した部材のPCB無害化処理基準の確認
(3)判定を適用しうる元油PCB濃度範囲の設定
<Verification of completion of cleaning process of PCB contaminated equipment by PCB predicted concentration of cleaning oil and verification of completion of PCB detoxification process by cleaning>
The completion determination of the cleaning process means that it is determined from the PCB concentration of the cleaning oil after the cleaning that the container and the internal member constituting the transformer satisfy the corresponding PCB detoxification processing standard after the cleaning. It also means that the cleaning process is completed at the same time.
In order to establish the end of the cleaning process, the following points were mainly verified when the PCB concentration of the cleaning oil did not change in the forced heating circulation cleaning or the charged natural circulation cleaning under certain cleaning conditions.
(1) Setting of PCB predicted concentration of cleaning oil after cleaning to be determined (2) Confirmation of PCB detoxification processing standard of determined member (3) Setting of base oil PCB concentration range to which determination can be applied

前記(1)は、表3に示した試験では一部の試行的試験を除いて0.5mg−PCB/kg−油(0.5ppm)に設定した。つまり、所定の洗浄条件で一定の洗浄時間が経過した時、洗浄油のPCB濃度が予測した濃度範囲となり、かつ0.5mg−PCB/kg−油(0.5ppm)以下である場合に洗浄処理の終了を判定した。
濃度設定の根拠としては、油をPCB無害化処理した場合の基準である0.5mg−PCB/kg−油(0.5ppm)が挙げられる。したがって、本発明によると、洗浄油のPCB濃度を予測する方法が提案されたことから、設定根拠がより明確となり、汎用性を備えたとなる。
In the test shown in Table 3, (1) was set to 0.5 mg-PCB / kg-oil (0.5 ppm) except for some trial tests. That is, when a certain cleaning time has passed under a predetermined cleaning condition, the cleaning processing is performed when the PCB concentration of the cleaning oil falls within the predicted concentration range and is 0.5 mg-PCB / kg-oil (0.5 ppm) or less. Judged the end of.
As a basis for the concentration setting, 0.5 mg-PCB / kg-oil (0.5 ppm) which is a standard when the oil is subjected to PCB detoxification treatment can be mentioned. Therefore, according to the present invention, since a method for predicting the PCB concentration of the cleaning oil has been proposed, the grounds for setting become clearer and versatile.

図3A及び図3Bにおいて、43台の変圧器のうち、実測された洗浄油のPCB濃度が0.5mg−PCB/kg−油(0.5ppm)を超えた台数は18台であるが、全台とも洗浄油のPCB濃度が0.5mg−PCB/kg−油(0.5ppm)を超える濃度として予測できた。
一方、実測された洗浄油のPCB濃度が0.5mg−PCB/kg−油(0.5ppm)以下である台数は25台であるが、24台が洗浄油のPCB濃度が0.5mg−PCB/kg−油(0.5ppm)未満と予測できた。
実測された洗浄油のPCB濃度が0.5mg−PCB/kg−油(0.5ppm)である1台のみが、洗浄油のPCB濃度が0.5mg−PCB/kg−油(0.5ppm)を超える濃度として予測された。これらの実測値と予測値が判定する濃度区分において良く整合することは、PCB汚染機器の洗浄処理の終了と洗浄によるPCB無害化処理の完了の判定の検証であると共に、予測方法の確からしさの検証でもある。
3A and 3B, among the 43 transformers, the number of actually measured cleaning oil PCB concentrations exceeding 0.5 mg-PCB / kg-oil (0.5 ppm) is 18 units, It was predicted that the PCB concentration of the washing oil exceeded 0.5 mg-PCB / kg-oil (0.5 ppm) in both the tables.
On the other hand, there are 25 units in which the PCB concentration of the measured cleaning oil is 0.5 mg-PCB / kg-oil (0.5 ppm) or less, but 24 units have a PCB concentration of 0.5 mg-PCB in the cleaning oil. / Kg-oil (less than 0.5 ppm) could be predicted.
The actual measured cleaning oil PCB concentration is 0.5 mg-PCB / kg-oil (0.5 ppm), but only one unit has a cleaning oil PCB concentration of 0.5 mg-PCB / kg-oil (0.5 ppm). Concentration above was predicted. The fact that these measured values and predicted values are in good agreement in the concentration classification is verification of the end of the cleaning process of the PCB-contaminated equipment and the determination of the completion of the PCB detoxification process by cleaning, as well as the accuracy of the prediction method. It is also verification.

同時に、洗浄完了判定における洗浄油PCB濃度の設定において、種々の仕様や大きさの変圧器に適用する汎用性について説明する根拠ともなる。つまり、洗浄後に変圧器を構成する容器や内部部材が該当するPCB無害化処理の基準を満足する洗浄油のPCB濃度は、油のPCB無害化処理基準に対して測定中のPCB濃度の設定において、試験に供した変圧器の元油PCB濃度117mg−PCB/kg−油(117ppm)を上限に洗浄サイクル2回までは、実施した洗浄条件の範囲において洗浄油中のPCB濃度から洗浄後に変圧器を構成する容器や内部部材が該当するPCB無害化処理の基準を満足することを判定できた。   At the same time, in setting the cleaning oil PCB concentration in the cleaning completion determination, it is a basis for explaining versatility applied to transformers of various specifications and sizes. In other words, the PCB concentration of the cleaning oil that satisfies the PCB detoxification processing standard corresponding to the container and the internal member constituting the transformer after cleaning is determined by setting the PCB concentration being measured with respect to the PCB detoxification processing standard of the oil. The main oil PCB concentration of the transformer used for the test was 117 mg-PCB / kg-oil (117 ppm) as the upper limit, and up to two cleaning cycles, the transformer after cleaning from the PCB concentration in the cleaning oil within the range of cleaning conditions performed It can be determined that the container and the internal member constituting the above satisfy the corresponding PCB detoxification treatment standard.

また、元油の抜油から洗浄油の注油に続いて洗浄を行う洗浄サイクルが1回の場合、洗浄油PCB濃度による無害化処理判定に関する前記(1)〜(3)の根拠が提供された。
前記(1)は、洗浄油のPCB濃度による判定が0.5mg−PCB/kg−油(0.5ppm)で行われており、その濃度設定根拠は、本発明の洗浄後の洗浄液のPCB濃度の予測方法の検証から前述のとおり示されている。
前記(2)は、表2−1に示した洗浄サイクル1回の場合の実例のとおり、変圧器の大きさや仕様に関わらず、機器を構成する全ての部材について該当するPCB無害化処理基準を満足するまでPCBが除去されていることが確認されている。
洗浄サイクルが1回の場合において、前記(3)の判定を適用しうる元油PCB濃度範囲が予測されたことは極めて重要である。図3A及び図3Bにおいて予測方法から洗浄油のPCB濃度が0.5mg−PCB/kg−油(0.5ppm)となる場合の元油PCB濃度は20.9mg−PCB/kg−油(20.9ppm)と算出され、洗浄サイクルが1回の場合は同濃度が判定を適用しうる元油PCB濃度の上限となる。
Further, in the case where the cleaning cycle for performing the cleaning after the draining of the base oil and the injection of the cleaning oil is one time, the grounds of the above (1) to (3) related to the detoxification treatment determination based on the cleaning oil PCB concentration are provided.
In the above (1), the determination based on the PCB concentration of the cleaning oil is performed with 0.5 mg-PCB / kg-oil (0.5 ppm), and the basis for setting the concentration is the PCB concentration of the cleaning liquid after cleaning according to the present invention. This is shown from the verification of the prediction method.
The above (2) is the PCB detoxification treatment standard applicable to all members constituting the equipment, regardless of the size and specifications of the transformer, as in the case of one cleaning cycle shown in Table 2-1. It has been confirmed that the PCB has been removed until satisfaction.
It is extremely important that the base oil PCB concentration range to which the determination of (3) can be applied is predicted in the case of one cleaning cycle. 3A and 3B, the base oil PCB concentration when the PCB concentration of the cleaning oil is 0.5 mg-PCB / kg-oil (0.5 ppm) based on the prediction method is 20.9 mg-PCB / kg-oil (20. 9 ppm), and when the cleaning cycle is one, the same concentration is the upper limit of the base oil PCB concentration to which the determination can be applied.

以上により、洗浄サイクルが1回の場合には、本発明の洗浄後の洗浄液のPCB濃度の予測方法から説明される少なくとも元油PCB濃度20.9mg−PCB/kg−油(20.9ppm)程度までの変圧器については、PCB汚染機器の洗浄処理の終了と同時に洗浄後に変圧器を構成する容器や内部部材が該当するPCB無害化処理の基準を満足することを洗浄後の洗浄油のPCB予測濃度から判定できることがわかった。
これらの中でも、安全側として評価したPCB収支から支持される元油の上限PCB濃度は、課電自然循環洗浄では極めて重要である。これは、PCBが混入した使用中機器は機器の余寿命があり、資源リサイクルの観点からPCBを除去した後も使用の継続が望まれるためである。前記使用継続には、課電自然循環洗浄後に変圧器の解体により内部部材を採取し、PCB無害化処理の検定分析を行うことはできない。
したがって、洗浄後の洗浄油のPCB濃度から無害化処理の基準を判定する必要があり、その適用上限PCB濃度が洗浄サイクル1回において説明されたことは大きな意義がある。また、適用上限PCB濃度はPCBが完全に洗浄油に洗い出された場合も考慮していることから、使用を継続した場合に再びPCB汚染変圧器とならないことも考慮されている。
As described above, when the cleaning cycle is one time, at least a base oil PCB concentration of about 20.9 mg-PCB / kg-oil (20.9 ppm), which is explained from the method for predicting the PCB concentration of the cleaning liquid after cleaning according to the present invention. For the transformers up to and including the PCB prediction of the cleaning oil after cleaning that the container and the internal members constituting the transformer satisfy the applicable PCB detoxification processing standards after cleaning at the same time as the cleaning processing of the PCB contaminated equipment is completed It was found that it could be judged from the concentration.
Among these, the upper limit PCB concentration of the base oil supported from the PCB balance evaluated as the safe side is extremely important in the electric charging natural circulation cleaning. This is because the in-use device in which the PCB is mixed has a remaining life of the device, and it is desired to continue using it after removing the PCB from the viewpoint of resource recycling. In order to continue the use, it is not possible to collect the internal members by disassembling the transformer after the electricity-charging natural circulation cleaning, and to perform the assay analysis of the PCB detoxification process.
Therefore, it is necessary to determine the standard of detoxification treatment from the PCB concentration of the cleaning oil after cleaning, and it is significant that the application upper limit PCB concentration was explained in one cleaning cycle. In addition, since the application upper limit PCB concentration also considers the case where the PCB is completely washed out with the cleaning oil, it is considered that the PCB contamination transformer will not be re-established when the use is continued.

以上により、元油PCB濃度、銘板重量及び銘板油量から、洗浄後の洗浄油のPCB濃度を予測する方法が得られた。
本発明のPCB汚染機器の洗浄処理の終了判定方法、及び本発明の洗浄によるPCB無害化処理の完了判定方法、並びに本発明の洗浄後の洗浄液のPCB濃度の予測方法は、実用上の様々な洗浄作業において極めて有用である。
また、洗浄計画においては、例えば、元油PCB濃度を指標に洗浄する変圧器の順番の設定や必要な洗浄油量の見積もりなどが挙げられる。
また、洗浄時においては、実測するPCB濃度と合わせて洗浄工程の管理や洗浄終了時間の予想にも役立つものである。
また、実用においては、洗浄条件や抜油の均質性が予測値の変動要因であるため注意が必要であるが、一旦変動要因が把握できれば、変圧器の大きさや仕様によらずに広く適用することができる。
Thus, a method for predicting the PCB concentration of the cleaning oil after cleaning was obtained from the base oil PCB concentration, the nameplate weight, and the nameplate oil amount.
There are various practical methods for determining the completion of the cleaning process for the PCB-contaminated equipment according to the present invention, the method for determining the completion of the PCB detoxification process by the cleaning according to the present invention, and the method for predicting the PCB concentration of the cleaning liquid after the cleaning according to the present invention. Very useful in cleaning operations.
Further, in the cleaning plan, for example, setting of the order of transformers to be cleaned using the base oil PCB concentration as an index, estimation of a required amount of cleaning oil, and the like can be mentioned.
Further, at the time of cleaning, it is useful for management of the cleaning process and prediction of the cleaning end time together with the actually measured PCB concentration.
Also, in practical use, care must be taken because the cleaning conditions and the uniformity of oil removal are factors that fluctuate the predicted value, but once the factors are known, it should be widely applied regardless of the size and specifications of the transformer. Can do.

本発明の態様としては、例えば、以下の通りである。
<1> ポリ塩化ビフェニル(PCB)を含む絶縁油が充填されPCBで汚染されているPCB汚染機器を洗浄液で洗浄した後、洗浄液のPCB濃度から、洗浄処理の終了を判定することを特徴とするPCB汚染機器の洗浄処理の終了判定方法である。
<2> 使用中PCB汚染機器及び使用済みPCB汚染機器の少なくともいずれかの洗浄に用いられる前記<1>に記載のPCB汚染機器の洗浄処理の終了判定方法である。
<3> 加熱強制循環洗浄及び課電自然循環洗浄の少なくともいずれかに用いられる前記<1>から<2>のいずれかに記載のPCB汚染機器の洗浄処理の終了判定方法である。
<4> 洗浄液が、PCBを実質的に含まない油、及びPCBを溶解可能な有機溶剤から選択される少なくとも1種である前記<1>から<3>のいずれかに記載のPCB汚染機器の洗浄処理の終了判定方法である。
<5> PCB汚染機器が、小型変圧器、中型変圧器、大型変圧器、及び超大型変圧器から選択される少なくとも1種である前記<1>から<4>のいずれかに記載のPCB汚染機器の洗浄処理の終了判定方法である。
<6> ポリ塩化ビフェニル(PCB)を含む絶縁油が充填されPCBで汚染されているPCB汚染機器を洗浄液で洗浄した後、洗浄液のPCB濃度から、PCB無害化処理の完了を判定することを特徴とする洗浄によるPCB無害化処理の完了判定方法である。
<7> 使用中PCB汚染機器及び使用済みPCB汚染機器の少なくともいずれかの洗浄に用いられる前記<6>に記載の洗浄によるPCB無害化処理の完了判定方法である。
<8> 加熱強制循環洗浄及び課電自然循環洗浄の少なくともいずれかに用いられる前記<6>から<7>のいずれかに記載の洗浄によるPCB無害化処理の完了判定方法である。
<9> 洗浄液が、PCBを実質的に含まない油、及びPCBを溶解可能な有機溶剤から選択される少なくとも1種である前記<6>から<8>のいずれかに記載の洗浄によるPCB無害化処理の完了判定方法である。
<10> PCB汚染機器が、小型変圧器、中型変圧器、大型変圧器、及び超大型変圧器から選択される少なくとも1種である前記<6>から<9>のいずれかに記載の洗浄によるPCB無害化処理の完了判定方法である。
<11> ポリ塩化ビフェニル(PCB)を含む絶縁油が充填されPCBで汚染されているPCB汚染機器を洗浄液で洗浄する前に洗浄後の洗浄液のPCB濃度を予測する方法であって、
前記PCB汚染機器を洗浄前の絶縁油のPCB濃度、前記PCB汚染機器の銘板重量、及び前記PCB汚染機器の銘板油量から、下記数式3により洗浄後の洗浄液のPCB予測濃度を求めることを特徴とする洗浄後の洗浄液のPCB濃度の予測方法である。
[数式3]
洗浄後の洗浄液のPCB予測濃度=
[(内部部材係数×銘板重量×内部部材含油係数×洗浄前の絶縁油のPCB濃度)+(銘板油量2/3×容器残油係数×洗浄前の絶縁油のPCB濃度)]/(銘板油量×絶縁油比重)
ただし、前記数式3中、前記銘板重量は、前記PCB汚染機器の銘板に記載されている絶縁油を含むPCB汚染機器の総重量を表す。前記銘板油量は、前記PCB汚染機器の銘板に記載されている総油量であり、容器壁面及び容器底面への付着量算出のため油の接触面積を考慮して2/3乗とした。前記内部部材含油係数は、前記PCB汚染機器の内部部材中の油含有量を求める係数を表す。前記内部部材係数は、前記銘板重量から内部部材重量を求める係数を表す。前記容器残油係数は、前記PCB汚染機器から絶縁油を抜油後に前記PCB汚染機器の容器壁面及び容器底面に残存する絶縁油量を算出する係数を表す。
<12> 使用中PCB汚染機器及び使用済みPCB汚染機器の少なくともいずれかの洗浄に用いられる前記<11>に記載の洗浄後の洗浄液のPCB濃度の予測方法である。
<13> 加熱強制循環洗浄及び課電自然循環洗浄の少なくともいずれかに用いられる前記<11>から<12>のいずれかに記載の洗浄後の洗浄液のPCB濃度の予測方法である。
<14> 洗浄液が、PCBを実質的に含まない油、及びPCBを溶解可能な有機溶剤から選択される少なくとも1種である前記<11>から<13>のいずれかに記載の洗浄後の洗浄液のPCB濃度の予測方法である。
<15> PCB汚染機器が、小型変圧器、中型変圧器、大型変圧器、及び超大型変圧器から選択される少なくとも1種である前記<11>から<14>のいずれかに記載の洗浄後の洗浄液のPCB濃度の予測方法である。
<16> 前記<11>から<15>のいずれかに記載の洗浄後の洗浄液のPCB濃度の予測方法により求めた洗浄後の洗浄液のPCB予測濃度から、洗浄処理の終了を判定することを特徴とするPCB汚染機器の洗浄処理の終了判定方法である。
<17> PCB汚染機器から絶縁油の抜油と洗浄液の注入とに続いて洗浄する1回の洗浄サイクルにおいて、洗浄後の洗浄液のPCB予測濃度が0.5ppm以下であれば洗浄後のPCB汚染機器の容器及び内部部材がPCB無害化基準を満たす前記<16>に記載のPCB汚染機器の洗浄処理の終了判定方法である。
<18> 洗浄後のPCB汚染機器の容器及び内部部材が、「特別管理一般廃棄物及び特別管理産業廃棄物に係る基準の検定方法」(平成4年厚生省告示第192号)別表第三の第二(拭き取り試験)の判定基準、同別表第三の第三(部材採取試験)の判定基準、及び同別表第四の判定基準をいずれも満たす前記<16>から<17>のいずれかに記載のPCB汚染機器の洗浄処理の終了判定方法である。
<19> 前記<11>から<15>のいずれかに記載の洗浄後の洗浄液のPCB濃度の予測方法により求めた洗浄後の洗浄液のPCB予測濃度から、PCB無害化処理の完了を判定することを特徴とする洗浄によるPCB無害化処理の完了判定方法である。
<20> PCB汚染機器から絶縁油の抜油と洗浄液の注入とに続いて洗浄する1回の洗浄サイクルにおいて、洗浄後の洗浄液のPCB予測濃度が0.5ppm以下であれば洗浄後のPCB汚染機器の容器及び内部部材がPCB無害化基準を満たす前記<19>に記載の洗浄によるPCB無害化処理の完了判定方法である。
<21> 洗浄後のPCB汚染機器の容器及び内部部材が、「特別管理一般廃棄物及び特別管理産業廃棄物に係る基準の検定方法」(平成4年厚生省告示第192号)別表第三の第二(拭き取り試験)の判定基準、同別表第三の第三(部材採取試験)の判定基準、及び同別表第四の判定基準をいずれも満たす前記<19>から<20>のいずれかに記載の洗浄によるPCB無害化処理の完了判定方法である。
As an aspect of this invention, it is as follows, for example.
<1> After cleaning a PCB-contaminated device filled with insulating oil containing polychlorinated biphenyl (PCB) and contaminated with PCB with a cleaning solution, the end of the cleaning process is determined from the PCB concentration of the cleaning solution. This is a method for determining the end of a cleaning process for a PCB-contaminated device.
<2> The method for determining completion of cleaning processing of a PCB-contaminated device according to <1>, which is used for cleaning at least one of a PCB-contaminated device in use and a used PCB-contaminated device.
<3> The method for determining the end of the cleaning process for a PCB-contaminated device according to any one of <1> to <2>, which is used for at least one of heating forced circulation cleaning and electric charge natural circulation cleaning.
<4> The PCB contamination apparatus according to any one of <1> to <3>, wherein the cleaning liquid is at least one selected from an oil substantially free of PCB and an organic solvent capable of dissolving PCB. This is a method for determining the end of a cleaning process.
<5> The PCB contamination according to any one of <1> to <4>, wherein the PCB contaminated device is at least one selected from a small transformer, a medium transformer, a large transformer, and a super large transformer. This is a method for determining the end of the cleaning process of the device.
<6> After the PCB-contaminated equipment filled with insulating oil containing polychlorinated biphenyl (PCB) and contaminated with PCB is cleaned with the cleaning solution, the completion of PCB detoxification treatment is judged from the PCB concentration of the cleaning solution This is a method for determining the completion of the PCB detoxification process by cleaning.
<7> The method for determining completion of PCB detoxification processing by cleaning according to <6>, which is used for cleaning at least one of in-use PCB-contaminated equipment and used PCB-contaminated equipment.
<8> A method for determining the completion of PCB detoxification treatment by cleaning according to any one of <6> to <7>, which is used in at least one of heating forced circulation cleaning and electrical charging natural circulation cleaning.
<9> The PCB harmless by the cleaning according to any one of <6> to <8>, wherein the cleaning liquid is at least one selected from an oil substantially free of PCB and an organic solvent capable of dissolving PCB This is a method for determining whether to complete the process.
<10> By the cleaning according to any one of <6> to <9>, wherein the PCB-contaminated equipment is at least one selected from a small transformer, a medium transformer, a large transformer, and a super-large transformer. This is a method for determining completion of PCB detoxification processing.
<11> A method for predicting the PCB concentration of the cleaning liquid after cleaning before cleaning the PCB contaminated equipment filled with insulating oil containing polychlorinated biphenyl (PCB) and contaminated with PCB with the cleaning liquid,
From the PCB concentration of the insulating oil before cleaning the PCB-contaminated equipment, the nameplate weight of the PCB-contaminated equipment, and the amount of nameplate oil of the PCB-contaminated equipment, the predicted PCB concentration of the cleaning liquid after cleaning is obtained by the following Equation 3. This is a method for predicting the PCB concentration of the cleaning liquid after cleaning.
[Formula 3]
PCB predicted concentration of cleaning solution after cleaning =
[(Internal member coefficient x Name plate weight x Internal member oil content coefficient x PCB concentration of insulating oil before cleaning) + (Name plate oil amount 2/3 x Container residual oil coefficient x PCB concentration of insulating oil before washing)] / (Name plate (Oil quantity x Insulating oil specific gravity)
However, in said Numerical formula 3, the said nameplate weight represents the total weight of the PCB contamination apparatus containing the insulating oil described in the nameplate of the said PCB contamination apparatus. The amount of the nameplate oil is the total amount of oil described on the nameplate of the PCB-contaminated equipment, and is set to 2/3 power in consideration of the contact area of the oil for calculating the amount of adhesion to the container wall surface and the container bottom surface. The internal member oil impregnation coefficient represents a coefficient for obtaining the oil content in the internal member of the PCB-contaminated equipment. The internal member coefficient represents a coefficient for obtaining the internal member weight from the nameplate weight. The container residual oil coefficient represents a coefficient for calculating the amount of insulating oil remaining on the container wall surface and the container bottom surface of the PCB-contaminated equipment after the insulating oil is extracted from the PCB-contaminated equipment.
<12> The method for predicting a PCB concentration of a cleaning liquid after cleaning according to <11>, which is used for cleaning at least one of in-use PCB contaminated equipment and used PCB contaminated equipment.
<13> The method for predicting the PCB concentration of the cleaning liquid after cleaning according to any one of <11> to <12>, which is used for at least one of heating forced circulation cleaning and electric charging natural circulation cleaning.
<14> The cleaning liquid after cleaning according to any one of <11> to <13>, wherein the cleaning liquid is at least one selected from an oil substantially free of PCB and an organic solvent capable of dissolving PCB This is a method for predicting the PCB concentration.
<15> After cleaning according to any one of <11> to <14>, wherein the PCB contaminated device is at least one selected from a small transformer, a medium transformer, a large transformer, and a super large transformer. This is a method for predicting the PCB concentration of the cleaning liquid.
<16> The end of the cleaning process is determined from the predicted PCB concentration of the cleaning liquid after cleaning obtained by the method for predicting the PCB concentration of the cleaning liquid after cleaning according to any one of <11> to <15>. This is a method for determining the end of the cleaning process for the PCB-contaminated equipment.
<17> In one cleaning cycle in which the insulating oil is drained from the PCB-contaminated equipment and the cleaning liquid is injected, if the predicted PCB concentration of the cleaning liquid after cleaning is 0.5 ppm or less, the PCB-contaminated equipment after cleaning This is a method for determining the end of the cleaning process for PCB-contaminated equipment according to <16>, in which the container and the internal member satisfy the PCB detoxification standard.
<18> Containers and internal components of PCB-contaminated equipment after cleaning are listed in “Approval Method for Standards Related to Specially Managed General Waste and Specially Controlled Industrial Waste” (Ministry of Health, Welfare Notification No. 192). Any one of <16> to <17> satisfying all of the second (wiping test) judgment standard, the third third (member sampling test) judgment standard, and the fourth judgment standard of the same table This is a method for determining the end of the cleaning process for PCB contaminated equipment.
<19> Determining the completion of the PCB detoxification process from the predicted PCB concentration of the cleaning liquid after cleaning obtained by the method for predicting the PCB concentration of the cleaning liquid after cleaning according to any one of <11> to <15> This is a method for determining completion of PCB detoxification processing by cleaning.
<20> In a single cleaning cycle in which the insulating oil is drained from the PCB contaminated equipment and the cleaning liquid is injected, if the predicted PCB concentration of the cleaning liquid after cleaning is 0.5 ppm or less, the PCB contaminated equipment after cleaning This is a method for determining the completion of PCB detoxification treatment by cleaning according to <19>, wherein the container and the internal member satisfy the PCB detoxification criteria.
<21> Containers and internal components of PCB-contaminated equipment after cleaning are listed in “Approval Method for Standards Concerning Special Management General Waste and Special Management Industrial Waste” (Ministry of Health, Welfare Notification No. 192) Any one of <19> to <20> satisfying all of the second (wiping test) judgment standard, the third third (part sampling test) judgment standard, and the fourth judgment standard of the same table This is a method for determining the completion of the PCB detoxification process by cleaning.

Claims (21)

ポリ塩化ビフェニル(PCB)を含む絶縁油が充填されPCBで汚染されているPCB汚染機器を洗浄液で洗浄した後、洗浄液のPCB濃度から、洗浄処理の終了を判定することを特徴とするPCB汚染機器の洗浄処理の終了判定方法。   A PCB-contaminated device characterized in that after cleaning a PCB-contaminated device filled with insulating oil containing polychlorinated biphenyl (PCB) and contaminated with PCB with a cleaning solution, the end of the cleaning process is determined from the PCB concentration of the cleaning solution. Method for determining the end of the cleaning process. 使用中PCB汚染機器及び使用済みPCB汚染機器の少なくともいずれかの洗浄に用いられる請求項1に記載のPCB汚染機器の洗浄処理の終了判定方法。   The method for determining the end of a cleaning process for a PCB-contaminated device according to claim 1, which is used for cleaning at least one of a PCB-contaminated device in use and a used PCB-contaminated device. 加熱強制循環洗浄及び課電自然循環洗浄の少なくともいずれかに用いられる請求項1から2のいずれかに記載のPCB汚染機器の洗浄処理の終了判定方法。   The method for determining the end of a cleaning process for a PCB-contaminated device according to any one of claims 1 to 2, wherein the method is used for at least one of heating forced circulation cleaning and electrical charging natural circulation cleaning. 洗浄液が、PCBを実質的に含まない油、及びPCBを溶解可能な有機溶剤から選択される少なくとも1種である請求項1から3のいずれかに記載のPCB汚染機器の洗浄処理の終了判定方法。   The method for determining the end of the cleaning process for PCB-contaminated equipment according to any one of claims 1 to 3, wherein the cleaning liquid is at least one selected from an oil substantially free of PCB and an organic solvent capable of dissolving PCB. . PCB汚染機器が、小型変圧器、中型変圧器、大型変圧器、及び超大型変圧器から選択される少なくとも1種である請求項1から4のいずれかに記載のPCB汚染機器の洗浄処理の終了判定方法。   The PCB contaminated equipment cleaning process according to any one of claims 1 to 4, wherein the PCB contaminated equipment is at least one selected from a small transformer, a medium transformer, a large transformer, and an extra large transformer. Judgment method. ポリ塩化ビフェニル(PCB)を含む絶縁油が充填されPCBで汚染されているPCB汚染機器を洗浄液で洗浄した後、洗浄液のPCB濃度から、PCB無害化処理の完了を判定することを特徴とする洗浄によるPCB無害化処理の完了判定方法。   Cleaning after cleaning PCB contaminated equipment filled with insulating oil containing polychlorinated biphenyl (PCB) and contaminated with PCB with cleaning liquid, and determining completion of PCB detoxification process from PCB concentration of cleaning liquid Method for determining the completion of PCB detoxification processing by a computer. 使用中PCB汚染機器及び使用済みPCB汚染機器の少なくともいずれかの洗浄に用いられる請求項6に記載の洗浄によるPCB無害化処理の完了判定方法。   The method for determining completion of PCB detoxification processing by cleaning according to claim 6, which is used for cleaning at least one of in-use PCB-contaminated equipment and used PCB-contaminated equipment. 加熱強制循環洗浄及び課電自然循環洗浄の少なくともいずれかに用いられる請求項6から7のいずれかに記載の洗浄によるPCB無害化処理の完了判定方法。   The method for determining completion of PCB detoxification processing by cleaning according to any one of claims 6 to 7, wherein the method is used for at least one of heating forced circulation cleaning and electric charging natural circulation cleaning. 洗浄液が、PCBを実質的に含まない油、及びPCBを溶解可能な有機溶剤から選択される少なくとも1種である請求項6から8のいずれかに記載の洗浄によるPCB無害化処理の完了判定方法。   The method for determining completion of PCB detoxification treatment by cleaning according to any one of claims 6 to 8, wherein the cleaning liquid is at least one selected from an oil substantially free of PCB and an organic solvent capable of dissolving PCB. . PCB汚染機器が、小型変圧器、中型変圧器、大型変圧器、及び超大型変圧器から選択される少なくとも1種である請求項6から9のいずれかに記載の洗浄によるPCB無害化処理の完了判定方法。   The PCB detoxification process by cleaning according to any one of claims 6 to 9, wherein the PCB contaminated device is at least one selected from a small transformer, a medium transformer, a large transformer, and a super-large transformer. Judgment method. ポリ塩化ビフェニル(PCB)を含む絶縁油が充填されPCBで汚染されているPCB汚染機器を洗浄液で洗浄する前に洗浄後の洗浄液のPCB濃度を予測する方法であって、
前記PCB汚染機器を洗浄前の絶縁油のPCB濃度、前記PCB汚染機器の銘板重量、及び前記PCB汚染機器の銘板油量から、下記数式3により洗浄後の洗浄液のPCB予測濃度を求めることを特徴とする洗浄後の洗浄液のPCB濃度の予測方法。
[数式3]
洗浄後の洗浄液のPCB予測濃度=
[(内部部材係数×銘板重量×内部部材含油係数×洗浄前の絶縁油のPCB濃度)+(銘板油量2/3×容器残油係数×洗浄前の絶縁油のPCB濃度)]/(銘板油量×絶縁油比重)
ただし、前記数式3中、前記銘板重量は、前記PCB汚染機器の銘板に記載されている絶縁油を含むPCB汚染機器の総重量を表す。前記銘板油量は、前記PCB汚染機器の銘板に記載されている総油量であり、容器壁面及び容器底面への付着量算出のため油の接触面積を考慮して2/3乗とした。前記内部部材含油係数は、前記PCB汚染機器の内部部材中の油含有量を求める係数を表す。前記内部部材係数は、前記銘板重量から内部部材重量を求める係数を表す。前記容器残油係数は、前記PCB汚染機器から絶縁油を抜油後に前記PCB汚染機器の容器壁面及び容器底面に残存する絶縁油量を算出する係数を表す。
A method for predicting the PCB concentration of a cleaning liquid after cleaning before cleaning the PCB contaminated equipment filled with insulating oil containing polychlorinated biphenyl (PCB) and contaminated with PCB with the cleaning liquid,
From the PCB concentration of the insulating oil before cleaning the PCB-contaminated equipment, the nameplate weight of the PCB-contaminated equipment, and the amount of nameplate oil of the PCB-contaminated equipment, the predicted PCB concentration of the cleaning liquid after cleaning is obtained by the following Equation 3. A method for predicting the PCB concentration of the cleaning liquid after cleaning.
[Formula 3]
PCB predicted concentration of cleaning solution after cleaning =
[(Internal member coefficient x Name plate weight x Internal member oil content coefficient x PCB concentration of insulating oil before cleaning) + (Name plate oil amount 2/3 x Container residual oil coefficient x PCB concentration of insulating oil before washing)] / (Name plate (Oil quantity x Insulating oil specific gravity)
However, in said Numerical formula 3, the said nameplate weight represents the total weight of the PCB contamination apparatus containing the insulating oil described in the nameplate of the said PCB contamination apparatus. The amount of the nameplate oil is the total amount of oil described on the nameplate of the PCB-contaminated equipment, and is set to 2/3 power in consideration of the contact area of the oil for calculating the amount of adhesion to the container wall surface and the container bottom surface. The internal member oil impregnation coefficient represents a coefficient for obtaining the oil content in the internal member of the PCB-contaminated equipment. The internal member coefficient represents a coefficient for obtaining the internal member weight from the nameplate weight. The container residual oil coefficient represents a coefficient for calculating the amount of insulating oil remaining on the container wall surface and the container bottom surface of the PCB-contaminated equipment after the insulating oil is extracted from the PCB-contaminated equipment.
使用中PCB汚染機器及び使用済みPCB汚染機器の少なくともいずれかの洗浄に用いられる請求項11に記載の洗浄後の洗浄液のPCB濃度の予測方法。   The method for predicting the PCB concentration of the cleaning liquid after cleaning according to claim 11, which is used for cleaning at least one of in-use PCB-contaminated equipment and used PCB-contaminated equipment. 加熱強制循環洗浄及び課電自然循環洗浄の少なくともいずれかに用いられる請求項11から12のいずれかに記載の洗浄後の洗浄液のPCB濃度の予測方法。   The method for predicting the PCB concentration of a cleaning liquid after cleaning according to any one of claims 11 to 12, wherein the method is used for at least one of heating forced circulation cleaning and electrical charging natural circulation cleaning. 洗浄液が、PCBを実質的に含まない油、及びPCBを溶解可能な有機溶剤から選択される少なくとも1種である請求項11から13のいずれかに記載の洗浄後の洗浄液のPCB濃度の予測方法。   The method for predicting the PCB concentration of a cleaning liquid after cleaning according to any one of claims 11 to 13, wherein the cleaning liquid is at least one selected from an oil substantially free of PCB and an organic solvent capable of dissolving PCB. . PCB汚染機器が、小型変圧器、中型変圧器、大型変圧器、及び超大型変圧器から選択される少なくとも1種である請求項11から14のいずれかに記載の洗浄後の洗浄液のPCB濃度の予測方法。   The PCB concentration of the cleaning liquid after cleaning according to any one of claims 11 to 14, wherein the PCB contaminated device is at least one selected from a small transformer, a medium transformer, a large transformer, and a super large transformer. Prediction method. 請求項11から15のいずれかに記載の洗浄後の洗浄液のPCB濃度の予測方法により求めた洗浄後の洗浄液のPCB予測濃度から、洗浄処理の終了を判定することを特徴とするPCB汚染機器の洗浄処理の終了判定方法。   An end of the cleaning process is determined from the predicted PCB concentration of the cleaning liquid after cleaning obtained by the method for predicting the PCB concentration of the cleaning liquid after cleaning according to any one of claims 11 to 15. Method for determining the end of the cleaning process. PCB汚染機器から絶縁油の抜油と洗浄液の注入とに続いて洗浄する1回の洗浄サイクルにおいて、洗浄後の洗浄液のPCB予測濃度が0.5ppm以下であれば洗浄後のPCB汚染機器の容器及び内部部材がPCB無害化基準を満たす請求項16に記載のPCB汚染機器の洗浄処理の終了判定方法。   In a single cleaning cycle in which the insulating oil is drained from the PCB-contaminated equipment and the cleaning liquid is injected, if the predicted PCB concentration of the cleaning liquid after cleaning is 0.5 ppm or less, the container of the PCB-contaminated equipment after cleaning and The method for determining the end of a cleaning process for a PCB-contaminated device according to claim 16, wherein the internal member satisfies a PCB detoxification standard. 洗浄後のPCB汚染機器の容器及び内部部材が、「特別管理一般廃棄物及び特別管理産業廃棄物に係る基準の検定方法」(平成4年厚生省告示第192号)別表第三の第二(拭き取り試験)の判定基準、同別表第三の第三(部材採取試験)の判定基準、及び同別表第四の判定基準をいずれも満たす請求項16から17のいずれかに記載のPCB汚染機器の洗浄処理の終了判定方法。   The container and internal parts of the PCB-contaminated equipment after washing are “test method for standards pertaining to specially managed general waste and specially controlled industrial waste” (Notification No. 192 of the Ministry of Health, Welfare 1992). 18. The cleaning of PCB-contaminated equipment according to any one of claims 16 to 17, which satisfies all of the determination criteria of Test (3), the determination criteria of Third (Parts Extraction Test) of Attached Table 3, and the determination criteria of Attached Table 4 Processing end determination method. 請求項11から15のいずれかに記載の洗浄後の洗浄液のPCB濃度の予測方法により求めた洗浄後の洗浄液のPCB予測濃度から、PCB無害化処理の完了を判定することを特徴とする洗浄によるPCB無害化処理の完了判定方法。   The completion of the PCB detoxification process is determined from the predicted PCB concentration of the washed liquid obtained by the method for predicting the PCB concentration of the washed liquid after washing according to any one of claims 11 to 15. Completion judgment method of PCB detoxification process. PCB汚染機器から絶縁油の抜油と洗浄液の注入とに続いて洗浄する1回の洗浄サイクルにおいて、洗浄後の洗浄液のPCB予測濃度が0.5ppm以下であれば洗浄後のPCB汚染機器の容器及び内部部材がPCB無害化基準を満たす請求項19に記載の洗浄によるPCB無害化処理の完了判定方法。   In a single cleaning cycle in which the insulating oil is drained from the PCB-contaminated equipment and the cleaning liquid is injected, if the predicted PCB concentration of the cleaning liquid after cleaning is 0.5 ppm or less, the container of the PCB-contaminated equipment after cleaning and 20. The method for determining completion of PCB detoxification processing by cleaning according to claim 19, wherein the internal member satisfies the PCB detoxification criteria. 洗浄後のPCB汚染機器の容器及び内部部材が、「特別管理一般廃棄物及び特別管理産業廃棄物に係る基準の検定方法」(平成4年厚生省告示第192号)別表第三の第二(拭き取り試験)の判定基準、同別表第三の第三(部材採取試験)の判定基準、及び同別表第四の判定基準をいずれも満たす請求項19から20のいずれかに記載の洗浄によるPCB無害化処理の完了判定方法。   The container and internal parts of the PCB-contaminated equipment after washing are “test method for standards pertaining to specially managed general waste and specially controlled industrial waste” (Notification No. 192 of the Ministry of Health, Welfare 1992). 21. The PCB detoxification by cleaning according to any one of claims 19 to 20, which satisfies all of the test criteria of the test (3), the third criteria of the third table (part sampling test), and the fourth criteria of the same table Processing completion judgment method.
JP2014083207A 2014-04-14 2014-04-14 Method for determining termination of cleaning process for PCB contaminated equipment, method for determining completion of PCB detoxification process by cleaning, and method for predicting PCB concentration of cleaning liquid after cleaning Active JP6324182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014083207A JP6324182B2 (en) 2014-04-14 2014-04-14 Method for determining termination of cleaning process for PCB contaminated equipment, method for determining completion of PCB detoxification process by cleaning, and method for predicting PCB concentration of cleaning liquid after cleaning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014083207A JP6324182B2 (en) 2014-04-14 2014-04-14 Method for determining termination of cleaning process for PCB contaminated equipment, method for determining completion of PCB detoxification process by cleaning, and method for predicting PCB concentration of cleaning liquid after cleaning

Publications (2)

Publication Number Publication Date
JP2015202455A true JP2015202455A (en) 2015-11-16
JP6324182B2 JP6324182B2 (en) 2018-05-16

Family

ID=54596270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014083207A Active JP6324182B2 (en) 2014-04-14 2014-04-14 Method for determining termination of cleaning process for PCB contaminated equipment, method for determining completion of PCB detoxification process by cleaning, and method for predicting PCB concentration of cleaning liquid after cleaning

Country Status (1)

Country Link
JP (1) JP6324182B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017124369A (en) * 2016-01-14 2017-07-20 株式会社明電舎 PCB cleaning method and PCB cleaning apparatus
JP2020157216A (en) * 2019-03-26 2020-10-01 一般財団法人電力中央研究所 Method for cleaning tank

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002260932A (en) * 2001-02-27 2002-09-13 Hokuriku Denki Seizo Kk Method for draining insulating oil in disposal step of transformer and method for cleaning inside of insulation case
JP2008229473A (en) * 2007-03-20 2008-10-02 Toshiba Corp Method of removing pcb in trace pcb contaminated electric equipment
JP2009260283A (en) * 2008-03-17 2009-11-05 Central Res Inst Of Electric Power Ind Method of cleaning pcb contaminated transformer and cleaning apparatus
JP2014062799A (en) * 2012-09-21 2014-04-10 Tokyo Electric Power Co Inc:The Estimation method of the number of days required for cleaning treatment of transformer tank contaminated by pcb

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002260932A (en) * 2001-02-27 2002-09-13 Hokuriku Denki Seizo Kk Method for draining insulating oil in disposal step of transformer and method for cleaning inside of insulation case
JP2008229473A (en) * 2007-03-20 2008-10-02 Toshiba Corp Method of removing pcb in trace pcb contaminated electric equipment
JP2009260283A (en) * 2008-03-17 2009-11-05 Central Res Inst Of Electric Power Ind Method of cleaning pcb contaminated transformer and cleaning apparatus
JP2014062799A (en) * 2012-09-21 2014-04-10 Tokyo Electric Power Co Inc:The Estimation method of the number of days required for cleaning treatment of transformer tank contaminated by pcb

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017124369A (en) * 2016-01-14 2017-07-20 株式会社明電舎 PCB cleaning method and PCB cleaning apparatus
JP2020157216A (en) * 2019-03-26 2020-10-01 一般財団法人電力中央研究所 Method for cleaning tank

Also Published As

Publication number Publication date
JP6324182B2 (en) 2018-05-16

Similar Documents

Publication Publication Date Title
JP6324182B2 (en) Method for determining termination of cleaning process for PCB contaminated equipment, method for determining completion of PCB detoxification process by cleaning, and method for predicting PCB concentration of cleaning liquid after cleaning
Elmoudi Evaluation of power system harmonic effects on transformers: Hot spot calculation and loss of life estimation
JP5436889B2 (en) Method and apparatus for cleaning PCB contaminated transformer
Suwanasri et al. Risk assessment based on condition and importance criteria for power transformer in Thailand transmission network
JP4994899B2 (en) Flow electrification diagnosis method for oil-filled electrical equipment
Ekanayake et al. Application of polarization based measurement techniques for diagnosis of field transformers
Wang et al. Detailed procedures of retrofilling transformers with FR3 natural ester and residual mineral oil content testing
Woodman et al. Modeling harmonic impacts of electric vehicle chargers on distribution networks
Maneerot et al. Studies of electrical and thermal characteristics of natural ester immersed transformer compared with mineral oil immersed and palm oil immersed transformer
JP4898507B2 (en) PCB removal method for PCB-contaminated electrical equipment
Havran et al. Dielectric relaxation response of electrical insulating liquids under different natures of thermal stress
Cliteur et al. Condition assessment of power transmission and distribution components
Ren et al. Research on some related mechanisms of corrosive sulfur problems in mineral oils
Khalyasmaa et al. Development of 110-220 kV power transformer model for equipment functional state assessment system
Joshi et al. Thermal analysis of oil cooled transformer
Lybeck et al. Online monitoring technical basis and analysis framework for large power transformers; Interim report for FY 2012
JP5892474B2 (en) Method for estimating the number of days to clean a transformer container contaminated with PCB
Souza Melo et al. Identifying hot spots in GSU power transformers using multiple methods
Lorin et al. Transformer condition assessment: Methodologies and on-site repair solutions
Lundgaard et al. Ageing and restoration of transformer windings
Lutchman Evaluation of an Efficiencent Transformer Core Design
JP2015231599A (en) Cleaning and detoxifying treatment method of trace pcb contaminated waste electrical equipment and the like
Tchounga et al. Multiphysics Modelling And Thermal Performance Of A Prototype Transformer Filled With Bio-Based Insulating Oil Under Various Load Conditions
Schichler et al. High-voltage Tests and Measurements during the Life Cycle of GIS
Bandyopadhyay Transformer diagnostics in the practical field

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180410

R150 Certificate of patent or registration of utility model

Ref document number: 6324182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250