JP2015201415A - heat dissipation structure for LED cooling - Google Patents

heat dissipation structure for LED cooling Download PDF

Info

Publication number
JP2015201415A
JP2015201415A JP2014087701A JP2014087701A JP2015201415A JP 2015201415 A JP2015201415 A JP 2015201415A JP 2014087701 A JP2014087701 A JP 2014087701A JP 2014087701 A JP2014087701 A JP 2014087701A JP 2015201415 A JP2015201415 A JP 2015201415A
Authority
JP
Japan
Prior art keywords
heat
outer shell
heat dissipation
shell
led element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014087701A
Other languages
Japanese (ja)
Inventor
嘉彦 原村
Yoshihiko Haramura
嘉彦 原村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2014087701A priority Critical patent/JP2015201415A/en
Publication of JP2015201415A publication Critical patent/JP2015201415A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an LED light bulb that can ensure a heat dissipation amount below a permissible temperature of an LED element.SOLUTION: An LED element 1 is cooled by using heat dissipation from a surface that transmits light through a wall that transmits visible light, as well as radiates light well with a different wavelength, in particular, far-infrared light contributing heat dissipation. Although this heat radiation structure has a ball shell shaped heat pipe, in which saturated liquid and steam is confined, a heat absorption part 6 has a small area in an edge portion of the ball shell, whereas a heat dissipation part is a ball shell surface and has a much larger area compared to the hear absorption part 6. Heat is absorbed at the heat absorption part 6 by evaporation of a working fluid, condensed at an internal surface of an outer shell 5 exposed to the outside, and dissipated from an external surface thereof by heat emission and heat transfer by convection. Because the heat is transferred to the surface of the outer shell 5 having a large area from the LED element 1 by the same principle with the heat pipe, the temperature of the surface of the outer shell 5 rises up to a temperature close to that of the LED element, thus ensuring a heat dissipation amount below a permissible temperature of the LED element.

Description

この発明は、LED(発光ダイオード)を光源に用いたLED照明装置に関する。The present invention relates to an LED lighting device using an LED (light emitting diode) as a light source.

LEDは省エネルギー性が高く,新しい照明器具の光源として有望である.しかし照明に利用できるLED素子は耐熱性が低い上,高い体積密度で発熱するため,素子の寿命を確保するためには放熱に工夫が必要である.LEDs have high energy savings and are promising as a light source for new lighting fixtures. However, LED elements that can be used for lighting have low heat resistance and generate heat at a high volume density, so it is necessary to devise heat dissipation to ensure the life of the elements.

従来の電球形のLEDでは,ファンによる強制対流を利用するものを除けば,素子における発熱を放散させるため,特許文献1のように,電球底部(口金側)に金属製の放熱面を設け,そこから自然対流・熱放射・またはその両方を利用することが多い.放熱面には熱伝導性が高く軽量なアルミニウムやその合金が用いられることが多い.ヒートパイプを使って光透過性の外殻面まで熱を輸送する方法が特許文献2で提案されているが,この特許では,ヒートパイプ自体の形状として従来の管の形を想定するにとどまっていて,この特許が提案する球形の外殻面全面に効率良く熱を拡散させる方策を提示していない.In conventional bulb-shaped LEDs, except for those that use forced convection by a fan, the heat generated in the element is dissipated, so as in Patent Document 1, a metal heat dissipating surface is provided on the bottom of the bulb (on the base side) From there, natural convection, thermal radiation, or both are often used. The heat-dissipating surface is often made of lightweight aluminum or its alloy with high thermal conductivity. A method of transporting heat to a light-transmitting outer shell surface using a heat pipe has been proposed in Patent Document 2, but this patent only assumes the shape of a conventional tube as the shape of the heat pipe itself. Therefore, no proposal has been presented for the efficient diffusion of heat over the entire spherical outer shell surface proposed by this patent.

特開2008−243780号公報JP 2008-243780 A 特表2012−519350号公報Special table 2012-519350 gazette

電球は,その使用条件によっては放熱性が悪くなる場合がある.例えば,電球を天井のくぼみに設置することは,従来から広く行われてきている.この場合,電球まわりに熱気が滞留するので,自然対流による放熱に期待することは難しく,LED素子の過熱を招くおそれがある.また電球底部からの放射を利用しようとしても,放射面に滞留する熱気によって,また口金部を介した熱伝導によって暖められた壁からの熱放射があって正味の放熱量を減少させるので,やはり素子の過熱を招くおそれがある.このような悪条件下では,過熱のためLED電球の寿命が短縮し,LED電球の省エネルギー性を活用できない.A light bulb may have poor heat dissipation depending on its usage conditions. For example, it has been widely practiced to install a light bulb in a ceiling cavity. In this case, since hot air stays around the bulb, it is difficult to expect heat dissipation by natural convection, which may lead to overheating of the LED element. Even when trying to use the radiation from the bottom of the bulb, the heat radiation from the wall warmed by the hot air staying on the radiation surface and by the heat conduction through the base part reduces the net heat dissipation. There is a risk of overheating of the device. Under such adverse conditions, overheating shortens the life of LED bulbs, making it impossible to utilize the energy-saving properties of LED bulbs.

設置場所を選ばないLED電球の冷却方法として,電球面(照明光が通過する面)からの熱放射を利用することが有効である.電球は,被照明物に光を届けることを目的としているので,光を通過させる電球表面からの放射による放熱を利用する場合には,設置方法にはほとんどよらず,設計時に想定された放熱が確保され,設置場所を選ばない.光を散乱させて柔らかい印象の光を放つようにするために通常用いられている球形またはそれに近い形の外殻面全体を凝縮面とするヒートパイプを使って,LEDで発生した熱をそこに導き,外殻面からの熱放射と自然対流を使って放熱する.It is effective to use heat radiation from the light bulb surface (surface through which illumination light passes) as a cooling method for LED light bulbs regardless of the installation location. The purpose of the light bulb is to deliver light to the object to be illuminated. Therefore, when using heat radiation from the surface of the light bulb that allows light to pass through, the heat radiation assumed at the time of design is not affected by the installation method. It is secured and does not choose the installation location. Using a heat pipe with a condensing surface that is the entire surface of a sphere that is ordinarily used to scatter light and give off a soft impression, the heat generated by the LED is placed there. Guidance and heat radiation using heat radiation from the outer shell and natural convection.

電球の外殻面からの放熱,特に熱放射は,照明として用いられる可視光と同様に被照明物まで届くため,電球の放熱によって暖められた面の影響は極めて少なく,電球の姿勢や設置場所を選ばずに,冷却能力を確保できる.通常LED電球の外殻面として使用される樹脂は,可視光は良く透過するのに対して,放射伝熱に寄与する遠赤外線を良く放射する性質があるので,この冷却方法が可能である.これによって,電球の設置場所,姿勢に関する制約がなくなり,誰もが簡単に設計寿命を満たす条件でLED電球を利用できるようになる.Heat radiation from the outer shell surface of the bulb, especially thermal radiation, reaches the object to be illuminated in the same way as visible light used as lighting. Therefore, the influence of the surface warmed by the heat radiation of the bulb is extremely small, and the attitude and location of the bulb Cooling capacity can be secured without choosing. This cooling method is possible because the resin normally used as the outer surface of LED bulbs transmits visible light well, but emits far infrared rays that contribute to radiant heat transfer. As a result, there are no restrictions on the location and orientation of the light bulb, and anyone can easily use LED light bulbs under conditions that satisfy the design life.

断面図Cross section 断面図Cross section

図1に例示するように,LED素子(1)を配置し,そこでの発熱を周囲に伝導する熱良導性の基板(2)に沿って熱を球形のヒートパイプに導く.このヒートパイプは,管状ではなく,外殻(5)と内殻(3)の2つの部分球殻,ならびにその終端である細い円環板(6)の間に挟まれた空間に作動流体の液と蒸気を封入したものである.円環板(6)を基板に密着させ,LEDで発生した熱を球形ヒートパイプの円環板内表面上で蒸発熱として吸収する.発生した蒸気は最も低温に維持される外殻の内側で凝縮し,外殻内側に設置したウィック(4)を通って吸熱部に環流する.As illustrated in FIG. 1, an LED element (1) is arranged, and heat is guided to a spherical heat pipe along a thermally conductive substrate (2) that conducts heat generation to the surroundings. This heat pipe is not tubular, but the working fluid is contained in a space sandwiched between two partial spherical shells, outer shell (5) and inner shell (3), and a thin circular plate (6) at the end. Liquid and steam are enclosed. The ring plate (6) is brought into close contact with the substrate, and the heat generated by the LED is absorbed as evaporation heat on the inner surface of the ring plate of the spherical heat pipe. The generated steam condenses inside the outer shell, which is maintained at the lowest temperature, and circulates through the wick (4) installed inside the outer shell to the heat sink.

球形ヒートパイプの形状は,球殻形に限るわけではない.曲率が変化する,間隔がほぼ一定の曲面に挟まれる空間がヒートパイプを形成することもあり得るし,平板に挟まれた空間がヒートパイプを形成することもあり得る.また,2つの曲面・平面の間隔が変化するものもあり得る.さらに,蛍光灯でよく見られる直管形またはドーナツ形もあり得る.The shape of the spherical heat pipe is not limited to the spherical shell shape. The space between the curved surfaces where the curvature changes and the spacing is almost constant can form a heat pipe, and the space between flat plates can form a heat pipe. In addition, the distance between two curved surfaces / planes may change. In addition, there may be a straight tube type or a donut shape often found in fluorescent lamps.

ウィックは,布(撚り糸を織ったもの)や単繊維を織ったもので構成することも可能であるし,外殻の素材に微細な溝を切ることによって,または凹凸を付けることによって形成することも可能である.溝の切り方等も,切削・研削・エッチング・型押しなど,凹凸を形成するさまざまな加工方法をとり得る.外殻がガラス製の場合,すりガラスも利用可能である.ウィックの材料は,可視光透過率が高い樹脂又はガラスが効果的であるが,金属等,従来からヒートパイプのウィックとして用いられている材料であり得る.The wick can be composed of cloth (woven of twisted yarn) or woven single fibers, and can be formed by cutting fine grooves in the outer shell material, or by making irregularities. Is also possible. Grooves can be cut in various ways, such as cutting, grinding, etching and embossing. If the outer shell is made of glass, ground glass can also be used. As the wick material, a resin or glass having a high visible light transmittance is effective, but it can be a material conventionally used as a wick of a heat pipe such as a metal.

第2の方法は,図2に例示するような,直列な2つのヒートパイプを使う方法である.LED素子(1)の発熱を電球の対称軸に沿って従来型の1つ目のヒートパイプ(7)を使って外殻(5)の中央まで輸送し,次に,そこを吸熱部とし球形の外殻(5)の内面を凝縮面とする球殻状の2つ目のヒートパイプを使ってさらに外殻面まで熱を輸送する.外殻面を凝縮面とする2つ目のヒートパイプは,概ね半球形の外殻(5)と,蒸気と液が流れる流路を隔てた概ね半球形の内殻(3)を持ち,外殻の内面にウィック(4)が装着される.この面で凝縮した液は,ウィックを浸透して蒸発部(加熱される部分,ヒートパイプ(7)の先端部)に環流する.繊維で作られたウィックの場合,ウィックが外殻の内側にほぼ接するように支持する.The second method is a method using two heat pipes in series as illustrated in FIG. The heat generated by the LED element (1) is transported to the center of the outer shell (5) using the first heat pipe (7) of the conventional type along the symmetry axis of the bulb. Heat is further transported to the outer shell using a second spherical shell-shaped heat pipe with the inner surface of the outer shell (5) as the condensation surface. The second heat pipe with the outer shell surface as the condensation surface has a generally hemispherical outer shell (5) and a generally hemispherical inner shell (3) that separates the flow path for steam and liquid. A wick (4) is attached to the inner surface of the shell. The liquid condensed on this surface permeates the wick and circulates to the evaporation part (the heated part, the tip of the heat pipe (7)). In the case of a wick made of fiber, the wick is supported so that it almost touches the inside of the outer shell.

第3の方法は,第2の方法と類似しているが,熱輸送する液と蒸気の流路が連続した1つの空間を形成しているヒートパイプを使用するものである.ウィック(4)は,外殻の内面に沿って設置し,それが電球の中心軸上の管の中心を通ってLED素子(1)の発熱を吸収する領域まで伸び,凝縮液を環流させる.The third method is similar to the second method, but uses a heat pipe in which a space for continuous transport of heat transporting liquid and steam forms a space. The wick (4) is installed along the inner surface of the outer shell, extends through the center of the tube on the central axis of the bulb to the area where the LED element (1) absorbs heat, and circulates the condensate.

第4の方法は,第3の方法と類似しているが,ウィック(4)を内殻の表面に設置し,それが電球の中心軸上の管の管壁に沿って伸び,LED素子(1)の発熱を吸収する領域まで達し,凝縮液を環流させる.この方法は,吸熱部付近の凝縮液の流れと蒸発した蒸気の流れを第3の方法に比べて改善する.内殻から周囲への放射の一部を外殻が吸収するため,同じ温度差で生じる放熱量は小さくなるが,放熱は可能である.The fourth method is similar to the third method, except that the wick (4) is placed on the surface of the inner shell, which extends along the tube wall of the tube on the central axis of the bulb, and the LED element ( Reach the heat absorption area of 1) and circulate the condensate. This method improves the flow of condensate near the endothermic part and the flow of evaporated vapor compared to the third method. Because the outer shell absorbs part of the radiation from the inner shell to the surroundings, the amount of heat released due to the same temperature difference is reduced, but heat dissipation is possible.

前記実施例1から4に対して,球形のヒートパイプを蒸気流に沿った単純な壁で分割することが可能である.For Examples 1 to 4, it is possible to divide the spherical heat pipe with a simple wall along the steam flow.

前記実施例1から4に対して,球形のヒートパイプを蒸気流と垂直な方向に複数のヒートパイプに分割することが可能である.この場合,特許文献2が想定している,円形またはそれに近い断面のヒートパイプによって熱を拡散したあと外殻に相当する分厚い透明材料を通して外殻表面まで熱を拡散させる方法は,この発明には含めず,外殻表面に伝わる熱の過半が外殻外面とほぼ一定間隔の外殻内面で凝縮する場合に限定する.Compared to Examples 1 to 4, the spherical heat pipe can be divided into a plurality of heat pipes in a direction perpendicular to the steam flow. In this case, a method of diffusing heat to a surface of the outer shell through a thick transparent material corresponding to the outer shell after the heat is diffused by a heat pipe having a circular shape or a cross section close thereto, which is assumed in Patent Document 2, is included in the present invention. Not included, limited to the case where the majority of the heat transferred to the outer shell surface condenses on the outer surface of the outer shell and the inner surface of the outer shell at almost regular intervals.

外殻面の形状がろうそくの炎形の場合など,設置方向が限定される電球では,重力によって凝縮液が蒸発部(吸熱部)に流れれば良く,ウィックのないヒートパイプ(ヒートサイフォン)もあり得る.In a light bulb with a limited installation direction, such as when the shape of the outer shell surface is a candle flame, it is sufficient that the condensate flows to the evaporation part (heat absorption part) by gravity, and there is also a heat pipe (heat siphon) without a wick. possible.

Claims (4)

可視光透過性が高く,波長が4μmから30μmの遠赤外線に対する放射率が高い材料で作られた外殻(5)(LED電球において通常,光を散乱させる外面)と同様の材料で作られた内殻(3)の間を作動液・蒸気が流れる空間としたヒートパイプ(従来からあるヒートパイプとは異なり作動液・蒸気が流れる断面積が大きく変化するのでパイプ状の形状ではないが,ヒートパイプと同じ原理で熱を伝えるもの)によって,LED素子(1)で発生した熱を外殻面まで拡散し,そこからの熱放射と対流伝熱によって周囲に熱を放散させる放熱構造.透過域は,可視光に限定されるのではなく,紫外域・近赤外域を含むことができる.
外殻面の形状は,白熱電球で用いられてきた球やそれに近い形のもの,白熱電球ではほとんどなかった平面またはそれに近い形のものを含む.蛍光灯の直管またはドーナツ形の管,またはそれらに類する形の外殻面とすることもできる.作動液・蒸気が流れる空間の形状は,1つの空間であるもの,単純な壁で並列に(蒸気の流れに沿った壁で)複数の空間に分断したものを含む.
凝縮液を環流させるウィック(4)では,可視光の吸収率の小さい合成樹脂繊維または天然繊維を用いるか,外殻内面に微細な溝または凹凸を形成する.ウィックは,外殻の内側だけでなく,内殻の外側,またはその両方に設置するものを含み,さらに,重力による環流を期待してウィックを設置しないもの(ヒートサイフォン)も含む.
Made of the same material as the outer shell (5) (the outer surface that usually scatters light in LED bulbs) made of a material with high visible light transmission and high emissivity for far-infrared rays with a wavelength of 4 μm to 30 μm A heat pipe with a space where the working fluid / steam flows between the inner shells (3) (unlike conventional heat pipes, the cross-sectional area through which the working fluid / steam flows varies greatly, so it is not a pipe-like shape. A heat dissipation structure that diffuses the heat generated by the LED element (1) to the outer shell surface by the same principle as a pipe) and dissipates the heat to the surroundings by heat radiation and convective heat transfer from there. The transmission region is not limited to visible light, but can include ultraviolet and near infrared regions.
The shape of the outer shell surface includes a sphere that has been used in incandescent bulbs and a shape close to that, and a flat surface that has hardly been used in incandescent bulbs. It can also be a fluorescent tube straight tube or donut tube, or similar shell surface. The shape of the space where the working fluid / steam flows includes a single space, and a simple wall that is divided into multiple spaces in parallel (by walls along the steam flow).
In the wick (4) that circulates the condensate, synthetic resin fibers or natural fibers with low visible light absorption are used, or fine grooves or irregularities are formed on the inner surface of the outer shell. Wick includes not only the inside of the outer shell but also the outside of the inner shell, or both, and also the one that does not install the wick in anticipation of gravity circulation (heat siphon).
ヒートパイプによって吸熱部から最終放熱部に熱を輸送し,最終放熱部の面積が吸熱部の面積に比べて大幅に広い形状であって,しかも,最終放熱部において,凝縮面のうち放熱面とほぼ一定の間隔である部分の面積が,放熱面の過半を占める構造を持つ放熱構造.すなわち,請求項1に記載の球殻形の作動液・蒸気が流れる空間を,流体の流れに垂直な方向に,長方形またはそれに近い形の断面を持つ並列なヒートパイプに分割したもの.分割されたヒートパイプの断面形状は,放熱部側が広い台形,三角形,半円形,またはそれに近い形状のものも含む.Heat is transferred from the heat absorbing part to the final heat radiating part by a heat pipe, and the area of the final heat radiating part is much larger than the area of the heat absorbing part. A heat-dissipating structure with a structure in which the area of the part with almost constant spacing occupies the majority of the heat-dissipating surface. That is, the space in which the spherical shell-shaped hydraulic fluid / vapor flows according to claim 1 is divided into parallel heat pipes having a rectangular or close cross section in a direction perpendicular to the fluid flow. The sectional shape of the divided heat pipes includes trapezoidal, triangular, semicircular, or a shape close to that of the wide heat dissipation part. 請求項1,2に記載された最終放熱部を持ち,その吸熱部まで熱を輸送するために別のヒートパイプを直列に組み合わせたもの.直列に組み合わされたヒートパイプが並列のヒートパイプに分割されて構成されているものをも含む.さらに,ヒートパイプの表面にLEDを設置したものをも含む.It has the final heat dissipating part described in claims 1 and 2 and another heat pipe combined in series to transport heat to the heat absorbing part. This includes heat pipes that are combined in series and divided into parallel heat pipes. In addition, it includes those with LEDs installed on the surface of the heat pipe. 球殻表面を吸熱部として,球殻の縁またはそれに相当する部分を低温熱源に熱的に接触させることで放熱部する,請求項1,2,3に記載されている状況と熱の流れが逆になる吸熱構造.The situation and heat flow according to claim 1, 2, 3 wherein the spherical shell surface is used as a heat absorbing part, and the edge of the spherical shell or a part corresponding thereto is brought into thermal contact with a low-temperature heat source. Reversed endothermic structure.
JP2014087701A 2014-04-03 2014-04-03 heat dissipation structure for LED cooling Pending JP2015201415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014087701A JP2015201415A (en) 2014-04-03 2014-04-03 heat dissipation structure for LED cooling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014087701A JP2015201415A (en) 2014-04-03 2014-04-03 heat dissipation structure for LED cooling

Publications (1)

Publication Number Publication Date
JP2015201415A true JP2015201415A (en) 2015-11-12

Family

ID=54552478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014087701A Pending JP2015201415A (en) 2014-04-03 2014-04-03 heat dissipation structure for LED cooling

Country Status (1)

Country Link
JP (1) JP2015201415A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019082264A (en) * 2017-10-27 2019-05-30 古河電気工業株式会社 Vapor chamber

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5754855U (en) * 1980-09-12 1982-03-31
JPS58154510U (en) * 1982-04-12 1983-10-15 株式会社井上ジャパックス研究所 lighting equipment
JPS62293655A (en) * 1986-06-12 1987-12-21 Furukawa Electric Co Ltd:The Heat pipe cooler for semiconductor and manufacture thereof
JP2008243780A (en) * 2007-03-29 2008-10-09 Tamkang Univ High power led lighting assembly assembled with heat radiation module with heat pipe
US20100271836A1 (en) * 2009-04-28 2010-10-28 Ledon Lighting Jennersdorf Gmbh Led lamp
JP2011014535A (en) * 2009-07-02 2011-01-20 Foxsemicon Integrated Technology Inc Lighting system
JP2011175865A (en) * 2010-02-24 2011-09-08 Nanotech:Kk Doughnut type led lamp
WO2014001483A1 (en) * 2012-06-29 2014-01-03 Osram Gmbh Semiconductor lighting device with a heat pipe
WO2014037908A1 (en) * 2012-09-07 2014-03-13 Koninklijke Philips N.V. Lighting device with integrated lens heat sink

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5754855U (en) * 1980-09-12 1982-03-31
JPS58154510U (en) * 1982-04-12 1983-10-15 株式会社井上ジャパックス研究所 lighting equipment
JPS62293655A (en) * 1986-06-12 1987-12-21 Furukawa Electric Co Ltd:The Heat pipe cooler for semiconductor and manufacture thereof
JP2008243780A (en) * 2007-03-29 2008-10-09 Tamkang Univ High power led lighting assembly assembled with heat radiation module with heat pipe
US20100271836A1 (en) * 2009-04-28 2010-10-28 Ledon Lighting Jennersdorf Gmbh Led lamp
JP2011014535A (en) * 2009-07-02 2011-01-20 Foxsemicon Integrated Technology Inc Lighting system
JP2011175865A (en) * 2010-02-24 2011-09-08 Nanotech:Kk Doughnut type led lamp
WO2014001483A1 (en) * 2012-06-29 2014-01-03 Osram Gmbh Semiconductor lighting device with a heat pipe
WO2014037908A1 (en) * 2012-09-07 2014-03-13 Koninklijke Philips N.V. Lighting device with integrated lens heat sink

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019082264A (en) * 2017-10-27 2019-05-30 古河電気工業株式会社 Vapor chamber

Similar Documents

Publication Publication Date Title
CN102803842B (en) Heat managing device
TWI551817B (en) Phase-change heat dissipation device and lamp
TWI582342B (en) Phase-change heat dissipation device and lamp
CN101876427A (en) Heat dissipation device of LED lamp
KR20100063988A (en) Illuminating device
TW200835886A (en) High power LED lighting device and heat dissipation module thereof
CN201173462Y (en) Large power LED lamp
JP2015201415A (en) heat dissipation structure for LED cooling
TWM484672U (en) Angle-variable phase change light source module
JP6162380B2 (en) lighting equipment
JP6150373B2 (en) LED floodlight
KR20100035477A (en) A circualting and cooling type illuminator using a lihgt source of high illuminating power
EP2711625A1 (en) Light apparatus
CN105650612A (en) Lamp and heat radiation method thereof
KR100879749B1 (en) Cooling device of high capacity LED lamp
JP6480117B2 (en) LED lighting device
JP2009016091A (en) Lighting system
JP6467113B2 (en) lamp
TWI436001B (en) Heat dissipating module for lighting device and lighting device
KR101954723B1 (en) Cooling Module For Lighting Equipment And Cooling Apparatus Using the Same
TWM406690U (en) LED lamp and heat-dissipation device thereof
TWM449903U (en) LED lamp
KR101329269B1 (en) Heat sink for LED module
CN205640812U (en) A special -shaped heat pipe cooling ware for car light
TW200907234A (en) LED lamp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180703