JP2015201135A - Position sensor and sheet-like optical waveguide used therefor - Google Patents

Position sensor and sheet-like optical waveguide used therefor Download PDF

Info

Publication number
JP2015201135A
JP2015201135A JP2014081087A JP2014081087A JP2015201135A JP 2015201135 A JP2015201135 A JP 2015201135A JP 2014081087 A JP2014081087 A JP 2014081087A JP 2014081087 A JP2014081087 A JP 2014081087A JP 2015201135 A JP2015201135 A JP 2015201135A
Authority
JP
Japan
Prior art keywords
core
cladding layer
sheet
over
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014081087A
Other languages
Japanese (ja)
Inventor
裕介 清水
Yusuke Shimizu
裕介 清水
良真 吉岡
Yoshimasa Yoshioka
良真 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2014081087A priority Critical patent/JP2015201135A/en
Priority to PCT/JP2015/058803 priority patent/WO2015156112A1/en
Priority to TW104110007A priority patent/TW201543312A/en
Publication of JP2015201135A publication Critical patent/JP2015201135A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a position sensor which does not sense unwanted parts, such as a little finger and a base thereof, of a hand holding an input device when inputting information such as characters using an input device such as a pen, and a sheet-like optical waveguide used for the same.SOLUTION: A position sensor (A) includes: a sheet-like optical waveguide (W) comprising a grid of cores 2 sandwiched between an undercladding layer 1 and overcladding layer 3, and a light-emitting element 4 and light-receiving element 5 coupled to respective end faces of the cores 2. Refractive index differences between the cores 2 and the cladding layers 1, 3 are designed to be within a specific range. The cores 2 have a modulus of elasticity that is greater than those of the cladding layers 1, 3. When a surface of the sheet-like optical waveguide (W) is pressed, a deformation rate of a cross-section of each core 2 in a pressing direction is smaller than those of cross-sections of the cladding layers 1, 3. Each intersection of the grid of cores 2 is a discontinuous intersection that is separated by a gap in at least one of intersecting directions.

Description

本発明は、押圧位置を光学的に検知する位置センサおよびそれに用いるシート状光導波路に関するものである。   The present invention relates to a position sensor that optically detects a pressed position and a sheet-like optical waveguide used therefor.

従来より、押圧位置を光学的に検知する位置センサが提案されている(例えば、特許文献1参照)。このものは、光路となる複数のコアを縦横方向に配置し、それらコアの周縁部をクラッドで覆うことによりシート状に形成し、上記各コアの一端面に発光素子からの光を入射させ、各コア内を透過してきた光を、各コアの他端面で受光素子により検出するようになっている。そして、そのシート状の位置センサの表面の一部を指等で押圧すると、その押圧部分のコアがつぶれ(押圧方向のコアの断面積が小さくなり)、その押圧部分のコアでは、上記受光素子での光の検出レベルが低下することから、上記押圧位置を検知できるようになっている。   Conventionally, a position sensor that optically detects a pressed position has been proposed (see, for example, Patent Document 1). In this, a plurality of cores serving as optical paths are arranged in the vertical and horizontal directions, and the peripheral portions of the cores are covered with a clad to form a sheet, and light from the light emitting element is incident on one end surface of each of the cores, The light transmitted through each core is detected by the light receiving element at the other end surface of each core. When a part of the surface of the sheet-like position sensor is pressed with a finger or the like, the core of the pressed portion is crushed (the cross-sectional area of the core in the pressing direction is reduced). Since the light detection level at the lowering is reduced, the pressed position can be detected.

一方、文字等を入力する入力装置として、感圧式タッチパネルとディスプレイとを有するものが提案されている(例えば、特許文献2参照)。このものは、上記感圧式タッチパネル上に文字等をペンで入力すると、そのペン先による加圧位置を上記感圧式タッチパネルが感知して上記ディスプレイに出力し、そのディスプレイに上記入力した文字等を表示するようになっている。   On the other hand, what has a pressure-sensitive touch panel and a display is proposed as an input device which inputs a character etc. (for example, refer to patent documents 2). When a character or the like is input on the pressure-sensitive touch panel with a pen, the pressure-sensitive touch panel senses the pressure position of the pen tip and outputs it to the display, and the input character or the like is displayed on the display. It is supposed to be.

特開平8−234895号公報JP-A-8-234895 特開2006−172230号公報JP 2006-172230 A

一般に、紙の上にペン等の筆記具で文字等を書く場合、その筆記具を持つ手の小指やその付け根部分(小指球)等も、その紙の表面に接触する。   In general, when writing a character or the like on a paper with a writing tool such as a pen, the little finger of the hand holding the writing tool or the base portion (the little finger ball) also contacts the surface of the paper.

そのため、上記特許文献1のシート状の位置センサの表面に、ペン等の筆記具で文字等を入力すると、ペン先だけでなく、その筆記具を持つ手の小指やその付け根部分等も上記シート状の位置センサを押圧することから、入力した文字等だけでなく、不要な上記小指やその付け根部分等も検知される。   Therefore, when a character or the like is input to the surface of the sheet-like position sensor of Patent Document 1 with a writing instrument such as a pen, not only the pen tip but also the little finger of the hand holding the writing instrument and the base portion thereof are in the sheet-like shape. Since the position sensor is pressed, not only the input characters and the like but also the unnecessary little finger and the base portion thereof are detected.

上記特許文献2の入力装置に文字等を入力する場合も同様に、上記感圧式タッチパネルが、ペン先による加圧位置だけでなく、その筆記具を持つ手の小指やその付け根部分等による加圧位置を感知するため、入力した文字等だけでなく、不要な上記小指やその付け根部分等も、ディスプレイに表示される。   Similarly, when inputting characters or the like to the input device of Patent Document 2, the pressure-sensitive touch panel is not only the pressure position by the pen tip, but also the pressure position by the little finger of the hand holding the writing instrument or the base portion thereof. Therefore, not only the inputted characters but also the unnecessary little finger and the base portion thereof are displayed on the display.

本発明は、このような事情に鑑みなされたもので、文字等の情報をペン等の入力体で入力する際に、その入力体を持つ手の小指やその付け根部分等の不要部分が感知されないようにした位置センサおよびそれに用いるシート状光導波路の提供をその目的とする。   The present invention has been made in view of such circumstances, and when inputting information such as characters with an input body such as a pen, unnecessary portions such as the little finger of the hand holding the input body and the base portion thereof are not sensed. An object of the present invention is to provide a position sensor and a sheet-like optical waveguide used therefor.

上記の目的を達成するため、本発明は、格子状に形成された複数の線状のコアと、このコアを支持するアンダークラッド層と、上記コアを被覆するオーバークラッド層とを有するシート状光導波路と、上記コアの一端面に接続される発光素子と、上記コアの他端面に接続される受光素子とを備え、それ自体の表面の任意の個所への押圧による、コアの光伝播量の変化によって、押圧個所を特定するシート状の位置センサであって、上記複数の線状のコアにより形成される格子状の一部ないし全部の交差部が、交差する少なくとも1方向を隙間により分断した状態の不連続交差に形成されており、上記位置センサへの押圧が、入力体の、曲率半径R(単位:μm)の先端入力部による押圧であり、その曲率半径Rとコアの厚みT(単位:μm)との比A(=R/T)を用いると、上記コアと上記アンダークラッド層および上記オーバークラッド層との間の屈折率差Δが、下記の式(1)で示される最大値Δmax と、下記の式(2)で示される最小値Δmin との間に設定されており、上記コアの弾性率が、上記アンダークラッド層の弾性率および上記オーバークラッド層の弾性率よりも大きく設定され、上記シート状光導波路の表面の押圧状態で、その押圧方向のコアの断面の変形率が、オーバークラッド層およびアンダークラッド層の断面の変形率よりも小さくなるようになっている位置センサを第1の要旨とする。   In order to achieve the above object, the present invention provides a sheet-like optical waveguide having a plurality of linear cores formed in a lattice shape, an under cladding layer that supports the cores, and an over cladding layer that covers the cores. A waveguide, a light emitting element connected to one end face of the core, and a light receiving element connected to the other end face of the core, and the amount of light propagation of the core by pressing against an arbitrary place on the surface of itself It is a sheet-like position sensor that identifies a pressing position by a change, and at least one direction where a part or all of the lattice-like intersection formed by the plurality of linear cores intersects is separated by a gap. It is formed at a discontinuous intersection of the state, and the pressing to the position sensor is a pressing by the tip input portion of the input body having a curvature radius R (unit: μm), and the curvature radius R and the core thickness T ( Unit: μm) When the ratio A (= R / T) is used, the refractive index difference Δ between the core and the under-cladding layer and the over-cladding layer has a maximum value Δmax represented by the following formula (1), The minimum value Δmin shown in the formula (2) is set, and the elastic modulus of the core is set larger than the elastic modulus of the under cladding layer and the elastic modulus of the over cladding layer, and the sheet A position sensor in which the deformation ratio of the cross section of the core in the pressing direction is smaller than the deformation ratio of the cross sections of the over clad layer and the under clad layer in the pressed state of the surface of the optical waveguide. And

また、本発明は、上記位置センサに用いるシート状光導波路であって、格子状に形成された複数の線状のコアと、このコアを支持するアンダークラッド層と、上記コアを被覆するオーバークラッド層とを有し、上記複数の線状のコアにより形成される格子状の一部ないし全部の交差部が、交差する少なくとも1方向を隙間により分断した状態の不連続交差に形成されており、上記オーバークラッド層の表面の任意の個所への押圧を、入力体の、曲率半径R(単位:μm)の先端入力部による押圧と想定し、その曲率半径Rとコアの厚みT(単位:μm)との比A(=R/T)を用いると、上記コアと上記アンダークラッド層および上記オーバークラッド層との間の屈折率差Δが、下記の式(1)で示される最大値Δmax と、下記の式(2)で示される最小値Δmin との間に設定されており、上記コアの弾性率が、上記アンダークラッド層の弾性率および上記オーバークラッド層の弾性率よりも大きく設定されているシート状光導波路を第2の要旨とする。   Further, the present invention provides a sheet-like optical waveguide used for the position sensor, wherein a plurality of linear cores formed in a lattice shape, an under cladding layer that supports the core, and an over cladding that covers the core And a part or all of the lattice-like intersection formed by the plurality of linear cores is formed in a discontinuous intersection in a state where at least one intersecting direction is divided by a gap, The pressure on the surface of the over clad layer is assumed to be a pressure applied by the tip input portion of the input body having a curvature radius R (unit: μm), and the curvature radius R and the core thickness T (unit: μm) are assumed. )), The refractive index difference Δ between the core and the under-cladding layer and the over-cladding layer has a maximum value Δmax represented by the following formula (1): And expressed by the following formula (2) A sheet-like optical waveguide in which the elastic modulus of the core is set to be larger than the elastic modulus of the under-cladding layer and the elastic modulus of the over-cladding layer. The gist.

Figure 2015201135
Figure 2015201135

Figure 2015201135
Figure 2015201135

なお、本発明において、「変形率」とは、押圧方向における、コア,オーバークラッド層およびアンダークラッド層の押圧前の各厚みに対する、押圧時の各厚みの変化量の割合をいう。   In the present invention, the “deformation rate” refers to a ratio of a change amount of each thickness at the time of pressing to each thickness of the core, the over cladding layer, and the under cladding layer before pressing in the pressing direction.

本発明者らは、複数の線状のコアが格子状に配置形成されたシート状光導波路を有する位置センサの表面に、文字等の情報をペン等の入力体で入力する際に、その入力体を持つ手の部分が感知されないようにすべく、上記コアの光伝播について、研究を重ねた。その研究の過程で、従来のように、入力体の先端入力部(ペン先等)やペンを持つ手の圧力でコアがつぶれる(断面積が小さくなる)ようにするのではなく、逆に、上記圧力でコアがつぶれないよう(断面積が保持されるよう)にすることを着想した。そこで、コアの弾性率を、アンダークラッド層の弾性率およびオーバークラッド層の弾性率よりも大きく設定した。すると、入力体の先端入力部の部分も手の部分も、オーバークラッド層とアンダークラッド層とが押圧方向につぶれるように変形し、コアは、断面積を保持したまま、入力体の先端入力部や手の部分に沿って、アンダークラッド層1に沈むように曲がった。そして、コアの曲がり具合は、入力体の先端入力部の部分では急な曲がりであり、手の部分では緩やかな曲がりであった。その結果、入力体の先端入力部の部分のコアでは、コアの急な曲がりが原因で、コアからの光の漏れ(散乱)が発生し、手の部分のコアでは、コアの曲がりが緩やかであるため、上記光の漏れ(散乱)が発生しないことがわかった。すなわち、入力体の先端入力部の部分のコアでは、受光素子での光の検出レベル(受光量)が低下し、手の部分のコアでは、その検出レベルが低下しないのである。この光の検出レベルの低下から、入力体の先端入力部の位置を検知することができ、その検出レベルが低下しない手の部分は、押圧されていない状態と同じになり、感知されないことを見出した。   When inputting information such as characters with an input body such as a pen on the surface of a position sensor having a sheet-shaped optical waveguide in which a plurality of linear cores are arranged and formed in a lattice shape, the present inventors In order to prevent the part of the hand holding the body from being sensed, research was conducted on the light propagation of the core. In the course of that research, instead of making the core crush (the cross-sectional area is small) by the pressure of the tip of the input body (such as the pen tip) or the hand holding the pen as in the past, The idea was to prevent the core from collapsing with the above pressure (so that the cross-sectional area is maintained). Therefore, the elastic modulus of the core was set to be larger than the elastic modulus of the under cladding layer and the over cladding layer. Then, both the tip input part and the hand part of the input body are deformed so that the over clad layer and the under clad layer are crushed in the pressing direction, and the core maintains the cross-sectional area and the tip input part of the input body. And bent along the hand part so as to sink into the underclad layer 1. The bending of the core was a sharp bend at the tip input portion of the input body and a gentle bend at the hand. As a result, light leakage (scattering) from the core occurs in the core at the tip input part of the input body due to the sharp bending of the core, and the core bending is gentle in the core at the hand part. Therefore, it was found that the light leakage (scattering) does not occur. That is, the detection level (light reception amount) of light at the light receiving element is reduced in the core at the tip input portion of the input body, and the detection level is not reduced in the core at the hand. From this decrease in the light detection level, it is possible to detect the position of the tip input portion of the input body, and the part of the hand where the detection level does not decrease is the same as in the non-pressed state and is found not to be detected. It was.

さらに、本発明者らは、入力体の先端入力部の位置の検知精度を高めるべく、入力体の先端入力部による押圧を原因とする、上記コアからの光の漏れ(散乱)について、研究を重ねた。その研究の過程で、上記光の漏れ(散乱)は、コアとアンダークラッド層およびオーバークラッド層との間の屈折率差Δに依存し、その屈折率差Δは、上記入力体の先端入力部の曲率半径Rとコアの厚みTに依存することを突き止めた。そして、試行錯誤を重ねた結果、上記屈折率差Δを、上記の式(1)で示される最大値Δmax と、上記の式(2)で示される最小値Δmin との間に設定すると、入力体の先端入力部の位置の検知精度を高められることを見出し、本発明に到達した。   Furthermore, the present inventors have conducted research on light leakage (scattering) from the core caused by pressing by the tip input portion of the input body in order to increase the detection accuracy of the position of the tip input portion of the input body. Piled up. In the course of the research, the light leakage (scattering) depends on the refractive index difference Δ between the core and the under-cladding layer and the over-cladding layer, and the refractive index difference Δ is determined by the tip input portion of the input body. It has been determined that it depends on the radius of curvature R and the thickness T of the core. As a result of repeated trial and error, if the refractive index difference Δ is set between the maximum value Δmax expressed by the above equation (1) and the minimum value Δmin expressed by the above equation (2), the input It has been found that the detection accuracy of the position of the tip input part of the body can be improved, and the present invention has been achieved.

なかでも、上記複数の線状のコアにより形成される格子状の一部ないし全部の交差部が、交差する少なくとも1方向を隙間により分断した状態の不連続交差に形成されていると、光の交差損失を低減させることができる。このような知見を本発明者らは得ている。   In particular, when one or all of the lattice-like intersections formed by the plurality of linear cores are formed as discontinuous intersections in a state where at least one intersecting direction is divided by a gap, Crossing loss can be reduced. The present inventors have obtained such knowledge.

本発明の位置センサは、コアの弾性率が、アンダークラッド層の弾性率およびオーバークラッド層の弾性率よりも大きく設定されている。そのため、光導波路のオーバークラッド層の表面を押圧したときに、その押圧方向のコアの断面の変形率が、オーバークラッド層およびアンダークラッド層の断面の変形率よりも小さくなり、押圧方向のコアの断面積が保持される。そして、上記位置センサの表面に、文字等の情報をペン等の入力体で入力すると、ペン先等の先端入力部による押圧部分では、コアの曲がり具合が入力体の先端入力部に沿った急なものとなり、コアからの光の漏れ(散乱)が発生し、入力体を持つ手の部分による押圧部分では、コアの曲がり具合が手に沿った緩やかなものとなり、上記光の漏れ(散乱)が発生しないようにすることができる。そのため、ペン先等の先端入力部で押圧されたコアでは、受光素子での光の検出レベルが低下し、入力体を持つ手で押圧されたコアでは、その検出レベルが低下しないようにすることができる。そして、その光の検出レベルの低下から、ペン先等の先端入力部の位置を検知することができ、その検出レベルが低下しない手の部分は、押圧されていない状態と同じになるため、感知されないようにすることができる。しかも、上記コアにより形成される格子状の一部ないし全部の交差部が、交差する少なくとも1方向を隙間により分断した状態の不連続交差に形成されていることから、光の交差損失を低減させることができる。そのため、上記ペン先等の先端入力部の位置の検知感度を高めることができる。   In the position sensor of the present invention, the elastic modulus of the core is set larger than the elastic modulus of the under cladding layer and the elastic modulus of the over cladding layer. Therefore, when the surface of the over clad layer of the optical waveguide is pressed, the deformation rate of the cross section of the core in the pressing direction becomes smaller than the deformation rate of the cross section of the over clad layer and the under clad layer, The cross-sectional area is maintained. Then, when information such as characters is input to the surface of the position sensor with an input body such as a pen, the bending state of the core suddenly extends along the front end input section of the input body at the pressing portion by the tip input section such as the pen tip. As a result, light leakage (scattering) from the core occurs, and at the pressed part of the hand holding the input body, the bending of the core becomes gentle along the hand, and the above light leakage (scattering) occurs. Can be prevented from occurring. Therefore, in the core pressed by the tip input part such as a pen tip, the detection level of light in the light receiving element is lowered, and in the core pressed by the hand having the input body, the detection level is not lowered. Can do. The position of the tip input portion such as the pen tip can be detected from the decrease in the detection level of the light, and the portion of the hand where the detection level does not decrease is the same as the unpressed state. Can be prevented. In addition, part or all of the lattice-like intersection formed by the core is formed as a discontinuous intersection in a state in which at least one intersecting direction is divided by a gap, thereby reducing the light intersection loss. be able to. Therefore, the detection sensitivity of the position of the tip input unit such as the pen tip can be increased.

さらに、本発明の位置センサは、コアとアンダークラッド層およびオーバークラッド層との間の屈折率差Δが、上記の式(1)で示される最大値Δmax と、上記の式(2)で示される最小値Δmin との間に設定されているため、入力体の先端入力部による押圧を原因とする上記光の検出レベルの低下〔コアからの光の漏れ(散乱)〕が適正化され、入力体の先端入力部の位置の検知精度を高めることができる。   Further, in the position sensor of the present invention, the refractive index difference Δ between the core and the under-cladding layer and the over-cladding layer is expressed by the maximum value Δmax shown by the above formula (1) and the above formula (2). Therefore, the decrease in the light detection level (light leakage (scattering) from the core) caused by pressing by the tip input part of the input body is optimized and the input value is reduced. The detection accuracy of the position of the tip input part of the body can be increased.

また、本発明のシート状光導波路は、複数の線状のコアにより形成される格子状の一部ないし全部の交差部が、交差する少なくとも1方向を隙間により分断した状態の不連続交差に形成されているため、光の交差損失を低減させることができる。さらに、本発明のシート状光導波路は、コアの弾性率が、アンダークラッド層の弾性率およびオーバークラッド層の弾性率よりも大きく設定されているため、オーバークラッド層の表面を押圧したときに、その押圧方向のコアの断面の変形率が、オーバークラッド層およびアンダークラッド層の断面の変形率よりも小さくなり、押圧方向のコアの断面積を保持することができる。しかも、本発明のシート状光導波路は、コアとアンダークラッド層およびオーバークラッド層との間の屈折率差Δが、上記の式(1)で示される最大値Δmax と、上記の式(2)で示される最小値Δmin との間に設定されている。これらのことから、本発明のシート状光導波路は、本発明の上記位置センサの構成として有効である。   Also, the sheet-like optical waveguide of the present invention is formed at discontinuous intersections in which at least one intersecting part of the lattice shape formed by a plurality of linear cores is divided by a gap. Therefore, the cross loss of light can be reduced. Furthermore, the sheet-like optical waveguide of the present invention is set so that the elastic modulus of the core is larger than the elastic modulus of the under-cladding layer and the over-cladding layer, so when pressing the surface of the over-cladding layer, The deformation ratio of the cross section of the core in the pressing direction becomes smaller than the deformation ratio of the cross section of the over cladding layer and the under cladding layer, and the cross sectional area of the core in the pressing direction can be maintained. Moreover, in the sheet-like optical waveguide of the present invention, the refractive index difference Δ between the core and the under-cladding layer and the over-cladding layer has a maximum value Δmax expressed by the above formula (1) and the above formula (2). It is set between the minimum value Δmin indicated by. From these facts, the sheet-like optical waveguide of the present invention is effective as the configuration of the position sensor of the present invention.

本発明の位置センサの一実施の形態を模式的に示す平面図である。It is a top view showing typically one embodiment of a position sensor of the present invention. (a)は、上記位置センサにおける格子状のコアの交差部を拡大して模式的に示す拡大平面図であり、(b)は、上記位置センサの中央部の断面を拡大して模式的に示す拡大断面図である。(A) is an enlarged plan view schematically showing an intersection of lattice-shaped cores in the position sensor, and (b) is an enlarged schematic view of a cross section of a central portion of the position sensor. It is an expanded sectional view shown. (a)は、連続交差部における光の進路を模式的に示す拡大平面図であり、(b)は、不連続交差部における光の進路を模式的に示す拡大平面図である。(A) is an enlarged plan view schematically showing a light path in a continuous intersection, and (b) is an enlarged plan view schematically showing a light path in a discontinuous intersection. (a)は、入力体により押圧された上記位置センサの状態を模式的に示す断面図であり、(b)は、手により押圧された上記位置センサの状態を模式的に示す断面図である。(A) is sectional drawing which shows typically the state of the said position sensor pressed by the input body, (b) is sectional drawing which shows typically the state of the said position sensor pressed by the hand. . (a)〜(e)は、上記格子状のコアの交差部の変形例を模式的に示す拡大平面図である。(A)-(e) is an enlarged plan view which shows typically the modification of the cross | intersection part of the said grid | lattice-like core.

つぎに、本発明の実施の形態を図面にもとづいて詳しく説明する。   Next, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の位置センサの一実施の形態を示す平面図である。この実施の形態の位置センサAは、格子状のコア2を有する四角形のシート状光導波路Wと、上記格子状のコア2を構成する線状のコア2の一端面に接続される発光素子4と、上記線状のコア2の他端面に接続される受光素子5とを備えている。そして、上記発光素子4から発光された光は、上記コア2の中を通り、上記受光素子5で受光されるようになっている。なお、図1では、コア2を鎖線で示しており、鎖線の太さがコア2の太さを示している。また、図1では、コア2の数を略して図示している。そして、図1の矢印は、光の進む方向を示している。   FIG. 1 is a plan view showing an embodiment of the position sensor of the present invention. The position sensor A of this embodiment includes a rectangular sheet-like optical waveguide W having a lattice-like core 2 and a light-emitting element 4 connected to one end face of the linear core 2 constituting the lattice-like core 2. And a light receiving element 5 connected to the other end face of the linear core 2. The light emitted from the light emitting element 4 passes through the core 2 and is received by the light receiving element 5. In FIG. 1, the core 2 is indicated by a chain line, and the thickness of the chain line indicates the thickness of the core 2. In FIG. 1, the number of cores 2 is omitted. And the arrow of FIG. 1 has shown the direction where light travels.

この実施の形態では、上記シート状光導波路Wにおける格子状のコア2の各交差部は、図2(a)に平面図で示すように、交差する4方向の全てが、隙間Gにより分断され、不連続になっている。上記隙間Gの幅dは、0(零)を超え(隙間Gが形成されていればよく)、通常、20μm以下に設定される。そして、上記シート状光導波路Wは、図2(b)に断面図で示すように、上記格子状のコア2がシート状のアンダークラッド層1で支持されシート状のオーバークラッド層3で被覆された状態で形成されている。この実施の形態では、上記隙間Gは、オーバークラッド層3の形成材料で形成されている。   In this embodiment, each of the intersecting portions of the lattice-like core 2 in the sheet-like optical waveguide W is divided by the gap G in all four intersecting directions as shown in a plan view in FIG. Is discontinuous. The width d of the gap G exceeds 0 (zero) (if the gap G is formed) and is usually set to 20 μm or less. In the sheet-like optical waveguide W, the lattice-like core 2 is supported by a sheet-like under clad layer 1 and covered with a sheet-like over clad layer 3 as shown in a sectional view in FIG. It is formed in the state. In this embodiment, the gap G is formed of a material for forming the over clad layer 3.

このように、上記格子状のコア2において、交差部を不連続とすると、光の交差損失を低減させることができる。すなわち、図3(a)に示すように、交差する4方向の全てが連続した交差部では、その交差する1方向〔図3(a)では上方向〕に注目すると、交差部に入射する光の一部は、その光が進んできたコア2と直交するコア2の壁面2aに到達し、その壁面での反射角度が大きいことから、コア2を透過する〔図3(a)の二点鎖線の矢印参照〕。このような光の透過が、交差する上記と反対側の方向〔図3(a)では下方向〕でも発生する。これに対し、図3(b)に示すように、交差する1方向〔図3(b)では上方向〕が隙間Gにより不連続になっていると、上記隙間Gとコア2との界面が形成され、図3(a)においてコア2を透過する光の一部は、上記界面での反射角度が小さくなることから、透過することなく、その界面で反射し、コア2を進み続ける〔図3(b)の二点鎖線の矢印参照〕。このような光の反射が、交差する上記と反対側の方向〔図3(b)では下方向〕でも発生する。このことから、先に述べたように、交差部を不連続とすると、光の交差損失を低減させることができるのである。   Thus, in the lattice-like core 2, if the crossing portion is discontinuous, the light crossing loss can be reduced. That is, as shown in FIG. 3 (a), in an intersection where all four intersecting directions are continuous, if one of the intersecting directions (upward in FIG. 3 (a)) is noted, the light incident on the intersection A part of the light reaches the wall surface 2a of the core 2 orthogonal to the core 2 through which the light has traveled, and is transmitted through the core 2 because the reflection angle at the wall surface is large [two points in FIG. (See chain line arrow). Such transmission of light also occurs in the direction opposite to the above (downward in FIG. 3A). On the other hand, as shown in FIG. 3 (b), when one intersecting direction (upward in FIG. 3 (b)) is discontinuous by the gap G, the interface between the gap G and the core 2 is Part of the light that is formed and passes through the core 2 in FIG. 3 (a) has a smaller reflection angle at the interface, and thus is reflected at the interface without passing through and continues to travel through the core 2 [FIG. 3 (b), see the two-dot chain line arrow]. Such reflection of light also occurs in the direction opposite to the above (downward in FIG. 3B). For this reason, as described above, when the crossing portion is discontinuous, the light crossing loss can be reduced.

また、上記シート状光導波路Wは、上記コア2の弾性率が、上記アンダークラッド層1の弾性率および上記オーバークラッド層3の弾性率よりも大きく設定されている。これにより、上記シート状光導波路Wの表面を押圧したときに、その押圧方向のコア2の断面の変形率が、オーバークラッド層3およびアンダークラッド層1の断面の変形率よりも小さくなるようになっている。   In the sheet-like optical waveguide W, the elastic modulus of the core 2 is set larger than the elastic modulus of the under cladding layer 1 and the elastic modulus of the over cladding layer 3. Thereby, when the surface of the said sheet-like optical waveguide W is pressed, the deformation rate of the cross section of the core 2 of the pressing direction becomes smaller than the deformation rate of the cross section of the over clad layer 3 and the under clad layer 1. It has become.

すなわち、図4(a),(b)に断面図で示すように、上記位置センサAをテーブル等の平面台30の上に載置し、位置センサAの表面の、格子状のコア2に対応する領域に、手20に持ったペン等の入力体10で文字等の情報を書き込む等して入力すると、ペン先等の先端入力部10aによる押圧部分〔図4(a)参照〕も手20の小指やその付け根部分(小指球)等による押圧部分〔図4(b)参照〕も、その押圧方向の断面では、弾性率の小さいオーバークラッド層3とアンダークラッド層1とがつぶれるように変形し、弾性率の大きいコア2は、断面積を保持したまま、先端入力部10aや手20の部分に沿って、アンダークラッド層1に沈むように曲がる。   That is, as shown in cross-sectional views in FIGS. 4A and 4B, the position sensor A is placed on a flat table 30 such as a table, and the surface of the position sensor A is placed on the lattice-like core 2. When information such as characters is written in the corresponding area by writing the information such as characters with the input body 10 such as a pen held in the hand 20, the pressing portion by the tip input portion 10a such as the pen tip [see FIG. The pressing part (see FIG. 4 (b)) of the 20 little fingers and the base part (little finger ball) thereof, etc. also collapses the over-cladding layer 3 and the under-cladding layer 1 having a low elastic modulus in the cross section in the pressing direction. The core 2 that is deformed and has a large elastic modulus is bent so as to sink into the under-cladding layer 1 along the tip input portion 10a and the hand 20 while maintaining the cross-sectional area.

そして、先端入力部10aによる押圧部分では、図4(a)に示すように、その先端入力部10aが尖っていることから、コア2の曲がり具合が急なものとなり、コア2からの光の漏れ(散乱)が発生する〔図4(a)の二点鎖線の矢印参照〕。一方、入力体10を持つ手20による押圧部分では、図4(b)に示すように、その手20が上記先端入力部10aと比較してかなり大きくて丸くなっていることから、コア2の曲がり具合が緩やかなものとなり、上記光の漏れ(散乱)が発生しない(光はコア2内を漏れることなく進む)〔図4(b)の二点鎖線の矢印参照〕。そのため、先端入力部10aで押圧されたコア2では、受光素子5での光の検出レベルが低下し、入力体10を持つ手20で押圧されたコア2では、その検出レベルが低下しないようにすることができる。そして、その光の検出レベルの低下から、先端入力部10aの位置(座標)を検知することができる。その検出レベルが低下しない手20の部分は、押圧されていない状態と同じであるため、感知されない。   And in the press part by the front-end | tip input part 10a, as shown to Fig.4 (a), since the front-end | tip input part 10a is sharp, the bending condition of the core 2 becomes abrupt and the light from the core 2 is light. Leakage (scattering) occurs [see the two-dot chain arrow in FIG. 4 (a)]. On the other hand, in the pressing portion by the hand 20 having the input body 10, as shown in FIG. 4 (b), the hand 20 is considerably larger and rounder than the tip input portion 10a. The curve becomes gradual and the light leakage (scattering) does not occur (the light travels without leaking through the core 2) (see the two-dot chain line arrow in FIG. 4B). Therefore, the detection level of light at the light receiving element 5 is lowered in the core 2 pressed by the tip input portion 10a, and the detection level is not lowered in the core 2 pressed by the hand 20 having the input body 10. can do. The position (coordinates) of the tip input portion 10a can be detected from the decrease in the light detection level. The portion of the hand 20 whose detection level does not decrease is the same as the state where it is not pressed, and is not sensed.

このとき、先に述べたように、上記コア2により形成される格子状の交差部は、不連続交差に形成されていることにより、光の交差損失が低減された状態になっていることから、上記ペン先等の先端入力部10aの位置の検知感度が高くなっている。   At this time, as described above, since the lattice-like intersection formed by the core 2 is formed as a discontinuous intersection, the light intersection loss is reduced. The detection sensitivity of the position of the tip input unit 10a such as the pen tip is high.

さらに、位置センサAは、コア2とアンダークラッド層1およびオーバークラッド層3との間の屈折率差Δが、下記の式(1)で示される最大値Δmax と、下記の式(2)で示される最小値Δmin との間の値に設定されている。これにより、先端入力部10aの位置の検知精度を高めている。なお、下記の式(1),(2)において、Aは、ペン先等の先端入力部10aの曲率半径R(単位:μm)と、コア2の厚みT(単位:μm)との比(R/T)である。   Further, in the position sensor A, the refractive index difference Δ between the core 2 and the under-cladding layer 1 and the over-cladding layer 3 has a maximum value Δmax expressed by the following formula (1) and the following formula (2). It is set to a value between the indicated minimum value Δmin. Thereby, the detection accuracy of the position of the front-end | tip input part 10a is raised. In the following formulas (1) and (2), A is the ratio between the radius of curvature R (unit: μm) of the tip input portion 10a such as a pen tip and the thickness T (unit: μm) of the core 2 ( R / T).

Figure 2015201135
Figure 2015201135

Figure 2015201135
Figure 2015201135

すなわち、上記屈折率差Δが上記最大値Δmax よりも大きいと、先端入力部10aで押圧しても、光の漏れ(散乱)量が少なく、受光素子5での光の検出レベルが充分に低下しないため、先端入力部10aの位置と手20の位置との区別が高精度にできないこととなる。一方、上記屈折率差Δが上記最小値Δmin よりも小さいと、手20による押圧部分でも、光の漏れ(散乱)が発生し、先端入力部10aの位置と手20の位置との区別が高精度にできないこととなる。   That is, when the refractive index difference Δ is larger than the maximum value Δmax, the amount of light leakage (scattering) is small even when pressed by the tip input portion 10a, and the light detection level at the light receiving element 5 is sufficiently lowered. Therefore, the position of the tip input unit 10a and the position of the hand 20 cannot be distinguished with high accuracy. On the other hand, if the refractive index difference Δ is smaller than the minimum value Δmin, light leakage (scattering) occurs even in the pressed portion by the hand 20, and the position of the tip input portion 10a and the position of the hand 20 are highly distinguished. It will not be accurate.

ここで、例えば、上記先端入力部10aの曲率半径R(単位:μm)を100〜1000の範囲内、コア2の厚みT(単位:μm)を10〜100の範囲内、比Aを1〜100の範囲内とすると、屈折率差Δは、1.0×10-3〜7.95×10-2の範囲内となる。なお、比Aが100を超える場合は、最小値Δmin を1.0×10-3(一定)とする。 Here, for example, the radius of curvature R (unit: μm) of the tip input portion 10a is in the range of 100 to 1000, the thickness T (unit: μm) of the core 2 is in the range of 10 to 100, and the ratio A is 1 to 1. If it is in the range of 100, the refractive index difference Δ is in the range of 1.0 × 10 −3 to 7.95 × 10 −2 . When the ratio A exceeds 100, the minimum value Δmin is set to 1.0 × 10 −3 (constant).

そして、上記位置センサAにより検知された先端入力部10aの位置、およびそれが連続した先端入力部10aの移動軌跡(文字や図等)は、例えば、電子データとして、メモリ等の記憶手段に記憶されたり、ディスプレイに送信されてそのディスプレイに表示されたりする。   Then, the position of the tip input unit 10a detected by the position sensor A and the movement locus (characters, drawings, etc.) of the tip input unit 10a in which the position is continuous are stored in a storage unit such as a memory as electronic data, for example. Or sent to the display and displayed on the display.

なお、上記入力体10は、上記のように位置センサAの表面を押圧できればよく、インク等で用紙に書き込める筆記具だけでなく、インク等で用紙に書き込めない単なる棒体でもよい。また、上記押圧が解除される(先端入力部10aが移動したり書き込み等の入力が終了したりする)と、上記アンダークラッド層1,コア2およびオーバークラッド層3は、各自の復元力により、元の状態〔図2(b)参照〕に戻る。そして、上記コア2の、アンダークラッド層1への沈み込み深さDは、最大で2000μmまでとすることが好ましい。それを超えると、上記アンダークラッド層1,コア2およびオーバークラッド層3が元の状態に戻らなくなったり、光導波路Wに割れが発生したりするおそれがある。   The input body 10 only needs to be able to press the surface of the position sensor A as described above, and may be not only a writing instrument that can be written on paper with ink or the like, but also a simple rod that cannot be written on paper with ink or the like. Further, when the pressing is released (the tip input part 10a moves or the input such as writing ends), the under cladding layer 1, the core 2 and the over cladding layer 3 are each restored by their own restoring force. Return to the original state (see FIG. 2B). The submerged depth D of the core 2 into the under cladding layer 1 is preferably up to 2000 μm. If it exceeds that, the under cladding layer 1, the core 2 and the over cladding layer 3 may not return to their original state, or the optical waveguide W may be cracked.

ここで、上記コア2,アンダークラッド層1およびオーバークラッド層3の弾性率等について、より詳しく説明する。   Here, the elastic modulus and the like of the core 2, the under cladding layer 1 and the over cladding layer 3 will be described in more detail.

上記コア2の弾性率は、1GPa〜10GPaの範囲内であることが好ましく、より好ましくは、2GPa〜5GPaの範囲内である。コア2の弾性率が1GPaを下回ると、ペン先等の先端入力部10aの形状により、その先端入力部10aの圧力で、コア2の断面積が保持されない(コア2がつぶれる)場合があり、先端入力部10aの位置を適正に検知できないおそれがある。一方、コア2の弾性率が10GPaを上回ると、先端入力部10aの圧力によるコア2の曲がりが、その先端入力部10aに沿った急な曲がりにならずに緩やかな曲がりになる場合がある。そのため、コア2からの光の漏れ(散乱)が発生せず、受光素子5での光の検出レベルが低下しなくなることから、先端入力部10aの位置を適正に検知できないおそれがある。なお、コア2の寸法は、例えば、厚みが5〜100μmの範囲内、幅が1〜300μmの範囲内に設定される。   The elastic modulus of the core 2 is preferably in the range of 1 GPa to 10 GPa, more preferably in the range of 2 GPa to 5 GPa. When the elastic modulus of the core 2 is less than 1 GPa, the cross-sectional area of the core 2 may not be maintained due to the pressure of the tip input portion 10a due to the shape of the tip input portion 10a such as a pen tip (the core 2 may be crushed). There is a possibility that the position of the tip input portion 10a cannot be detected properly. On the other hand, when the elastic modulus of the core 2 exceeds 10 GPa, the bending of the core 2 due to the pressure of the tip input portion 10a may be a gentle bend without being a sharp bend along the tip input portion 10a. Therefore, light leakage (scattering) from the core 2 does not occur, and the light detection level at the light receiving element 5 does not decrease, so that the position of the tip input portion 10a may not be detected properly. In addition, the dimension of the core 2 is set in the range whose thickness is 5-100 micrometers, for example, and whose width is 1-300 micrometers.

上記オーバークラッド層3の弾性率は、0.1MPa以上10GPa未満の範囲内であることが好ましく、より好ましくは、1MPa以上5GPa未満の範囲内である。オーバークラッド層3の弾性率が0.1MPaを下回ると、柔らかすぎて、ペン先等の先端入力部10aの形状により、その先端入力部10aの圧力で、破損する場合があり、コア2を保護することができなくなる。一方、オーバークラッド層3の弾性率が10GPa以上であると、先端入力部10aや手20の圧力によっても、つぶれるように変形しなくなり、コア2がつぶれ、先端入力部10aの位置を適正に検知できないおそれがある。なお、オーバークラッド層3の厚みは、例えば、1〜200μmの範囲内に設定される。   The elastic modulus of the over clad layer 3 is preferably in the range of 0.1 MPa or more and less than 10 GPa, more preferably in the range of 1 MPa or more and less than 5 GPa. If the elastic modulus of the over clad layer 3 is less than 0.1 MPa, it is too soft and may be damaged by the pressure of the tip input portion 10a due to the shape of the tip input portion 10a such as a pen tip, protecting the core 2 Can not do. On the other hand, when the elastic modulus of the over clad layer 3 is 10 GPa or more, the core 2 is crushed and the position of the tip input portion 10a is properly detected by the pressure of the tip input portion 10a and the hand 20 without being crushed. It may not be possible. In addition, the thickness of the over clad layer 3 is set in the range of 1 to 200 μm, for example.

上記アンダークラッド層1の弾性率は、0.1MPa〜1GPaの範囲内であることが好ましく、より好ましくは、1MPa〜100MPaの範囲内である。アンダークラッド層1の弾性率が0.1MPaを下回ると、柔らかすぎて、ペン先等の先端入力部10aで押圧した後、元の状態に戻らず、連続的に行えない場合がある。一方、アンダークラッド層1の弾性率が1GPaを上回ると、先端入力部10aや手20の圧力によっても、つぶれるように変形しなくなり、コア2がつぶれ、先端入力部10aの位置を適正に検知できないおそれがある。なお、アンダークラッド層1の厚みは、例えば、20〜2000μmの範囲内に設定される。   The elastic modulus of the under cladding layer 1 is preferably in the range of 0.1 MPa to 1 GPa, more preferably in the range of 1 MPa to 100 MPa. When the elastic modulus of the under clad layer 1 is less than 0.1 MPa, the under clad layer 1 is too soft and may not be continuously performed after being pressed by the tip input portion 10a such as a pen tip and not returned to the original state. On the other hand, when the elastic modulus of the underclad layer 1 exceeds 1 GPa, the core 2 is crushed and the position of the tip input portion 10a cannot be detected properly even if the tip input portion 10a or the pressure of the hand 20 is crushed. There is a fear. In addition, the thickness of the under clad layer 1 is set in the range of 20-2000 micrometers, for example.

上記コア2,アンダークラッド層1およびオーバークラッド層3の形成材料としては、感光性樹脂,熱硬化性樹脂等があげられ、その形成材料に応じた製法により、光導波路Wを作製することができる。また、上記コア2の屈折率は、上記アンダークラッド層1およびオーバークラッド層3の屈折率よりも大きく設定されている。そして、上記弾性率および屈折率の調整は、例えば、各形成材料の種類の選択や組成比率を調整して行うことができる。なお、上記アンダークラッド層1として、ゴムシートを用い、そのゴムシート上にコア2を格子状に形成するようにしてもよい。   Examples of the material for forming the core 2, the under cladding layer 1 and the over cladding layer 3 include a photosensitive resin and a thermosetting resin, and the optical waveguide W can be manufactured by a manufacturing method corresponding to the forming material. . The refractive index of the core 2 is set larger than the refractive indexes of the under cladding layer 1 and the over cladding layer 3. The elastic modulus and refractive index can be adjusted by, for example, selecting the type of each forming material and adjusting the composition ratio. Note that a rubber sheet may be used as the undercladding layer 1 and the cores 2 may be formed in a lattice shape on the rubber sheet.

また、上記アンダークラッド層1の裏面に、ゴム層等の弾性層を設けてもよい。この場合、アンダークラッド層1,コア2およびオーバークラッド層3の復元力が弱くなったり、それらが元々復元力の弱い材料からなるものであったりしても、上記弾性層の弾性力を利用して、上記弱い復元力を補助し、入力体10の先端入力部10aによる押圧が解除された後、元の状態に戻すことができる。   Further, an elastic layer such as a rubber layer may be provided on the back surface of the under cladding layer 1. In this case, even if the restoring force of the under-cladding layer 1, the core 2 and the over-cladding layer 3 is weak or they are originally made of a material having a weak restoring force, the elastic force of the elastic layer is utilized. Thus, the weak restoring force is assisted, and after the pressing by the distal end input portion 10a of the input body 10 is released, the original state can be restored.

なお、上記実施の形態では、格子状のコア2の交差部を、交差する4方向の全てが不連続になっている不連続交差〔図2(a)参照〕としたが、他の不連続交差でもよい。例えば、図5(a)に示すように、交差する1方向のみが、隙間Gにより分断され、不連続になっているものでもよいし、図5(b),(c)に示すように、交差する2方向〔図5(b)は対向する2方向、図5(c)は隣り合う2方向〕が不連続になっているものでもよいし、図5(d)に示すように、交差する3方向が不連続になっているものでもよい。さらに、図2(a),図5(a)〜(d)に示す上記不連続交差、および交差する4方向の全てが連続した連続交差〔図5(e)参照〕のうちの2種類以上の交差を備えた格子状としてもよい。   In the above embodiment, the crossing portion of the lattice-like core 2 is a discontinuous crossing (see FIG. 2A) in which all four intersecting directions are discontinuous (see FIG. 2A). It may be an intersection. For example, as shown in FIG. 5 (a), only one intersecting direction may be divided by the gap G to be discontinuous, or as shown in FIGS. 5 (b) and 5 (c), The two intersecting directions (FIG. 5 (b) is the two opposing directions, FIG. 5 (c) is the two adjacent directions) may be discontinuous, or as shown in FIG. 5 (d) The three directions may be discontinuous. Further, two or more of the discontinuous intersections shown in FIGS. 2 (a) and 5 (a) to 5 (d) and continuous intersections in which all four intersecting directions are continuous [see FIG. 5 (e)]. It is good also as the grid | lattice form provided with no intersection.

つぎに、実施例について比較例と併せて説明する。但し、本発明は、実施例に限定されるわけではない。   Next, examples will be described together with comparative examples. However, the present invention is not limited to the examples.

〔オーバークラッド層の形成材料〕
成分A:エポキシ樹脂(四日市合成社製、エポゴーセーPT)30重量部。
成分B:エポキシ樹脂(ダイセル社製、EHPE3150)70重量部。
成分C:光酸発生剤(サンアプロ社製、CPI200K)4重量部。
成分D:乳酸エチル(和光純薬工業社製)100重量部。
これら成分A〜Dを混合することにより、オーバークラッド層の形成材料を調製した。
[Formation material of over clad layer]
Component A: 30 parts by weight of epoxy resin (Epogosei PT, Yokkaichi Gosei Co., Ltd.).
Component B: 70 parts by weight of an epoxy resin (manufactured by Daicel, EHPE3150).
Component C: 4 parts by weight of a photoacid generator (manufactured by Sun Apro, CPI 200K).
Component D: 100 parts by weight of ethyl lactate (manufactured by Wako Pure Chemical Industries).
By mixing these components A to D, a material for forming the over clad layer was prepared.

〔コアの形成材料〕
成分E:エポキシ樹脂(ダイセル社製、EHPE3150)80重量部。
成分F:エポキシ樹脂(新日鉄化学社製、YDCN700−10)20重量部。
成分G:光酸発生剤(ADEKA社製、SP170)1重量部。
成分H:乳酸エチル(和光純薬工業社製)50重量部。
これら成分E〜Hを混合することにより、コアの形成材料を調製した。
[Core forming material]
Component E: 80 parts by weight of an epoxy resin (manufactured by Daicel, EHPE3150).
Component F: 20 parts by weight of an epoxy resin (manufactured by Nippon Steel Chemical Co., Ltd., YDCN700-10).
Component G: 1 part by weight of a photoacid generator (manufactured by ADEKA, SP170).
Component H: 50 parts by weight of ethyl lactate (manufactured by Wako Pure Chemical Industries).
The core forming material was prepared by mixing these components E to H.

〔アンダークラッド層の形成材料〕
成分I:エポキシ樹脂(四日市合成社製、エポゴーセーPT)75重量部。
成分J:エポキシ樹脂(三菱化学社製、JER1007)25重量部。
成分K:光酸発生剤(サンアプロ社製、CPI200K)4重量部。
成分L:乳酸エチル(和光純薬工業社製)50重量部。
これら成分I〜Lを混合することにより、アンダークラッド層の形成材料を調製した。
[Formation material of under cladding layer]
Component I: 75 parts by weight of an epoxy resin (Epogosei PT, manufactured by Yokkaichi Gosei Co., Ltd.)
Component J: 25 parts by weight of an epoxy resin (manufactured by Mitsubishi Chemical Corporation, JER1007).
Component K: 4 parts by weight of a photoacid generator (manufactured by Sun Apro, CPI 200K).
Component L: 50 parts by weight of ethyl lactate (manufactured by Wako Pure Chemical Industries).
By mixing these components I to L, an under cladding layer forming material was prepared.

〔光導波路の作製〕
ガラス製基材の表面に、上記オーバークラッド層の形成材料を用いて、スピンコート法により、オーバークラッド層を形成した。このオーバークラッド層の厚みは5μm、弾性率は1.2GPa、屈折率は1.503であった。
[Production of optical waveguide]
An over clad layer was formed on the surface of the glass substrate by spin coating using the over clad layer forming material. The over cladding layer had a thickness of 5 μm, an elastic modulus of 1.2 GPa, and a refractive index of 1.503.

ついで、上記オーバークラッド層の表面に、上記コアの形成材料を用いて、フォトリソグラフィ法により、格子状のコアを形成した。この格子状の各交差部は、交差する4方向の全てが隙間により分断され不連続になっている不連続交差とした〔図2(a)参照〕。。上記隙間の幅は10μmとした。また、上記コアの厚みは30μm、格子状部分のコアの幅は100μm、ピッチは600μm、弾性率は3GPa、屈折率は1.523であった。   Next, a lattice-like core was formed on the surface of the over clad layer by photolithography using the core forming material. Each lattice-like intersection is a discontinuous intersection in which all four intersecting directions are separated by a gap and are discontinuous [see FIG. 2 (a)]. . The width of the gap was 10 μm. The core had a thickness of 30 μm, the core width of the lattice portion was 100 μm, the pitch was 600 μm, the elastic modulus was 3 GPa, and the refractive index was 1.523.

つぎに、上記コアを被覆するように、上記オーバークラッド層の表面に、上記アンダークラッド層の形成材料を用いて、スピンコート法により、アンダークラッド層を形成した。このアンダークラッド層の厚み(オーバークラッド層の表面からの厚み)は200μm、弾性率は3MPa、屈折率は1.503であった。   Next, an under clad layer was formed on the surface of the over clad layer by spin coating using the under clad layer forming material so as to cover the core. The thickness of the under cladding layer (thickness from the surface of the over cladding layer) was 200 μm, the elastic modulus was 3 MPa, and the refractive index was 1.503.

そして、PET製基板(厚み1mm)の片面に、両面テープ(厚み25μm)を貼着したものを準備した。ついで、その両面テープのもう一方の粘着面を上記アンダークラッド層の表面に貼着し、その状態で、上記オーバークラッド層を上記ガラス製基材から剥離した。   And what stuck the double-sided tape (thickness 25 micrometers) on the single side | surface of the board | substrate (thickness 1mm) made from PET was prepared. Next, the other adhesive surface of the double-sided tape was attached to the surface of the under cladding layer, and in this state, the over cladding layer was peeled from the glass substrate.

〔比較例〕
〔オーバークラッド層の形成材料〕
成分M:エポキシ樹脂(四日市合成社製、エポゴーセーPT)40重量部。
成分N:エポキシ樹脂(ダイセル社製、2021P)60重量部。
成分O:光酸発生剤(ADEKA社製、SP170)4重量部。
これら成分M〜Oを混合することにより、オーバークラッド層の形成材料を調製した。
[Comparative Example]
[Formation material of over clad layer]
Component M: 40 parts by weight of epoxy resin (Epogosei PT, Yokkaichi Gosei Co., Ltd.).
Component N: 60 parts by weight of epoxy resin (Daicel, 2021P).
Component O: 4 weight part of photo-acid generators (made by ADEKA, SP170).
By mixing these components M to O, a material for forming the over clad layer was prepared.

〔コアの形成材料〕
成分P:エポキシ樹脂(四日市合成社製、エポゴーセーPT)30重量部。
成分Q:エポキシ樹脂(DIC社製、EXA−4816)70重量部。
成分R:光酸発生剤(ADEKA社製、SP170)4重量部。
これら成分P〜Rを混合することにより、コアの形成材料を調製した。
[Core forming material]
Component P: 30 parts by weight of an epoxy resin (Epogosei PT, manufactured by Yokkaichi Gosei Co., Ltd.)
Component Q: 70 parts by weight of an epoxy resin (manufactured by DIC, EXA-4816).
Component R: 4 weight part of photo-acid generators (made by ADEKA, SP170).
The core forming material was prepared by mixing these components P to R.

〔アンダークラッド層の形成材料〕
成分S:エポキシ樹脂(四日市合成社製、エポゴーセーPT)40重量部。
成分T:エポキシ樹脂(ダイセル社製、2021P)60重量部。
成分U:光酸発生剤(ADEKA社製、SP170)4重量部。
これら成分S〜Uを混合することにより、アンダークラッド層の形成材料を調製した。
[Formation material of under cladding layer]
Component S: 40 parts by weight of an epoxy resin (Epogosei PT, manufactured by Yokkaichi Gosei Co., Ltd.)
Component T: 60 weight part of epoxy resins (Daicel, 2021P).
Component U: 4 parts by weight of a photoacid generator (ADEKA, SP170).
By mixing these components S to U, a material for forming the under cladding layer was prepared.

〔光導波路の作製〕
上記実施例と同様にして、同寸法の光導波路を作製した。ただし、弾性率は、オーバークラッド層が1GPa、コアが25MPa、アンダークラッド層が1GPaであった。また、屈折率は、オーバークラッド層が1.504、コアが1.532、アンダークラッド層が1.504であった。
[Production of optical waveguide]
In the same manner as in the above example, an optical waveguide having the same dimensions was produced. However, the elastic modulus was 1 GPa for the over clad layer, 25 MPa for the core, and 1 GPa for the under clad layer. The refractive index was 1.504 for the over clad layer, 1.532 for the core, and 1.504 for the under clad layer.

〔位置センサの作製〕
上記実施例および比較例の各光導波路のコアの一端面に、発光素子(Optowell社製、XH85-S0603-2s )を接続し、コアの他端面に、受光素子(浜松ホトニクス社製、s10226)を接続し、実施例および比較例の各位置センサを作製した。
[Production of position sensor]
A light emitting element (Optowell, XH85-S0603-2s) is connected to one end face of the core of each of the optical waveguides of the above examples and comparative examples, and a light receiving element (Hamamatsu Photonics, s10226) is connected to the other end face of the core. The position sensors of Examples and Comparative Examples were manufactured.

〔位置センサの評価〕
上記各位置センサの表面に、ボールペンのペン先(曲率半径350μm)を荷重1.47Nで押圧し、人の人指し指(曲率半径1cm)を荷重19.6Nで押圧した。そして、上記受光素子での光の検出レベル(受光量)を、上記荷重をかけない場合と、かけた場合とで測定し、その減衰率を下記の式(3)にしたがって算出した。
[Evaluation of position sensor]
The tip of the ballpoint pen (curvature radius 350 μm) was pressed with a load of 1.47 N on the surface of each position sensor, and the human index finger (curvature radius 1 cm) was pressed with a load of 19.6 N. Then, the light detection level (light reception amount) at the light receiving element was measured when the load was not applied and when it was applied, and the attenuation rate was calculated according to the following equation (3).

Figure 2015201135
Figure 2015201135

その結果、実施例の位置センサでは、ペン先押圧時の減衰率が80%、人指し指押圧時の減衰率が0%であった。それに対し、比較例の位置センサでは、ペン先押圧時の減衰率が60%、人指し指押圧時の減衰率が50%であった。   As a result, in the position sensor of the example, the attenuation rate when the pen tip was pressed was 80%, and the attenuation rate when the index finger was pressed was 0%. On the other hand, in the position sensor of the comparative example, the attenuation rate when the pen tip was pressed was 60%, and the attenuation rate when the index finger was pressed was 50%.

すなわち、実施例の位置センサでは、受光素子での光の検出レベルが、ペン先押圧時に低下し、人指し指押圧時に低下しないことから、ペン先の位置のみを検出することができ、人指し指の位置は、押圧されていない状態と同じであり、感知されないことがわかる。それに対し、比較例の位置センサでは、受光素子での光の検出レベルが、ペン先押圧時も人指し指押圧時も同程度に低下することから、ペン先の位置だけでなく、不要な人指し指の位置も検出されることがわかる。   That is, in the position sensor of the embodiment, the light detection level at the light receiving element decreases when the pen tip is pressed and does not decrease when the index finger is pressed, so only the position of the pen tip can be detected. It is the same as the state where it is not pressed, and it can be seen that it is not sensed. On the other hand, in the position sensor of the comparative example, the light detection level at the light receiving element is reduced to the same extent both when the pen tip is pressed and when the index finger is pressed. It can be seen that.

なお、上記のように、ボールペンのペン先の曲率半径Rが350μmであり、実施例も比較例もコアの厚みTが30μmであることから、前記比A(=R/T)は、いずれも11.7である。そして、コアとアンダークラッド層およびオーバークラッド層との間の屈折率差Δの最大値Δmax は、前記の式(1)より、いずれも7.4×10-2であり、最小値Δmin は、前記の式(2)より、いずれも9.8×10-3である。すなわち、実施例の上記屈折率差Δ(=0.020)も比較例の上記屈折率差Δ(=0.028)も、上記最大値Δmax と最小値Δmin の間の値に設定されている。 Note that, as described above, the radius of curvature R of the pen tip of the ballpoint pen is 350 μm, and the thickness A of the core is 30 μm in both the example and the comparative example. Therefore, the ratio A (= R / T) is 11.7. The maximum value Δmax of the refractive index difference Δ between the core and the under cladding layer and the over cladding layer is 7.4 × 10 −2 from the above equation (1), and the minimum value Δmin is All are 9.8 * 10 < -3 > from said Formula (2). That is, the refractive index difference Δ (= 0.020) of the example and the refractive index difference Δ (= 0.028) of the comparative example are set to values between the maximum value Δmax and the minimum value Δmin. .

また、格子状のコアの各交差部を、交差する1〜3方向が不連続になっている不連続交差〔図5(a)〜(d)参照〕としても、上記実施例と同様の傾向を示す結果が得られた。さらに、交差する1〜4方向が不連続になっている不連続交差〔図2(a),図5(a)〜(d)参照〕、および交差する4方向の全てが連続した連続交差〔図5(e)参照〕のうちの2種類以上の交差を備えた格子状としても、上記実施例と同様の傾向を示す結果が得られた。   Moreover, the same tendency as in the above-described embodiment is also obtained when each of the intersecting portions of the lattice-shaped core is a discontinuous intersection [see FIGS. 5A to 5D] in which the intersecting 1 to 3 directions are discontinuous. The result which shows was obtained. Further, a discontinuous intersection in which the intersecting 1 to 4 directions are discontinuous (see FIGS. 2A and 5A to 5D) and a continuous intersection in which all of the 4 intersecting directions are continuous [ As shown in FIG. 5 (e)], a result showing the same tendency as in the above-described example was obtained even in a lattice shape having two or more types of intersections.

本発明の位置センサは、ペン等の入力体を手に持って文字等を入力する際に、必要なペン先等の先端入力部の位置や移動軌跡のみ検出し、不要な手の位置等を感知しないようにする場合に利用可能である。そして、本発明のシート状光導波路は、上記位置センサの構成として利用可能である。   The position sensor of the present invention detects only the position and movement locus of the tip input unit such as a necessary pen tip when inputting a character or the like while holding an input body such as a pen, etc. It can be used to prevent detection. And the sheet-like optical waveguide of this invention can be utilized as a structure of the said position sensor.

A 位置センサ
W シート状光導波路
1 アンダークラッド層
2 コア
3 オーバークラッド層
4 発光素子
5 受光素子
A position sensor W sheet-like optical waveguide 1 under clad layer 2 core 3 over clad layer 4 light emitting element 5 light receiving element

Claims (2)

格子状に形成された複数の線状のコアと、このコアを支持するアンダークラッド層と、上記コアを被覆するオーバークラッド層とを有するシート状光導波路と、上記コアの一端面に接続される発光素子と、上記コアの他端面に接続される受光素子とを備え、それ自体の表面の任意の個所への押圧による、コアの光伝播量の変化によって、押圧個所を特定するシート状の位置センサであって、上記複数の線状のコアにより形成される格子状の一部ないし全部の交差部が、交差する少なくとも1方向を隙間により分断した状態の不連続交差に形成されており、上記位置センサへの押圧が、入力体の、曲率半径R(単位:μm)の先端入力部による押圧であり、その曲率半径Rとコアの厚みT(単位:μm)との比A(=R/T)を用いると、上記コアと上記アンダークラッド層および上記オーバークラッド層との間の屈折率差Δが、下記の式(1)で示される最大値Δmax と、下記の式(2)で示される最小値Δmin との間に設定されており、上記コアの弾性率が、上記アンダークラッド層の弾性率および上記オーバークラッド層の弾性率よりも大きく設定され、上記シート状光導波路の表面の押圧状態で、その押圧方向のコアの断面の変形率が、オーバークラッド層およびアンダークラッド層の断面の変形率よりも小さくなるようになっていることを特徴とする位置センサ。
Figure 2015201135
Figure 2015201135
A sheet-like optical waveguide having a plurality of linear cores formed in a lattice shape, an under clad layer that supports the core, and an over clad layer that covers the core, and is connected to one end face of the core A sheet-like position that includes a light-emitting element and a light-receiving element connected to the other end surface of the core, and identifies a pressing position by a change in the amount of light propagation of the core due to pressing to an arbitrary position on the surface of itself In the sensor, a part or all of the lattice-like intersection formed by the plurality of linear cores is formed as a discontinuous intersection in a state where at least one intersecting direction is divided by a gap, The pressure applied to the position sensor is a pressure applied by the tip of the input body having a curvature radius R (unit: μm), and the ratio A (= R / R) between the curvature radius R and the core thickness T (unit: μm). T) The difference in refractive index Δ between the under-cladding layer and the over-cladding layer is between the maximum value Δmax expressed by the following formula (1) and the minimum value Δmin expressed by the following formula (2). The elastic modulus of the core is set to be larger than the elastic modulus of the under-cladding layer and the over-cladding layer, and in the pressing state of the surface of the sheet-like optical waveguide, A position sensor, wherein a deformation ratio of a cross section of a core is smaller than a deformation ratio of a cross section of an over clad layer and an under clad layer.
Figure 2015201135
Figure 2015201135
上記請求項1記載の位置センサに用いるシート状光導波路であって、格子状に形成された複数の線状のコアと、このコアを支持するアンダークラッド層と、上記コアを被覆するオーバークラッド層とを有し、上記複数の線状のコアにより形成される格子状の一部ないし全部の交差部が、交差する少なくとも1方向を隙間により分断した状態の不連続交差に形成されており、上記オーバークラッド層の表面の任意の個所への押圧を、入力体の、曲率半径R(単位:μm)の先端入力部による押圧と想定し、その曲率半径Rとコアの厚みT(単位:μm)との比A(=R/T)を用いると、上記コアと上記アンダークラッド層および上記オーバークラッド層との間の屈折率差Δが、下記の式(1)で示される最大値Δmax と、下記の式(2)で示される最小値Δmin との間に設定されており、上記コアの弾性率が、上記アンダークラッド層の弾性率および上記オーバークラッド層の弾性率よりも大きく設定されていることを特徴とするシート状光導波路。
Figure 2015201135
Figure 2015201135
A sheet-like optical waveguide used for the position sensor according to claim 1, wherein a plurality of linear cores formed in a lattice shape, an under clad layer that supports the core, and an over clad layer that covers the core And part or all of the lattice-like intersection formed by the plurality of linear cores is formed as a discontinuous intersection in a state where at least one intersecting direction is divided by a gap, Assuming that the pressure on the surface of the over clad layer is pressed by the tip of the input body having a curvature radius R (unit: μm), the curvature radius R and the core thickness T (unit: μm) When the ratio A (= R / T) is used, the refractive index difference Δ between the core and the under-cladding layer and the over-cladding layer has a maximum value Δmax represented by the following formula (1): It is shown by the following formula (2) A sheet-like optical waveguide characterized in that the elastic modulus of the core is set larger than the elastic modulus of the under-cladding layer and the elastic modulus of the over-cladding layer. .
Figure 2015201135
Figure 2015201135
JP2014081087A 2014-04-10 2014-04-10 Position sensor and sheet-like optical waveguide used therefor Pending JP2015201135A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014081087A JP2015201135A (en) 2014-04-10 2014-04-10 Position sensor and sheet-like optical waveguide used therefor
PCT/JP2015/058803 WO2015156112A1 (en) 2014-04-10 2015-03-24 Position sensor and sheet-shaped optical waveguide used in same
TW104110007A TW201543312A (en) 2014-04-10 2015-03-27 Position sensor and sheet-shaped optical waveguide used in same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014081087A JP2015201135A (en) 2014-04-10 2014-04-10 Position sensor and sheet-like optical waveguide used therefor

Publications (1)

Publication Number Publication Date
JP2015201135A true JP2015201135A (en) 2015-11-12

Family

ID=54287690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014081087A Pending JP2015201135A (en) 2014-04-10 2014-04-10 Position sensor and sheet-like optical waveguide used therefor

Country Status (3)

Country Link
JP (1) JP2015201135A (en)
TW (1) TW201543312A (en)
WO (1) WO2015156112A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4084727B2 (en) * 2003-09-30 2008-04-30 日本航空電子工業株式会社 Optical waveguide touch panel
JP4889695B2 (en) * 2008-08-07 2012-03-07 日東電工株式会社 Optical waveguide combination structure
TW201217844A (en) * 2010-06-30 2012-05-01 Ibm Design for reducing loss at intersection in optical waveguides

Also Published As

Publication number Publication date
TW201543312A (en) 2015-11-16
WO2015156112A1 (en) 2015-10-15

Similar Documents

Publication Publication Date Title
JP6026346B2 (en) Position sensor
WO2014136472A1 (en) Position sensor
WO2014136508A1 (en) Information display system
WO2015156111A1 (en) Position sensor and sheet-shaped optical waveguide used in same
US20160085323A1 (en) Information display device
WO2015156112A1 (en) Position sensor and sheet-shaped optical waveguide used in same
WO2014196390A1 (en) Electronic underlay
WO2015045571A1 (en) Input device
WO2015049908A1 (en) Input apparatus
WO2015170607A1 (en) Information display device
WO2015170606A1 (en) Information display system
WO2015170608A1 (en) Position sensor
WO2015033657A1 (en) Input device
WO2015156115A1 (en) Information processing system
WO2015045572A1 (en) Electronic underlay
JP2015201137A (en) position sensor