WO2015170607A1 - Information display device - Google Patents

Information display device Download PDF

Info

Publication number
WO2015170607A1
WO2015170607A1 PCT/JP2015/062469 JP2015062469W WO2015170607A1 WO 2015170607 A1 WO2015170607 A1 WO 2015170607A1 JP 2015062469 W JP2015062469 W JP 2015062469W WO 2015170607 A1 WO2015170607 A1 WO 2015170607A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
input
sheet
optical waveguide
cladding layer
Prior art date
Application number
PCT/JP2015/062469
Other languages
French (fr)
Japanese (ja)
Inventor
裕介 清水
良真 吉岡
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2015170607A1 publication Critical patent/WO2015170607A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means

Definitions

  • the present invention relates to an information display device capable of writing a memo or the like on a display and simultaneously displaying the memo or the like as digital data (electronic data) on the display.
  • memo tools that digitally process memos and the like, such as an electronic memo processing device (see, for example, Patent Document 1).
  • an electronic memo processing device see, for example, Patent Document 1
  • the display is a touch panel that detects the tip of the dedicated pen, and the tip of the dedicated pen is brought into contact with the display and the dedicated pen is moved so that the movement locus of the tip of the dedicated pen is changed. It is converted into electronic data as a memo or the like, and is input to the display and displayed.
  • tablet-type terminals and smartphones are equipped with a display so that they can be input with a fingertip instead of the dedicated pen. That is, the display in the tablet-type terminal or the like is a touch panel that senses a weak current (change in the capacitance of the human body) that occurs when touched with a fingertip. By moving the fingertip, the movement trajectory of the fingertip is converted into electronic data such as a memo, and is input to the display and displayed.
  • a weak current change in the capacitance of the human body
  • none of the above displays can be input with a general writing instrument such as a pen that emits ink, or a simple elongated rod-like body that does not eject ink.
  • the present invention has been made in view of such circumstances, and can be input with an input body such as a general writing instrument.
  • an input body such as a general writing instrument.
  • the tip input section of the input body and the input body It is an object of the present invention to provide an information display device that can identify and detect the tip input portion even when the little finger of the hand holding it or the base portion of the hand touches the display at the same time.
  • an information display device is an information display device comprising a display for displaying information and a position sensor of (A) below, and the position of the position on the surface of the display.
  • a sheet-like optical waveguide of the sensor is placed, and the movement trajectory of the tip input portion of the input body on the surface of the sheet-like optical waveguide is displayed on the display as input information.
  • a sheet-like optical waveguide having a plurality of linear cores formed in a lattice shape, an under cladding layer that supports the cores, and an over cladding layer that covers the cores, and one end surface of the core
  • the movement locus of the tip input portion of the input body on the surface of the sheet-shaped optical waveguide is changed by the amount of light propagation of the core changed by the movement, the light emitting element to be connected, the light receiving element connected to the other end surface of the core
  • a position sensor having a moving locus specifying means for specifying, wherein at least one direction where a part or all of the lattice-like intersection formed by the plurality of linear cores intersects is divided by a gap.
  • the sheet is formed at discontinuous intersections, and the elastic modulus of the core is set to be larger than the elastic modulus of the under-cladding layer and the elastic modulus of the over-cladding layer, and the sheet A pressing state by the tip input section in the surface of the optical waveguide, the deformation ratio of the cross-section of the pressing direction of the core, a position sensor adapted to be smaller than the deformation rate of the cross-section of the over-cladding layer and the under-cladding layer.
  • the “deformation rate” refers to the ratio of the amount of change of each thickness during pressing to the thickness of the core, over cladding layer and under cladding layer before pressing in the pressing direction.
  • the “movement” of the pen tip includes a case where the movement distance is 0 (zero), and the “movement locus” in that case is a point.
  • a part or all of the lattice-like intersection formed by the plurality of linear cores is formed as a discontinuous intersection in a state where at least one intersecting direction is divided by a gap.
  • the cross loss of light can be reduced.
  • the information display apparatus includes a sheet-like optical waveguide in which a plurality of linear cores are arranged and formed in a lattice shape as a detection means for a movement locus of a tip input portion (a pen tip or the like) of an input body (a pen or the like).
  • the provided position sensor is used. That is, the movement trajectory of the pen tip on the surface of the sheet-shaped optical waveguide is specified by the light propagation amount of the core changed by the movement. Therefore, a dedicated pen is not required for input, and a general writing instrument such as a pen that emits ink or a simple elongated rod-like body that does not eject ink can be used as the input body.
  • the elastic modulus of the core is set larger than the elastic modulus of the under cladding layer and the elastic modulus of the over cladding layer. Therefore, when the surface of the over clad layer of the sheet-like optical waveguide is pressed, the deformation rate of the cross section of the core in the pressing direction is smaller than the deformation rate of the cross section of the over clad layer and the under clad layer. The cross-sectional area of the core is maintained. Then, when information such as characters is input by moving the tip input portion of the input body on the surface of the sheet-shaped optical waveguide, the bending state of the core is input to the tip of the input body at the pressed portion by the tip input portion.
  • the light leaks (scatters) from the core, and at the pressed part of the hand part holding the input body, the bending of the core becomes gentle along the hand. It is possible to prevent leakage (scattering). Therefore, in the core pressed by the tip input part such as the pen tip, the detection level (light reception amount) of the light in the light receiving element is reduced, and in the core pressed by the hand part having the input body, the detection level is It can be prevented from decreasing. Then, the position (coordinates) of the tip input portion such as the pen tip can be detected by the movement locus specifying means from the decrease in the detection level of the light, and the part of the hand where the detection level does not decrease is pressed.
  • the information display device of the present invention can detect only the movement locus (information of inputted characters and the like) of the tip input unit such as a pen tip and display the detected movement locus on the display.
  • FIG. 1 It is explanatory drawing which shows typically one Embodiment of the information display apparatus of this invention. It is a top view which shows typically the position sensor which comprises the said information display apparatus.
  • (A) is an enlarged plan view schematically showing an intersection of lattice-shaped cores in the position sensor, and (b) is an enlarged schematic view of a cross section of a central portion of the position sensor. It is an expanded sectional view shown.
  • (A) is an enlarged plan view schematically showing a light path in a continuous intersection
  • (b) is an enlarged plan view schematically showing a light path in a discontinuous intersection.
  • FIG. (A) is sectional drawing which shows typically the state of the sheet-like optical waveguide of the said position sensor pressed by the input body, (b) is typical about the state of the said sheet-like optical waveguide pressed by the hand.
  • FIG. (A)-(e) is an enlarged plan view which shows typically the modification of the cross
  • FIG. 1 shows an embodiment of the information display device of the present invention.
  • the information display device of this embodiment includes an information display body P having a quadrangular display D, and a position sensor A placed on the surface of the display D.
  • Information such as characters input with the input body 10 such as a pen on the surface of the position sensor A is displayed on the display D.
  • the information display body P is a computer having a display D such as a liquid crystal display for information display or an organic EL display, such as a tablet terminal, a smart phone, or a notebook personal computer.
  • a display D such as a liquid crystal display for information display or an organic EL display, such as a tablet terminal, a smart phone, or a notebook personal computer.
  • the position sensor A has a rectangular sheet-like optical waveguide W having a lattice-like core 2 and one end face of the linear core 2 constituting the lattice-like core 2. And a light receiving element 5 connected to the other end face of the linear core 2.
  • the light emitted from the light emitting element 4 passes through the core 2 and is received by the light receiving element 5.
  • the core 2 is indicated by a chain line, and the thickness of the chain line indicates the thickness of the core 2.
  • the number of cores 2 is omitted.
  • the arrow in FIG. 2 indicates the direction in which the light travels.
  • the light-emitting element 4 and the light-receiving element 5 are controlled by a CPU (Central Processing Unit) (not shown), and the CPU together with the light-emitting element 4 and the light-receiving element 5 is a circuit board ( (Not shown).
  • the circuit board on which the CPU and the like are mounted is arranged inside the information display body P (see FIG. 1). Therefore, the CPU, the light emitting element 4, the light receiving element 5, and the circuit board are not shown in FIG. Further, the power source required for the light emitting element 4 and the CPU uses the power source provided in the information display body P.
  • each of the intersecting portions of the lattice-like core 2 in the sheet-like optical waveguide W is crossed by gaps G as shown in a plan view in FIG. Divided and discontinuous.
  • the width d of the gap G exceeds 0 (zero) (if the gap G is formed) and is usually set to 20 ⁇ m or less.
  • the lattice-like core 2 is supported by the sheet-like under clad layer 1 and covered with the sheet-like over clad layer 3 as shown in a sectional view in FIG.
  • the undercladding layer 1 is in contact with the surface of the display D.
  • the gap G is formed of a material for forming the over clad layer 3.
  • the intersection is discontinuous, the light crossing loss can be reduced. That is, as shown in FIG. 4 (a), in an intersection where all four intersecting directions are continuous, if one of the intersecting directions [upward in FIG. 4 (a)] is focused, the light incident on the intersection Part of the light reaches the wall surface 2a of the core 2 orthogonal to the core 2 through which the light has traveled, and is transmitted through the core 2 because the reflection angle at the wall surface 2a is large [2 in FIG. (See dotted arrow). Such light transmission also occurs in a direction opposite to the above intersecting direction (downward in FIG. 4A). On the other hand, as shown in FIG.
  • the elastic modulus of the core 2 is set larger than the elastic modulus of the under cladding layer 1 and the elastic modulus of the over cladding layer 3.
  • a portion of the sheet-shaped optical waveguide W corresponding to the lattice-shaped core 2 is an input region.
  • input of information to the sheet-like optical waveguide W by the input body 10 such as a pen is performed so that the overcladding layer 3 is written such that letters are written on the surface of the overcladding layer 3 in the input region.
  • This is performed by moving the tip input portion (pen nib etc.) 10a (see FIG. 1) of the input body 10 on the surface of the input body 10. That is, as shown in cross-sectional views in FIGS.
  • information such as characters is input to the surface of the over-cladding layer 3 of the sheet-like optical waveguide W by an input body 10 such as a pen held in the hand 20.
  • the pressing portion by the tip input section 10a such as a pen tip (see FIG. 5A) is also the pressing portion by the little finger of the hand 20 or its base portion (the little finger ball) [FIG. 5B].
  • the over clad layer 3 having a small elastic modulus is deformed so that the core 2 having a large elastic modulus is a portion of the tip input portion 10a or the hand 20 while maintaining the cross-sectional area. And bent so as to sink into the under-cladding layer 1 having a small elastic modulus.
  • the detection level of light at the light receiving element 5 is lowered in the core 2 pressed by the tip input portion 10a, and the detection level is not lowered in the core 2 pressed by the hand 20 having the input body 10. can do.
  • the position (coordinates) of the tip input portion 10a can be detected from the decrease in the light detection level.
  • the portion of the hand 20 whose detection level does not decrease is the same as the state where it is not pressed, and thus is not detected.
  • the lattice-like intersection formed by the core 2 is formed as a discontinuous intersection, the light intersection loss is reduced.
  • the detection sensitivity of the position of the tip input unit 10a such as the pen tip is high.
  • the tip input unit 10a is a signal obtained by tracing the position corresponding to the electric signal from the electric signal output from the light receiving element 5 based on the decrease in the light detection level at the light receiving element 5.
  • a program (moving track specifying means) for specifying the moving track is incorporated. That is, the position sensor A is a sensor that detects the position of the tip input portion (pen tip etc.) 10a of the input body (pen etc.) 10 used for inputting information.
  • Data indicating the movement trajectory of the tip input portion 10a of the input body 10 is output to the CPU (not shown) of the information display body P, and is appropriately imaged by the CPU of the information display body P. The movement trajectory is displayed on the display D.
  • a plurality of linear cores 2 are arranged and formed in a lattice pattern as means for detecting the movement trajectory of the tip input portion (pen tip etc.) 10a of the input body (pen etc.) 10. Since the sheet-like optical waveguide W is used, a dedicated pen is not required for input.
  • a general writing instrument such as a pen that emits ink or a simple elongated rod-like object that does not eject ink is used. Can be used.
  • the elastic modulus of the core 2 is set to be larger than the elastic modulus of the under cladding layer 1 and the elastic modulus of the over cladding layer 3, so that the input body Even if the hand 20 having 10 presses the sheet-like optical waveguide W, as described above, only the position of the tip input portion 10a can be detected, and the portion of the hand 20 can be prevented from being detected.
  • the intersections of the lattice-like cores 2 are formed as discontinuous intersections, it is possible to reduce the cross loss of light and increase the detection sensitivity of the position of the tip input unit 10a such as the pen tip. Can do.
  • the portion of the sheet-like optical waveguide W pressed by the tip input portion 10a of the input body 10 is deformed as described above. Can write well.
  • the information display body P such as the tablet type terminal is normally provided with an information storage medium such as a memory in advance
  • the input information (information displayed on the display D) is stored in the information storage medium. Can be remembered.
  • the submerged depth L of the core 2 into the under cladding layer 1 is preferably up to 2000 ⁇ m. If the sinking depth L exceeds 2000 ⁇ m, the under cladding layer 1, the core 2, and the over cladding layer 3 may not return to the original state, or the sheet-like optical waveguide W may be cracked.
  • the elastic modulus of the core 2 is preferably in the range of 1 GPa to 10 GPa, more preferably in the range of 2 GPa to 5 GPa. If the elastic modulus of the core 2 is too low, the shape of the tip input portion 10a such as a pen tip tends to prevent the cross-sectional area of the core 2 from being held by the pressure of the tip input portion 10a (the core 2 is crushed). There is a possibility that the position of the input unit 10a cannot be detected properly. On the other hand, if the elastic modulus of the core 2 is too high, the bending of the core 2 due to the pressure of the tip input portion 10a tends to be a gentle bend without becoming a sharp bend along the tip input portion 10a.
  • the dimensions of the core 2 are set, for example, within a range of 5 to 100 ⁇ m in thickness and within a range of 5 to 500 ⁇ m in width.
  • the elastic modulus of the over clad layer 3 is preferably in the range of 0.1 MPa to less than 10 GPa, more preferably in the range of 1 MPa to less than 5 GPa. If the elastic modulus of the over clad layer 3 is too low, the over clad layer 3 tends to be damaged by the pressure of the tip input portion 10a due to the shape of the tip input portion 10a such as a pen tip. May not be able to be protected.
  • the over clad layer 3 tends not to be deformed so as to be crushed even by the pressure of the tip input portion 10a or the hand 20, thereby causing the core 2 to be crushed and the tip There is a possibility that the position of the input unit 10a cannot be detected properly.
  • the thickness of the over clad layer 3 is set within a range of 1 to 200 ⁇ m, for example.
  • the elastic modulus of the under cladding layer 1 is preferably in the range of 0.1 MPa to 1 GPa, more preferably in the range of 1 MPa to 100 MPa. If the modulus of elasticity of the underclad layer 1 is too low, the underclad layer 1 is too soft and, after being pressed by the tip input part 10a such as a pen tip, the underclad layer 1 is difficult to return to its original state, and input tends not to be performed continuously. is there. On the other hand, if the modulus of elasticity of the underclad layer 1 is too high, the underclad layer 1 tends not to be deformed due to the pressure of the tip input portion 10a or the hand 20, so that the core 2 is crushed. There is a possibility that the position of the input unit 10a cannot be detected properly. Note that the thickness of the under-cladding layer 1 is set within a range of 20 to 2000 ⁇ m, for example.
  • the sheet-like optical waveguide W As a material for forming the core 2, the under clad layer 1 and the over clad layer 3, it is necessary to view display information of the display D through the sheet-like optical waveguide W, so that a light-transmitting photosensitive resin, a thermosetting resin, etc. Can be given. And the sheet-like optical waveguide W can be produced with the manufacturing method according to the forming material.
  • the refractive index of the core 2 is set larger than the refractive indexes of the under cladding layer 1 and the over cladding layer 3.
  • the elastic modulus and refractive index can be adjusted by, for example, selecting the type of each forming material and adjusting the composition ratio.
  • a light-transmitting elastic layer may be provided on the back surface of the under cladding layer 1.
  • the elastic layer Using the elastic force, the weak restoring force is assisted, and after the pressing by the tip input portion 10a of the input body 10 is released, the original state can be restored.
  • a pressing portion by the tip input unit 10a is used.
  • the amount of light leakage (scattering) due to the sharp bending of the core 2 is important.
  • the maximum value ⁇ max of the refractive index difference ⁇ is expressed by the following equation (1). That is, if the refractive index difference ⁇ is larger than the maximum value ⁇ max, even if the tip input portion 10a is pressed, the amount of light leakage (scattering) is small and the light detection level at the light receiving element 5 is not sufficiently lowered. Therefore, it becomes difficult to distinguish between the position of the tip input portion 10a and the position of the hand 20.
  • the minimum value ⁇ min of the refractive index difference ⁇ is expressed by the following equation (2). That is, when the refractive index difference ⁇ is smaller than the minimum value ⁇ min, light leakage (scattering) occurs even in the pressed portion by the hand 20, and it is difficult to distinguish the position of the tip input portion 10a from the position of the hand 20. Become.
  • the refractive index difference ⁇ is preferably set between the minimum value ⁇ min and the maximum value ⁇ max.
  • the radius of curvature R (unit: ⁇ m) of the tip input portion 10a is in the range of 100 to 1000
  • the thickness T (unit: ⁇ m) of the core 2 is in the range of 10 to 100
  • the ratio S is 1 to 1. If it is in the range of 100, the refractive index difference ⁇ is in the range of 1.0 ⁇ 10 ⁇ 3 to 7.95 ⁇ 10 ⁇ 2 .
  • the minimum value ⁇ min is set to 1.0 ⁇ 10 ⁇ 3 (constant).
  • the crossing portion of the lattice-like core 2 is a discontinuous crossing (see FIG. 3A) in which all four intersecting directions are discontinuous (see FIG. 3A). It may be an intersection.
  • FIG. 6 (a) only one intersecting direction may be divided by the gap G to be discontinuous, or as shown in FIGS. 6 (b) and 6 (c),
  • the two intersecting directions (FIG. 6 (b) is the two opposing directions
  • FIG. 6 (c) is the two adjacent directions) may be discontinuous, or as shown in FIG. 6 (d)
  • the three directions may be discontinuous.
  • the CPU, the light emitting element 4, the light receiving element 5, and the circuit board are arranged inside the information display body P. However, all or a part of them may be arranged outside the information display body P. Good.
  • Component a 30 parts by weight of epoxy resin (Epogosei PT, manufactured by Yokkaichi Gosei Co., Ltd.)
  • Ingredient b 70 weight part of epoxy resins (the Daicel company make, EHPE3150).
  • Component c 4 parts by weight of a photoacid generator (manufactured by Sun Apro, CPI 200K).
  • Component d 100 parts by weight of ethyl lactate (manufactured by Wako Pure Chemical Industries).
  • Component e 80 parts by weight of an epoxy resin (manufactured by Daicel, EHPE3150).
  • Component f 20 parts by weight of an epoxy resin (manufactured by Nippon Steel Chemical Co., Ltd., YDCN700-10).
  • Component g 1 part by weight of a photoacid generator (made by ADEKA, SP170).
  • Component h 50 parts by weight of ethyl lactate (Wako Pure Chemical Industries, Ltd.) A core forming material was prepared by mixing these components e to h.
  • [Formation material of under cladding layer] Component i: 75 parts by weight of epoxy resin (Epogosei PT, manufactured by Yokkaichi Gosei Co., Ltd.) Component j: 25 parts by weight of an epoxy resin (manufactured by Mitsubishi Chemical Corporation, JER1007).
  • Component k 4 parts by weight of a photoacid generator (manufactured by San Apro, CPI 200K).
  • Component l 50 parts by weight of ethyl lactate (manufactured by Wako Pure Chemical Industries). By mixing these components i to l, a material for forming the underclad layer was prepared.
  • An over clad layer was formed on the surface of the glass substrate by spin coating using the over clad layer forming material.
  • the over cladding layer had a thickness of 5 ⁇ m, an elastic modulus of 1.2 GPa, and a refractive index of 1.503.
  • a lattice-like core was formed on the surface of the over clad layer by photolithography using the core forming material.
  • Each of the lattice-like intersections is a discontinuous intersection in which all four intersecting directions are separated by a gap and are discontinuous [see FIG. 3 (a)].
  • the width of the gap was 10 ⁇ m.
  • the core had a thickness of 30 ⁇ m, the core width of the lattice portion was 100 ⁇ m, the pitch was 600 ⁇ m, the elastic modulus was 3 GPa, and the refractive index was 1.523.
  • an under clad layer was formed on the surface of the over clad layer by spin coating using the under clad layer forming material so as to cover the core.
  • the thickness of the under cladding layer was 200 ⁇ m, the elastic modulus was 3 MPa, and the refractive index was 1.503.
  • Component p 30 parts by weight of epoxy resin (Epogosei PT, manufactured by Yokkaichi Gosei Co., Ltd.)
  • Component q 70 parts by weight of an epoxy resin (manufactured by DIC, EXA-4816).
  • Component r 4 weight part of photo-acid generators (made by ADEKA, SP170). The core forming material was prepared by mixing these components p to r.
  • [Formation material of under cladding layer] Component s: 40 parts by weight of epoxy resin (Epogosei PT, manufactured by Yokkaichi Gosei Co., Ltd.) Component t: 60 parts by weight of an epoxy resin (Daicel, 2021P). Component u: 4 weight part of photo-acid generators (made by ADEKA, SP170). By mixing these components s to u, a material for forming the under cladding layer was prepared.
  • epoxy resin Epogosei PT, manufactured by Yokkaichi Gosei Co., Ltd.
  • Component t 60 parts by weight of an epoxy resin (Daicel, 2021P).
  • Component u 4 weight part of photo-acid generators (made by ADEKA, SP170).
  • a light emitting element (Optowell, XH85-S0603-2s) is connected to one end face of the core of each of the sheet-like optical waveguides of the above examples and comparative examples, and a light receiving element (Hamamatsu Photonics, s10226) was connected, and a circuit equipped with the light emitting element, the light receiving element, and a CPU (manufactured by Microchip, dsPIC33FJ128MC706) for controlling these elements was provided, and each position sensor of Example and Comparative Example was manufactured.
  • a tablet-type terminal (ICONIA TAB W500, manufactured by acer) was prepared, and the sheet-shaped optical waveguide of the position sensor was attached to the surface of the display. At this time, the under cladding layer was in contact with the surface of the display.
  • the circuit on which the CPU and the like of the position sensor are mounted is arranged inside the tablet type terminal, and the power source necessary for the circuit is a power source provided in the tablet type terminal. In this way, the position sensor can be used.
  • the display of the tablet-type terminal includes a sensor for detecting a change in the capacitance of the human body, but power supply to the sensor is stopped so that the sensor does not work.
  • the position sensor of the embodiment can detect only the input information and not the unnecessary information even if the input body is changed.
  • each of the intersecting portions of the lattice-like core is a discontinuous intersection (see FIGS. 6A to 6D) in which the intersecting directions 1 to 3 are discontinuous.
  • the result which shows was obtained.
  • a discontinuous intersection in which 1 to 4 intersecting directions are discontinuous see FIGS. 3A and 6A to 6D
  • a continuous intersection in which all four intersecting directions are continuous As shown in FIG. 6 (e)], a result showing a tendency similar to that in the above-described example was obtained even in a lattice shape having two or more types of intersections.
  • the information display device of the present invention can be used to display on a display what is input with a general writing instrument or the like on the display.
  • a position sensor D display P information display body W sheet-like optical waveguide 2 core 3 over clad layer 10 input body

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

This information display device is capable of input with an input body such as a general writing implement, and moreover, is capable at the time of said input of identifying and detecting the tip input portion of the input body even if said tip portion touches the display at the same time as the little finger of the hand holding said input body, the base of said finger, etc. This information display device is provided with an information display body (P) having a display (D), and a sheet-form optical waveguide (W) arranged on the surface of the display (D) and configuring a position sensor (A). In the sheet-form optical waveguide (W), a lattice-form core (2) is held between a sheet-form undercladding layer and an overcladding layer (3), and the modulus of elasticity of the core (2) is set greater than the modulus of elasticity of the undercladding layer and the modulus of elasticity of the overcladding layer (3). Further, intersections in the lattice-form core (2) are interrupted by gaps in at least one of the intersecting directions so are discontinuous.

Description

情報表示装置Information display device
 本発明は、ディスプレイ上にメモ等を書き込むと同時に、そのメモ等をデジタルデータ(電子データ)として上記ディスプレイに表示することができる情報表示装置に関するものである。 The present invention relates to an information display device capable of writing a memo or the like on a display and simultaneously displaying the memo or the like as digital data (electronic data) on the display.
 メモ用具には、電子メモ処理装置のように、メモ等をデジタル処理するものがある(例えば、特許文献1参照)。このものは、入力するメモ等を表示するディスプレイを備えており、そのディスプレイに、専用ペンを用いてメモ等を入力することができるようになっている。すなわち、上記ディスプレイは、上記専用ペンの先端を検知するタッチパネルになっており、そのディスプレイに、上記専用ペンの先端を接触させ、その専用ペンを動かすことにより、その専用ペンの先端の移動軌跡がメモ等として電子データ化され、上記ディスプレイに入力されて表示されるようになっている。 There are memo tools that digitally process memos and the like, such as an electronic memo processing device (see, for example, Patent Document 1). This is provided with a display for displaying a memo or the like to be input, and the memo or the like can be input to the display using a dedicated pen. In other words, the display is a touch panel that detects the tip of the dedicated pen, and the tip of the dedicated pen is brought into contact with the display and the dedicated pen is moved so that the movement locus of the tip of the dedicated pen is changed. It is converted into electronic data as a memo or the like, and is input to the display and displayed.
 また、タブレット型端末やスマートフォン等も、ディスプレイを備えており、上記専用ペンではなく、指先で入力することができるようになっている。すなわち、上記タブレット型端末等におけるディスプレイは、指先で触れた際に発生する微弱な電流(人体の静電容量の変化)を感知するタッチパネルになっており、そのディスプレイに、指先を接触させ、その指先を動かすことにより、その指先の移動軌跡がメモ等として電子データ化され、上記ディスプレイに入力されて表示されるようになっている。 Also, tablet-type terminals and smartphones are equipped with a display so that they can be input with a fingertip instead of the dedicated pen. That is, the display in the tablet-type terminal or the like is a touch panel that senses a weak current (change in the capacitance of the human body) that occurs when touched with a fingertip. By moving the fingertip, the movement trajectory of the fingertip is converted into electronic data such as a memo, and is input to the display and displayed.
特許第3746378号公報Japanese Patent No. 3746378
 しかしながら、上記ディスプレイでは、いずれも、インクが出るペン等の一般的な筆記具やインクが出ない単なる細長い棒状体等で入力することができない。 However, none of the above displays can be input with a general writing instrument such as a pen that emits ink, or a simple elongated rod-like body that does not eject ink.
 また、指先で入力するタイプの上記ディスプレイでは、そのディスプレイに、人体の複数の部分(例えば、指先と手)が同時に触れていると、接触部分を特定することができず、適正に入力することができない。 Also, in the above display of the type that is input with the fingertip, if a plurality of parts of the human body (for example, the fingertip and the hand) are touching the display at the same time, the contact portion cannot be specified, and the input should be performed appropriately. I can't.
 本発明は、このような事情に鑑みなされたもので、一般的な筆記具等の入力体で入力することができ、しかも、その入力の際に、上記入力体の先端入力部と、その入力体を持つ手の小指やその付け根部分等とが同時にディスプレイに触れていても、上記先端入力部を特定して検知することができる情報表示装置の提供をその目的とする。 The present invention has been made in view of such circumstances, and can be input with an input body such as a general writing instrument. In addition, at the time of the input, the tip input section of the input body and the input body It is an object of the present invention to provide an information display device that can identify and detect the tip input portion even when the little finger of the hand holding it or the base portion of the hand touches the display at the same time.
 上記の目的を達成するため、本発明の情報表示装置は、情報表示用のディスプレイと、下記(A)の位置センサとを備えている情報表示装置であって、上記ディスプレイの表面に、上記位置センサのシート状光導波路が載置され、そのシート状光導波路の表面での入力体の先端入力部の移動軌跡を入力情報として上記ディスプレイに表示するという構成をとる。
(A)格子状に形成された複数の線状のコアと、これらコアを支持するアンダークラッド層と、上記コアを被覆するオーバークラッド層とを有するシート状光導波路と、上記コアの一端面に接続される発光素子と、上記コアの他端面に接続される受光素子と、上記シート状光導波路の表面における入力体の先端入力部の移動軌跡を、その移動により変化したコアの光伝播量によって特定する移動軌跡特定手段とを備えている位置センサであって、上記複数の線状のコアにより形成される格子状の一部ないし全部の交差部が、交差する少なくとも1方向を隙間により分断した状態の不連続交差に形成されており、上記コアの弾性率が、上記アンダークラッド層の弾性率および上記オーバークラッド層の弾性率よりも大きく設定され、上記シート状光導波路の表面における上記先端入力部による押圧状態で、その押圧方向のコアの断面の変形率が、オーバークラッド層およびアンダークラッド層の断面の変形率よりも小さくなるようになっている位置センサ。
In order to achieve the above object, an information display device according to the present invention is an information display device comprising a display for displaying information and a position sensor of (A) below, and the position of the position on the surface of the display. A sheet-like optical waveguide of the sensor is placed, and the movement trajectory of the tip input portion of the input body on the surface of the sheet-like optical waveguide is displayed on the display as input information.
(A) A sheet-like optical waveguide having a plurality of linear cores formed in a lattice shape, an under cladding layer that supports the cores, and an over cladding layer that covers the cores, and one end surface of the core The movement locus of the tip input portion of the input body on the surface of the sheet-shaped optical waveguide is changed by the amount of light propagation of the core changed by the movement, the light emitting element to be connected, the light receiving element connected to the other end surface of the core A position sensor having a moving locus specifying means for specifying, wherein at least one direction where a part or all of the lattice-like intersection formed by the plurality of linear cores intersects is divided by a gap. The sheet is formed at discontinuous intersections, and the elastic modulus of the core is set to be larger than the elastic modulus of the under-cladding layer and the elastic modulus of the over-cladding layer, and the sheet A pressing state by the tip input section in the surface of the optical waveguide, the deformation ratio of the cross-section of the pressing direction of the core, a position sensor adapted to be smaller than the deformation rate of the cross-section of the over-cladding layer and the under-cladding layer.
 なお、本発明において、「変形率」とは、押圧方向における、コア,オーバークラッド層およびアンダークラッド層の押圧前の各厚みに対する、押圧時の各厚みの変化量の割合をいう。また、ペン先の「移動」には、移動距離が0(零)の場合を含み、その場合の「移動軌跡」は、点となる。 In the present invention, the “deformation rate” refers to the ratio of the amount of change of each thickness during pressing to the thickness of the core, over cladding layer and under cladding layer before pressing in the pressing direction. The “movement” of the pen tip includes a case where the movement distance is 0 (zero), and the “movement locus” in that case is a point.
 そして、上記シート状光導波路において、上記複数の線状のコアにより形成される格子状の一部ないし全部の交差部が、交差する少なくとも1方向を隙間により分断した状態の不連続交差に形成されていると、光の交差損失を低減させることができる。このような知見を本発明者らは得ている。 In the sheet-like optical waveguide, a part or all of the lattice-like intersection formed by the plurality of linear cores is formed as a discontinuous intersection in a state where at least one intersecting direction is divided by a gap. The cross loss of light can be reduced. The present inventors have obtained such knowledge.
 本発明の情報表示装置は、入力体(ペン等)の先端入力部(ペン先等)の移動軌跡の検知手段として、複数の線状のコアが格子状に配置形成されたシート状光導波路を備えた位置センサを用いている。すなわち、上記シート状光導波路の表面におけるペン先の移動軌跡を、その移動により変化したコアの光伝播量によって特定するようになっている。そのため、入力に専用ペンは不要であり、入力体として、インクが出るペン等の一般的な筆記具やインクが出ない単なる細長い棒状体等を用いることができる。また、上記シート状光導波路は、コアの弾性率が、アンダークラッド層の弾性率およびオーバークラッド層の弾性率よりも大きく設定されている。そのため、シート状光導波路のオーバークラッド層の表面を押圧したときに、その押圧方向のコアの断面の変形率が、オーバークラッド層およびアンダークラッド層の断面の変形率よりも小さくなり、押圧方向のコアの断面積が保持される。そして、上記シート状光導波路の表面において、入力体の先端入力部を移動させることにより、文字等の情報を入力すると、その先端入力部による押圧部分では、コアの曲がり具合が入力体の先端入力部に沿った急なものとなり、コアからの光の漏れ(散乱)が発生し、入力体を持つ手の部分による押圧部分では、コアの曲がり具合が手に沿った緩やかなものとなり、上記光の漏れ(散乱)が発生しないようにすることができる。そのため、ペン先等の先端入力部で押圧されたコアでは、受光素子での光の検出レベル(受光量)が低下し、入力体を持つ手の部分で押圧されたコアでは、その検出レベルが低下しないようにすることができる。そして、その光の検出レベルの低下から、移動軌跡特定手段により、ペン先等の先端入力部の位置(座標)を検知することができ、その検出レベルが低下しない手の部分は、押圧されていない状態と同じになるため、検知されないようにすることができる。しかも、上記コアにより形成される格子状の一部ないし全部の交差部が、交差する少なくとも1方向を隙間により分断した状態の不連続交差に形成されていることから、光の交差損失を低減させることができる。そのため、上記ペン先等の先端の位置の検知感度を高めることができる。その結果、本発明の情報表示装置は、ペン先等の先端入力部の移動軌跡(入力した文字等の情報)のみを検知し、その検知した移動軌跡をディスプレイに表示することができる。 The information display apparatus according to the present invention includes a sheet-like optical waveguide in which a plurality of linear cores are arranged and formed in a lattice shape as a detection means for a movement locus of a tip input portion (a pen tip or the like) of an input body (a pen or the like). The provided position sensor is used. That is, the movement trajectory of the pen tip on the surface of the sheet-shaped optical waveguide is specified by the light propagation amount of the core changed by the movement. Therefore, a dedicated pen is not required for input, and a general writing instrument such as a pen that emits ink or a simple elongated rod-like body that does not eject ink can be used as the input body. In the sheet-like optical waveguide, the elastic modulus of the core is set larger than the elastic modulus of the under cladding layer and the elastic modulus of the over cladding layer. Therefore, when the surface of the over clad layer of the sheet-like optical waveguide is pressed, the deformation rate of the cross section of the core in the pressing direction is smaller than the deformation rate of the cross section of the over clad layer and the under clad layer. The cross-sectional area of the core is maintained. Then, when information such as characters is input by moving the tip input portion of the input body on the surface of the sheet-shaped optical waveguide, the bending state of the core is input to the tip of the input body at the pressed portion by the tip input portion. As a result, the light leaks (scatters) from the core, and at the pressed part of the hand part holding the input body, the bending of the core becomes gentle along the hand. It is possible to prevent leakage (scattering). Therefore, in the core pressed by the tip input part such as the pen tip, the detection level (light reception amount) of the light in the light receiving element is reduced, and in the core pressed by the hand part having the input body, the detection level is It can be prevented from decreasing. Then, the position (coordinates) of the tip input portion such as the pen tip can be detected by the movement locus specifying means from the decrease in the detection level of the light, and the part of the hand where the detection level does not decrease is pressed. Since it becomes the same as a non-existing state, it can be prevented from being detected. In addition, part or all of the lattice-like intersection formed by the core is formed as a discontinuous intersection in a state in which at least one intersecting direction is divided by a gap, thereby reducing the light intersection loss. be able to. Therefore, the detection sensitivity of the position of the tip of the pen tip or the like can be increased. As a result, the information display device of the present invention can detect only the movement locus (information of inputted characters and the like) of the tip input unit such as a pen tip and display the detected movement locus on the display.
本発明の情報表示装置の一実施の形態を模式的に示す説明図である。It is explanatory drawing which shows typically one Embodiment of the information display apparatus of this invention. 上記情報表示装置を構成する位置センサを模式的に示す平面図である。It is a top view which shows typically the position sensor which comprises the said information display apparatus. (a)は、上記位置センサにおける格子状のコアの交差部を拡大して模式的に示す拡大平面図であり、(b)は、上記位置センサの中央部の断面を拡大して模式的に示す拡大断面図である。(A) is an enlarged plan view schematically showing an intersection of lattice-shaped cores in the position sensor, and (b) is an enlarged schematic view of a cross section of a central portion of the position sensor. It is an expanded sectional view shown. (a)は、連続交差部における光の進路を模式的に示す拡大平面図であり、(b)は、不連続交差部における光の進路を模式的に示す拡大平面図である。(A) is an enlarged plan view schematically showing a light path in a continuous intersection, and (b) is an enlarged plan view schematically showing a light path in a discontinuous intersection. (a)は、入力体により押圧された上記位置センサのシート状光導波路の状態を模式的に示す断面図であり、(b)は、手により押圧された上記シート状光導波路の状態を模式的に示す断面図である。(A) is sectional drawing which shows typically the state of the sheet-like optical waveguide of the said position sensor pressed by the input body, (b) is typical about the state of the said sheet-like optical waveguide pressed by the hand. FIG. (a)~(e)は、上記格子状のコアの交差部の変形例を模式的に示す拡大平面図である。(A)-(e) is an enlarged plan view which shows typically the modification of the cross | intersection part of the said grid | lattice-like core.
 つぎに、本発明の実施の形態を図面にもとづいて詳しく説明する。 Next, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は、本発明の情報表示装置の一実施の形態を示している。この実施の形態の情報表示装置は、四角形のディスプレイDを有する情報表示体Pと、上記ディスプレイDの表面に載置される位置センサAとを備えている。そして、この位置センサAの表面にペン等の入力体10で入力された文字等の情報が、上記ディスプレイDに表示されるようになっている。 FIG. 1 shows an embodiment of the information display device of the present invention. The information display device of this embodiment includes an information display body P having a quadrangular display D, and a position sensor A placed on the surface of the display D. Information such as characters input with the input body 10 such as a pen on the surface of the position sensor A is displayed on the display D.
 上記情報表示体Pは、タブレット型端末,スマートフォン,ノート型パーソナルコンピュータ等の、情報表示用の液晶ディスプレイや有機ELディスプレイ等のディスプレイDを有するコンピュータ等である。 The information display body P is a computer having a display D such as a liquid crystal display for information display or an organic EL display, such as a tablet terminal, a smart phone, or a notebook personal computer.
 上記位置センサAは、その平面図を図2に示すように、格子状のコア2を有する四角形のシート状光導波路Wと、上記格子状のコア2を構成する線状のコア2の一端面に接続される発光素子4と、上記線状のコア2の他端面に接続される受光素子5とを備えている。そして、上記発光素子4から発光された光は、上記コア2の中を通り、上記受光素子5で受光されるようになっている。なお、図2では、コア2を鎖線で示しており、鎖線の太さがコア2の太さを示している。また、図2では、コア2の数を略して図示している。さらに、図2の矢印は、光の進む方向を示している。 As shown in FIG. 2, the position sensor A has a rectangular sheet-like optical waveguide W having a lattice-like core 2 and one end face of the linear core 2 constituting the lattice-like core 2. And a light receiving element 5 connected to the other end face of the linear core 2. The light emitted from the light emitting element 4 passes through the core 2 and is received by the light receiving element 5. In FIG. 2, the core 2 is indicated by a chain line, and the thickness of the chain line indicates the thickness of the core 2. In FIG. 2, the number of cores 2 is omitted. Furthermore, the arrow in FIG. 2 indicates the direction in which the light travels.
 また、この実施の形態では、上記発光素子4および受光素子5は、CPU(中央処理装置)(図示せず)により制御され、そのCPUは、上記発光素子4および受光素子5とともに、回路基板(図示せず)に搭載されている。そして、上記CPU等が搭載された回路基板は、上記情報表示体P(図1参照)の内部に配置されている。そのため、上記CPU,発光素子4,受光素子5,回路基板は、図1では、図示されていない。また、上記発光素子4やCPU等に必要な電源は、上記情報表示体Pに備えられている電源を利用するようになっている。 In this embodiment, the light-emitting element 4 and the light-receiving element 5 are controlled by a CPU (Central Processing Unit) (not shown), and the CPU together with the light-emitting element 4 and the light-receiving element 5 is a circuit board ( (Not shown). The circuit board on which the CPU and the like are mounted is arranged inside the information display body P (see FIG. 1). Therefore, the CPU, the light emitting element 4, the light receiving element 5, and the circuit board are not shown in FIG. Further, the power source required for the light emitting element 4 and the CPU uses the power source provided in the information display body P.
 そして、この実施の形態では、上記シート状光導波路Wにおける格子状のコア2の各交差部は、図3(a)に平面図で示すように、交差する4方向の全てが、隙間Gにより分断され、不連続になっている。上記隙間Gの幅dは、0(零)を超え(隙間Gが形成されていればよく)、通常、20μm以下に設定される。そして、上記シート状光導波路Wは、図3(b)に断面図で示すように、上記格子状のコア2がシート状のアンダークラッド層1で支持されシート状のオーバークラッド層3で被覆された状態で形成されており、そのアンダークラッド層1が上記ディスプレイDの表面に接している。また、この実施の形態では、上記隙間Gは、オーバークラッド層3の形成材料で形成されている。 In this embodiment, each of the intersecting portions of the lattice-like core 2 in the sheet-like optical waveguide W is crossed by gaps G as shown in a plan view in FIG. Divided and discontinuous. The width d of the gap G exceeds 0 (zero) (if the gap G is formed) and is usually set to 20 μm or less. In the sheet-like optical waveguide W, the lattice-like core 2 is supported by the sheet-like under clad layer 1 and covered with the sheet-like over clad layer 3 as shown in a sectional view in FIG. The undercladding layer 1 is in contact with the surface of the display D. In this embodiment, the gap G is formed of a material for forming the over clad layer 3.
 このように、上記格子状のコア2において、交差部を不連続とすると、光の交差損失を低減させることができる。すなわち、図4(a)に示すように、交差する4方向の全てが連続した交差部では、その交差する1方向〔図4(a)では上方向〕に注目すると、交差部に入射する光の一部は、その光が進んできたコア2と直交するコア2の壁面2aに到達し、その壁面2aでの反射角度が大きいことから、コア2を透過する〔図4(a)の二点鎖線の矢印参照〕。このような光の透過が、交差する上記と反対側の方向〔図4(a)では下方向〕でも発生する。これに対し、図4(b)に示すように、交差する1方向〔図4(b)では上方向〕が隙間Gにより不連続になっていると、上記隙間Gとコア2との界面が形成され、図4(a)においてコア2を透過する光の一部は、上記界面での反射角度が小さくなることから、透過することなく、その界面で反射し、コア2を進み続ける〔図4(b)の二点鎖線の矢印参照〕。このような光の反射が、交差する上記と反対側の方向〔図4(b)では下方向〕でも発生する。このことから、先に述べたように、交差部を不連続とすると、光の交差損失を低減させることができるのである。 Thus, in the lattice-like core 2 described above, if the intersection is discontinuous, the light crossing loss can be reduced. That is, as shown in FIG. 4 (a), in an intersection where all four intersecting directions are continuous, if one of the intersecting directions [upward in FIG. 4 (a)] is focused, the light incident on the intersection Part of the light reaches the wall surface 2a of the core 2 orthogonal to the core 2 through which the light has traveled, and is transmitted through the core 2 because the reflection angle at the wall surface 2a is large [2 in FIG. (See dotted arrow). Such light transmission also occurs in a direction opposite to the above intersecting direction (downward in FIG. 4A). On the other hand, as shown in FIG. 4B, when the intersecting one direction [upward in FIG. 4B] is discontinuous by the gap G, the interface between the gap G and the core 2 is Part of the light that is formed and passes through the core 2 in FIG. 4 (a) has a smaller reflection angle at the interface, so that it is reflected at the interface without passing through and continues to travel through the core 2 [FIG. 4 (b), see the two-dot chain line arrow]. Such reflection of light also occurs in the direction opposite to the above intersecting direction (downward in FIG. 4B). For this reason, as described above, when the crossing portion is discontinuous, the light crossing loss can be reduced.
 また、上記シート状光導波路Wは、上記コア2の弾性率が、上記アンダークラッド層1の弾性率および上記オーバークラッド層3の弾性率よりも大きく設定されている。これにより、上記シート状光導波路Wの表面を押圧したときに、その押圧方向のコア2の断面の変形率が、オーバークラッド層3およびアンダークラッド層1の断面の変形率よりも小さくなるようになっている。 In the sheet-like optical waveguide W, the elastic modulus of the core 2 is set larger than the elastic modulus of the under cladding layer 1 and the elastic modulus of the over cladding layer 3. Thereby, when the surface of the said sheet-like optical waveguide W is pressed, the deformation rate of the cross section of the core 2 of the pressing direction becomes smaller than the deformation rate of the cross section of the over clad layer 3 and the under clad layer 1. It has become.
 このような構成の上記情報表示装置では、上記シート状光導波路Wの、格子状のコア2に対応する部分が、入力領域となっている。そして、ペン等の入力体10(図1参照)による上記シート状光導波路Wへの情報の入力は、その入力領域におけるオーバークラッド層3の表面に文字等を書くように、そのオーバークラッド層3の表面で、入力体10の先端入力部(ペン先等)10a(図1参照)を移動させることにより行われる。すなわち、図5(a),(b)に断面図で示すように、上記シート状光導波路Wのオーバークラッド層3の表面に、手20に持ったペン等の入力体10で文字等の情報を書き込む等して入力すると、ペン先等の先端入力部10aによる押圧部分〔図5(a)参照〕も手20の小指やその付け根部分(小指球)等による押圧部分〔図5(b)参照〕も、その押圧方向の断面では、弾性率の小さいオーバークラッド層3がつぶれるように変形し、弾性率の大きいコア2は、断面積を保持したまま、先端入力部10aや手20の部分に沿って、弾性率の小さいアンダークラッド層1に沈むように曲がる。 In the information display device having such a configuration, a portion of the sheet-shaped optical waveguide W corresponding to the lattice-shaped core 2 is an input region. Then, input of information to the sheet-like optical waveguide W by the input body 10 (see FIG. 1) such as a pen is performed so that the overcladding layer 3 is written such that letters are written on the surface of the overcladding layer 3 in the input region. This is performed by moving the tip input portion (pen nib etc.) 10a (see FIG. 1) of the input body 10 on the surface of the input body 10. That is, as shown in cross-sectional views in FIGS. 5A and 5B, information such as characters is input to the surface of the over-cladding layer 3 of the sheet-like optical waveguide W by an input body 10 such as a pen held in the hand 20. And the like, the pressing portion by the tip input section 10a such as a pen tip (see FIG. 5A) is also the pressing portion by the little finger of the hand 20 or its base portion (the little finger ball) [FIG. 5B]. Also, in the cross section in the pressing direction, the over clad layer 3 having a small elastic modulus is deformed so that the core 2 having a large elastic modulus is a portion of the tip input portion 10a or the hand 20 while maintaining the cross-sectional area. And bent so as to sink into the under-cladding layer 1 having a small elastic modulus.
 そして、先端入力部10aによる押圧部分では、図5(a)に示すように、その先端入力部10aが尖っていることから、コア2の曲がり具合が急なものとなり、コア2からの光の漏れ(散乱)が発生する〔図5(a)の二点鎖線の矢印参照〕。一方、入力体10を持つ手20による押圧部分では、図5(b)に示すように、その手20が上記先端入力部10aと比較してかなり大きくて丸くなっていることから、コア2の曲がり具合が緩やかなものとなり、上記光の漏れ(散乱)が発生しない(光はコア2内を漏れることなく進む)〔図5(b)の二点鎖線の矢印参照〕。そのため、先端入力部10aで押圧されたコア2では、受光素子5での光の検出レベルが低下し、入力体10を持つ手20で押圧されたコア2では、その検出レベルが低下しないようにすることができる。そして、その光の検出レベルの低下から、先端入力部10aの位置(座標)を検知することができる。その検出レベルが低下しない手20の部分は、押圧されていない状態と同じであるため、検知されない。 And in the press part by the front-end | tip input part 10a, as shown to Fig.5 (a), since the front-end | tip input part 10a is sharp, the bending condition of the core 2 becomes abrupt and the light from the core 2 is light. Leakage (scattering) occurs [see the two-dot chain arrow in FIG. 5A]. On the other hand, in the pressing portion by the hand 20 having the input body 10, as shown in FIG. 5B, the hand 20 is considerably larger and rounder than the tip input portion 10a. The bending becomes gradual and the light leakage (scattering) does not occur (the light travels without leaking through the core 2) (see the two-dot chain arrow in FIG. 5B). Therefore, the detection level of light at the light receiving element 5 is lowered in the core 2 pressed by the tip input portion 10a, and the detection level is not lowered in the core 2 pressed by the hand 20 having the input body 10. can do. The position (coordinates) of the tip input portion 10a can be detected from the decrease in the light detection level. The portion of the hand 20 whose detection level does not decrease is the same as the state where it is not pressed, and thus is not detected.
 このとき、先に述べたように、上記コア2により形成される格子状の交差部は、不連続交差に形成されていることにより、光の交差損失が低減された状態になっていることから、上記ペン先等の先端入力部10aの位置の検知感度が高くなっている。 At this time, as described above, since the lattice-like intersection formed by the core 2 is formed as a discontinuous intersection, the light intersection loss is reduced. The detection sensitivity of the position of the tip input unit 10a such as the pen tip is high.
 そこで、上記CPUには、上記受光素子5での光の検出レベルの低下に基づいてその受光素子5から出力される電気信号から、その電気信号に対応する位置をたどったものを先端入力部10aの移動軌跡として特定するプログラム(移動軌跡特定手段)が組み込まれている。すなわち、上記位置センサAは、情報の入力に用いる入力体(ペン等)10の先端入力部(ペン先等)10aの位置を検知するセンサになっている。そして、上記入力体10の先端入力部10aの移動軌跡を示すデータは、上記情報表示体PのCPU(図示せず)に出力され、その情報表示体PのCPUで適正に画像化処理され、上記移動軌跡がディスプレイDに表示されるようになっている。 Therefore, the tip input unit 10a is a signal obtained by tracing the position corresponding to the electric signal from the electric signal output from the light receiving element 5 based on the decrease in the light detection level at the light receiving element 5. A program (moving track specifying means) for specifying the moving track is incorporated. That is, the position sensor A is a sensor that detects the position of the tip input portion (pen tip etc.) 10a of the input body (pen etc.) 10 used for inputting information. Data indicating the movement trajectory of the tip input portion 10a of the input body 10 is output to the CPU (not shown) of the information display body P, and is appropriately imaged by the CPU of the information display body P. The movement trajectory is displayed on the display D.
 このように、上記情報表示装置では、入力体(ペン等)10の先端入力部(ペン先等)10aの移動軌跡の検知手段として、複数の線状のコア2が格子状に配置形成されたシート状のシート状光導波路Wを用いているため、入力に専用ペンは不要であり、入力体10として、インクが出るペン等の一般的な筆記具やインクが出ない単なる細長い棒状の物等を用いることができる。 As described above, in the information display device, a plurality of linear cores 2 are arranged and formed in a lattice pattern as means for detecting the movement trajectory of the tip input portion (pen tip etc.) 10a of the input body (pen etc.) 10. Since the sheet-like optical waveguide W is used, a dedicated pen is not required for input. As the input body 10, a general writing instrument such as a pen that emits ink or a simple elongated rod-like object that does not eject ink is used. Can be used.
 また、先に述べたように、上記シート状光導波路Wにおいて、コア2の弾性率が、アンダークラッド層1の弾性率およびオーバークラッド層3の弾性率よりも大きく設定されているため、入力体10を持つ手20がシート状光導波路Wを押圧しても、上記のように、先端入力部10aの位置のみを検知し、手20の部分は検知されないようにすることができる。しかも、格子状のコア2の交差部が不連続交差に形成されているため、光の交差損失を低減することができ、上記ペン先等の先端入力部10aの位置の検知感度を高くすることができる。 Further, as described above, in the sheet-like optical waveguide W, the elastic modulus of the core 2 is set to be larger than the elastic modulus of the under cladding layer 1 and the elastic modulus of the over cladding layer 3, so that the input body Even if the hand 20 having 10 presses the sheet-like optical waveguide W, as described above, only the position of the tip input portion 10a can be detected, and the portion of the hand 20 can be prevented from being detected. In addition, since the intersections of the lattice-like cores 2 are formed as discontinuous intersections, it is possible to reduce the cross loss of light and increase the detection sensitivity of the position of the tip input unit 10a such as the pen tip. Can do.
 さらに、上記シート状光導波路Wへの入力時には、入力体10の先端入力部10aが押圧するシート状光導波路Wの部分が、上記のように変形するため、紙に近い感触で入力することができ、書き味が良好である。 Furthermore, at the time of input to the sheet-like optical waveguide W, the portion of the sheet-like optical waveguide W pressed by the tip input portion 10a of the input body 10 is deformed as described above. Can write well.
 また、上記タブレット型端末等の情報表示体Pは、通常、メモリ等の情報記憶媒体を予め備えているため、入力された情報(上記ディスプレイDに表示された情報)は、上記情報記憶媒体に記憶することができる。 In addition, since the information display body P such as the tablet type terminal is normally provided with an information storage medium such as a memory in advance, the input information (information displayed on the display D) is stored in the information storage medium. Can be remembered.
 なお、上記入力体10の先端入力部10aによる押圧が解除される(先端入力部10aが移動したり書き込み等の入力が終了したりする)と、上記アンダークラッド層1,コア2およびオーバークラッド層3は、各自の復元力により、元の状態〔図3(b)参照〕に戻る。そして、上記コア2の、アンダークラッド層1への沈み込み深さLは、最大で2000μmまでとすることが好ましい。上記沈み込み深さLが2000μmを超えると、上記アンダークラッド層1,コア2およびオーバークラッド層3が元の状態に戻らなくなったり、シート状光導波路Wに割れが発生したりするおそれがある。 When the pressure applied by the tip input portion 10a of the input body 10 is released (the tip input portion 10a moves or input such as writing ends), the under cladding layer 1, the core 2, and the over cladding layer 3 returns to the original state (see FIG. 3B) by its restoring force. The submerged depth L of the core 2 into the under cladding layer 1 is preferably up to 2000 μm. If the sinking depth L exceeds 2000 μm, the under cladding layer 1, the core 2, and the over cladding layer 3 may not return to the original state, or the sheet-like optical waveguide W may be cracked.
 ここで、上記コア2,アンダークラッド層1およびオーバークラッド層3の弾性率等について、より詳しく説明する。 Here, the elastic modulus and the like of the core 2, the under cladding layer 1 and the over cladding layer 3 will be described in more detail.
 上記コア2の弾性率は、1GPa~10GPaの範囲内であることが好ましく、より好ましくは、2GPa~5GPaの範囲内である。コア2の弾性率が低過ぎると、ペン先等の先端入力部10aの形状により、その先端入力部10aの圧力で、コア2の断面積が保持されない(コア2がつぶれる)傾向にあり、先端入力部10aの位置を適正に検知できないおそれがある。一方、コア2の弾性率が高過ぎると、先端入力部10aの圧力によるコア2の曲がりが、その先端入力部10aに沿った急な曲がりにならずに緩やかな曲がりになる傾向にある。そのため、コア2からの光の漏れ(散乱)が発生せず、受光素子5での光の検出レベルが低下しなくなることから、先端入力部10aの位置を適正に検知できないおそれがある。なお、コア2の寸法は、例えば、厚みが5~100μmの範囲内、幅が5~500μmの範囲内に設定される。 The elastic modulus of the core 2 is preferably in the range of 1 GPa to 10 GPa, more preferably in the range of 2 GPa to 5 GPa. If the elastic modulus of the core 2 is too low, the shape of the tip input portion 10a such as a pen tip tends to prevent the cross-sectional area of the core 2 from being held by the pressure of the tip input portion 10a (the core 2 is crushed). There is a possibility that the position of the input unit 10a cannot be detected properly. On the other hand, if the elastic modulus of the core 2 is too high, the bending of the core 2 due to the pressure of the tip input portion 10a tends to be a gentle bend without becoming a sharp bend along the tip input portion 10a. Therefore, light leakage (scattering) from the core 2 does not occur, and the light detection level at the light receiving element 5 does not decrease, so that the position of the tip input portion 10a may not be detected properly. The dimensions of the core 2 are set, for example, within a range of 5 to 100 μm in thickness and within a range of 5 to 500 μm in width.
 上記オーバークラッド層3の弾性率は、0.1MPa以上10GPa未満の範囲内であることが好ましく、より好ましくは、1MPa以上5GPa未満の範囲内である。オーバークラッド層3の弾性率が低過ぎると、柔らかすぎて、ペン先等の先端入力部10aの形状により、その先端入力部10aの圧力で、オーバークラッド層3が破損する傾向にあり、コア2を保護することができなくなるおそれがある。一方、オーバークラッド層3の弾性率が高過ぎると、先端入力部10aや手20の圧力によっても、オーバークラッド層3がつぶれるように変形しなくなる傾向にあり、それにより、コア2がつぶれ、先端入力部10aの位置を適正に検知できないおそれがある。なお、オーバークラッド層3の厚みは、例えば、1~200μmの範囲内に設定される。 The elastic modulus of the over clad layer 3 is preferably in the range of 0.1 MPa to less than 10 GPa, more preferably in the range of 1 MPa to less than 5 GPa. If the elastic modulus of the over clad layer 3 is too low, the over clad layer 3 tends to be damaged by the pressure of the tip input portion 10a due to the shape of the tip input portion 10a such as a pen tip. May not be able to be protected. On the other hand, if the elastic modulus of the over clad layer 3 is too high, the over clad layer 3 tends not to be deformed so as to be crushed even by the pressure of the tip input portion 10a or the hand 20, thereby causing the core 2 to be crushed and the tip There is a possibility that the position of the input unit 10a cannot be detected properly. The thickness of the over clad layer 3 is set within a range of 1 to 200 μm, for example.
 上記アンダークラッド層1の弾性率は、0.1MPa~1GPaの範囲内であることが好ましく、より好ましくは、1MPa~100MPaの範囲内である。アンダークラッド層1の弾性率が低過ぎると、柔らかすぎて、ペン先等の先端入力部10aで押圧した後、アンダークラッド層1が元の状態に戻り難く、入力が連続的に行えない傾向にある。一方、アンダークラッド層1の弾性率が高過ぎると、先端入力部10aや手20の圧力によっても、アンダークラッド層1がつぶれるように変形しなくなる傾向にあり、それにより、コア2がつぶれ、先端入力部10aの位置を適正に検知できないおそれがある。なお、アンダークラッド層1の厚みは、例えば、20~2000μmの範囲内に設定される。 The elastic modulus of the under cladding layer 1 is preferably in the range of 0.1 MPa to 1 GPa, more preferably in the range of 1 MPa to 100 MPa. If the modulus of elasticity of the underclad layer 1 is too low, the underclad layer 1 is too soft and, after being pressed by the tip input part 10a such as a pen tip, the underclad layer 1 is difficult to return to its original state, and input tends not to be performed continuously. is there. On the other hand, if the modulus of elasticity of the underclad layer 1 is too high, the underclad layer 1 tends not to be deformed due to the pressure of the tip input portion 10a or the hand 20, so that the core 2 is crushed. There is a possibility that the position of the input unit 10a cannot be detected properly. Note that the thickness of the under-cladding layer 1 is set within a range of 20 to 2000 μm, for example.
 上記コア2,アンダークラッド層1およびオーバークラッド層3の形成材料としては、シート状光導波路Wを通してディスプレイDの表示情報を見る必要性から、透光性を有する感光性樹脂,熱硬化性樹脂等があげられる。そして、その形成材料に応じた製法により、シート状光導波路Wを作製することができる。また、上記コア2の屈折率は、上記アンダークラッド層1およびオーバークラッド層3の屈折率よりも大きく設定されている。そして、上記弾性率および屈折率の調整は、例えば、各形成材料の種類の選択や組成比率を調整して行うことができる。 As a material for forming the core 2, the under clad layer 1 and the over clad layer 3, it is necessary to view display information of the display D through the sheet-like optical waveguide W, so that a light-transmitting photosensitive resin, a thermosetting resin, etc. Can be given. And the sheet-like optical waveguide W can be produced with the manufacturing method according to the forming material. The refractive index of the core 2 is set larger than the refractive indexes of the under cladding layer 1 and the over cladding layer 3. The elastic modulus and refractive index can be adjusted by, for example, selecting the type of each forming material and adjusting the composition ratio.
 また、上記アンダークラッド層1の裏面に、透光性を有する弾性層を設けてもよい。この場合、アンダークラッド層1,コア2およびオーバークラッド層3の復元力が弱くなったり、それらアンダークラッド層1等が元々復元力の弱い材料からなるものであったりしても、上記弾性層の弾性力を利用して、上記弱い復元力を補助し、入力体10の先端入力部10aによる押圧が解除された後、元の状態に戻すことができる。 Further, a light-transmitting elastic layer may be provided on the back surface of the under cladding layer 1. In this case, even if the restoring force of the under-cladding layer 1, the core 2 and the over-cladding layer 3 is weak, or the under-cladding layer 1 is originally made of a material having a weak restoring force, the elastic layer Using the elastic force, the weak restoring force is assisted, and after the pressing by the tip input portion 10a of the input body 10 is released, the original state can be restored.
 また、上記のように、ペン先等の先端入力部10aの位置のみが検出され、ペン等の入力体10を持つ手20が検知されないようにするためには、先端入力部10aによる押圧部分でのコア2の急な曲がりによる光の漏れ(散乱)量が重要である。そこで、例えば、ペン先等の先端入力部10aの曲率半径R(単位:μm)と、コア2の厚みT(単位:μm)との比S(=R/T)を用い、コア2とアンダークラッド層1およびオーバークラッド層3との間の屈折率差Δを規定すると、その屈折率差Δの最大値Δmax は、下記の式(1)のようになる。すなわち、屈折率差Δがこの最大値Δmax よりも大きいと、先端入力部10aで押圧しても、光の漏れ(散乱)量が少なく、受光素子5での光の検出レベルが充分に低下しないため、先端入力部10aの位置と手20の位置との区別が困難になる。 Further, as described above, in order to detect only the position of the tip input unit 10a such as the pen tip and not to detect the hand 20 having the input body 10 such as a pen, a pressing portion by the tip input unit 10a is used. The amount of light leakage (scattering) due to the sharp bending of the core 2 is important. Therefore, for example, the ratio S (= R / T) between the radius of curvature R (unit: μm) of the tip input portion 10a such as a pen tip and the thickness T (unit: μm) of the core 2 is used, and the core 2 and under When the refractive index difference Δ between the cladding layer 1 and the over cladding layer 3 is defined, the maximum value Δmax of the refractive index difference Δ is expressed by the following equation (1). That is, if the refractive index difference Δ is larger than the maximum value Δmax, even if the tip input portion 10a is pressed, the amount of light leakage (scattering) is small and the light detection level at the light receiving element 5 is not sufficiently lowered. Therefore, it becomes difficult to distinguish between the position of the tip input portion 10a and the position of the hand 20.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 一方、屈折率差Δの最小値Δmin は、下記の式(2)のようになる。すなわち、屈折率差Δがこの最小値Δmin よりも小さいと、手20による押圧部分でも、光の漏れ(散乱)が発生し、先端入力部10aの位置と手20の位置との区別が困難になる。 On the other hand, the minimum value Δmin of the refractive index difference Δ is expressed by the following equation (2). That is, when the refractive index difference Δ is smaller than the minimum value Δmin, light leakage (scattering) occurs even in the pressed portion by the hand 20, and it is difficult to distinguish the position of the tip input portion 10a from the position of the hand 20. Become.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 そのため、上記屈折率差Δは、最小値Δmin と最大値Δmax との間に設定することが好ましい。ここで、例えば、上記先端入力部10aの曲率半径R(単位:μm)を100~1000の範囲内、コア2の厚みT(単位:μm)を10~100の範囲内、比Sを1~100の範囲内とすると、屈折率差Δは、1.0×10-3~7.95×10-2の範囲内となる。なお、比Sが100を超える場合は、最小値Δmin を1.0×10-3(一定)とする。 Therefore, the refractive index difference Δ is preferably set between the minimum value Δmin and the maximum value Δmax. Here, for example, the radius of curvature R (unit: μm) of the tip input portion 10a is in the range of 100 to 1000, the thickness T (unit: μm) of the core 2 is in the range of 10 to 100, and the ratio S is 1 to 1. If it is in the range of 100, the refractive index difference Δ is in the range of 1.0 × 10 −3 to 7.95 × 10 −2 . When the ratio S exceeds 100, the minimum value Δmin is set to 1.0 × 10 −3 (constant).
 なお、上記実施の形態では、格子状のコア2の交差部を、交差する4方向の全てが不連続になっている不連続交差〔図3(a)参照〕としたが、他の不連続交差でもよい。例えば、図6(a)に示すように、交差する1方向のみが、隙間Gにより分断され、不連続になっているものでもよいし、図6(b),(c)に示すように、交差する2方向〔図6(b)は対向する2方向、図6(c)は隣り合う2方向〕が不連続になっているものでもよいし、図6(d)に示すように、交差する3方向が不連続になっているものでもよい。さらに、図3(a),図6(a)~(d)に示す上記不連続交差、および交差する4方向の全てが連続した連続交差〔図6(e)参照〕のうちの2種類以上の交差を備えた格子状としてもよい。 In the above embodiment, the crossing portion of the lattice-like core 2 is a discontinuous crossing (see FIG. 3A) in which all four intersecting directions are discontinuous (see FIG. 3A). It may be an intersection. For example, as shown in FIG. 6 (a), only one intersecting direction may be divided by the gap G to be discontinuous, or as shown in FIGS. 6 (b) and 6 (c), The two intersecting directions (FIG. 6 (b) is the two opposing directions, FIG. 6 (c) is the two adjacent directions) may be discontinuous, or as shown in FIG. 6 (d) The three directions may be discontinuous. Further, two or more kinds of the discontinuous intersection shown in FIG. 3 (a) and FIGS. 6 (a) to 6 (d) and a continuous intersection in which all four intersecting directions are continuous [see FIG. 6 (e)]. It is good also as the grid | lattice form provided with no intersection.
 また、上記実施の形態では、CPU,発光素子4,受光素子5,回路基板を情報表示体Pの内部に配置したが、それら全部ないし一部を、情報表示体Pの外部に配置してもよい。 In the above embodiment, the CPU, the light emitting element 4, the light receiving element 5, and the circuit board are arranged inside the information display body P. However, all or a part of them may be arranged outside the information display body P. Good.
 つぎに、実施例について比較例と併せて説明する。但し、本発明は、実施例に限定されるわけではない。 Next, examples will be described together with comparative examples. However, the present invention is not limited to the examples.
〔オーバークラッド層の形成材料〕
 成分a:エポキシ樹脂(四日市合成社製、エポゴーセーPT)30重量部。
 成分b:エポキシ樹脂(ダイセル社製、EHPE3150)70重量部。
 成分c:光酸発生剤(サンアプロ社製、CPI200K)4重量部。
 成分d:乳酸エチル(和光純薬工業社製)100重量部。
 これら成分a~dを混合することにより、オーバークラッド層の形成材料を調製した。
[Formation material of over clad layer]
Component a: 30 parts by weight of epoxy resin (Epogosei PT, manufactured by Yokkaichi Gosei Co., Ltd.)
Ingredient b: 70 weight part of epoxy resins (the Daicel company make, EHPE3150).
Component c: 4 parts by weight of a photoacid generator (manufactured by Sun Apro, CPI 200K).
Component d: 100 parts by weight of ethyl lactate (manufactured by Wako Pure Chemical Industries).
By mixing these components a to d, an over clad layer forming material was prepared.
〔コアの形成材料〕
 成分e:エポキシ樹脂(ダイセル社製、EHPE3150)80重量部。
 成分f:エポキシ樹脂(新日鉄化学社製、YDCN700-10)20重量部。
 成分g:光酸発生剤(ADEKA社製、SP170)1重量部。
 成分h:乳酸エチル(和光純薬工業社製)50重量部。
 これら成分e~hを混合することにより、コアの形成材料を調製した。
[Core forming material]
Component e: 80 parts by weight of an epoxy resin (manufactured by Daicel, EHPE3150).
Component f: 20 parts by weight of an epoxy resin (manufactured by Nippon Steel Chemical Co., Ltd., YDCN700-10).
Component g: 1 part by weight of a photoacid generator (made by ADEKA, SP170).
Component h: 50 parts by weight of ethyl lactate (Wako Pure Chemical Industries, Ltd.)
A core forming material was prepared by mixing these components e to h.
〔アンダークラッド層の形成材料〕
 成分i:エポキシ樹脂(四日市合成社製、エポゴーセーPT)75重量部。
 成分j:エポキシ樹脂(三菱化学社製、JER1007)25重量部。
 成分k:光酸発生剤(サンアプロ社製、CPI200K)4重量部。
 成分l:乳酸エチル(和光純薬工業社製)50重量部。
 これら成分i~lを混合することにより、アンダークラッド層の形成材料を調製した。
[Formation material of under cladding layer]
Component i: 75 parts by weight of epoxy resin (Epogosei PT, manufactured by Yokkaichi Gosei Co., Ltd.)
Component j: 25 parts by weight of an epoxy resin (manufactured by Mitsubishi Chemical Corporation, JER1007).
Component k: 4 parts by weight of a photoacid generator (manufactured by San Apro, CPI 200K).
Component l: 50 parts by weight of ethyl lactate (manufactured by Wako Pure Chemical Industries).
By mixing these components i to l, a material for forming the underclad layer was prepared.
〔シート状光導波路の作製〕
 ガラス製基材の表面に、上記オーバークラッド層の形成材料を用いて、スピンコート法により、オーバークラッド層を形成した。このオーバークラッド層の厚みは5μm、弾性率は1.2GPa、屈折率は1.503であった。
[Production of sheet-shaped optical waveguide]
An over clad layer was formed on the surface of the glass substrate by spin coating using the over clad layer forming material. The over cladding layer had a thickness of 5 μm, an elastic modulus of 1.2 GPa, and a refractive index of 1.503.
 ついで、上記オーバークラッド層の表面に、上記コアの形成材料を用いて、フォトリソグラフィ法により、格子状のコアを形成した。この格子状の各交差部は、交差する4方向の全てが隙間により分断され不連続になっている不連続交差とした〔図3(a)参照〕。上記隙間の幅は10μmとした。また、上記コアの厚みは30μm、格子状部分のコアの幅は100μm、ピッチは600μm、弾性率は3GPa、屈折率は1.523であった。 Next, a lattice-like core was formed on the surface of the over clad layer by photolithography using the core forming material. Each of the lattice-like intersections is a discontinuous intersection in which all four intersecting directions are separated by a gap and are discontinuous [see FIG. 3 (a)]. The width of the gap was 10 μm. The core had a thickness of 30 μm, the core width of the lattice portion was 100 μm, the pitch was 600 μm, the elastic modulus was 3 GPa, and the refractive index was 1.523.
 つぎに、上記コアを被覆するように、上記オーバークラッド層の表面に、上記アンダークラッド層の形成材料を用いて、スピンコート法により、アンダークラッド層を形成した。このアンダークラッド層の厚み(オーバークラッド層の表面からの厚み)は200μm、弾性率は3MPa、屈折率は1.503であった。 Next, an under clad layer was formed on the surface of the over clad layer by spin coating using the under clad layer forming material so as to cover the core. The thickness of the under cladding layer (thickness from the surface of the over cladding layer) was 200 μm, the elastic modulus was 3 MPa, and the refractive index was 1.503.
 そして、PET製基板(厚み1mm)の片面に、両面テープ(厚み25μm)を貼着したものを準備した。ついで、その両面テープのもう一方の粘着面を上記アンダークラッド層の表面に貼着し、その状態で、上記オーバークラッド層を上記ガラス製基材から剥離した。 And what stuck the double-sided tape (thickness 25 micrometers) on the single side | surface of the board | substrate (thickness 1mm) made from PET was prepared. Next, the other adhesive surface of the double-sided tape was attached to the surface of the under cladding layer, and in this state, the over cladding layer was peeled from the glass substrate.
〔比較例〕
〔オーバークラッド層の形成材料〕
 成分m:エポキシ樹脂(四日市合成社製、エポゴーセーPT)40重量部。
 成分n:エポキシ樹脂(ダイセル社製、2021P)60重量部。
 成分o:光酸発生剤(ADEKA社製、SP170)4重量部。
 これら成分m~oを混合することにより、オーバークラッド層の形成材料を調製した。
[Comparative example]
[Formation material of over clad layer]
Component m: 40 parts by weight of an epoxy resin (Epogosei PT, manufactured by Yokkaichi Gosei Co., Ltd.).
Component n: 60 parts by weight of epoxy resin (Daicel, 2021P).
Component o: 4 weight part of photo-acid generators (made by ADEKA, SP170).
By mixing these components m to o, an over clad layer forming material was prepared.
〔コアの形成材料〕
 成分p:エポキシ樹脂(四日市合成社製、エポゴーセーPT)30重量部。
 成分q:エポキシ樹脂(DIC社製、EXA-4816)70重量部。
 成分r:光酸発生剤(ADEKA社製、SP170)4重量部。
 これら成分p~rを混合することにより、コアの形成材料を調製した。
[Core forming material]
Component p: 30 parts by weight of epoxy resin (Epogosei PT, manufactured by Yokkaichi Gosei Co., Ltd.)
Component q: 70 parts by weight of an epoxy resin (manufactured by DIC, EXA-4816).
Component r: 4 weight part of photo-acid generators (made by ADEKA, SP170).
The core forming material was prepared by mixing these components p to r.
〔アンダークラッド層の形成材料〕
 成分s:エポキシ樹脂(四日市合成社製、エポゴーセーPT)40重量部。
 成分t:エポキシ樹脂(ダイセル社製、2021P)60重量部。
 成分u:光酸発生剤(ADEKA社製、SP170)4重量部。
 これら成分s~uを混合することにより、アンダークラッド層の形成材料を調製した。
[Formation material of under cladding layer]
Component s: 40 parts by weight of epoxy resin (Epogosei PT, manufactured by Yokkaichi Gosei Co., Ltd.)
Component t: 60 parts by weight of an epoxy resin (Daicel, 2021P).
Component u: 4 weight part of photo-acid generators (made by ADEKA, SP170).
By mixing these components s to u, a material for forming the under cladding layer was prepared.
〔シート状光導波路の作製〕
 上記実施例と同様にして、同寸法のシート状光導波路を作製した。ただし、弾性率は、オーバークラッド層が1GPa、コアが25MPa、アンダークラッド層が1GPaであった。また、屈折率は、オーバークラッド層が1.504、コアが1.532、アンダークラッド層が1.504であった。
[Production of sheet-shaped optical waveguide]
In the same manner as in the above example, a sheet-like optical waveguide having the same dimensions was produced. However, the elastic modulus was 1 GPa for the over clad layer, 25 MPa for the core, and 1 GPa for the under clad layer. The refractive index was 1.504 for the over clad layer, 1.532 for the core, and 1.504 for the under clad layer.
〔位置センサの作製〕
 上記実施例および比較例の各シート状光導波路のコアの一端面に、発光素子(Optowell社製、XH85-S0603-2s )を接続し、コアの他端面に、受光素子(浜松ホトニクス社製、s10226)を接続し、上記発光素子,上記受光素子,それら素子を制御するCPU(マイクロチップ社製、dsPIC33FJ128MC706)等を搭載した回路を設け、実施例および比較例の各位置センサを作製した。
[Production of position sensor]
A light emitting element (Optowell, XH85-S0603-2s) is connected to one end face of the core of each of the sheet-like optical waveguides of the above examples and comparative examples, and a light receiving element (Hamamatsu Photonics, s10226) was connected, and a circuit equipped with the light emitting element, the light receiving element, and a CPU (manufactured by Microchip, dsPIC33FJ128MC706) for controlling these elements was provided, and each position sensor of Example and Comparative Example was manufactured.
〔情報表示装置の作製〕
 タブレット型端末(acer社製、ICONIA TAB W500 )を準備し、そのディスプレイの表面に、上記位置センサのシート状光導波路を貼り付けた。このとき、アンダークラッド層が上記ディスプレイの表面に接するようにした。また、上記位置センサの、上記CPU等を搭載した回路は、上記タブレット型端末の内部に配置し、その回路に必要な電源は、上記タブレット型端末に備えられている電源を利用した。このようにして、上記位置センサを使用可能にした。なお、上記タブレット型端末のディスプレイは、人体の静電容量の変化を感知するセンサを備えているが、そのセンサが働かないようそのセンサへの電源供給を止めた。
[Production of information display device]
A tablet-type terminal (ICONIA TAB W500, manufactured by acer) was prepared, and the sheet-shaped optical waveguide of the position sensor was attached to the surface of the display. At this time, the under cladding layer was in contact with the surface of the display. In addition, the circuit on which the CPU and the like of the position sensor are mounted is arranged inside the tablet type terminal, and the power source necessary for the circuit is a power source provided in the tablet type terminal. In this way, the position sensor can be used. The display of the tablet-type terminal includes a sensor for detecting a change in the capacitance of the human body, but power supply to the sensor is stopped so that the sensor does not work.
〔情報表示装置の作動確認〕
 そして、入力者がボールペン(ペン先の曲率半径350μm)を手に持ち、上記入力装置の入力領域内で、文字を入力した。
[Operation check of information display device]
Then, the input person holds the ballpoint pen (the radius of curvature of the pen tip 350 μm) in his / her hand and inputs characters in the input area of the input device.
 その結果、実施例のシート状光導波路を用いた情報表示装置では、入力した文字のみが、上記ディスプレイに表示された。それに対して、比較例のシート状光導波路を用いた情報表示装置では、入力した文字だけでなく、ボールペンを持つ手の部分も、上記ディスプレイに表示された。 As a result, in the information display device using the sheet-like optical waveguide of the example, only the input characters were displayed on the display. On the other hand, in the information display device using the sheet-shaped optical waveguide of the comparative example, not only the input characters but also the hand portion having the ballpoint pen was displayed on the display.
 また、上記ボールペンに代えて、単なる棒体(先端の曲率半径550μm)を使用して上記と同様に入力しても、上記と同様の結果が得られた。 In addition, the same result as described above was obtained even when the same input as described above was used instead of the above ballpoint pen by using a simple rod (tip radius of curvature 550 μm).
 これらの結果から、実施例の位置センサは、入力体を代えても、入力された情報のみを検知でき、不要な情報は検知しないようにできることがわかる。 From these results, it can be seen that the position sensor of the embodiment can detect only the input information and not the unnecessary information even if the input body is changed.
 さらに、格子状のコアの各交差部を、交差する1~3方向が不連続になっている不連続交差〔図6(a)~(d)参照〕としても、上記実施例と同様の傾向を示す結果が得られた。さらに、交差する1~4方向が不連続になっている不連続交差〔図3(a),図6(a)~(d)参照〕、および交差する4方向の全てが連続した連続交差〔図6(e)参照〕のうちの2種類以上の交差を備えた格子状としても、上記実施例と同様の傾向を示す結果が得られた。 Furthermore, the same tendency as in the above-described embodiment can be obtained even if each of the intersecting portions of the lattice-like core is a discontinuous intersection (see FIGS. 6A to 6D) in which the intersecting directions 1 to 3 are discontinuous. The result which shows was obtained. Furthermore, a discontinuous intersection in which 1 to 4 intersecting directions are discontinuous (see FIGS. 3A and 6A to 6D) and a continuous intersection in which all four intersecting directions are continuous [ As shown in FIG. 6 (e)], a result showing a tendency similar to that in the above-described example was obtained even in a lattice shape having two or more types of intersections.
 上記実施例においては、本発明における具体的な形態について示したが、上記実施例は単なる例示にすぎず、限定的に解釈されるものではない。当業者に明らかな様々な変形は、本発明の範囲内であることが企図されている。 In the above embodiments, specific forms in the present invention have been described. However, the above embodiments are merely examples and are not construed as limiting. Various modifications apparent to those skilled in the art are contemplated to be within the scope of this invention.
 本発明の情報表示装置は、ディスプレイ上において一般的な筆記具等で入力したものを、ディスプレイに表示することに利用可能である。 The information display device of the present invention can be used to display on a display what is input with a general writing instrument or the like on the display.
 A 位置センサ
 D ディスプレイ
 P 情報表示体
 W シート状光導波路
 2 コア
 3 オーバークラッド層
 10 入力体
 
A position sensor D display P information display body W sheet-like optical waveguide 2 core 3 over clad layer 10 input body

Claims (1)

  1.  情報表示用のディスプレイと、
     下記(A)の位置センサと
    を備えている情報表示装置であって、
     上記ディスプレイの表面に、上記位置センサのシート状光導波路が載置され、そのシート状光導波路の表面での入力体の先端入力部の移動軌跡を入力情報として上記ディスプレイに表示することを特徴とする情報表示装置。
    (A)格子状に形成された複数の線状のコアと、これらコアを支持するアンダークラッド層と、上記コアを被覆するオーバークラッド層とを有するシート状光導波路と、
     上記コアの一端面に接続される発光素子と、
     上記コアの他端面に接続される受光素子と、
     上記シート状光導波路の表面における入力体の先端入力部の移動軌跡を、その移動により変化したコアの光伝播量によって特定する移動軌跡特定手段と
    を備えている位置センサであって、
     上記複数の線状のコアにより形成される格子状の一部ないし全部の交差部が、交差する少なくとも1方向を隙間により分断した状態の不連続交差に形成されており、
     上記コアの弾性率が、上記アンダークラッド層の弾性率および上記オーバークラッド層の弾性率よりも大きく設定され、上記シート状光導波路の表面における上記先端入力部による押圧状態で、その押圧方向のコアの断面の変形率が、オーバークラッド層およびアンダークラッド層の断面の変形率よりも小さくなるようになっている
    位置センサ。
     
    A display for displaying information,
    An information display device comprising the following position sensor (A),
    The sheet-shaped optical waveguide of the position sensor is placed on the surface of the display, and the movement trajectory of the tip input portion of the input body on the surface of the sheet-shaped optical waveguide is displayed on the display as input information. Information display device.
    (A) a sheet-like optical waveguide having a plurality of linear cores formed in a lattice shape, an under cladding layer that supports the cores, and an over cladding layer that covers the cores;
    A light emitting element connected to one end face of the core;
    A light receiving element connected to the other end surface of the core;
    A position sensor comprising a movement locus specifying means for specifying the movement locus of the tip input portion of the input body on the surface of the sheet-shaped optical waveguide by the amount of light propagation of the core changed by the movement,
    A part or all of the lattice-like intersection formed by the plurality of linear cores is formed as a discontinuous intersection in a state where at least one intersecting direction is divided by a gap,
    The elastic modulus of the core is set to be larger than the elastic modulus of the under cladding layer and the elastic modulus of the over cladding layer, and the core in the pressing direction is pressed by the tip input portion on the surface of the sheet-like optical waveguide. A position sensor in which the deformation rate of the cross section of the under clad layer is smaller than the deformation rate of the cross sections of the over cladding layer and the under cladding layer.
PCT/JP2015/062469 2014-05-08 2015-04-24 Information display device WO2015170607A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-096604 2014-05-08
JP2014096604A JP2015215667A (en) 2014-05-08 2014-05-08 Information display device

Publications (1)

Publication Number Publication Date
WO2015170607A1 true WO2015170607A1 (en) 2015-11-12

Family

ID=54392460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062469 WO2015170607A1 (en) 2014-05-08 2015-04-24 Information display device

Country Status (3)

Country Link
JP (1) JP2015215667A (en)
TW (1) TW201606592A (en)
WO (1) WO2015170607A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07319609A (en) * 1994-05-25 1995-12-08 Toshiba Corp Resistance tablet input device and information processor applying the same
JP2001222378A (en) * 2000-02-10 2001-08-17 Nec Saitama Ltd Touch panel input device
JP2009300688A (en) * 2008-06-12 2009-12-24 Hitachi Chem Co Ltd Resin composition for forming cladding layer, resin film for forming cladding layer using the same, and optical waveguide and optical module using these
US20100097348A1 (en) * 2008-10-16 2010-04-22 Inha Industry Partnership Institute Touch screen tool
JP2010151992A (en) * 2008-12-24 2010-07-08 Fuji Xerox Co Ltd Optical waveguide, optical waveguide type touch panel and method of manufacturing the optical waveguide
WO2012002222A1 (en) * 2010-06-30 2012-01-05 インターナショナル・ビジネス・マシーンズ・コーポレーション Design for achieving low loss in intersecting region of optical waveguide
JP2014021576A (en) * 2012-07-13 2014-02-03 Shin Etsu Polymer Co Ltd Light guide unit, optical touch panel including light guide unit and electronic device including optical touch panel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07319609A (en) * 1994-05-25 1995-12-08 Toshiba Corp Resistance tablet input device and information processor applying the same
JP2001222378A (en) * 2000-02-10 2001-08-17 Nec Saitama Ltd Touch panel input device
JP2009300688A (en) * 2008-06-12 2009-12-24 Hitachi Chem Co Ltd Resin composition for forming cladding layer, resin film for forming cladding layer using the same, and optical waveguide and optical module using these
US20100097348A1 (en) * 2008-10-16 2010-04-22 Inha Industry Partnership Institute Touch screen tool
JP2010151992A (en) * 2008-12-24 2010-07-08 Fuji Xerox Co Ltd Optical waveguide, optical waveguide type touch panel and method of manufacturing the optical waveguide
WO2012002222A1 (en) * 2010-06-30 2012-01-05 インターナショナル・ビジネス・マシーンズ・コーポレーション Design for achieving low loss in intersecting region of optical waveguide
JP2014021576A (en) * 2012-07-13 2014-02-03 Shin Etsu Polymer Co Ltd Light guide unit, optical touch panel including light guide unit and electronic device including optical touch panel

Also Published As

Publication number Publication date
TW201606592A (en) 2016-02-16
JP2015215667A (en) 2015-12-03

Similar Documents

Publication Publication Date Title
JP5513656B1 (en) Electronic underlay
JP6026346B2 (en) Position sensor
WO2014136508A1 (en) Information display system
WO2014136472A1 (en) Position sensor
JP5513655B1 (en) Information management system
WO2014181574A1 (en) Information display device
WO2015156111A1 (en) Position sensor and sheet-shaped optical waveguide used in same
WO2015170607A1 (en) Information display device
WO2015170606A1 (en) Information display system
WO2014196390A1 (en) Electronic underlay
WO2015049908A1 (en) Input apparatus
WO2015156115A1 (en) Information processing system
WO2015033657A1 (en) Input device
WO2015156112A1 (en) Position sensor and sheet-shaped optical waveguide used in same
WO2015156114A1 (en) Position sensor
WO2015045572A1 (en) Electronic underlay
WO2015045570A1 (en) Input device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15788748

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15788748

Country of ref document: EP

Kind code of ref document: A1