WO2015170606A1 - Information display system - Google Patents

Information display system Download PDF

Info

Publication number
WO2015170606A1
WO2015170606A1 PCT/JP2015/062468 JP2015062468W WO2015170606A1 WO 2015170606 A1 WO2015170606 A1 WO 2015170606A1 JP 2015062468 W JP2015062468 W JP 2015062468W WO 2015170606 A1 WO2015170606 A1 WO 2015170606A1
Authority
WO
WIPO (PCT)
Prior art keywords
input
core
information
cladding layer
sheet
Prior art date
Application number
PCT/JP2015/062468
Other languages
French (fr)
Japanese (ja)
Inventor
裕介 清水
良真 吉岡
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2015170606A1 publication Critical patent/WO2015170606A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means

Definitions

  • the present invention relates to an information display system in which new information is added to a document displayed on a display using an input device and displayed.
  • the pointing device includes a dedicated pen and a dedicated board, and information such as characters is input by moving the dedicated pen on the dedicated board. That is, the locus of the tip of the dedicated pen on the dedicated board (input information such as characters) can be detected using electromagnetic induction, and the locus can be output as a signal to the personal computer and displayed on the display. It has become. As described above, the pointing device can input characters, figures, marks, and the like by an intuitive operation.
  • the pointing device requires a dedicated pen and a dedicated board, when a large number of people use the dedicated board in a meeting or the like, turn one dedicated pen in order or use a dedicated pen. Many need to be prepared.
  • the input device includes a rectangular frame-shaped optical waveguide, and light is allowed to run in a lattice pattern in the hollow portion inside the rectangular frame shape.
  • the pen tip shields the light running in the grid shape, and the position of the pen tip is detected from the light shielding position.
  • the displayed characters can be displayed on the display.
  • a dedicated pen and a dedicated board can be dispensed with.
  • the hand part when the little finger of the hand having an input body such as a pen or the base part (the little finger ball) of the input device enters the hollow part, the hand part also shields the lattice-like light. Therefore, it may be determined that the information is input and displayed on the display. The display of the hand part is unnecessary.
  • the present invention has been made in view of such circumstances, and does not use the light shielding as described above, but uses a change in the light propagation of the core based on the writing pressure by an input body such as a pen applied to the optical waveguide.
  • An object of the present invention is to provide an information display system provided with the input device.
  • an information display system of the present invention is an information display system comprising a personal computer having a display for displaying information and a position sensor (A) below, which is displayed on the display.
  • New information to be added to the information is input by moving the tip input portion of the input body on the surface of the sheet-shaped optical waveguide of the position sensor, and the movement locus is output to the personal computer as new information.
  • a sheet-like optical waveguide having a plurality of linear cores formed in a lattice shape, an under cladding layer that supports the cores, and an over cladding layer that covers the cores, and one end surface of the core
  • the movement locus of the tip input portion of the input body on the surface of the sheet-shaped optical waveguide is changed by the amount of light propagation of the core changed by the movement, the light emitting element to be connected, the light receiving element connected to the other end surface of the core
  • a position sensor having a moving locus specifying means for specifying, wherein at least one direction where a part or all of the lattice-like intersection formed by the plurality of linear cores intersects is divided by a gap.
  • the sheet is formed at discontinuous intersections, and the elastic modulus of the core is set to be larger than the elastic modulus of the under-cladding layer and the elastic modulus of the over-cladding layer, and the sheet A pressing state by the tip input section in the surface of the optical waveguide, the deformation ratio of the cross-section of the pressing direction of the core, a position sensor adapted to be smaller than the deformation rate of the cross-section of the over-cladding layer and the under-cladding layer.
  • the “deformation rate” refers to the ratio of the amount of change of each thickness during pressing to the thickness of the core, over cladding layer and under cladding layer before pressing in the pressing direction.
  • the “movement” of the tip input unit includes a case where the movement distance is 0 (zero), and the “movement locus” in that case is a point.
  • a part or all of the lattice-like intersection formed by the plurality of linear cores is formed as a discontinuous intersection in a state where at least one intersecting direction is divided by a gap.
  • the cross loss of light can be reduced.
  • the information display system includes a sheet-like optical waveguide in which a plurality of linear cores are arranged and formed in a lattice shape as a means for detecting a movement locus of a tip input unit (a pen tip or the like) of an input body (a pen or the like).
  • the input device provided is used. That is, the movement trajectory of the tip input portion of the input body on the surface of the sheet-like optical waveguide is specified by the amount of light propagation of the core changed by the movement. Therefore, a dedicated pen is not required for input, and a pen used for normal writing or a simple elongated rod-like object that does not generate ink can be used as the input body.
  • the elastic modulus of the core is set larger than the elastic modulus of the under cladding layer and the elastic modulus of the over cladding layer. Therefore, when the surface of the over clad layer of the sheet-like optical waveguide is pressed, the deformation rate of the cross section of the core in the pressing direction is smaller than the deformation rate of the cross section of the over clad layer and the under clad layer. The cross-sectional area of the core is maintained. Then, when information such as characters is input by moving the tip input portion of the input body on the surface of the sheet-shaped optical waveguide, the bending state of the core is input to the tip of the input body at the pressed portion by the tip input portion.
  • the light leaks (scatters) from the core, and at the pressed part of the hand part holding the input body, the bending of the core becomes gentle along the hand. It is possible to prevent leakage (scattering). Therefore, in the core pressed by the tip input part such as the pen tip, the detection level (light reception amount) of the light in the light receiving element is reduced, and in the core pressed by the hand part having the input body, the detection level is It can be prevented from decreasing. Then, the position (coordinates) of the tip input portion such as the pen tip can be detected by the movement locus specifying means from the decrease in the detection level of the light, and the part of the hand where the detection level does not decrease is pressed.
  • part or all of the lattice-like intersection formed by the core is formed as a discontinuous intersection in a state in which at least one intersecting direction is divided by a gap, thereby reducing the light intersection loss. be able to. Therefore, the detection sensitivity of the position of the tip of the pen tip or the like can be increased. As a result, it is possible to detect only the movement trajectory (information such as input characters) of the tip input unit such as the pen tip and display it in addition to the information displayed on the display.
  • FIG. 1 It is explanatory drawing which shows typically one Embodiment of the information display system of this invention. It is a top view which shows typically the input device which comprises the said information display system.
  • (A) is an enlarged plan view schematically showing an intersection of lattice-shaped cores in the input device, and (b) is an enlarged schematic view of a cross section of a central portion of the input device. It is an expanded sectional view shown.
  • (A) is an enlarged plan view schematically showing a light path in a continuous intersection
  • (b) is an enlarged plan view schematically showing a light path in a discontinuous intersection.
  • FIG. (A) is sectional drawing which shows typically the state of the sheet-like optical waveguide of the said input device pressed by the input body
  • (b) is a schematic diagram of the state of the said sheet-like optical waveguide pressed by the hand.
  • FIG. (A)-(e) is an enlarged plan view which shows typically the modification of the cross
  • FIG. 1 shows an embodiment of the information display system of the present invention.
  • the information display system of this embodiment can input new information to be added to the information displayed on the personal computer P having the display D and the display D with the input body 10 such as a pen, and the input information is input to the personal computer P. And an input device A for outputting.
  • the input information is transmitted from the input device A to the personal computer P by a connection cable C such as a USB cable.
  • the personal computer P and the input device A are connected by the connection cable C. Connected.
  • the input device A has a rectangular sheet-like optical waveguide W having a lattice-like core 2 and one end face of the linear core 2 constituting the lattice-like core 2.
  • a light receiving element 5 connected to the other end face of the linear core 2, a CPU (central processing unit) (not shown) for controlling the input device A, and the light emitting element 4
  • a circuit board 6 on which the light receiving element 5 is mounted.
  • the sheet-like optical waveguide W and the circuit board 6 are provided on the surface of a rigid plate 7 such as a resin plate or a metal plate.
  • the power necessary for the light emitting element 4 and the CPU is supplied from the personal computer P via the connection cable C (see FIG. 1).
  • the light emitted from the light emitting element 4 passes through the core 2 and is received by the light receiving element 5.
  • the core 2 is indicated by a chain line, and the thickness of the chain line indicates the thickness of the core 2.
  • the number of cores 2 is omitted.
  • the arrow in FIG. 2 indicates the direction in which the light travels.
  • each of the intersecting portions of the lattice-like core 2 in the sheet-like optical waveguide W is crossed by gaps G as shown in a plan view in FIG. Divided and discontinuous.
  • the width d of the gap G exceeds 0 (zero) (if the gap G is formed) and is usually set to 20 ⁇ m or less.
  • the lattice-like core 2 is supported by the sheet-like under clad layer 1 and covered with the sheet-like over clad layer 3 as shown in a sectional view in FIG. It is formed in the state.
  • the gap G is formed of a material for forming the over clad layer 3.
  • the intersection is discontinuous, the light crossing loss can be reduced. That is, as shown in FIG. 4 (a), in an intersection where all four intersecting directions are continuous, if one of the intersecting directions [upward in FIG. 4 (a)] is focused, the light incident on the intersection Part of the light reaches the wall surface 2a of the core 2 orthogonal to the core 2 through which the light has traveled, and is transmitted through the core 2 because the reflection angle at the wall surface 2a is large [2 in FIG. (See dotted arrow). Such light transmission also occurs in a direction opposite to the above intersecting direction (downward in FIG. 4A). On the other hand, as shown in FIG.
  • the elastic modulus of the core 2 is set to be larger than the elastic modulus of the under cladding layer 1 and the elastic modulus of the over cladding layer 3.
  • a portion corresponding to the lattice-shaped core 2 is an input region.
  • the input of information to the input device A by the input body 10 such as a pen is performed so that characters and the like are written on the surface of the over clad layer 3 of the sheet-like optical waveguide W in the input region.
  • the pressing portion by the tip input portion 10a such as a pen tip (see FIG. 5A) is also pressed by the little finger of the hand 20, its base portion (little finger ball), etc. 5 (b)] also, in the cross section in the pressing direction, the over-cladding layer 3 having a low elastic modulus is deformed so that the core 2 having a high elastic modulus maintains the cross-sectional area while the tip input portion 10a and Along the part of the hand 20, it bends so as to sink into the undercladding layer 1 having a low elastic modulus.
  • the detection level of light at the light receiving element 5 is lowered in the core 2 pressed by the tip input portion 10a, and the detection level is not lowered in the core 2 pressed by the hand 20 having the input body 10. can do.
  • the position (coordinates) of the tip input portion 10a can be detected from the decrease in the light detection level.
  • the portion of the hand 20 whose detection level does not decrease is the same as the state where it is not pressed, and thus is not detected.
  • the lattice-like intersection formed by the core 2 is formed as a discontinuous intersection, the light intersection loss is reduced.
  • the detection sensitivity of the position of the tip input unit 10a such as the pen tip is high.
  • the CPU of the input device A incorporates a program (movement locus specifying means) for specifying the movement locus of the tip input section 10a from the decrease in the light detection level at the light receiving element 5. That is, the input device A is a position sensor that detects the position of the tip input unit (pen tip etc.) 10a of the input body (pen etc.) 10 used for inputting information. Data indicating the movement locus of the distal end input portion 10a of the input body 10 is output to the personal computer P via the connection cable C, and is appropriately imaged by the personal computer P. The movement locus is displayed on the display D. It is displayed.
  • a program movement locus specifying means
  • a plurality of linear cores 2 are in a lattice pattern as means for detecting the movement trajectory of the tip input unit (pen tip etc.) 10a of the input body (pen etc.) 10. Since a sheet-like optical waveguide W arranged and formed in the above is used, a dedicated pen is not required for input, and a pen used for normal writing or a simple elongated rod-like object that does not produce ink is used as the input body 10. Can do. Therefore, there is no inconvenience even if the input device A is used by many people.
  • the hand 20 holding the input body 10 is a sheet. Even when the optical waveguide W is pressed, only the position of the tip input portion 10a can be detected and the portion of the hand 20 can be prevented from being detected as described above.
  • the intersections of the lattice-like cores 2 are formed as discontinuous intersections, it is possible to reduce the cross loss of light and increase the detection sensitivity of the position of the tip input unit 10a such as the pen tip. Can do.
  • the display D of the personal computer P information such as materials used for explanation in presentations and meetings is generally displayed.
  • information such as characters is input to the input device A as described above
  • the display D is displayed in a state where the information such as characters input by the input device A is superimposed on the information such as the material.
  • software program for converting the coordinates of the input area of the input device A into the coordinates of the screen of the display D and displaying characters or the like input by the input device A on the display D is the above personal computer.
  • P is incorporated.
  • the information such as the material is usually stored in advance in an information storage medium such as a hard disk in the personal computer P or an external USB memory, and is output from the information storage medium.
  • the information displayed on the display D in which the information such as the material is overlapped with the information such as the characters input by the input device A can be stored in the information storage medium.
  • the personal computer P means not only a general personal computer but also devices such as a smartphone and a tablet terminal having the same functions as the personal computer.
  • the submerged depth L of the core 2 into the under cladding layer 1 is preferably up to 2000 ⁇ m. If the sinking depth L exceeds 2000 ⁇ m, the under cladding layer 1, the core 2, and the over cladding layer 3 may not return to the original state, or the sheet-like optical waveguide W may be cracked.
  • the elastic modulus of the core 2 is preferably in the range of 1 GPa to 10 GPa, more preferably in the range of 2 GPa to 5 GPa. If the elastic modulus of the core 2 is too low, the cross-sectional area of the core 2 may not be maintained (the core 2 may be crushed) by the pressure of the tip input portion 10a due to the shape of the tip input portion 10a such as a pen tip. There is a possibility that the position of the input unit 10a cannot be detected properly. On the other hand, if the elastic modulus of the core 2 is too high, the bending of the core 2 due to the pressure of the tip input portion 10a may be a gentle bend without being a sharp bend along the tip input portion 10a.
  • the dimensions of the core 2 are set, for example, within a range of 5 to 100 ⁇ m in thickness and within a range of 5 to 500 ⁇ m in width.
  • the elastic modulus of the over clad layer 3 is preferably in the range of 0.1 MPa to less than 10 GPa, more preferably in the range of 1 MPa to less than 5 GPa. If the elastic modulus of the over clad layer 3 is too low, the over clad layer 3 may be damaged due to the shape of the tip input portion 10a such as a pen tip due to the pressure of the tip input portion 10a. May not be able to be protected. On the other hand, when the elastic modulus of the over clad layer 3 is too high, the over clad layer 3 is not deformed so as to be crushed even by the pressure of the tip input portion 10a or the hand 20, thereby causing the core 2 to be crushed and the tip input portion 10a. May not be detected properly.
  • the thickness of the over clad layer 3 is set within a range of 1 to 200 ⁇ m, for example.
  • the elastic modulus of the under cladding layer 1 is preferably in the range of 0.1 MPa to 1 GPa, more preferably in the range of 1 MPa to 100 MPa. If the elastic modulus of the underclad layer 1 is too low, the underclad layer 1 is too soft, and after being pressed by the tip input portion 10a such as a pen tip, the underclad layer 1 does not return to its original state, and input may not be performed continuously. is there. On the other hand, if the elastic modulus of the underclad layer 1 is too high, the underclad layer 1 will not be deformed so as to be crushed even by the pressure of the tip input portion 10a or the hand 20, thereby causing the core 2 to be crushed and the tip input portion 10a. May not be detected properly. Note that the thickness of the under-cladding layer 1 is set within a range of 20 to 2000 ⁇ m, for example.
  • Examples of the material for forming the core 2, the under cladding layer 1 and the over cladding layer 3 include photosensitive resin, thermosetting resin, and the like, and the sheet-like optical waveguide W is manufactured by a manufacturing method corresponding to the forming material. Can do.
  • the refractive index of the core 2 is set larger than the refractive indexes of the under cladding layer 1 and the over cladding layer 3.
  • the elastic modulus and refractive index can be adjusted by, for example, selecting the type of each forming material and adjusting the composition ratio.
  • a rubber sheet may be used as the undercladding layer 1 and the cores 2 may be formed in a lattice shape on the rubber sheet.
  • an elastic layer such as a rubber layer may be provided on the back surface of the under cladding layer 1 (between the under cladding layer 1 and the rigid plate 7).
  • the elastic layer Using the elastic force, the weak restoring force is assisted, and after the pressing by the tip input portion 10a of the input body 10 is released, the original state can be restored.
  • a plurality of input devices A may be used. In this case, use by a plurality of persons becomes easy.
  • the information displayed on the display D may be color-coded by the input device A so that the information input from which input device A can be known.
  • a plurality of input devices A may be distributed to a plurality of places (such as a venue) and a presentation or a meeting may be performed simultaneously at the plurality of places.
  • the personal computer P at one location is the host personal computer P
  • the personal computer P at another location is the relay personal computer P
  • the personal computers P are communicably connected.
  • a pressing portion by the tip input unit 10a is used.
  • the amount of light leakage (scattering) due to the sharp bending of the core 2 is important.
  • the maximum value ⁇ max of the refractive index difference ⁇ is expressed by the following equation (1). That is, if the refractive index difference ⁇ is larger than the maximum value ⁇ max, even if the tip input portion 10a is pressed, the amount of light leakage (scattering) is small and the light detection level at the light receiving element 5 is not sufficiently lowered. Therefore, it becomes difficult to distinguish between the position of the tip input portion 10a and the position of the hand 20.
  • the minimum value ⁇ min of the refractive index difference ⁇ is expressed by the following equation (2). That is, when the refractive index difference ⁇ is smaller than the minimum value ⁇ min, light leakage (scattering) occurs even in the pressed portion by the hand 20, and it is difficult to distinguish the position of the tip input portion 10a from the position of the hand 20. Become.
  • the refractive index difference ⁇ is preferably set between the minimum value ⁇ min and the maximum value ⁇ max.
  • the radius of curvature R (unit: ⁇ m) of the tip input portion 10a is in the range of 100 to 1000
  • the thickness T (unit: ⁇ m) of the core 2 is in the range of 10 to 100
  • the ratio A is 1 to 1. If it is in the range of 100, the refractive index difference ⁇ is in the range of 1.0 ⁇ 10 ⁇ 3 to 7.95 ⁇ 10 ⁇ 2 .
  • the minimum value ⁇ min is set to 1.0 ⁇ 10 ⁇ 3 (constant).
  • the crossing portion of the lattice-like core 2 is a discontinuous crossing (see FIG. 3A) in which all four intersecting directions are discontinuous (see FIG. 3A). It may be an intersection.
  • FIG. 6 (a) only one intersecting direction may be divided by the gap G to be discontinuous, or as shown in FIGS. 6 (b) and 6 (c),
  • the two intersecting directions (FIG. 6 (b) is the two opposing directions
  • FIG. 6 (c) is the two adjacent directions) may be discontinuous, or as shown in FIG. 6 (d)
  • the three directions may be discontinuous.
  • information transmission from the input device A to the personal computer P is performed by the connection cable C, but may be performed wirelessly.
  • the input device A since the power required for the input device A is not supplied from the personal computer P via the connection cable C, the input device A is provided with a power source such as a battery.
  • the rigid plate 7 is provided to support the sheet-like optical waveguide W.
  • the rigid plate 7 may not be provided. In that case, the input is performed in a state where the sheet-like optical waveguide W of the input device A is placed on a hard flat table such as a table.
  • Component a 30 parts by weight of epoxy resin (Epogosei PT, manufactured by Yokkaichi Gosei Co., Ltd.)
  • Ingredient b 70 weight part of epoxy resins (the Daicel company make, EHPE3150).
  • Component c 4 parts by weight of a photoacid generator (manufactured by Sun Apro, CPI 200K).
  • Component d 100 parts by weight of ethyl lactate (manufactured by Wako Pure Chemical Industries).
  • Component e 80 parts by weight of an epoxy resin (manufactured by Daicel, EHPE3150).
  • Component f 20 parts by weight of an epoxy resin (manufactured by Nippon Steel Chemical Co., Ltd., YDCN700-10).
  • Component g 1 part by weight of a photoacid generator (made by ADEKA, SP170).
  • Component h 50 parts by weight of ethyl lactate (Wako Pure Chemical Industries, Ltd.) A core forming material was prepared by mixing these components e to h.
  • [Formation material of under cladding layer] Component i: 75 parts by weight of epoxy resin (Epogosei PT, manufactured by Yokkaichi Gosei Co., Ltd.) Component j: 25 parts by weight of an epoxy resin (manufactured by Mitsubishi Chemical Corporation, JER1007).
  • Component k 4 parts by weight of a photoacid generator (manufactured by San Apro, CPI 200K).
  • Component l 50 parts by weight of ethyl lactate (manufactured by Wako Pure Chemical Industries). By mixing these components i to l, a material for forming the underclad layer was prepared.
  • An over clad layer was formed on the surface of the glass substrate by spin coating using the over clad layer forming material.
  • the over cladding layer had a thickness of 5 ⁇ m, an elastic modulus of 1.2 GPa, and a refractive index of 1.503.
  • a lattice-like core was formed on the surface of the over clad layer by photolithography using the core forming material.
  • Each of the lattice-like intersections is a discontinuous intersection in which all four intersecting directions are separated by a gap and are discontinuous [see FIG. 3 (a)].
  • the width of the gap was 10 ⁇ m.
  • the core had a thickness of 30 ⁇ m, the core width of the lattice portion was 100 ⁇ m, the pitch was 600 ⁇ m, the elastic modulus was 3 GPa, and the refractive index was 1.523.
  • an under clad layer was formed on the surface of the over clad layer by spin coating using the under clad layer forming material so as to cover the core.
  • the thickness of the under cladding layer was 200 ⁇ m, the elastic modulus was 3 MPa, and the refractive index was 1.503.
  • Component p 30 parts by weight of epoxy resin (Epogosei PT, manufactured by Yokkaichi Gosei Co., Ltd.)
  • Component q 70 parts by weight of an epoxy resin (manufactured by DIC, EXA-4816).
  • Component r 4 weight part of photo-acid generators (made by ADEKA, SP170). The core forming material was prepared by mixing these components p to r.
  • [Formation material of under cladding layer] Component s: 40 parts by weight of epoxy resin (Epogosei PT, manufactured by Yokkaichi Gosei Co., Ltd.) Component t: 60 parts by weight of an epoxy resin (Daicel, 2021P). Component u: 4 weight part of photo-acid generators (made by ADEKA, SP170). By mixing these components s to u, a material for forming the under cladding layer was prepared.
  • epoxy resin Epogosei PT, manufactured by Yokkaichi Gosei Co., Ltd.
  • Component t 60 parts by weight of an epoxy resin (Daicel, 2021P).
  • Component u 4 weight part of photo-acid generators (made by ADEKA, SP170).
  • a light emitting element (Optowell, XH85-S0603-2s) is connected to one end face of the core of each of the sheet-like optical waveguides of the above examples and comparative examples, and a light receiving element (Hamamatsu Photonics, s10226) was connected, and a circuit including the light emitting element, the light receiving element, a CPU for controlling the input device, and the like was provided, and the input devices of the example and the comparative example were manufactured.
  • a personal computer with a display was prepared and connected to the input device with a connection cable to produce an information display system.
  • the personal computer incorporates software (program) for converting the coordinates of the input area of the input device into the coordinates of the screen of the display and displaying characters or the like input by the input device on the display.
  • USB memory storing information such as documents was prepared, and the storage information of the USB memory was displayed on the display using the personal computer.
  • the input person held the ballpoint pen (the radius of curvature of the pen tip 350 ⁇ m) in his hand and entered characters in the input area of the input device.
  • the input device of the embodiment can detect only the input information and can detect unnecessary information even if the input body is changed.
  • each of the intersecting portions of the lattice-like core is a discontinuous intersection (see FIGS. 6A to 6D) in which the intersecting directions 1 to 3 are discontinuous.
  • the result which shows was obtained.
  • a discontinuous intersection in which 1 to 4 intersecting directions are discontinuous see FIGS. 3A and 6A to 6D
  • a continuous intersection in which all four intersecting directions are continuous As shown in FIG. 6 (e)], a result showing a tendency similar to that in the above-described example was obtained even in a lattice shape having two or more types of intersections.
  • the information display system of the present invention can be used for writing and displaying new information on materials displayed on a display using an input device in presentations and meetings.
  • a Input device D Display P Personal computer W Sheet-shaped optical waveguide 2 Core 10 Input body

Abstract

This information display system is provided with an input device which does not require a dedicated input pen and which does not detect unwanted parts such as the little finger of the hand holding the input body or the base part of said finger when inputting character information or other information with an input body such as a pen. This information display system comprises a personal computer (P) having a display (D), and an input device (A) which can input, with an input body (10) such as a pen, new information to be added to information displayed in the display (D) and which outputs said information to the personal computer (P). The input device (A) is provided with a sheet-form optical waveguide (W) which comprises a lattice-form core (2) held between a sheet-form undercladding layer and overcladding layer, wherein the modulus of elasticity of the core (2) is set to greater than the modulus of elasticity of the undercladding layer and the modulus of elasticity of the overcladding layer. Further, intersections in the lattice-form core (2) are interrupted by gaps in at least one of the intersecting directions so are discontinuous.

Description

情報表示システムInformation display system
 本発明は、ディスプレイに表示した資料等に、入力装置を利用して新たな情報を書き加えて表示する情報表示システムに関するものである。 The present invention relates to an information display system in which new information is added to a document displayed on a display using an input device and displayed.
 プレゼンテーションや会議等では、USBメモリ等の情報記憶媒体に予め記憶させておいた資料等の情報を、パーソナルコンピュータ(以下「パソコン」という)を利用して、液晶パネル等のディスプレイに表示し、その表示された資料等について説明等が行われる。その説明の際には、上記表示された資料等に、文字,図,印等の新たな情報を書き加えるために、入力装置としてポインティングデバイス(例えば、特許文献1参照)が利用されている。 In presentations and meetings, information such as materials stored in advance in an information storage medium such as a USB memory is displayed on a display such as a liquid crystal panel using a personal computer (hereinafter referred to as “PC”). Explanations are given for the displayed materials. In the description, a pointing device (see, for example, Patent Document 1) is used as an input device in order to add new information such as characters, diagrams, and marks to the displayed material.
 上記ポインティングデバイスは、専用ペンと専用ボードとを備えており、その専用ボード上で専用ペンを移動させることにより、文字等の情報を入力するようになっている。すなわち、専用ボード上での専用ペンの先端の軌跡(文字等の入力情報)を、電磁誘導を利用して検知し、その軌跡を信号として上記パソコンに出力し、ディスプレイに表示することができるようになっている。このように、上記ポインティングデバイスは、文字,図,印等の入力が直感的な操作によりできるようになっている。 The pointing device includes a dedicated pen and a dedicated board, and information such as characters is input by moving the dedicated pen on the dedicated board. That is, the locus of the tip of the dedicated pen on the dedicated board (input information such as characters) can be detected using electromagnetic induction, and the locus can be output as a signal to the personal computer and displayed on the display. It has become. As described above, the pointing device can input characters, figures, marks, and the like by an intuitive operation.
特開2004-206613号公報JP 2004-206613 A
 しかしながら、上記ポインティングデバイスは、専用ペンと専用ボードとが必要であることから、会議等で多人数が専用ボードを利用する場合は、1本の専用ペンを順番に回すか、または、専用ペンを多数準備する必要がある。 However, since the pointing device requires a dedicated pen and a dedicated board, when a large number of people use the dedicated board in a meeting or the like, turn one dedicated pen in order or use a dedicated pen. Many need to be prepared.
 そこで、本出願人は、文字等の直感的な操作による入力を可能にしたまま、専用ペンおよび専用ボードを不要にした入力装置を提案し既に出願している(特開2012-155697号公報)。その入力装置は、四角枠状の光導波路を備えており、その四角枠状の内側の中空部に、光を格子状に走らせるようになっている。そして、その状態で、上記中空部に、ペン等の入力体で、文字等を入力すると、上記格子状に走る光をペン先が遮光し、その遮光位置からペン先の位置が検知され、入力した文字等をディスプレイに表示することができるようになっている。このように、ペン先の遮光により入力した文字等を検知するため、専用ペンも専用ボードも不要にすることができる。 Therefore, the present applicant has already proposed and applied for an input device that does not require a dedicated pen and a dedicated board while allowing input by intuitive operation of characters and the like (Japanese Patent Laid-Open No. 2012-155697). . The input device includes a rectangular frame-shaped optical waveguide, and light is allowed to run in a lattice pattern in the hollow portion inside the rectangular frame shape. In this state, when a character or the like is input to the hollow portion with an input body such as a pen, the pen tip shields the light running in the grid shape, and the position of the pen tip is detected from the light shielding position. The displayed characters can be displayed on the display. As described above, since a character or the like input due to light shielding of the pen tip is detected, a dedicated pen and a dedicated board can be dispensed with.
 しかしながら、その入力装置では、場合によって、ペン等の入力体を持つ手の小指やその付け根部分(小指球)等が上記中空部内に入ると、その手の部分も上記格子状の光を遮光するため、入力した情報であると判断されディスプレイに表示されることがある。その手の部分の表示は、不要なものである。 However, in the input device, when the little finger of the hand having an input body such as a pen or the base part (the little finger ball) of the input device enters the hollow part, the hand part also shields the lattice-like light. Therefore, it may be determined that the information is input and displayed on the display. The display of the hand part is unnecessary.
 本発明は、このような事情に鑑みなされたもので、上記のような遮光を利用するものではなく、光導波路に加えられるペン等の入力体による筆圧に基づくコアの光伝播の変化を利用するものであり、入力に専用ペンを不要とし、かつ、文字等の情報をペン等の入力体で入力する際に、その入力体を持つ手の小指やその付け根部分等の不要部分が検知されないようになっている入力装置を備えた情報表示システムの提供をその目的とする。 The present invention has been made in view of such circumstances, and does not use the light shielding as described above, but uses a change in the light propagation of the core based on the writing pressure by an input body such as a pen applied to the optical waveguide. When inputting information such as characters with an input body such as a pen, unnecessary parts such as the little finger of the hand holding the input body and the base part thereof are not detected. An object of the present invention is to provide an information display system provided with the input device.
 上記の目的を達成するため、本発明の情報表示システムは、情報表示用のディスプレイを有するパソコンと、下記(A)の位置センサとを備えている情報表示システムであって、上記ディスプレイに表示された情報に加える新たな情報を、上記位置センサのシート状光導波路の表面での入力体の先端入力部の移動により入力し、その移動軌跡を新たな情報として、上記パソコンに出力するという構成をとる。
(A)格子状に形成された複数の線状のコアと、これらコアを支持するアンダークラッド層と、上記コアを被覆するオーバークラッド層とを有するシート状光導波路と、上記コアの一端面に接続される発光素子と、上記コアの他端面に接続される受光素子と、上記シート状光導波路の表面における入力体の先端入力部の移動軌跡を、その移動により変化したコアの光伝播量によって特定する移動軌跡特定手段とを備えている位置センサであって、上記複数の線状のコアにより形成される格子状の一部ないし全部の交差部が、交差する少なくとも1方向を隙間により分断した状態の不連続交差に形成されており、上記コアの弾性率が、上記アンダークラッド層の弾性率および上記オーバークラッド層の弾性率よりも大きく設定され、上記シート状光導波路の表面における上記先端入力部による押圧状態で、その押圧方向のコアの断面の変形率が、オーバークラッド層およびアンダークラッド層の断面の変形率よりも小さくなるようになっている位置センサ。
In order to achieve the above object, an information display system of the present invention is an information display system comprising a personal computer having a display for displaying information and a position sensor (A) below, which is displayed on the display. New information to be added to the information is input by moving the tip input portion of the input body on the surface of the sheet-shaped optical waveguide of the position sensor, and the movement locus is output to the personal computer as new information. Take.
(A) A sheet-like optical waveguide having a plurality of linear cores formed in a lattice shape, an under cladding layer that supports the cores, and an over cladding layer that covers the cores, and one end surface of the core The movement locus of the tip input portion of the input body on the surface of the sheet-shaped optical waveguide is changed by the amount of light propagation of the core changed by the movement, the light emitting element to be connected, the light receiving element connected to the other end surface of the core A position sensor having a moving locus specifying means for specifying, wherein at least one direction where a part or all of the lattice-like intersection formed by the plurality of linear cores intersects is divided by a gap. The sheet is formed at discontinuous intersections, and the elastic modulus of the core is set to be larger than the elastic modulus of the under-cladding layer and the elastic modulus of the over-cladding layer, and the sheet A pressing state by the tip input section in the surface of the optical waveguide, the deformation ratio of the cross-section of the pressing direction of the core, a position sensor adapted to be smaller than the deformation rate of the cross-section of the over-cladding layer and the under-cladding layer.
 なお、本発明において、「変形率」とは、押圧方向における、コア,オーバークラッド層およびアンダークラッド層の押圧前の各厚みに対する、押圧時の各厚みの変化量の割合をいう。また、先端入力部の「移動」には、移動距離が0(零)の場合を含み、その場合の「移動軌跡」は、点となる。 In the present invention, the “deformation rate” refers to the ratio of the amount of change of each thickness during pressing to the thickness of the core, over cladding layer and under cladding layer before pressing in the pressing direction. The “movement” of the tip input unit includes a case where the movement distance is 0 (zero), and the “movement locus” in that case is a point.
 そして、上記シート状光導波路において、上記複数の線状のコアにより形成される格子状の一部ないし全部の交差部が、交差する少なくとも1方向を隙間により分断した状態の不連続交差に形成されていると、光の交差損失を低減させることができる。このような知見を本発明者らは得ている。 In the sheet-like optical waveguide, a part or all of the lattice-like intersection formed by the plurality of linear cores is formed as a discontinuous intersection in a state where at least one intersecting direction is divided by a gap. The cross loss of light can be reduced. The present inventors have obtained such knowledge.
 本発明の情報表示システムは、入力体(ペン等)の先端入力部(ペン先等)の移動軌跡の検知手段として、複数の線状のコアが格子状に配置形成されたシート状光導波路を備えた入力装置を用いている。すなわち、上記シート状光導波路の表面における入力体の先端入力部の移動軌跡を、その移動により変化したコアの光伝播量によって特定するようになっている。そのため、入力に専用ペンは不要であり、入力体として、通常の筆記に用いるペンやインクが出ない単なる細長い棒状の物等を用いることができる。また、上記シート状光導波路は、コアの弾性率が、アンダークラッド層の弾性率およびオーバークラッド層の弾性率よりも大きく設定されている。そのため、シート状光導波路のオーバークラッド層の表面を押圧したときに、その押圧方向のコアの断面の変形率が、オーバークラッド層およびアンダークラッド層の断面の変形率よりも小さくなり、押圧方向のコアの断面積が保持される。そして、上記シート状光導波路の表面において、入力体の先端入力部を移動させることにより、文字等の情報を入力すると、その先端入力部による押圧部分では、コアの曲がり具合が入力体の先端入力部に沿った急なものとなり、コアからの光の漏れ(散乱)が発生し、入力体を持つ手の部分による押圧部分では、コアの曲がり具合が手に沿った緩やかなものとなり、上記光の漏れ(散乱)が発生しないようにすることができる。そのため、ペン先等の先端入力部で押圧されたコアでは、受光素子での光の検出レベル(受光量)が低下し、入力体を持つ手の部分で押圧されたコアでは、その検出レベルが低下しないようにすることができる。そして、その光の検出レベルの低下から、移動軌跡特定手段により、ペン先等の先端入力部の位置(座標)を検知することができ、その検出レベルが低下しない手の部分は、押圧されていない状態と同じになるため、検知されないようにすることができる。しかも、上記コアにより形成される格子状の一部ないし全部の交差部が、交差する少なくとも1方向を隙間により分断した状態の不連続交差に形成されていることから、光の交差損失を低減させることができる。そのため、上記ペン先等の先端の位置の検知感度を高めることができる。その結果、ペン先等の先端入力部の移動軌跡(入力した文字等の情報)のみを検知し、ディスプレイに表示された情報に加えて表示することができる。 The information display system according to the present invention includes a sheet-like optical waveguide in which a plurality of linear cores are arranged and formed in a lattice shape as a means for detecting a movement locus of a tip input unit (a pen tip or the like) of an input body (a pen or the like). The input device provided is used. That is, the movement trajectory of the tip input portion of the input body on the surface of the sheet-like optical waveguide is specified by the amount of light propagation of the core changed by the movement. Therefore, a dedicated pen is not required for input, and a pen used for normal writing or a simple elongated rod-like object that does not generate ink can be used as the input body. In the sheet-like optical waveguide, the elastic modulus of the core is set larger than the elastic modulus of the under cladding layer and the elastic modulus of the over cladding layer. Therefore, when the surface of the over clad layer of the sheet-like optical waveguide is pressed, the deformation rate of the cross section of the core in the pressing direction is smaller than the deformation rate of the cross section of the over clad layer and the under clad layer. The cross-sectional area of the core is maintained. Then, when information such as characters is input by moving the tip input portion of the input body on the surface of the sheet-shaped optical waveguide, the bending state of the core is input to the tip of the input body at the pressed portion by the tip input portion. As a result, the light leaks (scatters) from the core, and at the pressed part of the hand part holding the input body, the bending of the core becomes gentle along the hand. It is possible to prevent leakage (scattering). Therefore, in the core pressed by the tip input part such as the pen tip, the detection level (light reception amount) of the light in the light receiving element is reduced, and in the core pressed by the hand part having the input body, the detection level is It can be prevented from decreasing. Then, the position (coordinates) of the tip input portion such as the pen tip can be detected by the movement locus specifying means from the decrease in the detection level of the light, and the part of the hand where the detection level does not decrease is pressed. Since it becomes the same as a non-existing state, it can be prevented from being detected. In addition, part or all of the lattice-like intersection formed by the core is formed as a discontinuous intersection in a state in which at least one intersecting direction is divided by a gap, thereby reducing the light intersection loss. be able to. Therefore, the detection sensitivity of the position of the tip of the pen tip or the like can be increased. As a result, it is possible to detect only the movement trajectory (information such as input characters) of the tip input unit such as the pen tip and display it in addition to the information displayed on the display.
本発明の情報表示システムの一実施の形態を模式的に示す説明図である。It is explanatory drawing which shows typically one Embodiment of the information display system of this invention. 上記情報表示システムを構成する入力装置を模式的に示す平面図である。It is a top view which shows typically the input device which comprises the said information display system. (a)は、上記入力装置における格子状のコアの交差部を拡大して模式的に示す拡大平面図であり、(b)は、上記入力装置の中央部の断面を拡大して模式的に示す拡大断面図である。(A) is an enlarged plan view schematically showing an intersection of lattice-shaped cores in the input device, and (b) is an enlarged schematic view of a cross section of a central portion of the input device. It is an expanded sectional view shown. (a)は、連続交差部における光の進路を模式的に示す拡大平面図であり、(b)は、不連続交差部における光の進路を模式的に示す拡大平面図である。(A) is an enlarged plan view schematically showing a light path in a continuous intersection, and (b) is an enlarged plan view schematically showing a light path in a discontinuous intersection. (a)は、入力体により押圧された上記入力装置のシート状光導波路の状態を模式的に示す断面図であり、(b)は、手により押圧された上記シート状光導波路の状態を模式的に示す断面図である。(A) is sectional drawing which shows typically the state of the sheet-like optical waveguide of the said input device pressed by the input body, (b) is a schematic diagram of the state of the said sheet-like optical waveguide pressed by the hand. FIG. (a)~(e)は、上記格子状のコアの交差部の変形例を模式的に示す拡大平面図である。(A)-(e) is an enlarged plan view which shows typically the modification of the cross | intersection part of the said grid | lattice-like core.
 つぎに、本発明の実施の形態を図面にもとづいて詳しく説明する。 Next, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は、本発明の情報表示システムの一実施の形態を示している。この実施の形態の情報表示システムは、ディスプレイDを有するパソコンPと、上記ディスプレイDに表示された情報に加える新たな情報をペン等の入力体10で入力でき、その入力情報を上記パソコンPに出力する入力装置Aとを備えている。その入力情報の、入力装置AからパソコンPへの伝達は、この実施の形態では、USBケーブル等の接続ケーブルCにより行っており、そのために、その接続ケーブルCでパソコンPと入力装置Aとを接続している。 FIG. 1 shows an embodiment of the information display system of the present invention. The information display system of this embodiment can input new information to be added to the information displayed on the personal computer P having the display D and the display D with the input body 10 such as a pen, and the input information is input to the personal computer P. And an input device A for outputting. In this embodiment, the input information is transmitted from the input device A to the personal computer P by a connection cable C such as a USB cable. For this purpose, the personal computer P and the input device A are connected by the connection cable C. Connected.
 上記入力装置Aは、その平面図を図2に示すように、格子状のコア2を有する四角形のシート状光導波路Wと、上記格子状のコア2を構成する線状のコア2の一端面に接続される発光素子4と、上記線状のコア2の他端面に接続される受光素子5と、上記入力装置Aを制御するCPU(中央処理装置)(図示せず)ならびに上記発光素子4および上記受光素子5が搭載された回路基板6とを備えている。この実施の形態では、これらシート状光導波路Wおよび回路基板6が、樹脂板や金属板等の剛性板7の表面に設けられている。また、この実施の形態では、上記発光素子4やCPU等に必要な電源は、パソコンPから接続ケーブルCを介して供給されるようになっている(図1参照)。そして、上記発光素子4から発光された光は、上記コア2の中を通り、上記受光素子5で受光されるようになっている。なお、図2では、コア2を鎖線で示しており、鎖線の太さがコア2の太さを示している。また、図2では、コア2の数を略して図示している。さらに、図2の矢印は、光の進む方向を示している。 As shown in FIG. 2, the input device A has a rectangular sheet-like optical waveguide W having a lattice-like core 2 and one end face of the linear core 2 constituting the lattice-like core 2. , A light receiving element 5 connected to the other end face of the linear core 2, a CPU (central processing unit) (not shown) for controlling the input device A, and the light emitting element 4 And a circuit board 6 on which the light receiving element 5 is mounted. In this embodiment, the sheet-like optical waveguide W and the circuit board 6 are provided on the surface of a rigid plate 7 such as a resin plate or a metal plate. In this embodiment, the power necessary for the light emitting element 4 and the CPU is supplied from the personal computer P via the connection cable C (see FIG. 1). The light emitted from the light emitting element 4 passes through the core 2 and is received by the light receiving element 5. In FIG. 2, the core 2 is indicated by a chain line, and the thickness of the chain line indicates the thickness of the core 2. In FIG. 2, the number of cores 2 is omitted. Furthermore, the arrow in FIG. 2 indicates the direction in which the light travels.
 そして、この実施の形態では、上記シート状光導波路Wにおける格子状のコア2の各交差部は、図3(a)に平面図で示すように、交差する4方向の全てが、隙間Gにより分断され、不連続になっている。上記隙間Gの幅dは、0(零)を超え(隙間Gが形成されていればよく)、通常、20μm以下に設定される。そして、上記シート状光導波路Wは、図3(b)に断面図で示すように、上記格子状のコア2がシート状のアンダークラッド層1で支持されシート状のオーバークラッド層3で被覆された状態で形成されている。この実施の形態では、上記隙間Gは、オーバークラッド層3の形成材料で形成されている。 In this embodiment, each of the intersecting portions of the lattice-like core 2 in the sheet-like optical waveguide W is crossed by gaps G as shown in a plan view in FIG. Divided and discontinuous. The width d of the gap G exceeds 0 (zero) (if the gap G is formed) and is usually set to 20 μm or less. In the sheet-like optical waveguide W, the lattice-like core 2 is supported by the sheet-like under clad layer 1 and covered with the sheet-like over clad layer 3 as shown in a sectional view in FIG. It is formed in the state. In this embodiment, the gap G is formed of a material for forming the over clad layer 3.
 このように、上記格子状のコア2において、交差部を不連続とすると、光の交差損失を低減させることができる。すなわち、図4(a)に示すように、交差する4方向の全てが連続した交差部では、その交差する1方向〔図4(a)では上方向〕に注目すると、交差部に入射する光の一部は、その光が進んできたコア2と直交するコア2の壁面2aに到達し、その壁面2aでの反射角度が大きいことから、コア2を透過する〔図4(a)の二点鎖線の矢印参照〕。このような光の透過が、交差する上記と反対側の方向〔図4(a)では下方向〕でも発生する。これに対し、図4(b)に示すように、交差する1方向〔図4(b)では上方向〕が隙間Gにより不連続になっていると、上記隙間Gとコア2との界面が形成され、図4(a)においてコア2を透過する光の一部は、上記界面での反射角度が小さくなることから、透過することなく、その界面で反射し、コア2を進み続ける〔図4(b)の二点鎖線の矢印参照〕。このような光の反射が、交差する上記と反対側の方向〔図4(b)では下方向〕でも発生する。このことから、先に述べたように、交差部を不連続とすると、光の交差損失を低減させることができるのである。 Thus, in the lattice-like core 2 described above, if the intersection is discontinuous, the light crossing loss can be reduced. That is, as shown in FIG. 4 (a), in an intersection where all four intersecting directions are continuous, if one of the intersecting directions [upward in FIG. 4 (a)] is focused, the light incident on the intersection Part of the light reaches the wall surface 2a of the core 2 orthogonal to the core 2 through which the light has traveled, and is transmitted through the core 2 because the reflection angle at the wall surface 2a is large [2 in FIG. (See dotted arrow). Such light transmission also occurs in a direction opposite to the above intersecting direction (downward in FIG. 4A). On the other hand, as shown in FIG. 4B, when the intersecting one direction [upward in FIG. 4B] is discontinuous by the gap G, the interface between the gap G and the core 2 is Part of the light that is formed and passes through the core 2 in FIG. 4 (a) has a smaller reflection angle at the interface, so that it is reflected at the interface without passing through and continues to travel through the core 2 [FIG. 4 (b), see the two-dot chain line arrow]. Such reflection of light also occurs in the direction opposite to the above intersecting direction (downward in FIG. 4B). For this reason, as described above, when the crossing portion is discontinuous, the light crossing loss can be reduced.
 また、上記シート状光導波路Wにおいて、上記コア2の弾性率が、上記アンダークラッド層1の弾性率および上記オーバークラッド層3の弾性率よりも大きく設定されている。これにより、上記シート状光導波路Wの表面を押圧したときに、その押圧方向のコア2の断面の変形率が、オーバークラッド層3およびアンダークラッド層1の断面の変形率よりも小さくなるようになっている。 In the sheet-like optical waveguide W, the elastic modulus of the core 2 is set to be larger than the elastic modulus of the under cladding layer 1 and the elastic modulus of the over cladding layer 3. Thereby, when the surface of the said sheet-like optical waveguide W is pressed, the deformation rate of the cross section of the core 2 of the pressing direction becomes smaller than the deformation rate of the cross section of the over clad layer 3 and the under clad layer 1. It has become.
 このような構成の上記入力装置Aでは、格子状のコア2に対応する部分が入力領域となっている。そして、ペン等の入力体10(図1参照)による上記入力装置Aへの情報の入力は、その入力領域における上記シート状光導波路Wのオーバークラッド層3の表面に文字等を書くように、そのオーバークラッド層3の表面で、入力体10の先端入力部(ペン先等)10a(図1参照)を移動させることにより行われる。すなわち、図5(a),(b)に断面図で示すように、上記入力装置Aのシート状光導波路Wのオーバークラッド層3の表面に、手20に持ったペン等の入力体10で文字等の情報を書き込む等して入力すると、ペン先等の先端入力部10aによる押圧部分〔図5(a)参照〕も手20の小指やその付け根部分(小指球)等による押圧部分〔図5(b)参照〕も、その押圧方向の断面では、弾性率の小さいオーバークラッド層3がつぶれるように変形し、弾性率の大きいコア2は、断面積を保持したまま、先端入力部10aや手20の部分に沿って、弾性率の小さいアンダークラッド層1に沈むように曲がる。 In the input device A having such a configuration, a portion corresponding to the lattice-shaped core 2 is an input region. And the input of information to the input device A by the input body 10 (see FIG. 1) such as a pen is performed so that characters and the like are written on the surface of the over clad layer 3 of the sheet-like optical waveguide W in the input region. This is done by moving the tip input portion (pen nib etc.) 10a (see FIG. 1) of the input body 10 on the surface of the over clad layer 3. That is, as shown in cross-sectional views in FIGS. 5A and 5B, the input body 10 such as a pen held in the hand 20 is formed on the surface of the over clad layer 3 of the sheet-like optical waveguide W of the input device A. When information such as characters is written and entered, the pressing portion by the tip input portion 10a such as a pen tip (see FIG. 5A) is also pressed by the little finger of the hand 20, its base portion (little finger ball), etc. 5 (b)] also, in the cross section in the pressing direction, the over-cladding layer 3 having a low elastic modulus is deformed so that the core 2 having a high elastic modulus maintains the cross-sectional area while the tip input portion 10a and Along the part of the hand 20, it bends so as to sink into the undercladding layer 1 having a low elastic modulus.
 そして、先端入力部10aによる押圧部分では、図5(a)に示すように、その先端入力部10aが尖っていることから、コア2の曲がり具合が急なものとなり、コア2からの光の漏れ(散乱)が発生する〔図5(a)の二点鎖線の矢印参照〕。一方、入力体10を持つ手20による押圧部分では、図5(b)に示すように、その手20が上記先端入力部10aと比較してかなり大きくて丸くなっていることから、コア2の曲がり具合が緩やかなものとなり、上記光の漏れ(散乱)が発生しない(光はコア2内を漏れることなく進む)〔図5(b)の二点鎖線の矢印参照〕。そのため、先端入力部10aで押圧されたコア2では、受光素子5での光の検出レベルが低下し、入力体10を持つ手20で押圧されたコア2では、その検出レベルが低下しないようにすることができる。そして、その光の検出レベルの低下から、先端入力部10aの位置(座標)を検知することができる。その検出レベルが低下しない手20の部分は、押圧されていない状態と同じであるため、検知されない。 And in the press part by the front-end | tip input part 10a, as shown to Fig.5 (a), since the front-end | tip input part 10a is sharp, the bending condition of the core 2 becomes abrupt and the light from the core 2 is light. Leakage (scattering) occurs [see the two-dot chain arrow in FIG. 5A]. On the other hand, in the pressing portion by the hand 20 having the input body 10, as shown in FIG. 5B, the hand 20 is considerably larger and rounder than the tip input portion 10a. The bending becomes gradual and the light leakage (scattering) does not occur (the light travels without leaking through the core 2) (see the two-dot chain arrow in FIG. 5B). Therefore, the detection level of light at the light receiving element 5 is lowered in the core 2 pressed by the tip input portion 10a, and the detection level is not lowered in the core 2 pressed by the hand 20 having the input body 10. can do. The position (coordinates) of the tip input portion 10a can be detected from the decrease in the light detection level. The portion of the hand 20 whose detection level does not decrease is the same as the state where it is not pressed, and thus is not detected.
 このとき、先に述べたように、上記コア2により形成される格子状の交差部は、不連続交差に形成されていることにより、光の交差損失が低減された状態になっていることから、上記ペン先等の先端入力部10aの位置の検知感度が高くなっている。 At this time, as described above, since the lattice-like intersection formed by the core 2 is formed as a discontinuous intersection, the light intersection loss is reduced. The detection sensitivity of the position of the tip input unit 10a such as the pen tip is high.
 そこで、上記入力装置AのCPUには、上記受光素子5での光の検出レベルの低下から、先端入力部10aの移動軌跡を特定するプログラム(移動軌跡特定手段)が組み込まれている。すなわち、上記入力装置Aは、情報の入力に用いる入力体(ペン等)10の先端入力部(ペン先等)10aの位置を検知する位置センサになっている。そして、上記入力体10の先端入力部10aの移動軌跡を示すデータは、接続ケーブルCを介して上記パソコンPに出力され、そのパソコンPで適正に画像化処理され、上記移動軌跡がディスプレイDに表示されるようになっている。 Therefore, the CPU of the input device A incorporates a program (movement locus specifying means) for specifying the movement locus of the tip input section 10a from the decrease in the light detection level at the light receiving element 5. That is, the input device A is a position sensor that detects the position of the tip input unit (pen tip etc.) 10a of the input body (pen etc.) 10 used for inputting information. Data indicating the movement locus of the distal end input portion 10a of the input body 10 is output to the personal computer P via the connection cable C, and is appropriately imaged by the personal computer P. The movement locus is displayed on the display D. It is displayed.
 このように、上記情報表示システムでは、入力装置Aにおいて、入力体(ペン等)10の先端入力部(ペン先等)10aの移動軌跡の検知手段として、複数の線状のコア2が格子状に配置形成されたシート状光導波路Wを用いているため、入力に専用ペンは不要であり、入力体10として、通常の筆記に用いるペンやインクが出ない単なる細長い棒状の物等を用いることができる。そのため、上記入力装置Aを多人数で利用しても、不都合な点はない。 As described above, in the information display system, in the input device A, a plurality of linear cores 2 are in a lattice pattern as means for detecting the movement trajectory of the tip input unit (pen tip etc.) 10a of the input body (pen etc.) 10. Since a sheet-like optical waveguide W arranged and formed in the above is used, a dedicated pen is not required for input, and a pen used for normal writing or a simple elongated rod-like object that does not produce ink is used as the input body 10. Can do. Therefore, there is no inconvenience even if the input device A is used by many people.
 また、上記シート状光導波路Wにおいて、コア2の弾性率が、アンダークラッド層1の弾性率およびオーバークラッド層3の弾性率よりも大きく設定されているため、入力体10を持つ手20がシート状光導波路Wを押圧しても、上記のように、先端入力部10aの位置のみを検知し、手20の部分は検知されないようにすることができる。しかも、格子状のコア2の交差部が不連続交差に形成されているため、光の交差損失を低減することができ、上記ペン先等の先端入力部10aの位置の検知感度を高くすることができる。 Further, in the sheet-like optical waveguide W, since the elastic modulus of the core 2 is set to be larger than the elastic modulus of the under cladding layer 1 and the elastic modulus of the over cladding layer 3, the hand 20 holding the input body 10 is a sheet. Even when the optical waveguide W is pressed, only the position of the tip input portion 10a can be detected and the portion of the hand 20 can be prevented from being detected as described above. In addition, since the intersections of the lattice-like cores 2 are formed as discontinuous intersections, it is possible to reduce the cross loss of light and increase the detection sensitivity of the position of the tip input unit 10a such as the pen tip. Can do.
 さらに、上記入力装置Aへの入力時には、入力体10の先端入力部10aが押圧するシート状光導波路Wの部分が、上記のように変形するため、紙に近い感触で入力することができ、書き味が良好である。 Furthermore, at the time of input to the input device A, since the portion of the sheet-like optical waveguide W pressed by the tip input portion 10a of the input body 10 is deformed as described above, it is possible to input with a feeling close to paper, The writing taste is good.
 ここで、パソコンPのディスプレイDには、一般に、プレゼンテーションや会議等で説明に用いる資料等の情報が表示される。そして、上記のように入力装置Aに文字等の情報を入力すると、上記ディスプレイDには、上記資料等の情報に、上記入力装置Aで入力した文字等の情報が重ね合わさった状態で表示される。この表示を可能にするために、入力装置Aの入力領域の座標をディスプレイDの画面の座標に変換し、入力装置Aで入力した文字等をディスプレイDに表示するソフトウェア(プログラム)が、上記パソコンPに組み込まれている。また、上記資料等の情報は、通常、上記パソコンP内のハードディスクや外部のUSBメモリ等の情報記憶媒体に予め記憶させておき、その情報記憶媒体から出力される。そして、上記ディスプレイDに表示された、上記資料等の情報と上記入力装置Aで入力した文字等の情報とが重ね合わさった情報は、上記情報記憶媒体に記憶可能となっている。上記パソコンPとは、一般的なパソコンだけでなく、そのパソコンと同様な機能を有するスマートフォン,タブレット端末等の機器を含む意味である。 Here, on the display D of the personal computer P, information such as materials used for explanation in presentations and meetings is generally displayed. When information such as characters is input to the input device A as described above, the display D is displayed in a state where the information such as characters input by the input device A is superimposed on the information such as the material. The In order to make this display possible, software (program) for converting the coordinates of the input area of the input device A into the coordinates of the screen of the display D and displaying characters or the like input by the input device A on the display D is the above personal computer. P is incorporated. The information such as the material is usually stored in advance in an information storage medium such as a hard disk in the personal computer P or an external USB memory, and is output from the information storage medium. The information displayed on the display D in which the information such as the material is overlapped with the information such as the characters input by the input device A can be stored in the information storage medium. The personal computer P means not only a general personal computer but also devices such as a smartphone and a tablet terminal having the same functions as the personal computer.
 なお、上記入力体10の先端入力部10aによる押圧が解除される(先端入力部10aが移動したり書き込み等の入力が終了したりする)と、上記アンダークラッド層1,コア2およびオーバークラッド層3は、各自の復元力により、元の状態〔図3(b)参照〕に戻る。そして、上記コア2の、アンダークラッド層1への沈み込み深さLは、最大で2000μmまでとすることが好ましい。上記沈み込み深さLが2000μmを超えると、上記アンダークラッド層1,コア2およびオーバークラッド層3が元の状態に戻らなくなったり、シート状光導波路Wに割れが発生したりするおそれがある。 When the pressure applied by the tip input portion 10a of the input body 10 is released (the tip input portion 10a moves or input such as writing ends), the under cladding layer 1, the core 2, and the over cladding layer 3 returns to the original state (see FIG. 3B) by its restoring force. The submerged depth L of the core 2 into the under cladding layer 1 is preferably up to 2000 μm. If the sinking depth L exceeds 2000 μm, the under cladding layer 1, the core 2, and the over cladding layer 3 may not return to the original state, or the sheet-like optical waveguide W may be cracked.
 ここで、上記コア2,アンダークラッド層1およびオーバークラッド層3の弾性率等について、より詳しく説明する。 Here, the elastic modulus and the like of the core 2, the under cladding layer 1 and the over cladding layer 3 will be described in more detail.
 上記コア2の弾性率は、1GPa~10GPaの範囲内であることが好ましく、より好ましくは、2GPa~5GPaの範囲内である。コア2の弾性率が低過ぎると、ペン先等の先端入力部10aの形状により、その先端入力部10aの圧力で、コア2の断面積が保持されない(コア2がつぶれる)場合があり、先端入力部10aの位置を適正に検知できないおそれがある。一方、コア2の弾性率が高過ぎると、先端入力部10aの圧力によるコア2の曲がりが、その先端入力部10aに沿った急な曲がりにならずに緩やかな曲がりになる場合がある。そのため、コア2からの光の漏れ(散乱)が発生せず、受光素子5での光の検出レベルが低下しなくなることから、先端入力部10aの位置を適正に検知できないおそれがある。なお、コア2の寸法は、例えば、厚みが5~100μmの範囲内、幅が5~500μmの範囲内に設定される。 The elastic modulus of the core 2 is preferably in the range of 1 GPa to 10 GPa, more preferably in the range of 2 GPa to 5 GPa. If the elastic modulus of the core 2 is too low, the cross-sectional area of the core 2 may not be maintained (the core 2 may be crushed) by the pressure of the tip input portion 10a due to the shape of the tip input portion 10a such as a pen tip. There is a possibility that the position of the input unit 10a cannot be detected properly. On the other hand, if the elastic modulus of the core 2 is too high, the bending of the core 2 due to the pressure of the tip input portion 10a may be a gentle bend without being a sharp bend along the tip input portion 10a. Therefore, light leakage (scattering) from the core 2 does not occur, and the light detection level at the light receiving element 5 does not decrease, so that the position of the tip input portion 10a may not be detected properly. The dimensions of the core 2 are set, for example, within a range of 5 to 100 μm in thickness and within a range of 5 to 500 μm in width.
 上記オーバークラッド層3の弾性率は、0.1MPa以上10GPa未満の範囲内であることが好ましく、より好ましくは、1MPa以上5GPa未満の範囲内である。オーバークラッド層3の弾性率が低過ぎると、柔らかすぎて、ペン先等の先端入力部10aの形状により、その先端入力部10aの圧力で、オーバークラッド層3が破損する場合があり、コア2を保護することができなくなるおそれがある。一方、オーバークラッド層3の弾性率が高過ぎると、先端入力部10aや手20の圧力によっても、オーバークラッド層3がつぶれるように変形しなくなり、それにより、コア2がつぶれ、先端入力部10aの位置を適正に検知できないおそれがある。なお、オーバークラッド層3の厚みは、例えば、1~200μmの範囲内に設定される。 The elastic modulus of the over clad layer 3 is preferably in the range of 0.1 MPa to less than 10 GPa, more preferably in the range of 1 MPa to less than 5 GPa. If the elastic modulus of the over clad layer 3 is too low, the over clad layer 3 may be damaged due to the shape of the tip input portion 10a such as a pen tip due to the pressure of the tip input portion 10a. May not be able to be protected. On the other hand, when the elastic modulus of the over clad layer 3 is too high, the over clad layer 3 is not deformed so as to be crushed even by the pressure of the tip input portion 10a or the hand 20, thereby causing the core 2 to be crushed and the tip input portion 10a. May not be detected properly. The thickness of the over clad layer 3 is set within a range of 1 to 200 μm, for example.
 上記アンダークラッド層1の弾性率は、0.1MPa~1GPaの範囲内であることが好ましく、より好ましくは、1MPa~100MPaの範囲内である。アンダークラッド層1の弾性率が低過ぎると、柔らかすぎて、ペン先等の先端入力部10aで押圧した後、アンダークラッド層1が元の状態に戻らず、入力が連続的に行えない場合がある。一方、アンダークラッド層1の弾性率が高過ぎると、先端入力部10aや手20の圧力によっても、アンダークラッド層1がつぶれるように変形しなくなり、それにより、コア2がつぶれ、先端入力部10aの位置を適正に検知できないおそれがある。なお、アンダークラッド層1の厚みは、例えば、20~2000μmの範囲内に設定される。 The elastic modulus of the under cladding layer 1 is preferably in the range of 0.1 MPa to 1 GPa, more preferably in the range of 1 MPa to 100 MPa. If the elastic modulus of the underclad layer 1 is too low, the underclad layer 1 is too soft, and after being pressed by the tip input portion 10a such as a pen tip, the underclad layer 1 does not return to its original state, and input may not be performed continuously. is there. On the other hand, if the elastic modulus of the underclad layer 1 is too high, the underclad layer 1 will not be deformed so as to be crushed even by the pressure of the tip input portion 10a or the hand 20, thereby causing the core 2 to be crushed and the tip input portion 10a. May not be detected properly. Note that the thickness of the under-cladding layer 1 is set within a range of 20 to 2000 μm, for example.
 上記コア2,アンダークラッド層1およびオーバークラッド層3の形成材料としては、感光性樹脂,熱硬化性樹脂等があげられ、その形成材料に応じた製法により、シート状光導波路Wを作製することができる。また、上記コア2の屈折率は、上記アンダークラッド層1およびオーバークラッド層3の屈折率よりも大きく設定されている。そして、上記弾性率および屈折率の調整は、例えば、各形成材料の種類の選択や組成比率を調整して行うことができる。なお、上記アンダークラッド層1として、ゴムシートを用い、そのゴムシート上にコア2を格子状に形成するようにしてもよい。 Examples of the material for forming the core 2, the under cladding layer 1 and the over cladding layer 3 include photosensitive resin, thermosetting resin, and the like, and the sheet-like optical waveguide W is manufactured by a manufacturing method corresponding to the forming material. Can do. The refractive index of the core 2 is set larger than the refractive indexes of the under cladding layer 1 and the over cladding layer 3. The elastic modulus and refractive index can be adjusted by, for example, selecting the type of each forming material and adjusting the composition ratio. Note that a rubber sheet may be used as the undercladding layer 1 and the cores 2 may be formed in a lattice shape on the rubber sheet.
 また、上記アンダークラッド層1の裏面(アンダークラッド層1と剛性板7との間)に、ゴム層等の弾性層を設けてもよい。この場合、アンダークラッド層1,コア2およびオーバークラッド層3の復元力が弱くなったり、それらアンダークラッド層1等が元々復元力の弱い材料からなるものであったりしても、上記弾性層の弾性力を利用して、上記弱い復元力を補助し、入力体10の先端入力部10aによる押圧が解除された後、元の状態に戻すことができる。 Further, an elastic layer such as a rubber layer may be provided on the back surface of the under cladding layer 1 (between the under cladding layer 1 and the rigid plate 7). In this case, even if the restoring force of the under-cladding layer 1, the core 2 and the over-cladding layer 3 is weak, or the under-cladding layer 1 is originally made of a material having a weak restoring force, the elastic layer Using the elastic force, the weak restoring force is assisted, and after the pressing by the tip input portion 10a of the input body 10 is released, the original state can be restored.
 さらに、入力装置Aを複数用いてもよい。この場合、複数の人数での利用が容易となる。また、この場合、どの入力装置Aから入力された情報かがわかるよう、ディスプレイDに表示する情報を、入力装置Aによって色分けしてもよい。さらに、複数の入力装置Aを複数の場所(会場等)に分散させ、複数の場所で同時に、プレゼンテーションや会議等を行ってもよい。この場合、ある一つの場所のパソコンPをホストパソコンPとし、別の場所のパソコンPを中継パソコンPとし、それぞれのパソコンPを通信可能に接続する。 Furthermore, a plurality of input devices A may be used. In this case, use by a plurality of persons becomes easy. In this case, the information displayed on the display D may be color-coded by the input device A so that the information input from which input device A can be known. Further, a plurality of input devices A may be distributed to a plurality of places (such as a venue) and a presentation or a meeting may be performed simultaneously at the plurality of places. In this case, the personal computer P at one location is the host personal computer P, the personal computer P at another location is the relay personal computer P, and the personal computers P are communicably connected.
 また、上記のように、ペン先等の先端入力部10aの位置のみが検出され、ペン等の入力体10を持つ手20が検知されないようにするためには、先端入力部10aによる押圧部分でのコア2の急な曲がりによる光の漏れ(散乱)量が重要である。そこで、例えば、ペン先等の先端入力部10aの曲率半径R(単位:μm)と、コア2の厚みT(単位:μm)との比A(=R/T)を用い、コア2とアンダークラッド層1およびオーバークラッド層3との間の屈折率差Δを規定すると、その屈折率差Δの最大値Δmax は、下記の式(1)のようになる。すなわち、屈折率差Δがこの最大値Δmax よりも大きいと、先端入力部10aで押圧しても、光の漏れ(散乱)量が少なく、受光素子5での光の検出レベルが充分に低下しないため、先端入力部10aの位置と手20の位置との区別が困難になる。 Further, as described above, in order to detect only the position of the tip input unit 10a such as the pen tip and not to detect the hand 20 having the input body 10 such as a pen, a pressing portion by the tip input unit 10a is used. The amount of light leakage (scattering) due to the sharp bending of the core 2 is important. Therefore, for example, the ratio A (= R / T) between the radius of curvature R (unit: μm) of the tip input portion 10a such as a pen tip and the thickness T (unit: μm) of the core 2 is used, and the core 2 and under When the refractive index difference Δ between the cladding layer 1 and the over cladding layer 3 is defined, the maximum value Δmax of the refractive index difference Δ is expressed by the following equation (1). That is, if the refractive index difference Δ is larger than the maximum value Δmax, even if the tip input portion 10a is pressed, the amount of light leakage (scattering) is small and the light detection level at the light receiving element 5 is not sufficiently lowered. Therefore, it becomes difficult to distinguish between the position of the tip input portion 10a and the position of the hand 20.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 一方、屈折率差Δの最小値Δmin は、下記の式(2)のようになる。すなわち、屈折率差Δがこの最小値Δmin よりも小さいと、手20による押圧部分でも、光の漏れ(散乱)が発生し、先端入力部10aの位置と手20の位置との区別が困難になる。 On the other hand, the minimum value Δmin of the refractive index difference Δ is expressed by the following equation (2). That is, when the refractive index difference Δ is smaller than the minimum value Δmin, light leakage (scattering) occurs even in the pressed portion by the hand 20, and it is difficult to distinguish the position of the tip input portion 10a from the position of the hand 20. Become.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 そのため、上記屈折率差Δは、最小値Δmin と最大値Δmax との間に設定することが好ましい。ここで、例えば、上記先端入力部10aの曲率半径R(単位:μm)を100~1000の範囲内、コア2の厚みT(単位:μm)を10~100の範囲内、比Aを1~100の範囲内とすると、屈折率差Δは、1.0×10-3~7.95×10-2の範囲内となる。なお、比Aが100を超える場合は、最小値Δmin を1.0×10-3(一定)とする。 Therefore, the refractive index difference Δ is preferably set between the minimum value Δmin and the maximum value Δmax. Here, for example, the radius of curvature R (unit: μm) of the tip input portion 10a is in the range of 100 to 1000, the thickness T (unit: μm) of the core 2 is in the range of 10 to 100, and the ratio A is 1 to 1. If it is in the range of 100, the refractive index difference Δ is in the range of 1.0 × 10 −3 to 7.95 × 10 −2 . When the ratio A exceeds 100, the minimum value Δmin is set to 1.0 × 10 −3 (constant).
 なお、上記実施の形態では、格子状のコア2の交差部を、交差する4方向の全てが不連続になっている不連続交差〔図3(a)参照〕としたが、他の不連続交差でもよい。例えば、図6(a)に示すように、交差する1方向のみが、隙間Gにより分断され、不連続になっているものでもよいし、図6(b),(c)に示すように、交差する2方向〔図6(b)は対向する2方向、図6(c)は隣り合う2方向〕が不連続になっているものでもよいし、図6(d)に示すように、交差する3方向が不連続になっているものでもよい。さらに、図3(a),図6(a)~(d)に示す上記不連続交差、および交差する4方向の全てが連続した連続交差〔図6(e)参照〕のうちの2種類以上の交差を備えた格子状としてもよい。 In the above embodiment, the crossing portion of the lattice-like core 2 is a discontinuous crossing (see FIG. 3A) in which all four intersecting directions are discontinuous (see FIG. 3A). It may be an intersection. For example, as shown in FIG. 6 (a), only one intersecting direction may be divided by the gap G to be discontinuous, or as shown in FIGS. 6 (b) and 6 (c), The two intersecting directions (FIG. 6 (b) is the two opposing directions, FIG. 6 (c) is the two adjacent directions) may be discontinuous, or as shown in FIG. 6 (d) The three directions may be discontinuous. Further, two or more kinds of the discontinuous intersection shown in FIG. 3 (a) and FIGS. 6 (a) to 6 (d) and a continuous intersection in which all four intersecting directions are continuous [see FIG. 6 (e)]. It is good also as the grid | lattice form provided with no intersection.
 また、上記実施の形態では、入力装置AからパソコンPへの情報伝達を接続ケーブルCにより行ったが、無線で行ってもよい。その場合、入力装置Aに必要な電源が、接続ケーブルCを介してパソコンPから供給されないため、入力装置Aに電池等の電源が設けられる。 In the above embodiment, information transmission from the input device A to the personal computer P is performed by the connection cable C, but may be performed wirelessly. In that case, since the power required for the input device A is not supplied from the personal computer P via the connection cable C, the input device A is provided with a power source such as a battery.
 さらに、上記実施の形態では、シート状光導波路Wを支持するために剛性板7を設けたが、その剛性板7を設けなくてもよい。その場合は、上記入力装置Aのシート状光導波路Wをテーブル等の硬い平面台の上に載置した状態で、入力する。 Furthermore, in the above embodiment, the rigid plate 7 is provided to support the sheet-like optical waveguide W. However, the rigid plate 7 may not be provided. In that case, the input is performed in a state where the sheet-like optical waveguide W of the input device A is placed on a hard flat table such as a table.
 つぎに、実施例について比較例と併せて説明する。但し、本発明は、実施例に限定されるわけではない。 Next, examples will be described together with comparative examples. However, the present invention is not limited to the examples.
〔オーバークラッド層の形成材料〕
 成分a:エポキシ樹脂(四日市合成社製、エポゴーセーPT)30重量部。
 成分b:エポキシ樹脂(ダイセル社製、EHPE3150)70重量部。
 成分c:光酸発生剤(サンアプロ社製、CPI200K)4重量部。
 成分d:乳酸エチル(和光純薬工業社製)100重量部。
 これら成分a~dを混合することにより、オーバークラッド層の形成材料を調製した。
[Formation material of over clad layer]
Component a: 30 parts by weight of epoxy resin (Epogosei PT, manufactured by Yokkaichi Gosei Co., Ltd.)
Ingredient b: 70 weight part of epoxy resins (the Daicel company make, EHPE3150).
Component c: 4 parts by weight of a photoacid generator (manufactured by Sun Apro, CPI 200K).
Component d: 100 parts by weight of ethyl lactate (manufactured by Wako Pure Chemical Industries).
By mixing these components a to d, an over clad layer forming material was prepared.
〔コアの形成材料〕
 成分e:エポキシ樹脂(ダイセル社製、EHPE3150)80重量部。
 成分f:エポキシ樹脂(新日鉄化学社製、YDCN700-10)20重量部。
 成分g:光酸発生剤(ADEKA社製、SP170)1重量部。
 成分h:乳酸エチル(和光純薬工業社製)50重量部。
 これら成分e~hを混合することにより、コアの形成材料を調製した。
[Core forming material]
Component e: 80 parts by weight of an epoxy resin (manufactured by Daicel, EHPE3150).
Component f: 20 parts by weight of an epoxy resin (manufactured by Nippon Steel Chemical Co., Ltd., YDCN700-10).
Component g: 1 part by weight of a photoacid generator (made by ADEKA, SP170).
Component h: 50 parts by weight of ethyl lactate (Wako Pure Chemical Industries, Ltd.)
A core forming material was prepared by mixing these components e to h.
〔アンダークラッド層の形成材料〕
 成分i:エポキシ樹脂(四日市合成社製、エポゴーセーPT)75重量部。
 成分j:エポキシ樹脂(三菱化学社製、JER1007)25重量部。
 成分k:光酸発生剤(サンアプロ社製、CPI200K)4重量部。
 成分l:乳酸エチル(和光純薬工業社製)50重量部。
 これら成分i~lを混合することにより、アンダークラッド層の形成材料を調製した。
[Formation material of under cladding layer]
Component i: 75 parts by weight of epoxy resin (Epogosei PT, manufactured by Yokkaichi Gosei Co., Ltd.)
Component j: 25 parts by weight of an epoxy resin (manufactured by Mitsubishi Chemical Corporation, JER1007).
Component k: 4 parts by weight of a photoacid generator (manufactured by San Apro, CPI 200K).
Component l: 50 parts by weight of ethyl lactate (manufactured by Wako Pure Chemical Industries).
By mixing these components i to l, a material for forming the underclad layer was prepared.
〔シート状光導波路の作製〕
 ガラス製基材の表面に、上記オーバークラッド層の形成材料を用いて、スピンコート法により、オーバークラッド層を形成した。このオーバークラッド層の厚みは5μm、弾性率は1.2GPa、屈折率は1.503であった。
[Production of sheet-shaped optical waveguide]
An over clad layer was formed on the surface of the glass substrate by spin coating using the over clad layer forming material. The over cladding layer had a thickness of 5 μm, an elastic modulus of 1.2 GPa, and a refractive index of 1.503.
 ついで、上記オーバークラッド層の表面に、上記コアの形成材料を用いて、フォトリソグラフィ法により、格子状のコアを形成した。この格子状の各交差部は、交差する4方向の全てが隙間により分断され不連続になっている不連続交差とした〔図3(a)参照〕。上記隙間の幅は10μmとした。また、上記コアの厚みは30μm、格子状部分のコアの幅は100μm、ピッチは600μm、弾性率は3GPa、屈折率は1.523であった。 Next, a lattice-like core was formed on the surface of the over clad layer by photolithography using the core forming material. Each of the lattice-like intersections is a discontinuous intersection in which all four intersecting directions are separated by a gap and are discontinuous [see FIG. 3 (a)]. The width of the gap was 10 μm. The core had a thickness of 30 μm, the core width of the lattice portion was 100 μm, the pitch was 600 μm, the elastic modulus was 3 GPa, and the refractive index was 1.523.
 つぎに、上記コアを被覆するように、上記オーバークラッド層の表面に、上記アンダークラッド層の形成材料を用いて、スピンコート法により、アンダークラッド層を形成した。このアンダークラッド層の厚み(オーバークラッド層の表面からの厚み)は200μm、弾性率は3MPa、屈折率は1.503であった。 Next, an under clad layer was formed on the surface of the over clad layer by spin coating using the under clad layer forming material so as to cover the core. The thickness of the under cladding layer (thickness from the surface of the over cladding layer) was 200 μm, the elastic modulus was 3 MPa, and the refractive index was 1.503.
 そして、PET製基板(厚み1mm)の片面に、両面テープ(厚み25μm)を貼着したものを準備した。ついで、その両面テープのもう一方の粘着面を上記アンダークラッド層の表面に貼着し、その状態で、上記オーバークラッド層を上記ガラス製基材から剥離した。 And what stuck the double-sided tape (thickness 25 micrometers) on the single side | surface of the board | substrate (thickness 1mm) made from PET was prepared. Next, the other adhesive surface of the double-sided tape was attached to the surface of the under cladding layer, and in this state, the over cladding layer was peeled from the glass substrate.
〔比較例〕
〔オーバークラッド層の形成材料〕
 成分m:エポキシ樹脂(四日市合成社製、エポゴーセーPT)40重量部。
 成分n:エポキシ樹脂(ダイセル社製、2021P)60重量部。
 成分o:光酸発生剤(ADEKA社製、SP170)4重量部。
 これら成分m~oを混合することにより、オーバークラッド層の形成材料を調製した。
[Comparative example]
[Formation material of over clad layer]
Component m: 40 parts by weight of an epoxy resin (Epogosei PT, manufactured by Yokkaichi Gosei Co., Ltd.).
Component n: 60 parts by weight of epoxy resin (Daicel, 2021P).
Component o: 4 weight part of photo-acid generators (made by ADEKA, SP170).
By mixing these components m to o, an over clad layer forming material was prepared.
〔コアの形成材料〕
 成分p:エポキシ樹脂(四日市合成社製、エポゴーセーPT)30重量部。
 成分q:エポキシ樹脂(DIC社製、EXA-4816)70重量部。
 成分r:光酸発生剤(ADEKA社製、SP170)4重量部。
 これら成分p~rを混合することにより、コアの形成材料を調製した。
[Core forming material]
Component p: 30 parts by weight of epoxy resin (Epogosei PT, manufactured by Yokkaichi Gosei Co., Ltd.)
Component q: 70 parts by weight of an epoxy resin (manufactured by DIC, EXA-4816).
Component r: 4 weight part of photo-acid generators (made by ADEKA, SP170).
The core forming material was prepared by mixing these components p to r.
〔アンダークラッド層の形成材料〕
 成分s:エポキシ樹脂(四日市合成社製、エポゴーセーPT)40重量部。
 成分t:エポキシ樹脂(ダイセル社製、2021P)60重量部。
 成分u:光酸発生剤(ADEKA社製、SP170)4重量部。
 これら成分s~uを混合することにより、アンダークラッド層の形成材料を調製した。
[Formation material of under cladding layer]
Component s: 40 parts by weight of epoxy resin (Epogosei PT, manufactured by Yokkaichi Gosei Co., Ltd.)
Component t: 60 parts by weight of an epoxy resin (Daicel, 2021P).
Component u: 4 weight part of photo-acid generators (made by ADEKA, SP170).
By mixing these components s to u, a material for forming the under cladding layer was prepared.
〔シート状光導波路の作製〕
 上記実施例と同様にして、同寸法のシート状光導波路を作製した。ただし、弾性率は、オーバークラッド層が1GPa、コアが25MPa、アンダークラッド層が1GPaであった。また、屈折率は、オーバークラッド層が1.504、コアが1.532、アンダークラッド層が1.504であった。
[Production of sheet-shaped optical waveguide]
In the same manner as in the above example, a sheet-like optical waveguide having the same dimensions was produced. However, the elastic modulus was 1 GPa for the over clad layer, 25 MPa for the core, and 1 GPa for the under clad layer. The refractive index was 1.504 for the over clad layer, 1.532 for the core, and 1.504 for the under clad layer.
〔入力装置の作製〕
 上記実施例および比較例の各シート状光導波路のコアの一端面に、発光素子(Optowell社製、XH85-S0603-2s )を接続し、コアの他端面に、受光素子(浜松ホトニクス社製、s10226)を接続し、上記発光素子,上記受光素子,入力装置を制御するCPU等を搭載した回路を設け、実施例および比較例の各入力装置を作製した。
[Production of input device]
A light emitting element (Optowell, XH85-S0603-2s) is connected to one end face of the core of each of the sheet-like optical waveguides of the above examples and comparative examples, and a light receiving element (Hamamatsu Photonics, s10226) was connected, and a circuit including the light emitting element, the light receiving element, a CPU for controlling the input device, and the like was provided, and the input devices of the example and the comparative example were manufactured.
〔情報表示システムの作製〕
 ディスプレイ付きパソコンを準備し、接続ケーブルで上記入力装置と接続し、情報表示システムを作製した。上記パソコンには、入力装置の入力領域の座標を、ディスプレイの画面の座標に変換し、入力装置で入力した文字等をディスプレイに表示するソフトウェア(プログラム)が、組み込まれている。
[Production of information display system]
A personal computer with a display was prepared and connected to the input device with a connection cable to produce an information display system. The personal computer incorporates software (program) for converting the coordinates of the input area of the input device into the coordinates of the screen of the display and displaying characters or the like input by the input device on the display.
〔情報表示システムの作動確認〕
 資料等の情報を記憶したUSBメモリを準備し、そのUSBメモリの記憶情報を、上記パソコンを利用して、上記ディスプレイに表示した。この状態で、入力者がボールペン(ペン先の曲率半径350μm)を手に持ち、上記入力装置の入力領域内で、文字を入力した。
[Operation check of information display system]
A USB memory storing information such as documents was prepared, and the storage information of the USB memory was displayed on the display using the personal computer. In this state, the input person held the ballpoint pen (the radius of curvature of the pen tip 350 μm) in his hand and entered characters in the input area of the input device.
 その結果、実施例の入力装置を用いた情報表示システムでは、入力した文字のみが、上記ディスプレイに表示されている資料等の情報に重ね合わさった状態で、表示された。それに対して、比較例の入力装置を用いた情報表示システムでは、入力した文字だけでなく、ボールペンを持つ手の部分も、上記ディスプレイに表示されている資料等の情報に重ね合わさった状態で、表示された。 As a result, in the information display system using the input device of the example, only the input characters were displayed in a state where they were superimposed on the information such as the materials displayed on the display. On the other hand, in the information display system using the input device of the comparative example, not only the entered characters but also the hand part with the ballpoint pen is superimposed on the information such as the material displayed on the display, It was displayed.
 また、上記ボールペンに代えて、単なる棒体(先端の曲率半径550μm)を使用して上記と同様に入力しても、上記と同様の結果が得られた。 In addition, the same result as described above was obtained even when the same input as described above was used instead of the above ballpoint pen by using a simple rod (tip radius of curvature 550 μm).
 これらの結果から、実施例の入力装置は、入力体を代えても、入力された情報のみを検知でき、不要な情報は検知しないようにできることがわかる。 From these results, it can be seen that the input device of the embodiment can detect only the input information and can detect unnecessary information even if the input body is changed.
 また、格子状のコアの各交差部を、交差する1~3方向が不連続になっている不連続交差〔図6(a)~(d)参照〕としても、上記実施例と同様の傾向を示す結果が得られた。さらに、交差する1~4方向が不連続になっている不連続交差〔図3(a),図6(a)~(d)参照〕、および交差する4方向の全てが連続した連続交差〔図6(e)参照〕のうちの2種類以上の交差を備えた格子状としても、上記実施例と同様の傾向を示す結果が得られた。 In addition, the same tendency as in the above-described embodiment can be obtained even if each of the intersecting portions of the lattice-like core is a discontinuous intersection (see FIGS. 6A to 6D) in which the intersecting directions 1 to 3 are discontinuous. The result which shows was obtained. Furthermore, a discontinuous intersection in which 1 to 4 intersecting directions are discontinuous (see FIGS. 3A and 6A to 6D) and a continuous intersection in which all four intersecting directions are continuous [ As shown in FIG. 6 (e)], a result showing a tendency similar to that in the above-described example was obtained even in a lattice shape having two or more types of intersections.
 上記実施例においては、本発明における具体的な形態について示したが、上記実施例は単なる例示にすぎず、限定的に解釈されるものではない。当業者に明らかな様々な変形は、本発明の範囲内であることが企図されている。 In the above embodiments, specific forms in the present invention have been described. However, the above embodiments are merely examples and are not construed as limiting. Various modifications apparent to those skilled in the art are contemplated to be within the scope of this invention.
 本発明の情報表示システムは、プレゼンテーションや会議等において、ディスプレイに表示した資料等に、入力装置を利用して新たな情報を書き加えて表示することに利用可能である。 The information display system of the present invention can be used for writing and displaying new information on materials displayed on a display using an input device in presentations and meetings.
 A 入力装置
 D ディスプレイ
 P パソコン
 W シート状光導波路
 2 コア
 10 入力体
 
A Input device D Display P Personal computer W Sheet-shaped optical waveguide 2 Core 10 Input body

Claims (1)

  1.  情報表示用のディスプレイを有するパーソナルコンピュータと、
     下記(A)の位置センサと
    を備えている情報表示システムであって、
     上記ディスプレイに表示された情報に加える新たな情報を、上記位置センサのシート状光導波路の表面での入力体の先端入力部の移動により入力し、その移動軌跡を新たな情報として、上記パーソナルコンピュータに出力することを特徴とする情報表示システム。
    (A)格子状に形成された複数の線状のコアと、これらコアを支持するアンダークラッド層と、上記コアを被覆するオーバークラッド層とを有するシート状光導波路と、
     上記コアの一端面に接続される発光素子と、
     上記コアの他端面に接続される受光素子と、
     上記シート状光導波路の表面における入力体の先端入力部の移動軌跡を、その移動により変化したコアの光伝播量によって特定する移動軌跡特定手段と
    を備えている位置センサであって、
     上記複数の線状のコアにより形成される格子状の一部ないし全部の交差部が、交差する少なくとも1方向を隙間により分断した状態の不連続交差に形成されており、
     上記コアの弾性率が、上記アンダークラッド層の弾性率および上記オーバークラッド層の弾性率よりも大きく設定され、上記シート状光導波路の表面における上記先端入力部による押圧状態で、その押圧方向のコアの断面の変形率が、オーバークラッド層およびアンダークラッド層の断面の変形率よりも小さくなるようになっている
    位置センサ。
     
    A personal computer having a display for displaying information;
    An information display system comprising the following position sensor (A),
    New information to be added to the information displayed on the display is input by the movement of the tip input portion of the input body on the surface of the sheet-shaped optical waveguide of the position sensor, and the personal computer is used with the movement locus as new information. An information display system characterized by being output to.
    (A) a sheet-like optical waveguide having a plurality of linear cores formed in a lattice shape, an under cladding layer that supports the cores, and an over cladding layer that covers the cores;
    A light emitting element connected to one end face of the core;
    A light receiving element connected to the other end surface of the core;
    A position sensor comprising a movement locus specifying means for specifying the movement locus of the tip input portion of the input body on the surface of the sheet-shaped optical waveguide by the amount of light propagation of the core changed by the movement,
    A part or all of the lattice-like intersection formed by the plurality of linear cores is formed as a discontinuous intersection in a state where at least one intersecting direction is divided by a gap,
    The elastic modulus of the core is set to be larger than the elastic modulus of the under cladding layer and the elastic modulus of the over cladding layer, and the core in the pressing direction is pressed by the tip input portion on the surface of the sheet-like optical waveguide. A position sensor in which the deformation rate of the cross section of the under clad layer is smaller than the deformation rate of the cross sections of the over cladding layer and the under cladding layer.
PCT/JP2015/062468 2014-05-08 2015-04-24 Information display system WO2015170606A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-096605 2014-05-08
JP2014096605A JP2015215668A (en) 2014-05-08 2014-05-08 Information display system

Publications (1)

Publication Number Publication Date
WO2015170606A1 true WO2015170606A1 (en) 2015-11-12

Family

ID=54392459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062468 WO2015170606A1 (en) 2014-05-08 2015-04-24 Information display system

Country Status (3)

Country Link
JP (1) JP2015215668A (en)
TW (1) TW201546687A (en)
WO (1) WO2015170606A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07319609A (en) * 1994-05-25 1995-12-08 Toshiba Corp Resistance tablet input device and information processor applying the same
JP2001222378A (en) * 2000-02-10 2001-08-17 Nec Saitama Ltd Touch panel input device
JP2009300688A (en) * 2008-06-12 2009-12-24 Hitachi Chem Co Ltd Resin composition for forming cladding layer, resin film for forming cladding layer using the same, and optical waveguide and optical module using these
US20100097348A1 (en) * 2008-10-16 2010-04-22 Inha Industry Partnership Institute Touch screen tool
JP2010151992A (en) * 2008-12-24 2010-07-08 Fuji Xerox Co Ltd Optical waveguide, optical waveguide type touch panel and method of manufacturing the optical waveguide
WO2012002222A1 (en) * 2010-06-30 2012-01-05 インターナショナル・ビジネス・マシーンズ・コーポレーション Design for achieving low loss in intersecting region of optical waveguide
JP2014021576A (en) * 2012-07-13 2014-02-03 Shin Etsu Polymer Co Ltd Light guide unit, optical touch panel including light guide unit and electronic device including optical touch panel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07319609A (en) * 1994-05-25 1995-12-08 Toshiba Corp Resistance tablet input device and information processor applying the same
JP2001222378A (en) * 2000-02-10 2001-08-17 Nec Saitama Ltd Touch panel input device
JP2009300688A (en) * 2008-06-12 2009-12-24 Hitachi Chem Co Ltd Resin composition for forming cladding layer, resin film for forming cladding layer using the same, and optical waveguide and optical module using these
US20100097348A1 (en) * 2008-10-16 2010-04-22 Inha Industry Partnership Institute Touch screen tool
JP2010151992A (en) * 2008-12-24 2010-07-08 Fuji Xerox Co Ltd Optical waveguide, optical waveguide type touch panel and method of manufacturing the optical waveguide
WO2012002222A1 (en) * 2010-06-30 2012-01-05 インターナショナル・ビジネス・マシーンズ・コーポレーション Design for achieving low loss in intersecting region of optical waveguide
JP2014021576A (en) * 2012-07-13 2014-02-03 Shin Etsu Polymer Co Ltd Light guide unit, optical touch panel including light guide unit and electronic device including optical touch panel

Also Published As

Publication number Publication date
TW201546687A (en) 2015-12-16
JP2015215668A (en) 2015-12-03

Similar Documents

Publication Publication Date Title
JP5513656B1 (en) Electronic underlay
WO2014136508A1 (en) Information display system
JP6026346B2 (en) Position sensor
WO2014136472A1 (en) Position sensor
JP5513655B1 (en) Information management system
WO2015170606A1 (en) Information display system
WO2015156111A1 (en) Position sensor and sheet-shaped optical waveguide used in same
WO2014181574A1 (en) Information display device
WO2015170607A1 (en) Information display device
WO2014196390A1 (en) Electronic underlay
WO2015049908A1 (en) Input apparatus
WO2015025608A1 (en) Position sensor
WO2015156112A1 (en) Position sensor and sheet-shaped optical waveguide used in same
WO2015156115A1 (en) Information processing system
WO2015045571A1 (en) Input device
WO2015156114A1 (en) Position sensor
WO2015033657A1 (en) Input device
WO2015045572A1 (en) Electronic underlay
WO2015170608A1 (en) Position sensor
WO2015045570A1 (en) Input device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15788954

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15788954

Country of ref document: EP

Kind code of ref document: A1