JP2015200478A - Condenser - Google Patents

Condenser Download PDF

Info

Publication number
JP2015200478A
JP2015200478A JP2014080836A JP2014080836A JP2015200478A JP 2015200478 A JP2015200478 A JP 2015200478A JP 2014080836 A JP2014080836 A JP 2014080836A JP 2014080836 A JP2014080836 A JP 2014080836A JP 2015200478 A JP2015200478 A JP 2015200478A
Authority
JP
Japan
Prior art keywords
refrigerant
inlet
header
sectional area
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014080836A
Other languages
Japanese (ja)
Other versions
JP6259703B2 (en
JP2015200478A5 (en
Inventor
輝之 永藤
Teruyuki Nagafuji
輝之 永藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr Thermal Systems Japan Ltd
Original Assignee
Keihin Thermal Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Thermal Technology Corp filed Critical Keihin Thermal Technology Corp
Priority to JP2014080836A priority Critical patent/JP6259703B2/en
Priority to DE102015105093.5A priority patent/DE102015105093A1/en
Priority to CN201520209625.9U priority patent/CN204648765U/en
Publication of JP2015200478A publication Critical patent/JP2015200478A/en
Publication of JP2015200478A5 publication Critical patent/JP2015200478A5/ja
Application granted granted Critical
Publication of JP6259703B2 publication Critical patent/JP6259703B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0417Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with particular circuits for the same heat exchange medium, e.g. with the heat exchange medium flowing through sections having different heat exchange capacities or for heating/cooling the heat exchange medium at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05375Assemblies of conduits connected to common headers, e.g. core type radiators with particular pattern of flow, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • F25B2339/0446Condensers with an integrated receiver characterised by the refrigerant tubes connecting the header of the condenser to the receiver; Inlet or outlet connections to receiver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size

Abstract

PROBLEM TO BE SOLVED: To provide a condenser which can uniformize divided flows into a total heat exchange tube connected to a condensation part inlet header part of a refrigerant flowed inside the condensation part inlet header part.SOLUTION: At a condensation part inlet header part 9 of a condenser, two refrigerant inlets 14, 15 are formed with an interval in a vertical direction, and in such a manner that one refrigerant inlet 14 is located below a central part in a height direction of the condensation part, and the other refrigerant inlet 15 is located above the central part in the height direction of the condensation part. An inlet member 16 having a refrigerant inflow passage 17 is joined with the condensation part inlet header part 9 in the height position corresponding to the lower side refrigerant inlet 14. A downstream side end part of the refrigerant inflow passage 17 of the inlet member 16 is directly communicated with the refrigerant inlet 14. At the inlet member 16, a branch passage 18 branched from the refrigerant inflow passage 17 is provided, and at the inlet member 16, a refrigerant branch pipe 19 communicating with the branch passage 18 is connected. A tip part of the refrigerant branch pipe 19 is connected with the condensation part inlet header part 9 so as to communicate with the other refrigerant inlet 15.

Description

この発明は、たとえば自動車に搭載されるカーエアコンに好適に用いられるコンデンサに関する。   The present invention relates to a capacitor suitably used for, for example, a car air conditioner mounted on an automobile.

この明細書および特許請求の範囲において、上下、左右は図1、図2、、図6および図7の上下、左右をいうものとする。   In this specification and claims, the top, bottom, left and right refer to the top, bottom, left, and right of FIGS. 1, 2, 6, and 7.

たとえばカーエアコンのコンデンサとして、本出願人は、先に、凝縮部および過冷却部が前者が上側に位置するように設けられ、長さ方向を左右方向に向けるとともに上下方向に間隔をおいて並列状に配置された複数の熱交換管と、熱交換管の左右両端部が接続された上下方向にのびるヘッダタンクとを備え、上下に連続して並んだ複数の熱交換管からなる熱交換パスが上下に並んで2つ設けられ、凝縮部および過冷却部にそれぞれ1つの熱交換パスが設けられ、凝縮部に設けられた熱交換パスが冷媒を凝縮させる冷媒凝縮パスであり、過冷却部に設けられた熱交換パスが冷媒を過冷却する冷媒過冷却パスであり、左右いずれか一端側に第1ヘッダタンクが配置されるとともに、他端側に第2ヘッダタンクおよび第3ヘッダタンクが、第3ヘッダタンクが第2ヘッダタンクよりも左右方向外側に位置するように配置され、第1ヘッダタンクに凝縮部入口ヘッダ部および過冷却部出口ヘッダ部が前者が上側に位置するように設けられ、第2ヘッダタンクの上下方向の長さが第1ヘッダタンクの凝縮部入口ヘッダ部の上下方向の長さと等しくなっているとともに、第2ヘッダタンクの全体に凝縮部出口ヘッダ部が設けられ、第3ヘッダタンクの下端が第2ヘッダタンクの下端よりも下方に位置するとともに同上端が第2ヘッダタンクの下端よりも上方に位置しており、第3ヘッダタンクにおける第2ヘッダタンクの下端よりも下方に位置する部分に過冷却部入口ヘッダ部が設けられ、冷媒凝縮パスの全熱交換管が凝縮部入口ヘッダ部および同出口ヘッダ部に接続され、冷媒か冷却パスの全熱交換管が過冷却部入口ヘッダ部および同出口ヘッダ部に接続され、凝縮部の高さ方向の中央よりも若干上方の高さ位置において、凝縮部入口ヘッダ部に冷媒入口が形成されるとともに凝縮部入口ヘッダ部に冷媒入口に直接通じる冷媒流入路を有する入口部材が接合され、過冷却部出口ヘッダ部に冷媒出口が形成されるとともに、凝縮部出口ヘッダ部に、冷媒出口に通じる冷媒流出路を有する出口部材が接合され、第2ヘッダタンクの凝縮部出口ヘッダ部内と、第3ヘッダタンク内における第2ヘッダタンクの下端よりも上方に位置する部分とが連通部を介して通じさせられており、入口部材および出口部材に、カーエアコンを構成する部品を接続する配管が接続されるようになされているコンデンサを提案している(特許文献1参照)。   For example, as a condenser of a car air conditioner, the present applicant has previously provided the condensing unit and the supercooling unit so that the former is located on the upper side, and the length direction is directed in the left-right direction and the vertical direction is spaced in parallel. Heat exchange path comprising a plurality of heat exchange tubes arranged in a row and a header tank extending in the vertical direction to which the left and right ends of the heat exchange tubes are connected, Are arranged side by side, one heat exchange path is provided in each of the condensing part and the supercooling part, and the heat exchange path provided in the condensing part is a refrigerant condensing path for condensing the refrigerant, and the supercooling part The heat exchange path provided in the refrigerant is a refrigerant supercooling path for supercooling the refrigerant, and the first header tank is disposed on one of the left and right ends, and the second header tank and the third header tank are disposed on the other end side. The third The first tank is provided with a condenser inlet header and a supercooler outlet header so that the former is located on the upper side. The vertical length of the header tank is equal to the vertical length of the condensing portion inlet header portion of the first header tank, and the condensing portion outlet header portion is provided in the entire second header tank, and the third header The lower end of the tank is located below the lower end of the second header tank, and the upper end is located above the lower end of the second header tank, and is below the lower end of the second header tank in the third header tank. A supercooling section inlet header is provided at the position where the refrigerant is located, and the total heat exchange pipe of the refrigerant condensing path is connected to the condensing section inlet header section and the outlet header section. The heat exchange pipe is connected to the supercooling section inlet header section and the outlet header section, and a refrigerant inlet is formed in the condensing section inlet header section at a height position slightly above the center in the height direction of the condensing section. An inlet member having a refrigerant inflow path that directly communicates with the refrigerant inlet is joined to the condenser inlet header, a refrigerant outlet is formed at the subcooler outlet header, and a refrigerant outflow that leads to the refrigerant outlet at the condenser outlet header An outlet member having a path is joined, and the inside of the condensing portion outlet header portion of the second header tank and the portion located above the lower end of the second header tank in the third header tank are communicated via the communication portion. In addition, a capacitor has been proposed in which piping for connecting parts constituting a car air conditioner is connected to an inlet member and an outlet member (see Patent Document 1).

ところで、自動車にカーエアコンを搭載する場合、カーエアコンを構成する部品を接続する配管の取り回しを考慮して、コンデンサの入口部材を、凝縮部の高さ方向の中央よりも下方において凝縮部入口ヘッダ部に接合することを要求されることがある。   By the way, when a car air conditioner is mounted on an automobile, the condenser inlet member is disposed below the center of the condenser in the height direction in consideration of the routing of the pipes that connect the parts constituting the car air conditioner. It may be required to be joined to the part.

しかしながら、冷媒入口に直接通じる冷媒流入路を有しかつカーエアコンを構成する部品を接続する配管が接続されるようになされている入口部材が、凝縮部の高さ方向の中央よりも下方において凝縮部入口ヘッダ部に接合されている場合、入口部材の冷媒流入路を通って凝縮部入口ヘッダ部内に流入した冷媒は、凝縮部入口ヘッダ部の上部に接続された熱交換管内には流入しにくくなる。したがって、入口部材の冷媒流入路を通って凝縮部入口ヘッダ部内に流入した冷媒が、凝縮部入口ヘッダ部に接続された全熱交換管に均等に分流されず、コンデンサの性能が低下するおそれがある。   However, the inlet member that has a refrigerant inflow path that leads directly to the refrigerant inlet and that is connected to a pipe that connects the parts that make up the car air conditioner is condensed below the center in the height direction of the condensing unit. When joined to the inlet header portion, the refrigerant that has flowed into the condenser inlet header portion through the refrigerant inlet passage of the inlet member is less likely to flow into the heat exchange pipe connected to the upper portion of the condenser inlet header portion. Become. Therefore, the refrigerant that has flowed into the condensing unit inlet header through the refrigerant inflow path of the inlet member is not evenly divided into the total heat exchange pipe connected to the condensing unit inlet header, and the performance of the condenser may be reduced. is there.

特開2014−52163号公報JP 2014-52163 A

この発明の目的は、上記実情に鑑み、凝縮部入口ヘッダ部内に流入した冷媒の凝縮部入口ヘッダ部に接続された全熱交換管への分流を均一化しうるコンデンサを提供することにある。   In view of the above circumstances, an object of the present invention is to provide a condenser capable of equalizing the diversion of the refrigerant that has flowed into the condenser inlet header to the total heat exchange pipe connected to the condenser inlet header.

本発明は、上記目的を達成するために以下の態様からなる。   In order to achieve the above object, the present invention comprises the following aspects.

1)凝縮部および過冷却部が前者が上側に位置するように設けられ、凝縮部が、長さ方向を左右方向に向けるとともに上下方向に間隔をおいて並列状に配置された複数の熱交換管からなる少なくとも1つの熱交換パスと、凝縮部の冷媒流れ方向最上流側の熱交換パスの冷媒流れ方向上流側端部が通じる凝縮部入口ヘッダ部とを備え、過冷却部が、長さ方向を左右方向に向けるとともに上下方向に間隔をおいて並列状に配置された複数の熱交換管からなる少なくとも1つの熱交換パスを備えており、凝縮部入口ヘッダ部に、凝縮部入口ヘッダ部内に冷媒を送り込む冷媒流入路を有する入口部材が接合されているコンデンサにおいて、
凝縮部入口ヘッダ部に、少なくとも2つの冷媒入口が、上下方向に間隔をおき、かつ少なくとも1つの冷媒入口が凝縮部の高さ方向の中央部よりも下方に位置するとともに残りの冷媒入口が凝縮部の高さ方向の中央部よりも上方に位置するように形成されており、入口部材が、凝縮部の高さ方向の中央部よりも下方に形成された1つの冷媒入口と対応する高さ位置において凝縮部入口ヘッダ部に接合されるとともに、入口部材の冷媒流入路の冷媒流れ方向下流側端部が当該冷媒入口と直接通じさせられ、入口部材に、冷媒流入路の冷媒流れ方向中間部を外部に通じさせる分岐部が設けられ、分岐部の数が全冷媒入口の数から1つ減じた数となり、一端部が入口部材に接続されるとともに他端部が凝縮部入口ヘッダ部に接続された冷媒分岐管によって、入口部材の分岐部と、凝縮部入口ヘッダ部における冷媒流入路と直接通じている冷媒入口を除いた冷媒入口とが連通させられているコンデンサ。
1) A plurality of heat exchanges in which the condensing unit and the supercooling unit are provided so that the former is located on the upper side, and the condensing unit is arranged in parallel with the length direction directed to the left and right and spaced in the vertical direction At least one heat exchange path composed of a pipe, and a condensing part inlet header part that communicates with an upstream end part in the refrigerant flow direction of the heat exchange path on the most upstream side in the refrigerant flow direction of the condensing part. It is provided with at least one heat exchange path composed of a plurality of heat exchange tubes arranged in parallel at intervals in the vertical direction with the direction directed to the left and right, and in the condenser inlet header In the capacitor to which the inlet member having the refrigerant inflow passage for sending the refrigerant to is joined,
At least two refrigerant inlets are spaced vertically in the condensing unit inlet header, and at least one refrigerant inlet is located below the central portion in the height direction of the condensing unit and the remaining refrigerant inlets are condensed. The inlet member is formed so as to be located above the central part in the height direction of the part, and the inlet member has a height corresponding to one refrigerant inlet formed below the central part in the height direction of the condensing part. In addition to being joined to the condenser inlet header at the position, the refrigerant flow direction downstream end of the refrigerant inlet passage of the inlet member is directly communicated with the refrigerant inlet, and the inlet member is connected to the intermediate portion of the refrigerant inlet passage in the refrigerant flow direction. The number of branches is one less than the number of all refrigerant inlets, one end is connected to the inlet member and the other end is connected to the condenser inlet header To the refrigerant branch pipe It, a capacitor and a branch of the inlet member, the refrigerant inlet excluding the refrigerant inlet in direct communication with the refrigerant inlet passage in the condenser section inlet header section is communicated.

2)入口部材の冷媒流入路に冷媒が流入する部分の流路断面積をAmm、入口部材の冷媒流入路から凝縮部入口ヘッダ部内に冷媒が流入する部分の流路断面積をBmm、入口部材の冷媒流入路から冷媒分岐管に冷媒が流入する部分の流路断面積の総和をCmm、冷媒分岐管から凝縮部入口ヘッダ部内に冷媒が流入する部分の流路断面積の総和をDmmとした場合、(B+C)>A、(B+D)>Aという関係を満たす上記1)記載のコンデンサ。 2) Amm 2 the flow path cross-sectional area of a portion where the refrigerant at a refrigerant inlet passage of the inlet member flows, the flow path cross-sectional area of the portion where the refrigerant flows into the condensing section inlet header section from the refrigerant inlet passage of the inlet member Bmm 2, Cmm 2 is the sum of the cross-sectional area of the part where the refrigerant flows from the refrigerant inflow path of the inlet member into the refrigerant branch pipe, and the sum of the cross-sectional area of the part where the refrigerant flows into the condenser inlet header from the refrigerant branch pipe The capacitor as described in 1) above, which satisfies the relationship of (B + C)> A and (B + D)> A when Dmm 2 is satisfied.

3)凝縮部入口ヘッダ部における凝縮部の高さ方向の中央部よりも下方の高さ位置に1つの下側冷媒入口が形成されるとともに、同上方の高さ位置に1つの上側冷媒入口が形成され、入口部材の冷媒流入路の下流側端部が下側冷媒入口に直接通じており、入口部材に1つの分岐部が設けられ、入口部材の分岐部と上側冷媒入口とが1つの冷媒分岐管によって連通させられており、入口部材の冷媒流入路から冷媒分岐管に冷媒が流入する部分の流路断面積をC1mm、冷媒分岐管から凝縮部入口ヘッダ部内に冷媒が流入する部分の流路断面積をD1mmとした場合、C1=C、D1=Dとなっている上記2)記載のコンデンサ。 3) One lower refrigerant inlet is formed at a height position below the central portion in the height direction of the condensing section in the condensing section inlet header section, and one upper refrigerant inlet is disposed at the upper height position. Formed, the downstream end of the refrigerant inflow passage of the inlet member directly communicates with the lower refrigerant inlet, the inlet member is provided with one branch portion, and the branch portion of the inlet member and the upper refrigerant inlet are one refrigerant. The flow passage cross-sectional area of the portion where the refrigerant flows from the refrigerant inflow path of the inlet member to the refrigerant branch pipe is C1 mm 2 , and the portion where the refrigerant flows from the refrigerant branch pipe into the condenser inlet header If the flow path cross-sectional area was D1mm 2, the capacitor of the 2), characterized in that a C1 = C, D1 = D.

4)入口部材の冷媒流入路に冷媒が流入する部分の流路断面積をAmm、入口部材の冷媒流入路から凝縮部入口ヘッダ部内に冷媒が流入する部分の流路断面積をBmm、入口部材の冷媒流入路から冷媒分岐管に冷媒が流入する部分の流路断面積をC1mm、冷媒分岐管から凝縮部入口ヘッダ部内に冷媒が流入する部分の流路断面積をD1mmとした場合、C1<B、D1<Bという関係を満たす上記3)記載のコンデンサ。 4) Amm 2 the flow path cross-sectional area of a portion where the refrigerant at a refrigerant inlet passage of the inlet member flows, the flow path cross-sectional area of the portion where the refrigerant flows into the condensing section inlet header section from the refrigerant inlet passage of the inlet member Bmm 2, The cross-sectional area of the portion where the refrigerant flows from the refrigerant inflow path of the inlet member into the refrigerant branch pipe is C1 mm 2 , and the cross-sectional area of the portion where the refrigerant flows from the refrigerant branch pipe into the condenser inlet header is D1 mm 2 In this case, the capacitor described in the above 3) satisfying the relationship of C1 <B and D1 <B.

5)凝縮部入口ヘッダ部における凝縮部の高さ方向の中央部よりも下方の高さ位置に、2つの下側冷媒入口が形成されるとともに、同上方の高さ位置に1つの上側冷媒入口が形成され、入口部材の冷媒流入路の下流側端部がいずれか一方の下側冷媒入口に直接通じており、入口部材に第1および第2の分岐部が設けられ、入口部材の第1分岐部と他方の下側冷媒入口とが第1冷媒分岐管によって連通させられるとともに、同じく第2分岐部と上側冷媒入口とが第2冷媒分岐管によって連通させられ、入口部材の冷媒流入路から第1冷媒分岐管に冷媒が流入する部分の流路断面積をC2mm、入口部材の冷媒流入路から第2冷媒分岐管に冷媒が流入する部分の流路断面積をC3mm、第1冷媒分岐管から凝縮部入口ヘッダ部内に冷媒が流入する部分の流路断面積をD2mm、第2冷媒分岐管から凝縮部入口ヘッダ部内に冷媒が流入する部分の流路断面積をD3mmとした場合、C2+C3=C、D2+D3=Dとなっている上記2)記載のコンデンサ。 5) Two lower refrigerant inlets are formed at a height position below the central portion in the height direction of the condensing section in the condensing section inlet header section, and one upper refrigerant inlet is disposed at the upper height position. The downstream end portion of the refrigerant inflow passage of the inlet member directly communicates with one of the lower refrigerant inlets, the inlet member is provided with first and second branch portions, and the first inlet member The branch portion and the other lower refrigerant inlet are communicated by the first refrigerant branch pipe, and the second branch portion and the upper refrigerant inlet are similarly communicated by the second refrigerant branch pipe, and from the refrigerant inflow passage of the inlet member The cross-sectional area of the part where the refrigerant flows into the first refrigerant branch pipe is C2 mm 2 , the cross-sectional area of the part where the refrigerant flows from the refrigerant inflow path of the inlet member into the second refrigerant branch pipe is C3 mm 2 , and the first refrigerant Refrigerant flows from the branch pipe into the condenser inlet header D2mm 2 the flow path cross-sectional area of a portion that, when the flow path cross-sectional area of a portion where the refrigerant in the condensation section inlet header section from the second refrigerant branch pipe flows was D3mm 2, becomes C2 + C3 = C, D2 + D3 = D The capacitor described in 2) above.

6)入口部材の冷媒流入路に冷媒が流入する部分の流路断面積をAmm、入口部材の冷媒流入路から凝縮部入口ヘッダ部内に冷媒が流入する部分の流路断面積をBmm、入口部材の冷媒流入路から第1冷媒分岐管に冷媒が流入する部分の流路断面積をC2mm、入口部材の冷媒流入路から第2冷媒分岐管に冷媒が流入する部分の流路断面積をC3mm、第1冷媒分岐管から凝縮部入口ヘッダ部内に冷媒が流入する部分の流路断面積をD2mm、第2冷媒分岐管から凝縮部入口ヘッダ部内に冷媒が流入する部分の流路断面積をD3mmとした場合、(B+D2)>D3、(B+C2)>C3という関係を満たす上記5)記載のコンデンサ。 6) Amm 2 the flow path cross-sectional area of a portion where the refrigerant at a refrigerant inlet passage of the inlet member flows, the flow path cross-sectional area of the portion where the refrigerant flows into the condensing section inlet header section from the refrigerant inlet passage of the inlet member Bmm 2, The flow passage cross-sectional area of the portion where the refrigerant flows into the first refrigerant branch pipe from the refrigerant flow path of the inlet member is C2 mm 2 , and the flow passage cross-sectional area of the portion where the refrigerant flows from the refrigerant flow passage of the inlet member into the second refrigerant branch pipe the C3mm 2, the flow path of the portion where the refrigerant flow path cross-sectional area of a portion where the refrigerant in the condensation section inlet header section from the first refrigerant branch pipe flows D2mm 2, the condensation section inlet header section from the second refrigerant branch pipe flows If the cross-sectional area and D3mm 2, (B + D2) > D3, (B + C2)> capacitor above 5), wherein satisfying the relationship of C3.

7)凝縮部に1つの熱交換パスが設けられるとともに、当該熱交換パスの全熱交換管が凝縮部入口ヘッダ部に接続されている上記1)〜6)のうちのいずれかに記載のコンデンサ。   7) The condenser according to any one of the above 1) to 6), wherein one heat exchange path is provided in the condensing unit, and all heat exchange pipes of the heat exchanging path are connected to the condensing unit inlet header. .

8)熱交換管の一端側に第1ヘッダタンクが配置されるとともに、他端側に第2ヘッダタンクおよび第3ヘッダタンクが、第3ヘッダタンクが第2ヘッダタンクよりも左右方向外側に位置するように設けられ、第1ヘッダタンクに、凝縮部入口ヘッダ部および過冷却部出口ヘッダ部が前者が上側に位置するように設けられ、第2ヘッダタンクの全体に凝縮部出口ヘッダ部が設けられるとともに凝縮部出口ヘッダ部に凝縮部の熱交換パスの全熱交換管が接続され、第3ヘッダタンクの下端が第2ヘッダタンクの下端よりも下方に位置するとともに同上端が第2ヘッダタンクの下端よりも上方に位置しており、第3ヘッダタンクにおける第2ヘッダタンクの下端よりも下方に位置する部分に過冷却部入口ヘッダ部が設けられ、第2ヘッダタンクの凝縮部出口ヘッダ部内と、第3ヘッダタンク内における第2ヘッダタンクの下端よりも上方に位置する部分とが連通部を介して通じさせられている上記7)記載のコンデンサ。   8) The first header tank is arranged on one end side of the heat exchange pipe, the second header tank and the third header tank are located on the other end side, and the third header tank is located on the outer side in the left-right direction with respect to the second header tank. The first header tank is provided with a condenser inlet header and a supercooler outlet header so that the former is located on the upper side, and a condenser outlet header is provided on the entire second header tank. And the total heat exchange pipe of the heat exchange path of the condensing part is connected to the condensing part outlet header part, the lower end of the third header tank is located below the lower end of the second header tank, and the upper end is the second header tank. A supercooling portion inlet header is provided in a portion of the third header tank located below the lower end of the second header tank, and the second header tank A Department outlet header portion, the seventh portion and is vented through the communicating portion located above the lower end of the second header tank of the third header tank) capacitor according.

上記1)〜8)のコンデンサによれば、凝縮部入口ヘッダ部に、少なくとも2つの冷媒入口が、上下方向に間隔をおき、かつ少なくとも1つの冷媒入口が凝縮部の高さ方向の中央部よりも下方に位置するとともに残りの冷媒入口が凝縮部の高さ方向の中央部よりも上方に位置するように形成されており、入口部材が、凝縮部の高さ方向の中央部よりも下方に形成された1つの冷媒入口と対応する高さ位置において凝縮部入口ヘッダ部に接合されるとともに、入口部材の冷媒流入路の冷媒流れ方向下流側端部が当該冷媒入口と直接通じさせられ、入口部材に、冷媒流入路の冷媒流れ方向中間部を外部に通じさせる分岐部が設けられ、分岐部の数が全冷媒入口の数から1つ減じた数となり、一端部が入口部材に接続されるとともに他端部が凝縮部入口ヘッダ部に接続された冷媒分岐管によって、入口部材の分岐部と、凝縮部入口ヘッダ部における冷媒流入路と直接通じている冷媒入口を除いた冷媒入口とが連通させられているので、入口部材の冷媒流入路を通って凝縮部入口ヘッダ部内に流入する冷媒を、凝縮部入口ヘッダ部内の高さ方向の全体に行き渡らせることが可能になる。したがって、入口部材の冷媒流入路を通って凝縮部入口ヘッダ部内に流入した冷媒を、凝縮部入口ヘッダ部に接続された全熱交換管に均等に分流することができ、コンデンサの性能低下を防止することが可能になる。   According to the condensers 1) to 8) above, at least two refrigerant inlets are vertically spaced from the condenser inlet header, and at least one refrigerant inlet is located at the center of the condenser in the height direction. Is formed so that the remaining refrigerant inlet is positioned above the central portion in the height direction of the condensing portion, and the inlet member is located below the central portion in the height direction of the condensing portion. At the height position corresponding to the formed one refrigerant inlet, it is joined to the condensing part inlet header part, and the downstream end part in the refrigerant flow direction of the refrigerant inlet passage of the inlet member is directly communicated with the refrigerant inlet. The member is provided with a branch part that communicates the refrigerant flow direction intermediate part of the refrigerant inflow path to the outside, the number of branch parts is reduced by one from the number of all refrigerant inlets, and one end part is connected to the inlet member And the other end to the condenser inlet. The refrigerant branch pipe connected to the header part communicates the branch part of the inlet member with the refrigerant inlet except for the refrigerant inlet directly connected to the refrigerant inlet passage in the condenser inlet header part. The refrigerant flowing into the condensing unit inlet header through the refrigerant inflow path of the member can be spread over the entire height in the condensing unit inlet header. Therefore, the refrigerant that has flowed into the condenser inlet header through the refrigerant inlet passage of the inlet member can be evenly divided into the total heat exchange pipe connected to the condenser inlet header, thereby preventing deterioration of the condenser performance. It becomes possible to do.

上記2)〜6)のコンデンサによれば、入口部材の冷媒流入路を通って凝縮部入口ヘッダ部内に流入する冷媒を、凝縮部入口ヘッダ部内の高さ方向の全体に、効果的に行き渡らせることが可能になり、入口部材の冷媒流入路を通って凝縮部入口ヘッダ部内に流入した冷媒の凝縮部入口ヘッダ部に接続された全熱交換管への分流を、効果的に均一化することができる。   According to the above capacitors 2) to 6), the refrigerant flowing into the condensing unit inlet header through the refrigerant inflow path of the inlet member is effectively spread over the entire height in the condensing unit inlet header. It is possible to effectively equalize the diversion flow of the refrigerant that has flowed into the condenser inlet header through the refrigerant inlet passage of the inlet member to the total heat exchange pipe connected to the condenser inlet header. Can do.

この発明によるコンデンサの第1の実施形態の全体構成を具体的に示す正面図である。1 is a front view specifically showing the overall configuration of a first embodiment of a capacitor according to the present invention; 図1のコンデンサを模式的に示す正面図である。FIG. 2 is a front view schematically showing the capacitor of FIG. 1. 図1のコンデンサの凝縮部入口ヘッダ部の要部を示す一部を省略した垂直断面図である。It is the vertical sectional view which abbreviate | omitted one part which shows the principal part of the condensation part inlet_port | entrance part of the capacitor | condenser of FIG. 図1のコンデンサの凝縮部入口ヘッダ部の一部分、入口部材および冷媒分岐管の一部分を要部を示す分解斜視図である。It is a disassembled perspective view which shows a part of condensation part entrance header part of the capacitor | condenser of FIG. 1, an inlet member, and a part of refrigerant | coolant branch pipe. 図1のA−A線拡大断面図である。It is an AA line expanded sectional view of FIG. この発明によるコンデンサの第2の実施形態の全体構成を具体的に示す正面図である。It is a front view which shows concretely the whole structure of 2nd Embodiment of the capacitor | condenser by this invention. 図6のコンデンサを模式的に示す正面図である。FIG. 7 is a front view schematically showing the capacitor of FIG. 6. 図6のコンデンサの凝縮部入口ヘッダ部の要部を示す一部を省略した垂直断面図である。It is the vertical sectional view which omitted a part showing the principal part of the condensation part entrance header part of the capacitor of Drawing 6.

以下、この発明の実施形態を、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

以下の説明において、図1、図2、図6および図7の紙面表裏方向を通風方向というものとする。   In the following description, it is assumed that the front and back direction of FIG. 1, FIG. 2, FIG. 6 and FIG.

また、以下の説明において、「アルミニウム」という用語には、純アルミニウムの他にアルミニウム合金を含むものとする。   In the following description, the term “aluminum” includes aluminum alloys in addition to pure aluminum.

さらに、全図面を通じて同一部分および同一物には同一符号を付して重複する説明を省略する。   Furthermore, the same parts and the same parts are denoted by the same reference numerals throughout the drawings, and redundant description is omitted.

図1はこの発明によるコンデンサを適用したコンデンサの第1の実施形態の全体構成を具体的に示し、図2は図1のコンデンサを模式的に示し、図3〜図5は図1のコンデンサの要部の構成を示す。図2においては、個々の熱交換管の図示は省略されるとともに、コルゲートフィン、サイドプレート、冷媒入口部材および冷媒出口部材の図示も省略されている。   FIG. 1 specifically shows the overall configuration of a first embodiment of a capacitor to which the capacitor according to the present invention is applied, FIG. 2 schematically shows the capacitor of FIG. 1, and FIGS. 3 to 5 show the capacitor of FIG. The structure of the main part is shown. In FIG. 2, illustration of individual heat exchange tubes is omitted, and illustration of corrugated fins, side plates, a refrigerant inlet member, and a refrigerant outlet member is also omitted.

図1および図2において、コンデンサ(1)には、凝縮部(1A)および過冷却部(1B)が、前者が上側に位置するように設けられており、幅方向を通風方向に向けるとともに長さ方向を左右方向に向けた状態で上下方向に間隔をおいて配置された複数のアルミニウム製扁平状熱交換管(2)と、長さ方向を上下方向に向けて配置されるとともに熱交換管(2)の左右両端部がろう付により接続された3つのアルミニウム製ヘッダタンク(3)(4)(5)と、隣り合う熱交換管(2)どうしの間および上下両端の外側に配置されて熱交換管(2)にろう付されたアルミニウム製コルゲートフィン(6)と、上下両端のコルゲートフィン(6)の外側に配置されてコルゲートフィン(6)にろう付されたアルミニウム製サイドプレート(7)とを備えている。   1 and 2, the condenser (1) is provided with a condensing part (1A) and a supercooling part (1B) so that the former is located on the upper side. A plurality of aluminum flat heat exchange pipes (2) arranged at intervals in the vertical direction with the vertical direction oriented in the horizontal direction, and the heat exchange pipes arranged in the vertical direction with the length direction oriented in the vertical direction The two aluminum header tanks (3), (4) and (5) with the left and right ends of (2) connected by brazing and between the adjacent heat exchange tubes (2) and outside the upper and lower ends Aluminum corrugated fins (6) brazed to the heat exchange pipe (2), and aluminum side plates that are placed outside the corrugated fins (6) at the upper and lower ends and brazed to the corrugated fins (6) ( And 7).

コンデンサ(1)の凝縮部(1A)および過冷却部(1B)には、それぞれ上下に連続して並んだ複数の熱交換管(2)からなる少なくとも1つ、ここでは1つの熱交換パス(P1)(P2)が設けられており、凝縮部(1A)に設けられた熱交換パス(P1)が冷媒凝縮パスとなり、過冷却部(1B)に設けられた熱交換パス(P2)が冷媒過冷却パスとなっている。そして、各熱交換パス(P1)(P2)を構成する全ての熱交換管(2)の冷媒流れ方向が同一となっているとともに、隣り合う2つの熱交換パスの熱交換管(2)の冷媒流れ方向が異なっている。ここで、凝縮部(1A)の熱交換パス(P1)を第1熱交換パスといい、過冷却部(1B)の熱交換パス(P2)を第2熱交換パスというものとする。   The condenser (1A) and the supercooling section (1B) of the condenser (1) are each provided with at least one heat exchange path (here, one heat exchange path (one) composed of a plurality of heat exchange pipes (2) arranged continuously in the vertical direction. P1) and (P2) are provided, the heat exchange path (P1) provided in the condensing part (1A) serves as a refrigerant condensing path, and the heat exchange path (P2) provided in the supercooling part (1B) serves as a refrigerant. It is a supercooling path. And the refrigerant | coolant flow direction of all the heat exchange pipe | tubes (2) which comprise each heat exchange path | pass (P1) (P2) is the same, and the heat exchange pipe | tube (2) of two adjacent heat exchange paths | passes The refrigerant flow direction is different. Here, the heat exchange path (P1) of the condensing part (1A) is referred to as a first heat exchange path, and the heat exchange path (P2) of the supercooling part (1B) is referred to as a second heat exchange path.

コンデンサ(1)の右端部側には、第1および第2熱交換パス(P1)(P2)を構成する全ての熱交換管(2)の右端部が接続される第1ヘッダタンク(3)が配置されている。第1ヘッダタンク(3)内は、第1熱交換パス(P1)と第2熱交換パス(P2)との間の高さ位置に設けられたアルミニウム製仕切部材(8)により上下2つの区画(3a)(3b)に分割されている。第1ヘッダタンク(3)の上側区画(3a)の全体に、凝縮部(1A)の第1熱交換パス(P1)の冷媒流れ方向上流側端部が通じる凝縮部入口ヘッダ部(9)が設けられ、同じく下側区画(3b)の全体に、過冷却部(1B)の第2熱交換パス(P2)の冷媒流れ方向下流側端部が通じる過冷却部出口ヘッダ部(11)が設けられている。   The first header tank (3) connected to the right end of the condenser (1) is the right end of all the heat exchange pipes (2) constituting the first and second heat exchange paths (P1) (P2). Is arranged. The first header tank (3) is divided into two upper and lower sections by an aluminum partition member (8) provided at a height between the first heat exchange path (P1) and the second heat exchange path (P2). It is divided into (3a) and (3b). A condensing section inlet header section (9) through which the upstream end of the first heat exchange path (P1) of the condensing section (1A) communicates with the upstream end (3a) of the first header tank (3) communicates. A supercooling section outlet header (11) is provided on the entire lower section (3b), which communicates with the downstream end of the second heat exchange path (P2) of the supercooling section (1B) in the refrigerant flow direction. It has been.

コンデンサ(1)の左端側には、凝縮部(1A)に設けられた第1熱交換パス(P1)の全熱交換管(2)の左端部がろう付により接続された第2ヘッダタンク(4)と、過冷却部(1B)に設けられた第2熱交換パス(P2)の熱交換管(2)の左端部がろう付により接続された第3ヘッダタンク(5)とが、第3ヘッダタンク(5)が左右方向外側に位置するように別個に設けられている。第3ヘッダタンク(5)の上端は第2ヘッダタンク(4)の下端よりも上方、ここでは第2ヘッダタンク(4)の上端とほぼ同一高さ位置にある。また、第3ヘッダタンク(5)の下端は第2ヘッダタンク(4)の下端よりも下方に位置しており、第3ヘッダタンク(5)における第2ヘッダタンク(4)よりも下方に位置する部分に、第2熱交換パス(P2)を構成する第2熱交換管(2)がろう付により接続されている。第3ヘッダタンク(5)は、凝縮部(1A)で凝縮した液相主体冷媒を貯留するとともに液相主体冷媒を過冷却部(1B)に供給する液溜部の機能を有している。   On the left end side of the condenser (1) is a second header tank (with the left end of the total heat exchange pipe (2) of the first heat exchange path (P1) provided in the condenser (1A) connected by brazing. 4) and the third header tank (5) in which the left end of the heat exchange pipe (2) of the second heat exchange path (P2) provided in the supercooling section (1B) is connected by brazing. The three header tanks (5) are provided separately so as to be located on the outer side in the left-right direction. The upper end of the third header tank (5) is located above the lower end of the second header tank (4), and here is substantially at the same height as the upper end of the second header tank (4). The lower end of the third header tank (5) is located below the lower end of the second header tank (4), and is located below the second header tank (4) in the third header tank (5). The second heat exchange pipe (2) constituting the second heat exchange path (P2) is connected to the portion to be brazed by brazing. The third header tank (5) functions as a liquid reservoir that stores the liquid-phase main refrigerant condensed in the condensing unit (1A) and supplies the liquid-phase main refrigerant to the supercooling unit (1B).

第2ヘッダタンク(4)の全体に、凝縮部(1A)の第1熱交換パス(P1)の冷媒流れ方向下流側端部が通じる凝縮部出口ヘッダ部(12)が設けられている。第3ヘッダタンク(5)における第2ヘッダタンク(4)の下端よりも下方に位置する部分に、過冷却部(1B)の第2熱交換パス(P2)の冷媒流れ方向上流側端部が通じる過冷却部入口ヘッダ部(13)が設けられている。   The second header tank (4) is provided with a condensing portion outlet header portion (12) that communicates with the downstream end portion in the refrigerant flow direction of the first heat exchange path (P1) of the condensing portion (1A). In the portion of the third header tank (5) located below the lower end of the second header tank (4), the upstream end in the refrigerant flow direction of the second heat exchange path (P2) of the supercooling portion (1B) A supercooling section inlet header section (13) is provided.

図2〜図4に示すように、第1ヘッダタンク(3)の凝縮部入口ヘッダ部(9)における凝縮部(1A)の高さ方向の中央部(C)よりも下方の部分、ここでは下端部に近い部分と、凝縮部(1A)の高さ方向の中央部(C)よりも上方の部分とに、それぞれ冷媒入口(14)(15)が形成されている。すなわち、凝縮部入口ヘッダ部(9)に、少なくとも2つの冷媒入口(14)(15)が、上下方向に間隔をおき、かつ少なくとも1つの冷媒入口(14)が凝縮部(1A)の高さ方向の中央部(C)よりも下方に位置するとともに残りの冷媒入口(15)が凝縮部(1A)の高さ方向の中央部(C)よりも上方に位置するように形成されている。   As shown in FIGS. 2 to 4, a portion below the central portion (C) in the height direction of the condensing portion (1A) in the condensing portion inlet header portion (9) of the first header tank (3), here Refrigerant inlets (14) and (15) are respectively formed in a portion near the lower end portion and a portion above the central portion (C) in the height direction of the condensing portion (1A). That is, at least two refrigerant inlets (14) and (15) are vertically spaced from the condenser inlet header (9), and at least one refrigerant inlet (14) is at the height of the condenser (1A). And the remaining refrigerant inlet (15) is located above the central part (C) in the height direction of the condensing part (1A).

第1ヘッダタンク(3)の凝縮部入口ヘッダ部(9)における下側冷媒入口(14)と対応する高さ位置に、両冷媒入口(14)(15)を通して凝縮部入口ヘッダ部(9)内に冷媒を送り込む冷媒流入路(17)を有するアルミニウム製入口部材が(16)がろう付されている。入口部材(16)は、下側冷媒入口(14)と対応する高さ位置において、冷媒流入路(17)の冷媒流れ方向下流側端部が下側冷媒入口(14)と合致するように凝縮部入口ヘッダ部(9)にろう付されており、冷媒流入路(17)の下流側端部が下側冷媒入口(14)に直接通じている。入口部材(16)に、冷媒流入路(17)の冷媒流れ方向中間部を外部、ここでは入口部材(16)の上面に通じさせる分岐部(18)が設けられており、分岐部(18)の数が全冷媒入口(14)(15)の数から1つ減じた数、すなわち1つとなっている。   At the height corresponding to the lower refrigerant inlet (14) in the condenser inlet header (9) of the first header tank (3), the condenser inlet header (9) passes through both refrigerant inlets (14) and (15). (16) is brazed with an aluminum inlet member having a refrigerant inflow passage (17) for feeding the refrigerant therein. The inlet member (16) is condensed at a height corresponding to the lower refrigerant inlet (14) so that the downstream end of the refrigerant inflow passage (17) in the refrigerant flow direction matches the lower refrigerant inlet (14). It is brazed to the partial inlet header (9), and the downstream end of the refrigerant inflow passage (17) directly communicates with the lower refrigerant inlet (14). The inlet member (16) is provided with a branch portion (18) that communicates the refrigerant flow direction intermediate portion of the refrigerant inflow passage (17) to the outside, here the upper surface of the inlet member (16), and the branch portion (18). Is a number obtained by subtracting one from the number of all the refrigerant inlets (14) and (15), that is, one.

入口部材(16)の分岐部(18)と上側冷媒入口(15)とが、一端部が入口部材(16)に接続されるとともに他端部が凝縮部入口ヘッダ部(9)に接続されたアルミニウム製冷媒分岐管(19)とによって連通させられている。冷媒分岐管(19)の一端部は分岐部(18)内に挿入されて入口部材(16)に接合され、他端部は上側冷媒入口(15)内に挿入されて凝縮部入口ヘッダ部(9)に接合されている。また、入口部材(16)に、冷媒流入路(17)の上流側端部に通じるように、管挿入穴(21)が形成されており、管挿入穴(21)内に冷凍サイクルの圧縮機からのびる配管(22)の端部が挿入されて入口部材(16)に接合されている。   The branch part (18) of the inlet member (16) and the upper refrigerant inlet (15) have one end connected to the inlet member (16) and the other end connected to the condenser inlet header (9). It communicates with an aluminum refrigerant branch pipe (19). One end portion of the refrigerant branch pipe (19) is inserted into the branch portion (18) and joined to the inlet member (16), and the other end portion is inserted into the upper refrigerant inlet (15) to enter the condenser inlet header portion ( It is joined to 9). Further, a pipe insertion hole (21) is formed in the inlet member (16) so as to communicate with the upstream end of the refrigerant inflow passage (17), and the compressor of the refrigeration cycle is formed in the pipe insertion hole (21). The end of the extending pipe (22) is inserted and joined to the inlet member (16).

ここで、入口部材(16)の冷媒流入路(17)に冷媒が流入する上流端部(17a)の流路断面積をAmm、入口部材(16)の冷媒流入路(17)から凝縮部入口ヘッダ部(9)内に冷媒が流入する部分、すなわち下側冷媒入口(14)の流路断面積をBmm、入口部材(16)の冷媒流入路(17)から冷媒分岐管(19)に冷媒が流入する部分の流路断面積、すなわち冷媒分岐管(19)における分岐部(18)内に挿入された部分(19a)内の流路断面積をC1mm、冷媒分岐管(19)から凝縮部入口ヘッダ部(9)内に冷媒が流入する部分、すなわち冷媒分岐管(19)の上側冷媒入口(15)内に挿入された部分(19b)の流路断面積をD1mmとした場合、(B+C1)>A、(B+D1)>Aという関係を満たしていることが好ましい。なお、この実施形態においては、入口部材(16)の分岐部(18)の数および冷媒分岐管(19)の数は1であるから、入口部材(16)の冷媒流入路(17)から冷媒分岐管(19)に冷媒が流入する部分の流路断面積の総和(=Cmm)は前記C1mmに等しく、同じく冷媒分岐管(19)から凝縮部入口ヘッダ部(9)内に冷媒が流入する部分の流路断面積の総和(=Dmm)は前記D1mmに等しい。 Here, the flow passage cross-sectional area of the upstream end (17a) into which the refrigerant flows into the refrigerant inflow path (17) of the inlet member (16) is Amm 2 , and the condenser section from the refrigerant inflow path (17) of the inlet member (16). The section into which the refrigerant flows into the inlet header (9), that is, the cross-sectional area of the lower refrigerant inlet (14) is Bmm 2 , and the refrigerant branch pipe (19) from the refrigerant inflow path (17) of the inlet member (16) The cross-sectional area of the channel where the refrigerant flows into the channel, that is, the cross-sectional area of the channel in the part (19a) inserted into the branch part (18) of the refrigerant branch pipe (19) is C1 mm 2 , and the refrigerant branch pipe (19) The flow passage cross-sectional area of the portion where the refrigerant flows into the condensing portion inlet header portion (9), that is, the portion (19b) inserted into the upper refrigerant inlet (15) of the refrigerant branch pipe (19) is D1 mm 2 . In this case, it is preferable that the relations (B + C1)> A and (B + D1)> A are satisfied. In this embodiment, since the number of branch portions (18) and the number of refrigerant branch pipes (19) of the inlet member (16) are 1, the refrigerant from the refrigerant inflow passage (17) of the inlet member (16). total flow path cross-sectional area of the portion where the refrigerant in the branch pipe (19) flows (= Cmm 2) is equal to the C1mm 2, the refrigerant in the condenser section inlet header section (9) in the same from the branch pipes (19) total flow path cross-sectional area of the portion flowing (= Dmm 2) is equal to the D1mm 2.

また、この実施形態においては、入口部材(16)の分岐部(18)内に冷媒分岐管(19)の一端部が挿入されているので、冷媒流入路(17)から冷媒分岐管(19)に冷媒が流入する部分の流路断面積は、冷媒分岐管(19)における分岐部(18)内に挿入された部分(19a)内の流路断面積となっているが、冷媒分岐管(19)の一端部が分岐部(18)内に挿入されていない場合には、冷媒流入路(17)から冷媒分岐管(19)に冷媒が流入する部分の流路断面積は、分岐部(18)の下流側端部の流路断面積となる。また、上側冷媒入口(15)内に冷媒分岐管(19)の他端部が挿入されているので、冷媒分岐管(19)から凝縮部入口ヘッダ部(9)内に冷媒が流入する部分の流路断面積は、冷媒分岐管(19)の上側冷媒入口(15)内に挿入された部分(19b)の流路断面積となっているが、冷媒分岐管(19)の他端部が上側冷媒入口(15)内に挿入されていない場合には、冷媒分岐管(19)から凝縮部入口ヘッダ部(9)内に冷媒が流入する部分の流路断面積は、上側冷媒入口(15)の流路断面積となる。   In this embodiment, since one end of the refrigerant branch pipe (19) is inserted into the branch part (18) of the inlet member (16), the refrigerant branch pipe (19) is connected to the refrigerant inflow path (17). The cross-sectional area of the portion where the refrigerant flows into the flow passage is the cross-sectional area of the flow passage in the portion (19a) inserted into the branch portion (18) in the refrigerant branch tube (19). 19) is not inserted into the branch part (18), the flow passage cross-sectional area of the part where the refrigerant flows into the refrigerant branch pipe (19) from the refrigerant inflow path (17) is the branch part ( This is the cross-sectional area of the downstream end of 18). Further, since the other end of the refrigerant branch pipe (19) is inserted into the upper refrigerant inlet (15), the portion of the refrigerant flowing from the refrigerant branch pipe (19) into the condenser inlet header (9) The channel cross-sectional area is the channel cross-sectional area of the portion (19b) inserted into the upper refrigerant inlet (15) of the refrigerant branch pipe (19), but the other end of the refrigerant branch pipe (19) is When not inserted into the upper refrigerant inlet (15), the flow path cross-sectional area of the portion where the refrigerant flows from the refrigerant branch pipe (19) into the condenser inlet header (9) is the upper refrigerant inlet (15 ) Channel cross-sectional area.

また、第1ヘッダタンク(3)の過冷却部出口ヘッダ部(11)に冷媒出口(26)が形成されており、第1ヘッダタンク(5)に、冷媒出口(26)に通じる冷媒流出路(図示略)を有するアルミニウム製出口部材(27)が接合されている。   Also, a refrigerant outlet (26) is formed in the supercooling section outlet header section (11) of the first header tank (3), and the refrigerant outlet path leading to the refrigerant outlet (26) in the first header tank (5). An aluminum outlet member (27) having (not shown) is joined.

図5に示すように、第2ヘッダタンク(4)の周壁おける凝縮部出口ヘッダ部(12)の下端寄りの部分に、凝縮部出口ヘッダ部(12)内から冷媒を流出させる冷媒流出口(23)が形成され、第3ヘッダタンク(5)の周壁における第2ヘッダタンク(4)の下端よりも上方の部分に、第3ヘッダタンク(5)内に冷媒を流入させる冷媒流入口(24)が形成されている。冷媒流出口(23)と冷媒流入口(24)とは、第2ヘッダタンク(4)と第3ヘッダタンク(5)との間に配置されて両ヘッダタンク(4)(5)にろう付されたアルミニウム製連通部材(25)を介して通じさせられている。連通部材(25)には、冷媒流出口(23)と冷媒流入口(24)とを通じさせる流路(25a)が形成されている。また、連通部材(25)には、第2ヘッダタンク(4)の周壁外周面のうちの一部が面接触する凹面状のろう付面(25b)と、第3ヘッダタンク(5)の周壁外周面のうちの一部が面接触する凹面状のろう付面(25c)とが設けられており、流路(25a)の一端が第2ヘッダタンク(4)側のろう付面(25b)に開口するとともに、同他端が第3ヘッダタンク(5)側のろう付面(25c)に開口している。   As shown in FIG. 5, a refrigerant outlet (outlet for allowing the refrigerant to flow out of the condenser outlet header (12) in a portion near the lower end of the condenser outlet header (12) on the peripheral wall of the second header tank (4). 23) is formed, and a refrigerant inlet (24) for allowing the refrigerant to flow into the third header tank (5) at a portion of the peripheral wall of the third header tank (5) above the lower end of the second header tank (4) ) Is formed. The refrigerant outlet (23) and the refrigerant inlet (24) are disposed between the second header tank (4) and the third header tank (5) and brazed to both header tanks (4) and (5). The aluminum communication member (25) is used for communication. The communication member (25) is formed with a flow path (25a) through which the refrigerant outlet (23) and the refrigerant inlet (24) pass. Further, the communication member (25) includes a concave brazing surface (25b) in which a part of the outer peripheral surface of the peripheral wall of the second header tank (4) is in surface contact, and a peripheral wall of the third header tank (5). A concave brazing surface (25c) with which part of the outer peripheral surface comes into surface contact is provided, and one end of the flow path (25a) is brazed on the second header tank (4) side (25b) And the other end is open to the brazing surface (25c) on the third header tank (5) side.

コンデンサ(1)は、圧縮機、膨張弁(減圧器)およびエバポレータとともに冷凍サイクルを構成し、カーエアコンとして車両に搭載される。   The condenser (1) constitutes a refrigeration cycle together with a compressor, an expansion valve (decompressor) and an evaporator, and is mounted on a vehicle as a car air conditioner.

上述した構成のコンデンサ(1)において、圧縮機により圧縮された高温高圧の気相冷媒が、入口部材(16)の冷媒流入路(17)および下側冷媒入口(14)を通って凝縮部入口ヘッダ部(9)内の下部に流入するとともに、入口部材(16)の冷媒流入路(17)、分岐部(18)、冷媒分岐管(19)および上側冷媒入口(15)を通って第1ヘッダタンク(3)の凝縮部入口ヘッダ部(9)内の上部に流入する。したがって、凝縮部入口ヘッダ部(9)内に流入した冷媒は、凝縮部入口ヘッダ部(9)の下部および上部に接続された熱交換管(2)内に均等に流入するようになり、凝縮部入口ヘッダ部(9)内に流入した冷媒が、凝縮部入口ヘッダ部(9)に接続された第1熱交換パス(P1)の全熱交換管(2)に均等に分流される。第1熱交換パス(P1)の熱交換管(2)内に流入した冷媒は、第1熱交換パス(P1)の熱交換管(2)内を左方に流れる間に凝縮させられて第2ヘッダタンク(4)の凝縮部出口ヘッダ部(12)内に流入する。第2ヘッダタンク(4)の凝縮部出口ヘッダ部(12)内に流入した冷媒は、冷媒流出口(23)、連通部材(25)の流路(25a)および第3ヘッダタンク(5)の冷媒流入口(24)を通って第3ヘッダタンク(5)内に流入する。   In the condenser (1) having the above-described configuration, the high-temperature and high-pressure gas-phase refrigerant compressed by the compressor passes through the refrigerant inlet path (17) and the lower refrigerant inlet (14) of the inlet member (16), and enters the condenser section. It flows into the lower part in the header part (9) and passes through the refrigerant inflow path (17), the branch part (18), the refrigerant branch pipe (19), and the upper refrigerant inlet (15) of the inlet member (16). It flows into the upper part of the condensing part inlet header part (9) of the header tank (3). Accordingly, the refrigerant flowing into the condenser inlet header (9) flows evenly into the heat exchange pipe (2) connected to the lower part and the upper part of the condenser inlet header (9). The refrigerant that has flowed into the partial inlet header (9) is equally divided into the total heat exchange pipe (2) of the first heat exchange path (P1) connected to the condenser inlet header (9). The refrigerant that has flowed into the heat exchange pipe (2) of the first heat exchange path (P1) is condensed while flowing leftward in the heat exchange pipe (2) of the first heat exchange path (P1). 2 flows into the condensing part outlet header part (12) of the header tank (4). The refrigerant flowing into the condensing part outlet header part (12) of the second header tank (4) flows into the refrigerant outlet (23), the flow path (25a) of the communication member (25), and the third header tank (5). It flows into the third header tank (5) through the refrigerant inlet (24).

第3ヘッダタンク(5)内に流入した冷媒は、気液混相冷媒であり、当該気液混相冷媒のうち液相主体混相冷媒は重力により第3ヘッダタンク(5)の過冷却部入口ヘッダ部(13)内に溜まり、第2熱交換パス(P2)の熱交換管(2)内に入る。第2熱交換パス(P2)の熱交換管(2)内に入った液相主体混相冷媒は第2熱交換管(2)内を右方に流れる間に過冷却された後、第1ヘッダタンク(3)の過冷却部出口ヘッダ部(11)内に入り、冷媒出口(26)および出口部材(27)の冷媒流出路を通って流出し、膨張弁を経てエバポレータに送られる。   The refrigerant flowing into the third header tank (5) is a gas-liquid mixed phase refrigerant, and the liquid-phase main mixed phase refrigerant out of the gas-liquid mixed-phase refrigerant is subjected to gravity due to the gravity at the inlet portion of the subcooling portion of the third header tank (5). (13) accumulates in the heat exchange pipe (2) of the second heat exchange path (P2). The liquid phase main mixed refrigerant entering the heat exchange pipe (2) of the second heat exchange path (P2) is supercooled while flowing rightward in the second heat exchange pipe (2), and then the first header. The refrigerant enters the supercooling section outlet header section (11) of the tank (3), flows out through the refrigerant outlet path of the refrigerant outlet (26) and the outlet member (27), and is sent to the evaporator through the expansion valve.

図6〜図8はこの発明によるコンデンサの第2の実施形態を示す。図6はこの発明によるコンデンサの第2の実施形態の全体構成を具体的に示し、図7は図6のコンデンサを模式的に示し、図8は図6のコンデンサの要部の構成を示す。図7においては、個々の熱交換管の図示は省略されるとともに、コルゲートフィン、サイドプレート、冷媒入口部材および冷媒出口部材の図示も省略されている。   6 to 8 show a second embodiment of the capacitor according to the present invention. 6 specifically shows the overall configuration of the second embodiment of the capacitor according to the present invention, FIG. 7 schematically shows the capacitor of FIG. 6, and FIG. 8 shows the configuration of the main part of the capacitor of FIG. In FIG. 7, illustration of individual heat exchange tubes is omitted, and illustration of corrugated fins, side plates, a refrigerant inlet member, and a refrigerant outlet member is also omitted.

図6および図7において、コンデンサ(30)には、凝縮部(30A)および過冷却部(30B)が、前者が上側に位置するように設けられており、コンデンサ(30)の凝縮部(30A)には上下に連続して並んだ複数の熱交換管(2)からなりかつ冷媒凝縮パスである1つの第1熱交換パス(P1)が設けられ、過冷却部(30B)には上下に連続して並んだ複数の熱交換管(2)からなりかつ冷媒過冷却パスである1つの第2熱交換パス(P2)が設けられている。   6 and 7, the condenser (30) is provided with a condensing part (30A) and a supercooling part (30B) so that the former is located on the upper side, and the condenser (30) condensing part (30A ) Is provided with a first heat exchange path (P1) consisting of a plurality of heat exchange tubes (2) arranged continuously in the vertical direction and being a refrigerant condensing path. One second heat exchange path (P2), which is composed of a plurality of heat exchange tubes (2) arranged continuously and is a refrigerant subcooling path, is provided.

図8に示すように、第1ヘッダタンク(3)の凝縮部入口ヘッダ部(9)における凝縮部(30A)の高さ方向の中央部(C)よりも下方の部分でかつ凝縮部(30A)の高さ方向の中央部(C)に近い部分と、凝縮部(30A)の高さ方向の中央部(C)よりも下方の部分でかつ凝縮部(30A)の下端部に近い部分と、凝縮部(30A)の高さ方向の中央部(C)よりも上方の部分とに、それぞれ冷媒入口(31)(32)(33)が形成されている。すなわち、凝縮部入口ヘッダ部(9)に、少なくとも2つの冷媒入口(31)(32)(33)が、上下方向に間隔をおき、かつ少なくとも1つの冷媒入口(31)(32)が凝縮部(30A)の高さ方向の中央部(C)よりも下方に位置するとともに残りの冷媒入口(33)が凝縮部(30A)の高さ方向の中央部(C)よりも上方に位置するように形成されている。   As shown in FIG. 8, the condensing part (30A) is a part below the central part (C) in the height direction of the condensing part (30A) in the condensing part inlet header part (9) of the first header tank (3). ) Near the central part (C) in the height direction, and a part below the central part (C) in the height direction of the condensing part (30A) and a part near the lower end of the condensing part (30A) Refrigerant inlets (31), (32), and (33) are respectively formed at portions above the central portion (C) in the height direction of the condensing portion (30A). That is, at least two refrigerant inlets (31), (32), and (33) are spaced vertically in the condenser inlet header (9), and at least one refrigerant inlet (31) and (32) are located in the condenser. (30A) is positioned below the central portion (C) in the height direction, and the remaining refrigerant inlet (33) is positioned above the central portion (C) in the height direction of the condensing portion (30A). Is formed.

第1ヘッダタンク(3)の凝縮部入口ヘッダ部(9)における中間部に位置する第1の冷媒入口(31)と対応する高さ位置に、3つの冷媒入口(31)(32)(33)を通して凝縮部入口ヘッダ部(9)内に冷媒を送り込む冷媒流入路(35)を有するアルミニウム製入口部材(34)がろう付されている。入口部材(34)は、第1冷媒入口(31)と対応する高さ位置において、冷媒流入路(35)の冷媒流れ方向下流側端部が第1冷媒入口(31)と合致するように凝縮部入口ヘッダ部(9)にろう付されており、冷媒流入路(35)の下流側端部が第1冷媒入口(31)に直接通じている。入口部材(34)に、冷媒流入路(34)の冷媒流れ方向中間部を外部、ここでは入口部材(34)の上面および下面に通じさせる第1および第2の分岐部(36)(37)が設けられており、分岐部(36)(37)の数が全冷媒入口(31)(32)(33)の数から1つ減じた数、すなわち1つとなっている。   The three refrigerant inlets (31), (32), (33) are positioned at a height corresponding to the first refrigerant inlet (31) located in the middle part of the condensing part inlet header (9) of the first header tank (3). ) Is brazed with an aluminum inlet member (34) having a refrigerant inflow passage (35) through which the refrigerant is fed into the condenser inlet header (9). The inlet member (34) is condensed at a height position corresponding to the first refrigerant inlet (31) so that the downstream end of the refrigerant inflow path (35) in the refrigerant flow direction matches the first refrigerant inlet (31). It is brazed to the part inlet header part (9), and the downstream end of the refrigerant inflow passage (35) communicates directly with the first refrigerant inlet (31). First and second branch portions (36), (37) for allowing the inlet member (34) to communicate the refrigerant flow direction intermediate portion of the refrigerant inflow passage (34) to the outside, here the upper surface and the lower surface of the inlet member (34). The number of branch portions (36) and (37) is reduced by one from the number of all refrigerant inlets (31), (32), and (33), that is, one.

入口部材(34)の第1分岐部(36)と最も下側に位置する第2の冷媒入口(32)、第2分岐部(37)と最も上側に位置する第3の冷媒入口(33)とが、それぞれ一端部が入口部材(34)に接続されるとともに他端部が凝縮部入口ヘッダ部(9)に接続されたアルミニウム製の第1および第2の冷媒分岐管(38)(39)によって連通させられている。第1冷媒分岐管(38)の一端部は第1分岐部(36)内に挿入されて入口部材(34)に接合され、他端部は第2冷媒入口(32)内に挿入されて凝縮部入口ヘッダ部(9)に接合されている。第2冷媒分岐管(39)の一端部は第2分岐部(37)内に挿入されて入口部材(34)に接合され、他端部は第3冷媒入口(33)内に挿入されて凝縮部入口ヘッダ部(9)に接合されている。   The second refrigerant inlet (32) located on the lowermost side with the first branch part (36) of the inlet member (34), and the third refrigerant inlet (33) located on the uppermost side with the second branch part (37). The first and second refrigerant branch pipes 38 and 39 made of aluminum, each having one end connected to the inlet member 34 and the other end connected to the condenser inlet header 9. ). One end of the first refrigerant branch pipe (38) is inserted into the first branch (36) and joined to the inlet member (34), and the other end is inserted into the second refrigerant inlet (32) to condense. It is joined to the part entrance header part (9). One end of the second refrigerant branch pipe (39) is inserted into the second branch section (37) and joined to the inlet member (34), and the other end is inserted into the third refrigerant inlet (33) to condense. It is joined to the part entrance header part (9).

ここで、入口部材(34)の冷媒流入路(35)に冷媒が流入する上流端部(35a)の流路断面積をAmm、入口部材(34)の冷媒流入路(35)から凝縮部入口ヘッダ部(9)内に冷媒が流入する部分、すなわち第1冷媒入口(31)の流路断面積をBmm、入口部材(34)の冷媒流入路(35)から第1冷媒分岐管(38)に冷媒が流入する部分の流路断面積、すなわち第1冷媒分岐管(38)における第1分岐部(36)内に挿入された部分(38a)の流路断面積をC2mm、入口部材(34)の冷媒流入路(35)から第2冷媒分岐管(39)に冷媒が流入する部分の流路断面積、すなわち第2冷媒分岐管(39)における第2分岐部(37)内に挿入された部分(39a)の流路断面積をC3mm、第1冷媒分岐管(38)から凝縮部入口ヘッダ部(9)内に冷媒が流入する部分、すなわち第1冷媒分岐管(38)の第2冷媒入口(32)内に挿入された部分(38b)の流路断面積をD2mm、第2冷媒分岐管(39)から凝縮部入口ヘッダ部(9)内に冷媒が流入する部分、すなわち第2冷媒分岐管(39)の第3冷媒入口(33)内に挿入された部分(39b)の流路断面積をD3mmとした場合、(B+D2)>D3、(B+C2)>C3、(B+C2+C3)>A、(B+D2+D3)>Aという関係を満たしていることが好ましい。なお、この実施形態においては、入口部材(34)の分岐部(36)(37)の数および冷媒分岐管(38)(39)の数は2であるから、入口部材(34)の冷媒流入路(35)から両冷媒分岐管(38)(39)に冷媒が流入する部分の流路断面積の総和(=Cmm)は前記(C2+C3)mmに等しく、同じく両冷媒分岐管(38)(39)から凝縮部入口ヘッダ部(9)内に冷媒が流入する部分の流路断面積の総和(=Dmm)は前記(D2+D3)mmに等しい。 Here, the flow passage cross-sectional area of the upstream end (35a) where the refrigerant flows into the refrigerant inflow path (35) of the inlet member (34) is Amm 2 , and the condenser section from the refrigerant inflow path (35) of the inlet member (34). The portion where the refrigerant flows into the inlet header (9), that is, the flow passage cross-sectional area of the first refrigerant inlet (31) is Bmm 2 , and the first refrigerant branch pipe (from the refrigerant inflow path (35) of the inlet member (34)). 38), the flow passage cross-sectional area of the portion where the refrigerant flows into, that is, the flow passage cross-sectional area of the portion (38a) inserted into the first branch portion (36) in the first refrigerant branch pipe (38) is C2 mm 2 , The cross-sectional area of the part where the refrigerant flows into the second refrigerant branch pipe (39) from the refrigerant inflow path (35) of the member (34), that is, in the second branch portion (37) of the second refrigerant branch pipe (39) The flow passage cross-sectional area of the portion (39a) inserted into the channel is C3 mm 2 , the portion where the refrigerant flows into the condenser inlet header (9) from the first refrigerant branch pipe (38), that is, the first refrigerant branch pipe (38 ) In the second refrigerant inlet (32) Input portion flow path cross-sectional area of D2mm 2 of (38b), the second refrigerant branch pipe portion which the refrigerant flows into the condensing section inlet header section (9) in the (39), that is, the second refrigerant branch pipe (39) (B + D2)> D3, (B + C2)> C3, (B + C2 + C3)> A, (B + D2 + D3) where the flow passage cross-sectional area of the portion (39b) inserted into the third refrigerant inlet (33) is D3 mm 2 It is preferable that the relationship> A is satisfied. In this embodiment, since the number of branch portions (36) and (37) of the inlet member (34) and the number of refrigerant branch pipes (38) and (39) are two, the refrigerant flow into the inlet member (34) The sum total (= Cmm 2 ) of the cross-sectional area of the portion where the refrigerant flows from the passage (35) into both refrigerant branch pipes (38) and (39) is equal to the above-mentioned (C2 + C3) mm 2 , and similarly the both refrigerant branch pipes (38 ) (39), the sum (= Dmm 2 ) of the flow path cross-sectional areas of the portion where the refrigerant flows into the condenser inlet header (9) is equal to (D2 + D3) mm 2 .

また、この実施形態においては、入口部材(34)の分岐部(36)(37)内に冷媒分岐管(38)(39)の一端部が挿入されているので、冷媒流入路(35)から冷媒分岐管(38)(39)に冷媒が流入する部分の流路断面積は、冷媒分岐管(38)(39)における分岐部(36)(37)内に挿入された部分(38a)(39a)内の流路断面積となっているが、冷媒分岐管(38)(39)の一端部が分岐部(36)(37)内に挿入されていない場合には、冷媒流入路(35)から冷媒分岐管(38)(39)に冷媒が流入する部分の流路断面積は、分岐部(36)(37)の下流側端部の流路断面積となる。また、第2および第3の冷媒入口(32)(33)内に冷媒分岐管(38)(39)の他端部が挿入されているので、冷媒分岐管(38)(39)から凝縮部入口ヘッダ部(9)内に冷媒が流入する部分の流路断面積は、冷媒分岐管(38)(39)の第2および第3の冷媒入口(32)(33)内に挿入された部分(38b)(39b)の流路断面積となっているが、冷媒分岐管(38)(39)の他端部が第2および第3の冷媒入口(32)(33)内に挿入されていない場合には、冷媒分岐管(38)(39)から凝縮部入口ヘッダ部(9)内に冷媒が流入する部分の流路断面積は、第2および第3の冷媒入口(32)(33)の流路断面積となる。   Further, in this embodiment, since one end of the refrigerant branch pipes (38) (39) is inserted into the branch parts (36) (37) of the inlet member (34), the refrigerant inflow path (35) The flow path cross-sectional area of the portion where the refrigerant flows into the refrigerant branch pipes (38) and (39) is the portion (38a) (38a) ( 39a), the refrigerant branch pipes (38) and (39) are not inserted into the branch parts (36) and (37). The flow passage cross-sectional area of the portion where the refrigerant flows from the refrigerant branch pipes (38) and (39) becomes the flow passage cross-sectional area at the downstream end of the branch portions (36) and (37). In addition, since the other ends of the refrigerant branch pipes (38) and (39) are inserted into the second and third refrigerant inlets (32) and (33), the condenser branch pipes (38) and (39) are connected to the condenser section. The flow passage cross-sectional area of the portion where the refrigerant flows into the inlet header portion (9) is the portion inserted into the second and third refrigerant inlets (32) and (33) of the refrigerant branch pipes (38) and (39). (38b) (39b) has a flow path cross-sectional area, but the other ends of the refrigerant branch pipes (38), (39) are inserted into the second and third refrigerant inlets (32), (33). If not, the cross-sectional area of the portion where the refrigerant flows from the refrigerant branch pipes (38) and (39) into the condenser inlet header (9) is the second and third refrigerant inlets (32) and (33). ) Channel cross-sectional area.

コンデンサ(30)は、圧縮機、膨張弁(減圧器)およびエバポレータとともに冷凍サイクルを構成し、カーエアコンとして車両に搭載される。   The condenser (30) constitutes a refrigeration cycle together with a compressor, an expansion valve (decompressor) and an evaporator, and is mounted on the vehicle as a car air conditioner.

上述した構成のコンデンサ(30)において、圧縮機により圧縮された高温高圧の気相冷媒が、入口部材(34)の冷媒流入路(35)および第1冷媒入口(31)を通って凝縮部入口ヘッダ部(9)内の高さ方向の中央部(C)に近い部分に流入するとともに、入口部材(34)の冷媒流入路(35)、第1分岐部(36)、第1冷媒分岐管(38)および第2冷媒入口(32)を通って第1ヘッダタンク(3)の凝縮部入口ヘッダ部(9)内の下部に流入し、さらに入口部材(34)の冷媒流入路(35)、第2分岐部(37)、第2冷媒分岐管(39)および第3冷媒入口(33)を通って第1ヘッダタンク(3)の凝縮部入口ヘッダ部(9)内の上部に流入する。したがって、凝縮部入口ヘッダ部(9)内に流入した冷媒は、凝縮部入口ヘッダ部(9)に接続された熱交換管(2)内に均等に流入するようになり、凝縮部入口ヘッダ部(9)内に流入した冷媒が、凝縮部入口ヘッダ部(9)に接続された第1熱交換パス(P1)の全熱交換管(2)に均等に分流される。第1熱交換パス(P1)の熱交換管(2)内に流入した冷媒は、第1熱交換パス(P1)の熱交換管(2)内を左方に流れる間に凝縮させられて第2ヘッダタンク(4)の凝縮部出口ヘッダ部(12)内に流入する。第2ヘッダタンク(4)の凝縮部出口ヘッダ部(12)内に流入した冷媒は、冷媒流出口(23)、連通部材(25)の流路(25a)および第3ヘッダタンク(5)の冷媒流入口(24)を通って第3ヘッダタンク(5)内に流入する。   In the condenser (30) configured as described above, the high-temperature and high-pressure gas-phase refrigerant compressed by the compressor passes through the refrigerant inlet path (35) and the first refrigerant inlet (31) of the inlet member (34), and enters the condenser inlet. The refrigerant flows into a portion of the header portion (9) close to the central portion (C) in the height direction, and includes a refrigerant inflow passage (35), a first branch portion (36), and a first refrigerant branch pipe of the inlet member (34). (38) and the second refrigerant inlet (32) to the lower part in the condensing part inlet header (9) of the first header tank (3), and further to the refrigerant inflow path (35) of the inlet member (34). And flows into the upper part of the condensing part inlet header part (9) of the first header tank (3) through the second branch part (37), the second refrigerant branch pipe (39) and the third refrigerant inlet (33). . Therefore, the refrigerant flowing into the condenser inlet header (9) flows evenly into the heat exchange pipe (2) connected to the condenser inlet header (9), and the condenser inlet header The refrigerant that has flowed into (9) is evenly divided into the total heat exchange pipe (2) of the first heat exchange path (P1) connected to the condenser inlet header (9). The refrigerant that has flowed into the heat exchange pipe (2) of the first heat exchange path (P1) is condensed while flowing leftward in the heat exchange pipe (2) of the first heat exchange path (P1). 2 flows into the condensing part outlet header part (12) of the header tank (4). The refrigerant flowing into the condensing part outlet header part (12) of the second header tank (4) flows into the refrigerant outlet (23), the flow path (25a) of the communication member (25), and the third header tank (5). It flows into the third header tank (5) through the refrigerant inlet (24).

第3ヘッダタンク(5)内に流入した冷媒は、気液混相冷媒であり、当該気液混相冷媒のうち液相主体混相冷媒は重力により第3ヘッダタンク(5)の過冷却部入口ヘッダ部(13)内に溜まり、第2熱交換パス(P2)の熱交換管(2)内に入る。第2熱交換パス(P2)の熱交換管(2)内に入った液相主体混相冷媒は第2熱交換管(2)内を右方に流れる間に過冷却された後、第1ヘッダタンク(3)の過冷却部出口ヘッダ部(11)内に入り、冷媒出口(26)および出口部材(27)の冷媒流出路を通って流出し、膨張弁を経てエバポレータに送られる。   The refrigerant flowing into the third header tank (5) is a gas-liquid mixed phase refrigerant, and the liquid-phase main mixed phase refrigerant out of the gas-liquid mixed-phase refrigerant is subjected to gravity due to the gravity at the inlet portion of the subcooling portion of the third header tank (5). (13) accumulates in the heat exchange pipe (2) of the second heat exchange path (P2). The liquid phase main mixed refrigerant entering the heat exchange pipe (2) of the second heat exchange path (P2) is supercooled while flowing rightward in the second heat exchange pipe (2), and then the first header. The refrigerant enters the supercooling section outlet header section (11) of the tank (3), flows out through the refrigerant outlet path of the refrigerant outlet (26) and the outlet member (27), and is sent to the evaporator through the expansion valve.

上述した第1の実施形態においては、凝縮部(1A)の高さ方向の中央部(C)よりも下方および上方にそれぞれ同数の冷媒入口(14)(15)が形成され、第2の実施形態においては、凝縮部(30A)の高さ方向の中央部(C)よりも下方に形成された冷媒入口(31)(32)の数が、同上方に形成された冷媒入口(33)の数よりも多くなっているが、凝縮部(1A)(30A)の高さ方向の中央部(C)よりも上方に形成された冷媒入口の数が、同下方に形成された冷媒入口の数よりも多くなってもよい。   In the first embodiment described above, the same number of refrigerant inlets (14), (15) are formed below and above the central portion (C) in the height direction of the condensing unit (1A), respectively. In the embodiment, the number of refrigerant inlets (31) and (32) formed below the central part (C) in the height direction of the condensing part (30A) is equal to the number of refrigerant inlets (33) formed above the same. The number of refrigerant inlets formed above the central part (C) in the height direction of the condensing parts (1A) (30A) is greater than the number of refrigerant inlets formed below the same. May be more.

この発明によるコンデンサは、自動車に搭載されるカーエアコンに好適に用いられる。   The capacitor | condenser by this invention is used suitably for the car air conditioner mounted in a motor vehicle.

(1)(30):コンデンサ
(1A)(30A):凝縮部
(1B)(30B):過冷却部
(2):熱交換管
(3):第1ヘッダタンク
(4):第2ヘッダタンク
(5):第3ヘッダタンク
(9):凝縮部入口ヘッダ部
(12):凝縮部出口ヘッダ部
(13):過冷却部入口ヘッダ部
(14)(15)(31)(32)(33):冷媒入口
(16)(34):入口部材
(17)(35):冷媒流入路
(18)(36)(37):分岐部
(19)(38)(39):冷媒分岐管
(P1):第1熱交換パス
(P2):第2熱交換パス
(1) (30): Capacitor
(1A) (30A): Condensing part
(1B) (30B): Supercooling section
(2): Heat exchange pipe
(3): First header tank
(4): Second header tank
(5): Third header tank
(9): Condenser inlet header
(12): Condenser outlet header
(13): Supercooler inlet header
(14) (15) (31) (32) (33): Refrigerant inlet
(16) (34): Entrance member
(17) (35): Refrigerant inflow path
(18) (36) (37): Branch
(19) (38) (39): Refrigerant branch pipe
(P1): First heat exchange path
(P2): Second heat exchange path

Claims (8)

凝縮部および過冷却部が前者が上側に位置するように設けられ、凝縮部が、長さ方向を左右方向に向けるとともに上下方向に間隔をおいて並列状に配置された複数の熱交換管からなる少なくとも1つの熱交換パスと、凝縮部の冷媒流れ方向最上流側の熱交換パスの冷媒流れ方向上流側端部が通じる凝縮部入口ヘッダ部とを備え、過冷却部が、長さ方向を左右方向に向けるとともに上下方向に間隔をおいて並列状に配置された複数の熱交換管からなる少なくとも1つの熱交換パスを備えており、凝縮部入口ヘッダ部に、凝縮部入口ヘッダ部内に冷媒を送り込む冷媒流入路を有する入口部材が接合されているコンデンサにおいて、
凝縮部入口ヘッダ部に、少なくとも2つの冷媒入口が、上下方向に間隔をおき、かつ少なくとも1つの冷媒入口が凝縮部の高さ方向の中央部よりも下方に位置するとともに残りの冷媒入口が凝縮部の高さ方向の中央部よりも上方に位置するように形成されており、入口部材が、凝縮部の高さ方向の中央部よりも下方に形成された1つの冷媒入口と対応する高さ位置において凝縮部入口ヘッダ部に接合されるとともに、入口部材の冷媒流入路の冷媒流れ方向下流側端部が当該冷媒入口と直接通じさせられ、入口部材に、冷媒流入路の冷媒流れ方向中間部を外部に通じさせる分岐部が設けられ、分岐部の数が全冷媒入口の数から1つ減じた数となり、一端部が入口部材に接続されるとともに他端部が凝縮部入口ヘッダ部に接続された冷媒分岐管によって、入口部材の分岐部と、凝縮部入口ヘッダ部における冷媒流入路と直接通じている冷媒入口を除いた冷媒入口とが連通させられているコンデンサ。
A condensing unit and a supercooling unit are provided so that the former is located on the upper side, and the condensing unit is directed from a plurality of heat exchange tubes arranged in parallel at intervals in the vertical direction with the length direction facing the left and right direction At least one heat exchange path, and a condenser inlet header that communicates with an upstream end in the refrigerant flow direction of the heat exchange path on the most upstream side in the refrigerant flow direction of the condensing part. It is provided with at least one heat exchange path composed of a plurality of heat exchange tubes that are oriented in the left-right direction and spaced in parallel in the up-down direction, and a refrigerant is provided in the condenser inlet header and in the condenser inlet header. In a capacitor to which an inlet member having a refrigerant inflow passage for feeding
At least two refrigerant inlets are spaced vertically in the condensing unit inlet header, and at least one refrigerant inlet is located below the central portion in the height direction of the condensing unit and the remaining refrigerant inlets are condensed. The inlet member is formed so as to be located above the central part in the height direction of the part, and the inlet member has a height corresponding to one refrigerant inlet formed below the central part in the height direction of the condensing part. In addition to being joined to the condenser inlet header at the position, the refrigerant flow direction downstream end of the refrigerant inlet passage of the inlet member is directly communicated with the refrigerant inlet, and the inlet member is connected to the intermediate portion of the refrigerant inlet passage in the refrigerant flow direction. The number of branches is one less than the number of all refrigerant inlets, one end is connected to the inlet member and the other end is connected to the condenser inlet header To the refrigerant branch pipe It, a capacitor and a branch of the inlet member, the refrigerant inlet excluding the refrigerant inlet in direct communication with the refrigerant inlet passage in the condenser section inlet header section is communicated.
入口部材の冷媒流入路に冷媒が流入する部分の流路断面積をAmm、入口部材の冷媒流入路から凝縮部入口ヘッダ部内に冷媒が流入する部分の流路断面積をBmm、入口部材の冷媒流入路から冷媒分岐管に冷媒が流入する部分の流路断面積の総和をCmm、冷媒分岐管から凝縮部入口ヘッダ部内に冷媒が流入する部分の流路断面積の総和をDmmとした場合、(B+C)>A、(B+D)>Aという関係を満たす請求項1記載のコンデンサ。 Amm 2 the flow path cross-sectional area of the portion where the refrigerant flows into the refrigerant inlet passage of the inlet member, the flow path cross-sectional area of the portion where the refrigerant flows into the condensing section inlet header section from the refrigerant inlet passage of the inlet member Bmm 2, the inlet member Cmm 2 the total flow path cross-sectional area of the portion in which the refrigerant flows into the branch pipes from the refrigerant inflow passage, Dmm 2 the total flow path cross-sectional area of the portion where the refrigerant flows into the condensing section inlet header section from the refrigerant branch pipe 2. The capacitor according to claim 1, wherein (B + C)> A and (B + D)> A are satisfied. 凝縮部入口ヘッダ部における凝縮部の高さ方向の中央部よりも下方の高さ位置に1つの下側冷媒入口が形成されるとともに、同上方の高さ位置に1つの上側冷媒入口が形成され、入口部材の冷媒流入路の下流側端部が下側冷媒入口に直接通じており、入口部材に1つの分岐部が設けられ、入口部材の分岐部と上側冷媒入口とが1つの冷媒分岐管によって連通させられており、入口部材の冷媒流入路から冷媒分岐管に冷媒が流入する部分の流路断面積をC1mm、冷媒分岐管から凝縮部入口ヘッダ部内に冷媒が流入する部分の流路断面積をD1mmとした場合、C1=C、D1=Dとなっている請求項2記載のコンデンサ。 One lower refrigerant inlet is formed at a height position below the central portion in the height direction of the condensing section in the condensing section inlet header section, and one upper refrigerant inlet is formed at the upper height position. The downstream end portion of the refrigerant inflow passage of the inlet member directly communicates with the lower refrigerant inlet, the inlet member is provided with one branch portion, and the branch portion of the inlet member and the upper refrigerant inlet are one refrigerant branch pipe. The flow passage cross-sectional area of the part where the refrigerant flows into the refrigerant branch pipe from the refrigerant inlet path of the inlet member is C1 mm 2 , and the flow path of the part where the refrigerant flows from the refrigerant branch pipe into the condenser inlet header The capacitor according to claim 2, wherein C1 = C and D1 = D when the cross-sectional area is D1 mm 2 . 入口部材の冷媒流入路に冷媒が流入する部分の流路断面積をAmm、入口部材の冷媒流入路から凝縮部入口ヘッダ部内に冷媒が流入する部分の流路断面積をBmm、入口部材の冷媒流入路から冷媒分岐管に冷媒が流入する部分の流路断面積をC1mm、冷媒分岐管から凝縮部入口ヘッダ部内に冷媒が流入する部分の流路断面積をD1mmとした場合、C1<B、D1<Bという関係を満たす請求項3記載のコンデンサ。 Amm 2 the flow path cross-sectional area of the portion where the refrigerant flows into the refrigerant inlet passage of the inlet member, the flow path cross-sectional area of the portion where the refrigerant flows into the condensing section inlet header section from the refrigerant inlet passage of the inlet member Bmm 2, the inlet member When the flow path cross-sectional area of the part where the refrigerant flows from the refrigerant flow path into the refrigerant branch pipe is C1 mm 2 , and the flow path cross-sectional area of the part where the refrigerant flows from the refrigerant branch pipe into the condenser inlet header is D1 mm 2 , 4. The capacitor according to claim 3, wherein the capacitor satisfies a relationship of C1 <B and D1 <B. 凝縮部入口ヘッダ部における凝縮部の高さ方向の中央部よりも下方の高さ位置に、2つの下側冷媒入口が形成されるとともに、同上方の高さ位置に1つの上側冷媒入口が形成され、入口部材の冷媒流入路の下流側端部がいずれか一方の下側冷媒入口に直接通じており、入口部材に第1および第2の分岐部が設けられ、入口部材の第1分岐部と他方の下側冷媒入口とが第1冷媒分岐管によって連通させられるとともに、同じく第2分岐部と上側冷媒入口とが第2冷媒分岐管によって連通させられ、入口部材の冷媒流入路から第1冷媒分岐管に冷媒が流入する部分の流路断面積をC2mm、入口部材の冷媒流入路から第2冷媒分岐管に冷媒が流入する部分の流路断面積をC3mm、第1冷媒分岐管から凝縮部入口ヘッダ部内に冷媒が流入する部分の流路断面積をD2mm、第2冷媒分岐管から凝縮部入口ヘッダ部内に冷媒が流入する部分の流路断面積をD3mmとした場合、C2+C3=C、D2+D3=Dとなっている請求項2記載のコンデンサ。 Two lower refrigerant inlets are formed at a height position below the central portion in the height direction of the condensing section in the condensing section inlet header section, and one upper refrigerant inlet is formed at the upper height position. The downstream end of the refrigerant inflow path of the inlet member directly communicates with one of the lower refrigerant inlets, the inlet member is provided with first and second branch portions, and the first branch portion of the inlet member And the other lower refrigerant inlet are communicated with each other by a first refrigerant branch pipe, and similarly, the second branch part and the upper refrigerant inlet are communicated with each other through a second refrigerant branch pipe. The flow path cross-sectional area of the part where the refrigerant flows into the refrigerant branch pipe is C2 mm 2 , the flow path cross-sectional area of the part where the refrigerant flows from the refrigerant flow path of the inlet member to the second refrigerant branch pipe is C 3 mm 2 , and the first refrigerant branch pipe Flows into the condenser inlet header D2mm 2 the flow path cross-sectional area of a portion that, when the flow path cross-sectional area of a portion where the refrigerant in the condensation section inlet header section from the second refrigerant branch pipe flows was D3mm 2, becomes C2 + C3 = C, D2 + D3 = D The capacitor according to claim 2. 入口部材の冷媒流入路に冷媒が流入する部分の流路断面積をAmm、入口部材の冷媒流入路から凝縮部入口ヘッダ部内に冷媒が流入する部分の流路断面積をBmm、入口部材の冷媒流入路から第1冷媒分岐管に冷媒が流入する部分の流路断面積をC2mm、入口部材の冷媒流入路から第2冷媒分岐管に冷媒が流入する部分の流路断面積をC3mm、第1冷媒分岐管から凝縮部入口ヘッダ部内に冷媒が流入する部分の流路断面積をD2mm、第2冷媒分岐管から凝縮部入口ヘッダ部内に冷媒が流入する部分の流路断面積をD3mmとした場合、(B+D2)>D3、(B+C2)>C3という関係を満たす請求項5記載のコンデンサ。 Amm 2 the flow path cross-sectional area of the portion where the refrigerant flows into the refrigerant inlet passage of the inlet member, the flow path cross-sectional area of the portion where the refrigerant flows into the condensing section inlet header section from the refrigerant inlet passage of the inlet member Bmm 2, the inlet member The cross-sectional area of the part where the refrigerant flows into the first refrigerant branch pipe from the refrigerant inflow path is C2 mm 2 , and the cross-sectional area of the part where the refrigerant flows from the refrigerant inflow path of the inlet member into the second refrigerant branch pipe is C3 mm 2. D2 mm 2 of the flow passage cross-sectional area of the portion where the refrigerant flows from the first refrigerant branch pipe into the condenser inlet header portion, and the flow passage cross-sectional area of the portion where the refrigerant flows from the second refrigerant branch pipe into the condenser inlet header portion If the D3mm 2 a, (B + D2)> D3 , (B + C2) capacitor according to claim 5, satisfying the relationship of> C3. 凝縮部に1つの熱交換パスが設けられるとともに、当該熱交換パスの全熱交換管が凝縮部入口ヘッダ部に接続されている請求項1〜6のうちのいずれかに記載のコンデンサ。 The condenser according to any one of claims 1 to 6, wherein one heat exchange path is provided in the condensing part, and a total heat exchange pipe of the heat exchange path is connected to the condensing part inlet header part. 熱交換管の一端側に第1ヘッダタンクが配置されるとともに、他端側に第2ヘッダタンクおよび第3ヘッダタンクが、第3ヘッダタンクが第2ヘッダタンクよりも左右方向外側に位置するように設けられ、第1ヘッダタンクに、凝縮部入口ヘッダ部および過冷却部出口ヘッダ部が前者が上側に位置するように設けられ、第2ヘッダタンクの全体に凝縮部出口ヘッダ部が設けられるとともに凝縮部出口ヘッダ部に凝縮部の熱交換パスの全熱交換管が接続され、第3ヘッダタンクの下端が第2ヘッダタンクの下端よりも下方に位置するとともに同上端が第2ヘッダタンクの下端よりも上方に位置しており、第3ヘッダタンクにおける第2ヘッダタンクの下端よりも下方に位置する部分に過冷却部入口ヘッダ部が設けられ、第2ヘッダタンクの凝縮部出口ヘッダ部内と、第3ヘッダタンク内における第2ヘッダタンクの下端よりも上方に位置する部分とが連通部を介して通じさせられている請求項7記載のコンデンサ。 The first header tank is disposed on one end side of the heat exchange pipe, and the second header tank and the third header tank are positioned on the other end side so that the third header tank is positioned on the outer side in the left-right direction with respect to the second header tank. The first header tank is provided with the condenser inlet header and the supercooler outlet header so that the former is located on the upper side, and the condenser header outlet header is provided over the entire second header tank. The total heat exchange pipe of the heat exchange path of the condensing unit is connected to the condensing unit outlet header, the lower end of the third header tank is positioned below the lower end of the second header tank, and the upper end is the lower end of the second header tank. A supercooling portion inlet header portion is provided in a portion of the third header tank located below the lower end of the second header tank, and the condensation of the second header tank. Outlet header portion, the lower end capacitor according to claim 7, wherein where the portion located above are vented via the communicating portion than in the second header tank of the third header tank.
JP2014080836A 2014-04-10 2014-04-10 Capacitor Expired - Fee Related JP6259703B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014080836A JP6259703B2 (en) 2014-04-10 2014-04-10 Capacitor
DE102015105093.5A DE102015105093A1 (en) 2014-04-10 2015-04-01 capacitor
CN201520209625.9U CN204648765U (en) 2014-04-10 2015-04-09 Condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014080836A JP6259703B2 (en) 2014-04-10 2014-04-10 Capacitor

Publications (3)

Publication Number Publication Date
JP2015200478A true JP2015200478A (en) 2015-11-12
JP2015200478A5 JP2015200478A5 (en) 2017-03-23
JP6259703B2 JP6259703B2 (en) 2018-01-10

Family

ID=54101508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014080836A Expired - Fee Related JP6259703B2 (en) 2014-04-10 2014-04-10 Capacitor

Country Status (3)

Country Link
JP (1) JP6259703B2 (en)
CN (1) CN204648765U (en)
DE (1) DE102015105093A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016084993A (en) * 2014-10-27 2016-05-19 ダイキン工業株式会社 Heat exchanger
JP2017155990A (en) * 2016-02-29 2017-09-07 三菱重工サーマルシステムズ株式会社 Heat exchanger and air conditioner
JP2018096636A (en) * 2016-12-15 2018-06-21 パナソニックIpマネジメント株式会社 Heat exchanger and refrigeration system using the same
JP6351875B1 (en) * 2017-06-09 2018-07-04 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus
JP6466047B1 (en) * 2018-08-22 2019-02-06 三菱電機株式会社 Heat exchanger and air conditioner
JP2019027685A (en) * 2017-07-31 2019-02-21 株式会社ケーヒン・サーマル・テクノロジー Condenser
WO2019207838A1 (en) * 2018-04-27 2019-10-31 日立ジョンソンコントロールズ空調株式会社 Refrigerant distributor, heat exchanger, and air conditioner
CN113474600A (en) * 2019-03-05 2021-10-01 三菱电机株式会社 Heat exchanger and refrigeration cycle device
WO2023098655A1 (en) * 2021-12-01 2023-06-08 丹佛斯有限公司 Heat exchanger and air conditioning system having same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3580505A4 (en) * 2017-02-13 2020-12-16 Evapco, Inc. Multi-cross sectional fluid path condenser

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05929U (en) * 1991-06-25 1993-01-08 三菱自動車工業株式会社 Radiator for boiling cooling system
JPH0743045A (en) * 1993-05-24 1995-02-10 Nippondenso Co Ltd Refrigerant condenser
JPH07103612A (en) * 1993-10-12 1995-04-18 Nippondenso Co Ltd Liquid receiver-integrated refrigerant condenser
JP2002139295A (en) * 2000-10-31 2002-05-17 Toyo Radiator Co Ltd Heat exchanger for air conditioning
JP2012247148A (en) * 2011-05-30 2012-12-13 Keihin Thermal Technology Corp Condenser
JP2013178007A (en) * 2012-02-28 2013-09-09 Sharp Corp Parallel flow heat exchanger and device including the same
JP2014052163A (en) * 2012-09-10 2014-03-20 Keihin Thermal Technology Corp Heat exchanger

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05929U (en) * 1991-06-25 1993-01-08 三菱自動車工業株式会社 Radiator for boiling cooling system
JPH0743045A (en) * 1993-05-24 1995-02-10 Nippondenso Co Ltd Refrigerant condenser
JPH07103612A (en) * 1993-10-12 1995-04-18 Nippondenso Co Ltd Liquid receiver-integrated refrigerant condenser
JP2002139295A (en) * 2000-10-31 2002-05-17 Toyo Radiator Co Ltd Heat exchanger for air conditioning
JP2012247148A (en) * 2011-05-30 2012-12-13 Keihin Thermal Technology Corp Condenser
JP2013178007A (en) * 2012-02-28 2013-09-09 Sharp Corp Parallel flow heat exchanger and device including the same
JP2014052163A (en) * 2012-09-10 2014-03-20 Keihin Thermal Technology Corp Heat exchanger

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016084993A (en) * 2014-10-27 2016-05-19 ダイキン工業株式会社 Heat exchanger
CN108474633A (en) * 2016-02-29 2018-08-31 三菱重工制冷空调系统株式会社 Heat exchanger and air-conditioning
JP2017155990A (en) * 2016-02-29 2017-09-07 三菱重工サーマルシステムズ株式会社 Heat exchanger and air conditioner
WO2017150219A1 (en) * 2016-02-29 2017-09-08 三菱重工サーマルシステムズ株式会社 Heat exchanger and air conditioner
CN109564070B (en) * 2016-12-15 2020-06-16 松下知识产权经营株式会社 Heat exchanger and refrigeration system using the same
WO2018110187A1 (en) * 2016-12-15 2018-06-21 パナソニックIpマネジメント株式会社 Thermal exchanger and refrigeration system using same
CN109564070A (en) * 2016-12-15 2019-04-02 松下知识产权经营株式会社 Heat exchanger and the refrigeration system for using it
JP2018096636A (en) * 2016-12-15 2018-06-21 パナソニックIpマネジメント株式会社 Heat exchanger and refrigeration system using the same
EP3637033A4 (en) * 2017-06-09 2020-06-03 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle device
US11193701B2 (en) 2017-06-09 2021-12-07 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle apparatus
JP6351875B1 (en) * 2017-06-09 2018-07-04 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus
JP2019027685A (en) * 2017-07-31 2019-02-21 株式会社ケーヒン・サーマル・テクノロジー Condenser
WO2019207838A1 (en) * 2018-04-27 2019-10-31 日立ジョンソンコントロールズ空調株式会社 Refrigerant distributor, heat exchanger, and air conditioner
CN112005074A (en) * 2018-04-27 2020-11-27 日立江森自控空调有限公司 Refrigerant distributor, heat exchanger, and air conditioner
JPWO2019207838A1 (en) * 2018-04-27 2020-12-10 日立ジョンソンコントロールズ空調株式会社 Refrigerant distributor, heat exchanger and air conditioner
JP6466047B1 (en) * 2018-08-22 2019-02-06 三菱電機株式会社 Heat exchanger and air conditioner
CN113474600A (en) * 2019-03-05 2021-10-01 三菱电机株式会社 Heat exchanger and refrigeration cycle device
CN113474600B (en) * 2019-03-05 2023-02-17 三菱电机株式会社 Heat exchanger and refrigeration cycle device
WO2023098655A1 (en) * 2021-12-01 2023-06-08 丹佛斯有限公司 Heat exchanger and air conditioning system having same

Also Published As

Publication number Publication date
JP6259703B2 (en) 2018-01-10
DE102015105093A1 (en) 2015-10-15
CN204648765U (en) 2015-09-16

Similar Documents

Publication Publication Date Title
JP6259703B2 (en) Capacitor
JP5907752B2 (en) Heat exchanger
US8276401B2 (en) Evaporator
JP2013170732A5 (en)
JPWO2010047320A1 (en) Capacitor
JP2015200478A5 (en)
JP2012247148A (en) Condenser
US10337808B2 (en) Condenser
US10094601B2 (en) Condenser
JP2012154604A (en) Condenser
JP6572040B2 (en) Capacitor
JP2011237163A (en) Condenser
US8991479B2 (en) Condenser
JP2016217565A (en) Condenser
JP2018200132A (en) Condenser
JP6850058B2 (en) Capacitor
JP2010065880A (en) Condenser
JP2019027685A (en) Condenser
JP2015121344A (en) Heat exchanger
JP2013029257A (en) Condenser
JP2014052163A (en) Heat exchanger
JP2020101335A (en) Condenser
JP2015001317A (en) Condenser
JP2015117878A (en) Capacitor
JP6626693B2 (en) Capacitors

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171211

R150 Certificate of patent or registration of utility model

Ref document number: 6259703

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees