JP2015199636A - Original material of ornament ceramic and production method of ornament ceramic - Google Patents
Original material of ornament ceramic and production method of ornament ceramic Download PDFInfo
- Publication number
- JP2015199636A JP2015199636A JP2014267097A JP2014267097A JP2015199636A JP 2015199636 A JP2015199636 A JP 2015199636A JP 2014267097 A JP2014267097 A JP 2014267097A JP 2014267097 A JP2014267097 A JP 2014267097A JP 2015199636 A JP2015199636 A JP 2015199636A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- firing
- substrate
- molding
- raw material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Finishing Walls (AREA)
Abstract
Description
この発明は、有形文化財、壁画、絵画、彫刻、工芸品の復元品や再現品、複製品、或いは、装飾用の立体成形体、或いは内外装の装飾用建築材料等として使用される装飾セラミックスの原材、該原材を用いた装飾セラミックス、さらにはそれらの製造方法に関する。 The present invention relates to decorative ceramics used as tangible cultural properties, murals, paintings, sculptures, restored or reproduced products of crafts, reproductions, three-dimensional molded articles for decoration, or building materials for decoration of interior and exterior The present invention relates to a ceramic material, a decorative ceramic using the raw material, and a manufacturing method thereof.
従来、有形文化財、壁画、絵画、彫刻などを表現するための素材として、例えば、紙、布等の支持体の表面に、表現しようとするオリジナルの写真データをインクジェットプリンタ等でカラー印刷し、その支持体の裏面に、オリジナルを反転して印刷するための版下を製版したスクリーンを用いて第1の顔料でシルクスクリーン印刷し、さらに、オリジナルと同一又は類似の加工を表面に施し、下塗りを施した基底材で裏打ちした素材及びその製造方法が知られている(特許文献1参照)。この例では、前記基底材は、素材の素地ともいえるものである、
また、有形文化財、壁画、絵画、彫刻などを表現するための素材の素地として利用できるものとして、流紋岩、長石質岩石、貢岩、粘板岩、真珠石、黒曜石及び膨張粘土からなる群から選ばれた少なくとも一種100重量部を主剤とする混合物を焼成発泡せしめてなる多孔質セラミックスが知られている(特許文献2参照)。
Conventionally, as a material for expressing tangible cultural properties, murals, paintings, sculptures, etc., the original photographic data to be expressed is color-printed with an inkjet printer or the like on the surface of a support such as paper, cloth, etc. On the back side of the support, silk screen printing is performed with the first pigment using a screen made of a plate for reversing and printing the original, and further, the surface is subjected to the same or similar processing as the original, and the undercoat is applied. A material backed by a base material to which a metal is applied and a manufacturing method thereof are known (see Patent Document 1). In this example, the base material is a material base.
It can also be used as a base for materials for expressing tangible cultural properties, murals, paintings, sculptures, etc., from the group consisting of rhyolite, feldspar rock, tribute, slate, nacre, obsidian and expanded clay. There is known a porous ceramic formed by firing and foaming a mixture containing at least one selected 100 parts by weight as a main component (see Patent Document 2).
しかしながら、上記従来の素材はいずれも、高強度の素地に成形性や表現性に優れた軟質の成形層を定着する構造のため、異種材料層同士を定着固化させなければならない。このため、大型のものや精巧な立体成型品に適用すると、各材料層の熱収縮率ないし含水率の違いによって層分離したり、ヒビやワレが発生したりしてしまう。特に焼成工程を経る場合は層分離し易く、或いはヒビやワレが発生し易いものとなる。また成形後も経年劣化によって層分離したり、表面にひびが発生したりしてしまう場合があり、保存性に欠けるものであった。
そこでこの発明は、例えば比較的大型の復元品や再現品、複製品を高い精度で得ることを目的の一つとして、表現対象を表現するための成形層を素地上に有する装飾セラミックスのための原材であって、該成形層は表現対象を形状、色、質感等において高い精度で表現することが可能でありながら、優れた耐熱性と素地への定着性とを有し、表面の成形状態の保持性に優れた装飾セラミックスのための原材を提供すること、並びにそのような装飾セラミックスのための原材の製造方法を提供することを課題とする。
また本発明は本発明に係る装飾セラミックスのための原材を用いた装飾セラミックスであって、表現対象が形状、色、質感等において高い精度で表現され、優れた耐熱性と素地への定着性とを有し、表面の成形状態の保持性に優れた装飾セラミックスを提供することを課題とする。
However, any of the above-mentioned conventional materials has a structure in which a soft molding layer having excellent moldability and expressibility is fixed on a high-strength substrate, and thus different material layers must be fixed and solidified. For this reason, when it is applied to a large-sized product or an elaborate three-dimensional molded product, the layers may be separated or cracks and cracks may occur due to the difference in heat shrinkage or moisture content of each material layer. In particular, when going through a firing step, the layers are easily separated or cracks and cracks are likely to occur. Further, even after molding, the layers may be separated due to deterioration over time or cracks may be generated on the surface, resulting in lack of storage stability.
Therefore, the present invention is intended for decorative ceramics having a molding layer on the substrate for expressing a representation object, for example, for obtaining a relatively large restored product, reproduced product, or duplicate product with high accuracy. It is a raw material, and the molding layer can express the object to be expressed with high accuracy in terms of shape, color, texture, etc., but has excellent heat resistance and fixability to the substrate, and molding the surface It is an object of the present invention to provide a raw material for decorative ceramics excellent in state retention and to provide a method for manufacturing a raw material for such decorative ceramics.
In addition, the present invention is a decorative ceramic using the raw material for the decorative ceramic according to the present invention, and the object to be expressed is expressed with high accuracy in shape, color, texture, etc., and has excellent heat resistance and fixing property to the substrate. It is an object of the present invention to provide a decorative ceramic that has excellent retention of the molded state of the surface.
前記課題を解決するためこの発明は、次のような装飾セラミックスのための原材、該原材を用いた装飾セラミックス及びそれらの製造方法を提供する。 In order to solve the above-described problems, the present invention provides the following raw materials for decorative ceramics, decorative ceramics using the raw materials, and methods for producing them.
1.装飾セラミックスの原材及び装飾セラミックス
この発明の装飾セラミックスの原材は、基本構成として、
微細凹凸部を有する層形成面を少なくとも1面に有した素地と、
素地の前記層形成面に層形成された成形層と、を具備して一体的に形成された装飾セラミックスの原材であって、
前記成形層のうち少なくとも素地と隣接する層部分は、ペタライトを主剤とし、かつ素地の前記微細凹凸部に沿って定着されている。
上記のように、後述する特徴を有するペタライトを成形層のうち少なくとも素地と隣接する層部分の主剤とし、成形層を、素地上の微細凹凸部に沿って層形成して定着させることで、成形層は素地から分離しにくい良好な定着性を有するものとなる。
なお、前記素地の層形成面の微細凹凸部とは、要するに、素地の原料となる素地の混練体を焼成することで素地表面部分に形成される、10μm〜900μm程度の凹凸高さの凹凸部のことである。
また本発明に係る装飾セラミックスは、上記の基本構成を備えた本発明に係る原材に所定の仕上げ処理が施されたものである。ここで仕上げ処理とは、施釉処理、彩色処理、表現対象の模様等の転写処理の内の少なくとも一つの処理、或いはさらに仕上げ焼成を含む処理をいう。
1. Decorative ceramics raw material and decorative ceramics The decorative ceramic raw material of the present invention has the following basic structure:
A substrate having at least one layer-forming surface having fine irregularities;
A molding layer formed on the layer forming surface of the substrate, and a raw material of decorative ceramics integrally formed,
At least a portion of the molding layer adjacent to the substrate is fixed along the fine concavo-convex portion of the substrate with petalite as a main agent.
As described above, petalite having the characteristics described below is used as the main component of at least the layer portion adjacent to the substrate, and the molding layer is formed by forming a layer along the fine irregularities on the substrate and fixing it. The layer has good fixability that is difficult to separate from the substrate.
The fine irregularities on the substrate layer forming surface are basically irregularities having an irregularity height of about 10 μm to 900 μm, which are formed on the substrate surface portion by firing a kneaded body of the substrate as a raw material of the substrate. That is.
The decorative ceramic according to the present invention is obtained by subjecting the raw material according to the present invention having the above basic configuration to a predetermined finishing treatment. Here, the finishing process means at least one of a glazing process, a coloring process, and a transfer process of a pattern to be expressed, or a process including finish firing.
2.装飾セラミックスの原材及び該原材を用いる装飾セラミックスの製造方法
この発明の装飾セラミックスの原材は、基本的には、
素地の原料となる素地の混練体を第一焼成することで板状の素地の成形体を得る素地形成工程と、
素地の片面に、成形層の原料となる、ペタライトを主剤とする粉粒混合物と水とを混練した粘土状の混練体を盛土する盛土工程と、
混練体の盛土を静置して盛土から表層部を自然分離させる表層分離工程と、
を含む。
なお、前記素地の層形成面の微細凹凸部とは、要するに、素地の原料となる素地の混練体を焼成することで素地表面部分に形成される、10μm〜900μm程度の凹凸高さの凹凸部のことである。
また本発明に係る装飾セラミックスは、上記の基本構成を備えた本発明に係る原材の製造方法により装飾セラミックスの原材を得る工程に加え、該原材に所定の仕上げ処理を施す工程を含む。ここで仕上げ処理とは、施釉処理、彩色処理、表現対象の模様等の転写処理の内の少なくとも一つの処理、或いはさらに仕上げ焼成を含む処理をいう。
2. A decorative ceramic raw material and a method of manufacturing the decorative ceramic using the raw material The decorative ceramic raw material of the present invention basically includes:
A substrate forming step of obtaining a molded body of a plate-like substrate by first firing a kneaded body of a substrate that is a raw material of the substrate;
A banking step of embedding a clay-like kneaded body obtained by kneading a powder mixture containing petalite and water, which is a raw material of the molding layer, on one side of the substrate;
A surface layer separation step of leaving the embankment of the kneaded body and separating the surface layer from the embankment,
including.
The fine irregularities on the substrate layer forming surface are basically irregularities having an irregularity height of about 10 μm to 900 μm, which are formed on the substrate surface portion by firing a kneaded body of the substrate as a raw material of the substrate. That is.
Moreover, the decorative ceramic according to the present invention includes a step of performing a predetermined finishing process on the raw material in addition to the step of obtaining the raw material of the decorative ceramic by the raw material manufacturing method according to the present invention having the above basic configuration. . Here, the finishing process means at least one of a glazing process, a coloring process, and a transfer process of a pattern to be expressed, or a process including finish firing.
上記装飾セラミックスの原材の製造方法についてさらに説明すると、上記盛土工程によって、素地上に盛土が形成された盛土状態となり、上記表層分離工程によって、盛土状態の盛土が表層部と下層部とに自然分離した層分離状態となる。
本発明の装飾セラミックスの原材の製造方法の代表的な例では、層分離状態の表層部は表層除去工程によって除去されて下層部(下層部の一部である場合を含む)のみの表層除去状態となり、次いで焼成工程によって、表層部を除く表層除去状態の下層部が成形層として素地上に定着した焼成状態となる。この製造方法は、単なる盛土・焼成による層形成ではなく、盛土工程後に表層分離状態を経て、さらに表層除去状態を経た焼成工程によって成形層を形成するものとなっている。
そして上記表層分離工程によって、混練体のうち分離沈下した下層部が素地の層形成面に定着した状態となり、また上記表層除去工程によって、下層部が混練体部の上面に露出した状態となる。ここで、混練体のうち分離沈下した下層部はその後の焼成によって、例えば図6の拡大顕微鏡写真に示すような比較的粗い凹凸状の固化層面をなし、図5の拡大顕微鏡写真に示す、表層部を除去せずに焼成した場合の比較的平坦状の固化層面と比べて、明らかに異なった層面粗度となる。この比較的粗い凹凸状の層面によって、成形層の上部が、当該成形層上に付加形成されることがあるさらなる成形層や、彩色剤ないし釉薬等の良好な定着性をもたらす。また、成形層の下部は素地の層形成面に対して良好な定着性を示す。
The method for producing the decorative ceramic raw material will be further described. The embankment process results in an embankment state in which embankment is formed on the ground surface, and the embankment state in the embankment state is naturally formed in the surface layer part and the lower layer part by the surface layer separation process. A separated layer state is obtained.
In a typical example of the method for producing a raw material for decorative ceramics according to the present invention, the surface layer portion in a layer-separated state is removed by the surface layer removing step and only the lower layer portion (including the case where it is a part of the lower layer portion) is removed. Then, by the firing step, the lower layer portion in the state of removing the surface layer excluding the surface layer portion becomes a fired state in which the molded layer is fixed on the substrate. In this manufacturing method, a layer is not formed simply by embankment and firing, but a molded layer is formed through a surface separation state after the embankment step and a firing step after a surface layer removal state.
In the surface layer separation step, the lower layer portion that has been separated and settled out of the kneaded body is fixed on the layer forming surface of the substrate, and in the surface layer removal step, the lower layer portion is exposed on the upper surface of the kneaded body portion. Here, the lower layer portion of the kneaded body which has been separated and settled has a relatively rough uneven solidified layer surface as shown in, for example, the enlarged micrograph of FIG. 6 by subsequent firing, and the surface layer shown in the enlarged micrograph of FIG. Compared to the relatively flat solidified layer surface when fired without removing the part, the layer surface roughness is clearly different. Due to this relatively rough uneven layer surface, the upper part of the molding layer provides a further fixing layer that may be additionally formed on the molding layer, and good fixability such as a coloring agent or glaze. Further, the lower part of the molding layer exhibits good fixability with respect to the base layer forming surface.
(ペタライトについて)
以上の本発明に係る装飾セラミックスの原材及び装飾セラミックス並びにそれらの製造方法において、
ペタライトは、葉長石またはペタル石とも呼ばれるケイ酸塩の単斜晶系鉱物であり、LiAlSi4O2を化学組成とする。ペタライトは一般的に、高い耐熱衝撃性を有しており、熱膨張性が低い特徴を有している。
(主剤の意味)
また本発明において「主剤」とは、水を除く他の配合成分すべてのうち、最も配合重量比の高い配合成分であることを意味する。
(About Petalite)
In the above-mentioned raw materials for decorative ceramics and decorative ceramics according to the present invention, and methods for producing them,
Petalite is a monoclinic mineral of silicate, also called feldspar or petalite, and has a chemical composition of LiAlSi 4 O 2 . Petalite generally has a high thermal shock resistance and a low thermal expansion property.
(Meaning of the main agent)
Further, in the present invention, the “main agent” means a blending component having the highest blending weight ratio among all other blending components except water.
以下、本発明の装飾セラミックスの原材及び装飾セラミックス並びにその製造方法に関する事項について例示説明する。
先ず、本発明の装飾セラミックスの原材及び装飾セラミックス並びにその製造方法において、
前記素地は、例えば、成形層の成形前に第一焼成によって予め焼成成形された、吸水性を有するものである。代表例として、吸水性を有する焼成板状材からなるものを挙げることができる。
前記成形層は、ペタライトを主剤に含む粉粒混合物と水とを混練した混練体が、素地の層形成面上で素地に吸水された状態(被吸水状態)となり、この状態(被吸水状態)で前記第一焼成よりも低い焼成温度の第二焼成によって素地と共に焼成された焼成材からなることが好ましい。
・当該混練体は粉粒混合物と水とを混練させて粘土状にしたものであり、第二焼成によって固化した成形層となる。混練体は、前記第二焼成の際または第二焼成の前に、前記素地に盛土され静置されることで混練体の水分が、吸水性を有する素地に吸収され、素地の微細凹凸部に投錨したごとき状態となる(以下、単に「投錨した/投錨する」と表現する)。このように粘土状の混練体が吸水され、かつ投錨した状態で焼成成形済みの素地と共に焼成されることで、素地上に密着した成形層となる。
Hereinafter, the matter regarding the raw material of the decorative ceramic of the present invention, the decorative ceramic, and the manufacturing method thereof will be described by way of example.
First, in the raw material of decorative ceramics and decorative ceramics of the present invention and a method for producing the same,
The substrate is water-absorbing material that is preliminarily fired and molded by first firing before molding of the molding layer, for example. As a typical example, there can be mentioned one made of a fired plate material having water absorption.
In the molding layer, a kneaded body obtained by kneading a powder mixture containing petalite as a main ingredient and water is in a state where water is absorbed by the substrate on the layer forming surface of the substrate (water absorption state), and this state (water absorption state) Preferably, it is made of a fired material fired together with the substrate by second firing at a firing temperature lower than that of the first firing.
-The said kneaded body knead | mixes a powder-particle mixture and water, and becomes a clay form, and becomes a shaping | molding layer solidified by the 2nd baking. During the second firing or before the second firing, the kneaded body is embanked and allowed to stand so that the moisture of the kneaded body is absorbed by the water-absorbing substrate, and the fine uneven portions of the substrate are absorbed. It becomes a state when it is thrown (hereinafter simply expressed as “throwed / throwed”). In this way, the clay-like kneaded body is water-absorbed and fired together with the fire-molded substrate in the thrown state, thereby forming a molded layer in close contact with the substrate.
上記装飾セラミックスの原材はさらに言えば、例えば、第一焼成によって板状に形成された素地の片面側に、粉粒混合物と水とを混練してなる粘土状の混練体を所定厚さで盛土して該盛土を前記第一焼成温度よりも低い温度で第二焼成して得られる成形層を有する装飾セラミックスの原材である。
・前記素地は、例えば、混練体を盛土する前の板状の成形体の状態において、吸水率0.1%以上60%以下であり、
・前記素地上に形成する成形層は、1層の成形層だけでもよいが、後述する付加成形層(第二成形層、第三成形層、・・・)等も形成する場合のように、複数層形成してもよい。いずれにしても、素地以外の層のうち、少なくとも素地と隣接して形成される成形層は、脱水した最終成形体の状態において、少なくともペタライト40w(weight:重量をいう。以下同じ)%以上75w%以下を含むことが好ましい。
More specifically, the decorative ceramic raw material is, for example, a clay-like kneaded body obtained by kneading a powder mixture and water at a predetermined thickness on one side of a substrate formed into a plate shape by first firing. It is a raw material for decorative ceramics having a molded layer obtained by embankment and second firing the embankment at a temperature lower than the first firing temperature.
-The substrate is, for example, in a state of a plate-shaped molded body before embankment of the kneaded body, the water absorption rate is 0.1% or more and 60% or less,
-Although the molding layer formed on the substrate may be only one molding layer, as in the case of forming an additional molding layer (second molding layer, third molding layer, ...) described later, Multiple layers may be formed. In any case, among the layers other than the base material, at least the molding layer formed adjacent to the base material is at least 40 w (weight: refers to weight; hereinafter the same)% or more 75 w in the state of the dehydrated final molded body. % Or less is preferable.
本例の装飾セラミックスの原材及び装飾セラミックス並びにその製造方法は、ペタライトを主剤とした混練体を焼成によって成形層として定着させることを大きな特徴のひとつとする。
ここで「ペタライトを主剤とする」とは、焼成して脱水させた最終成形体の状態でペタライトを40w%以上75W%以下含むように、焼成前の混練体へのペタライト含有率を調整したものをいう。脱水した最終成形体の状態でペタライトを40w%以上75W%以下含むように、ペタライトを主剤として混練した混練体は、焼成(後述の実施例の第二焼成)によって素地上に溶融・固化し、優れた耐熱性と定着性とを有した成形層となる。前記混練体は粘土状の状態で第一焼成成形後の素地上に盛土され、素地と共に焼成(第二焼成)されることで、素地に溶融・固化し、素地の表面材の微細凹凸部に投錨した状態で素地と一体化した成形層となる。この成形層は素地への定着性に優れ、成形層の形成後(後述の実施例にいう第二焼成後)の乾燥及び焼成によって層表面が反り変形したり、素地から分離したりすることがない。
なお上記に加え、前記混練体はさらに15%以上(好ましくは17%以上)50%以下の含水率とすることが好ましい。前記のように含水率調整した混練体を素地と共に焼成(実施例に言う第二焼成)して成形層とすることで、混練体の初めての焼成(第二焼成)直後の全体の線膨張係数が3.0〔×10-6/K〕以下に抑えられる。
One of the main features of the decorative ceramic raw material, decorative ceramic, and method for producing the same according to this example is that a kneaded body containing petalite as a main ingredient is fixed as a molded layer by firing.
Here, “mainly containing petalite” means that the content of petalite in the kneaded body before firing is adjusted so that it contains 40 w% or more and 75 W% or less of petalite in the state of the final molded body that has been fired and dehydrated. Say. The kneaded body kneaded with petalite as the main agent so as to contain 40 w% or more and 75 W% or less of petalite in the state of the dehydrated final molded body is melted and solidified on the substrate by firing (second firing in examples described later), A molded layer having excellent heat resistance and fixability is obtained. The kneaded body is embanked on the substrate after the first firing molding in a clay state, and is fired together with the substrate (second firing) to melt and solidify into the substrate, thereby forming a fine uneven portion on the surface material of the substrate. The molded layer is integrated with the substrate in the thrown state. This molded layer has excellent fixability to the substrate, and the layer surface may be warped or separated from the substrate by drying and firing after the formation of the molded layer (after the second firing in the examples described later). Absent.
In addition to the above, the kneaded body preferably further has a moisture content of 15% or more (preferably 17% or more) and 50% or less. By firing the kneaded body adjusted for water content as described above together with the substrate (second firing in the examples) to form a molded layer, the overall linear expansion coefficient immediately after the first firing (second firing) of the kneaded body Is suppressed to 3.0 [× 10 −6 / K] or less.
(臨界的意義)
前記素地上の成形層の材料である前記混練体がペタライトを主剤としない場合、或いは素地が吸水性を有さない場合においては、乾燥及び第二焼成、ないしその後の例えば第三焼成、第四焼成・・・(さらに成形層を形成する場合における第三焼成、第四焼成・・・)によって収縮・変形して全体のワレが生じてしまったり、成形層の層境界で層分離したりする恐れがある。特に、混練体の粉粒混合物中のペタライト配合率が40w%に満たない場合、或いは成形後の成形層の最終的なペタライト配合率が40w%に満たない場合にはワレの発生が生じやすいものとなる。また素地は事前に第一焼成された予焼成済みの成形体であるため、第二焼成時には、予め大部分の収縮を完了している。このため第一焼成温度よりも低い第二焼成によってさらに大きく収縮することはなく、ペタライトを主剤とする成形層・・・と共に焼成されることで、過度な収縮変形を防ぐことができる。また素地が適度な吸水率を保たない場合、例えば素地の吸水率が0.1%に満たない場合は、素地と混練体との定着性が悪く、焼成後にヒビやワレが生じてしまう。その一方、素地の吸水率が60%を超えてくると、例えば65%以上と高すぎる場合には、成形層の材料である混練体の乾燥時又は第二焼成時、ないしその後の第三焼成時等において混練体から水を吸いすぎることで、素地の強度が低く耐久性に欠けるものとなってしまう。
(Critical significance)
When the kneaded body, which is the material of the molding layer on the substrate, does not contain petalite as the main ingredient, or when the substrate does not have water absorption, drying and second firing, or subsequent third firing, fourth, etc. Firing ... (3rd firing, 4th firing ... when forming a molding layer) Shrinkage / deformation causes overall cracking, or layer separation occurs at the layer boundary of the molding layer There is a fear. In particular, cracking is likely to occur when the blend ratio of petalite in the powder mixture of the kneaded body is less than 40 w%, or when the final blend ratio of the molded layer after molding is less than 40 w%. It becomes. Since the substrate is a pre-fired molded body that has been first fired in advance, most of the shrinkage has been completed in advance during the second firing. For this reason, it does not shrink | contract much more by the 2nd baking lower than a 1st baking temperature, and an excessive shrink deformation can be prevented by baking with the shaping | molding layer ... which uses a petalite as a main ingredient. Further, when the substrate does not maintain an appropriate water absorption rate, for example, when the water absorption rate of the substrate is less than 0.1%, the fixing property between the substrate and the kneaded body is poor, and cracks and cracks occur after firing. On the other hand, when the water absorption rate of the substrate exceeds 60%, for example, when it is too high, such as 65% or more, when the kneaded body that is the material of the molding layer is dried or during the second firing, or the subsequent third firing. If the water is excessively sucked from the kneaded body at times, the strength of the substrate is low and the durability is insufficient.
また、前記の装飾セラミックスの原材及び装飾セラミックス並びにその製造方法においては、前記第二焼成後の、素地と成形層とからなる一体的な部材全体としての線膨張係数が、1.0〔×10-6/K〕以上5.5〔×10-6/K〕以下であることが好ましい。
上記のように成形層が素地上に良好に定着し、定着後の素地と成形層とが一体化した成形後の部材(この部材には、原材の場合、さらに付加形成層を形成すべき部材の場合の双方を含む)は、部材全体の線膨張係数が1.0〔×10-6/K〕以上であって5.5〔×10-6/K〕以下に抑えられたものとなり、各層の膨張による剥離ないし分離が生じにくいものとなる。一方、第二焼成後の部材全体の線膨張係数が1.0〔×10-6/K〕より小さすぎる、または第二焼成後の部材全体の線膨張係数が5.5〔×10-6/K〕より大きすぎるとその後の仕上げ焼成の際に層表面が反り変形したり、素地と成形層とが分離したりする場合がある。
In the above-mentioned decorative ceramic raw material, decorative ceramic, and method for producing the same, the linear expansion coefficient of the whole integral member composed of the substrate and the molded layer after the second firing is 1.0 [× 10 −6 / K] or more and 5.5 [× 10 −6 / K] or less is preferable.
As described above, the molded layer is well fixed on the substrate, and the molded substrate and the molded layer are integrated with each other after molding (an additional layer should be formed on this member in the case of raw materials) In both cases, the linear expansion coefficient of the entire member is 1.0 [× 10 −6 / K] or more and is suppressed to 5.5 [× 10 −6 / K] or less. Further, peeling or separation due to expansion of each layer is difficult to occur. On the other hand, the linear expansion coefficient of the whole member after the second firing is too small than 1.0 [× 10 −6 / K], or the linear expansion coefficient of the whole member after the second firing is 5.5 [× 10 −6]. If it is larger than / K], the layer surface may be warped and deformed during the subsequent finish firing, or the substrate and the molded layer may be separated.
また上記に加え、或いは上記とは別に、前記素地と隣接して盛土される混練体は、例えば、第二焼成前の粘土状の状態において、少なくともペタライトと、無機解膠材と、水と、を含む混練体(すなわち、「ペタライトと無機解膠材とを少なくとも含む粉粒混合物」を、水と共に混練した混練体)からなることが好ましい。本例によれば、無機解膠材の配合によってペタライトを含む粉粒混合物を水内に比較的均一に分散させることができる。これにより、混練体は第二焼成において素地に溶融・固化し、素地の表面材の微細凹凸部に投錨した状態で一体化でき、40w%以上もの高配合率のペタライトを均一に分散させた成形層が、素地上に良好に定着する。但し、本発明全てをこれら又はこれらのうちいずれかの要素を具備するものに限定する趣旨ではない。 In addition to the above, or separately from the above, the kneaded body that is embanked adjacent to the substrate is, for example, in a clay-like state before the second firing, at least petalite, an inorganic peptizer, water, (That is, a “kneaded body obtained by kneading a powder mixture containing at least petalite and an inorganic peptizer” together with water). According to this example, the powder mixture containing petalite can be dispersed relatively uniformly in water by blending the inorganic peptizer. As a result, the kneaded body is melted and solidified in the base material in the second firing, and can be integrated in a state where it is cast on the fine irregularities of the surface material of the base material, and uniformly molded with a high blending ratio of 40 w% or more of petalite. The layer settles well on the substrate. However, the present invention is not intended to limit the present invention to those provided with these or any of these elements.
また、前記いずれかの装飾セラミックスの原材及び装飾セラミックス並びにその製造方法においては、前記素地と隣接して盛土される混練体は、例えば、第二焼成前の粘土状の状態において、少なくともペタライトと、少量の無機解膠材と、粘土材と、を含んでなり、該混練体が第二焼成の前の素地上に盛土された状態で層内分離することで、水分を含む表層部が下層部の上部に表層分離したものであることが好ましい。 Further, in any of the above-mentioned decorative ceramic raw materials and decorative ceramics and a method for producing the same, the kneaded body that is embanked adjacent to the base is, for example, at least petalite in a clay state before the second firing. A small amount of inorganic peptizer, and a clay material, and the kneaded body is separated into layers in a state of being embanked on the substrate before the second firing, so that the surface layer portion containing moisture is the lower layer It is preferable that the surface layer is separated at the upper part of the part.
また上記混練体は例えば、「40w%以上もの高配合率のペタライトと、5w%以上35w%以下の粘土材(蛙目粘土、ロー石、又は陶石の少なくとも一種以上をいう。本発明において以下同じ。)と、少量の無機解膠材とを少なくとも含む粉粒混合物」を、水と共に混練した混練体からなり、この混練体を静置することにより、粘土材に含まれる粒度100μm未満の細かい粒子が高い含水率の表層部として混練体の表側に分離することとなる。水分を含む表層部が下層部と分離して表層部化することによって、残りの下層部内の微細粒子含有率が極めて小さくなる。このため、乾燥・焼成後の成形層がヒビ割れや欠けを生じにくいものとなる。なお表層部は、D50のメジアン径を50%以下とする粒度分布で構成されることが好ましく、また、粒度を頻度分布表示したときに1μm以上100μm以下の範囲内、さらにいえば1μm〜20μmの範囲内に最大ピーク値(すなわちモード径)を有することが好ましい。但し、本発明全てをこれら又はこれらのうちいずれかの要素を具備するものに限定する趣旨ではない。 The kneaded body is, for example, “peterite having a high blending ratio of 40 w% or more and a clay material (bath clay, rhostone, or ceramic stone) of 5 w% or more and 35 w% or less. The same)) and a small amount of a powder mixture containing at least a small amount of an inorganic peptizer "and a kneaded body kneaded with water. By leaving the kneaded body to stand still, a fine particle having a particle size of less than 100 µm contained in the clay material The particles are separated on the front side of the kneaded body as a surface layer portion having a high water content. When the surface layer part containing moisture is separated from the lower layer part to form the surface layer part, the fine particle content in the remaining lower layer part becomes extremely small. For this reason, the molded layer after drying and firing is less likely to be cracked or chipped. The surface layer portion is preferably composed of a particle size distribution in which the median diameter of D50 is 50% or less. Further, when the particle size is displayed as a frequency distribution, the surface layer portion is in the range of 1 μm to 100 μm, and more specifically, 1 μm to 20 μm. It is preferable to have a maximum peak value (ie, mode diameter) within the range. However, the present invention is not intended to limit the present invention to those provided with these or any of these elements.
また、前記いずれかの装飾セラミックスの原材及び装飾セラミックス並びにその製造方法において、前記成形層は、素地上に盛土された混練体のうち、前記表層部を除去することで残った下層部のみを第二焼成した、下層部の第二焼成体からなることが好ましい。
上記により、除去された残りの表面は下層部で構成されると共に成形層が下層部のみで構成されるため、形状安定性に優れたものとなり、或いは、さらに上層付加される場合の上層定着性にも優れたものとなる。
Further, in any of the above-mentioned decorative ceramic raw materials and decorative ceramics and a method for producing the same, the molding layer is formed by removing only the lower layer portion remaining by removing the surface layer portion of the kneaded body embanked on the substrate. It is preferable that the second firing is made of the second fired body in the lower layer portion.
According to the above, since the remaining removed surface is composed of the lower layer portion and the molding layer is composed of only the lower layer portion, it has excellent shape stability, or upper layer fixability when further upper layer is added Even better.
例えば表層部が除去されないまま残った場合は、表面の表層部が反り変形したりして表面の性状が不均一となる。また前記いずれかの装飾セラミックスの原材及び装飾セラミックス並びにその製造方法において、前記成形層の上に付加成形層や仕上げ層を形成してもよいが、その場合に、当該付加成形層や仕上げ層との定着性が悪いために、ピンホールと呼ばれる微小な気泡が生じたりすることがある。これに対して、成形層の上層部を除去して下層部のみで構成された前記成形層であれば、表面の性状が比較的均一となるため、成形層の上に付加成形層や仕上げ層を形成する場合の当該付加成形層や仕上げ層との定着性が悪くなることがなく、層表面に仕上げ用の釉薬塗布といった仕上げ処理を施した場合にも、ピンホールと呼ばれる微小な気泡が生じたりすることが抑制される。但し、本発明全てをこれら又はこれらのうちいずれかの要素を具備するものに限定する趣旨ではない。なお後述の実施例では、表層除去工程における、除去手段による表層除去をもって表層部を除去するものとしている。 For example, when the surface layer portion remains without being removed, the surface layer portion on the surface is warped and deformed, resulting in non-uniform surface properties. Further, in any of the above-mentioned decorative ceramic raw materials and decorative ceramics and a method for producing the same, an additional molding layer or a finishing layer may be formed on the molding layer. In some cases, microbubbles called pinholes may be generated due to poor fixability. On the other hand, if the molding layer is composed only of the lower layer portion by removing the upper layer portion of the molding layer, the surface properties are relatively uniform, so that an additional molding layer or finishing layer is formed on the molding layer. Fixation with the additional molding layer and finish layer when forming the surface does not deteriorate, and even when finishing treatment such as finishing glaze application is applied to the surface of the layer, minute bubbles called pinholes are generated. Is suppressed. However, the present invention is not intended to limit the present invention to those provided with these or any of these elements. In the examples described later, the surface layer portion is removed by removing the surface layer by the removing means in the surface layer removing step.
また、前記いずれかの装飾セラミックスの原材及び装飾セラミックス並びにその製造方法において、素地は例えば、少なくともペタライトを主剤としてなるもの、或いは少なくともペタライトを主剤とし、かつ素地のペタライト配合率(PR1)は成形層のペタライト配合率(PR2)以下であるものを挙げることができる。さらに例えば、少なくともペタライト40w%以上と粘土材と骨材とを含み、かつ、素地のペタライト配合率(PR1)は成形層のペタライト配合率(PR2)以下であるものを挙げることができる。
上記構成によれば、前記いずれかの装飾セラミックスの原材及び装飾セラミックス並びにその製造方法において、素地が粘土材を含み且つペタライトを主成分とすることで、混練体と成分組成の多くが共通することとなり、第二焼成による溶融定着性に優れたものとなる。また、素地におけるペタライト配合率(PR1)が成形層におけるペタライト配合率(PR2)と同程度であるか或いはこれよりも少ないため、第一焼成において素地をより高温で焼成することができる。また素地は第二焼成前に第一焼成として予焼成されているため、収縮率が少なく形状安定性に優れた一次成形品として得られる。但し、本発明全てをこれら又はこれらのうちいずれかの要素を具備するものに限定する趣旨ではない。
In any of the above-mentioned decorative ceramic raw materials, decorative ceramics, and methods for producing the same, the base material is, for example, at least petalite as a main agent, or at least petalite as a main agent, and the base petalite compounding ratio (PR1) is formed. What is below the petalite compounding ratio (PR2) of a layer can be mentioned. Further, for example, it is possible to include at least 40 w% or more of petalite, clay material and aggregate, and the petalite blending ratio (PR1) of the base is not more than the petalite blending ratio (PR2) of the molded layer.
According to the above configuration, in any of the above-mentioned decorative ceramic raw materials and decorative ceramics and a method for producing the same, the base material includes a clay material and mainly includes petalite, so that the kneaded body and many of the component compositions are common. Thus, the melt-fixing property by the second baking is excellent. In addition, since the petalite blending ratio (PR1) in the substrate is similar to or less than the petalite blending ratio (PR2) in the molded layer, the substrate can be fired at a higher temperature in the first firing. Further, since the substrate is pre-fired as the first firing before the second firing, it can be obtained as a primary molded article having a small shrinkage rate and excellent shape stability. However, the present invention is not intended to limit the present invention to those provided with these or any of these elements.
また、前記いずれかの装飾セラミックスの原材及び装飾セラミックス並びにその製造方法において、前記素地の第一焼成前の混練体はさらに、板状成形の際又は第一焼成の際のうち少なくとも一方において発泡する発泡剤を含むことが好ましい。
この態様によれば、成形後の素地が発泡部分を含むことで、乾燥雰囲気の湿度条件によらず高い含水率を確保することができ、また表面及び表面近傍に微細凹凸部が形成され、ここに混練体が溶融投錨することで、混練体の定着性がきわめて良好なものとなる。但し、本発明全てをこれら又はこれらのうちいずれかの要素を具備するものに限定する趣旨ではない。
Further, in any of the above-mentioned decorative ceramic raw material, decorative ceramic, and method for producing the same, the kneaded body of the substrate before the first firing is further foamed in at least one of the plate forming and the first firing. It is preferable to include a blowing agent.
According to this aspect, since the base after molding includes a foamed portion, a high moisture content can be ensured regardless of the humidity condition of the dry atmosphere, and fine irregularities are formed on the surface and in the vicinity of the surface. When the kneaded body is melt cast, the fixability of the kneaded body becomes extremely good. However, the present invention is not intended to limit the present invention to those provided with these or any of these elements.
また、前記の「2.装飾セラミックスの原材及び該原材を用いる装飾セラミックスの製造方法」に記載した本発明に係る製造方法の代表例においては、
混練体の盛土から表層分離した表層部を除去して下層部のみとする表層除去工程と、
前記表層除去工程後の混練体の下層部を、素地と共に第二焼成して成形層を形成する焼成工程と、をさらに含んでいる。
或いはさらに、当該装飾セラミックスの原材及び該原材を用いる装飾セラミックスの製造方法においては、表層除去工程後の除去表面の少なくとも一部分に、付加成形層(第二成形層、第三成形層・・・)の原料となる、粉粒混合物と水とを混練した粘土状の付加混練体を盛土して付加焼成(第三焼成、第四焼成・・・)し、成形層の上に1又は2以上の付加成形層(第二成形層、第三成形層・・・)を形成する層付加工程をさらに含んでいてもよい。なお、これは後述する実施例3の製造方法に相当する。
以上の他、装飾セラミックスの原材の製造方法として、次の方法も挙げることができる。すなわち、前記の表層除去工程後の混練体残部表面の少なくとも一部分に、付加成形層(第二成形層、第三成形層、・・・)の原料となる。粉粒混合物と水とを混練した粘土状の付加混練体を盛土する工程を経て積層構造の焼成前成形層を形成し、その後にこれらを素地と共に第二焼成する方法である。
或いはさらに、当該付加成形層を形成するための付加混練体の平均粒度は、前記盛土工程における混練体の平均粒度よりも小さく、かつ前記層付加形成における付加焼成温度(第三焼成温度、第四焼成温度・・・)は、当該付加焼成工程よりも前に行ったいずれの焼成工程(前焼成工程)の焼成温度をも超えることの無いことが好ましい。なおさらに好ましくは、前記層付加形成における各焼成温度は、当該層付加形成よりも前のいずれの前焼成工程の焼成温度よりも低い。
或いはさらに、前記の「2.装飾セラミックスの原材及び装飾セラミックス並びにその製造方法」に記載した本発明に係る製造方法においては、前記素地形成工程において、少なくともペタライト40w%以上75w%以下と粘土材と骨材とを水と混練させた素地の混練体を第一焼成するものとしてもよい。但し、本発明全てをこれら又はこれらいずれかの要素を具備するものに限定する趣旨ではない。
Moreover, in the representative example of the manufacturing method according to the present invention described in the above-mentioned “2. The raw material of decorative ceramics and the manufacturing method of decorative ceramics using the raw material”,
A surface layer removing step in which the surface layer part separated from the embankment of the kneaded body is removed to make only the lower layer part,
A firing step in which the lower layer portion of the kneaded body after the surface layer removing step is second-fired together with the substrate to form a molded layer.
Alternatively, in addition, in the decorative ceramic raw material and the decorative ceramic manufacturing method using the raw material, an additional molded layer (second molded layer, third molded layer,. (1) or 2 on the molding layer by embedding a clay-like additional kneaded material kneaded with the powder mixture and water, and performing additional firing (third firing, fourth firing ...). A layer addition step for forming the above additional molding layers (second molding layer, third molding layer,...) May be further included. This corresponds to the manufacturing method of Example 3 described later.
In addition to the above, the following method can also be mentioned as a method for producing the decorative ceramic raw material. That is, it becomes a raw material for the additional molding layer (second molding layer, third molding layer,...) On at least a part of the surface of the remaining kneaded body after the surface layer removing step. This is a method of forming a pre-firing molded layer having a laminated structure through a step of embedding a clay-like additional kneaded material obtained by kneading a powder mixture and water, and then firing them together with a substrate.
Alternatively, the average particle size of the additional kneaded body for forming the additional molded layer is smaller than the average particle size of the kneaded body in the embankment step, and the additional firing temperature (third firing temperature, fourth in the layer addition formation). It is preferable that the firing temperature... Does not exceed the firing temperature of any firing step (pre-baking step) performed before the additional firing step. Still more preferably, each firing temperature in the layer addition formation is lower than the firing temperature in any pre-baking step prior to the layer addition formation.
Alternatively, in the manufacturing method according to the present invention described in "2. Decorative ceramic raw material and decorative ceramic and manufacturing method thereof", at least 40 w% or more of petalite and 75 w% or less of the clay is used in the substrate forming step. It is good also as what carries out the 1st baking of the base material kneaded body which knead | mixed water and an aggregate with water. However, the present invention is not intended to limit the present invention to those provided with these or any of these elements.
上記層付加工程によって、付加成形層である第二成形層、第三成形層・・・が、成形層である第一成形層の上に層付加形成される。ここで前記表層除去工程によって、層付加工程前の成形層の層上部は、盛土の表層部が除去されて比較的粗い粒度の粉粒混合物を含む下層部が上面露出した状態となっている。そして上記の層付加工程によって、上面露出した下層部に、比較的小さい平均粒度の粉粒混合物からなる付加混練体が盛土され、これによって、下層部の比較的粗い層上面の凹凸に、より微細な付加混練体の粉粒混合物が入り込むこととなり、特に良好な定着性を有する。また、第三焼成温度が第二焼成温度よりも低いため、第三焼成によっても素地や成形層たる第一成形層に反り変形、乃至ヒビやワレが発生しにくく、耐久性に優れた最終状態の原材となる。 By the layer addition step, the second molding layer, which is an additional molding layer, the third molding layer,... Are formed on the first molding layer which is a molding layer. Here, by the surface layer removal step, the upper layer portion of the molding layer before the layer addition step is in a state in which the surface layer portion of the embankment is removed and the lower layer portion containing a relatively coarse particle size mixture is exposed on the upper surface. Then, by the above layer addition process, an additional kneaded body made of a powder mixture having a relatively small average particle size is embanked in the lower layer portion exposed on the upper surface, thereby making the unevenness of the upper surface of the relatively coarse layer in the lower layer portion finer. The powder mixture of the additional kneaded material enters and has particularly good fixability. In addition, since the third firing temperature is lower than the second firing temperature, the first firing layer, which is the substrate or the molding layer, is also less likely to be warped, cracked or cracked by the third firing, and the final state is excellent in durability. It becomes the raw material of.
以上説明したように、本発明によると、例えば比較的大型の復元品や再現品、複製品を高い精度で得ることを目的の一つとして、表現対象を表現するための成形層を素地上に有する装飾セラミックスのための原材であって、該成形層は表現対象を形状、色、質感等において高い精度で表現することが可能でありながら、優れた耐熱性と素地への定着性とを有し、成形や成形後の繰り返し焼成によってもヒビやワレが発生せず、また素地との層分離を起こしにくく、表面の成形状態の保持性に優れた装飾セラミックスのための原材を提供すること、並びにそのような装飾セラミックスのための原材の製造方法を提供することができる。また本発明によると、本発明に係る装飾セラミックスのための原材を用いた装飾セラミックスであって、表現対象が形状、色、質感等において高い精度で表現され、優れた耐熱性と所望状態の保持性に優れた装飾セラミックスを提供することができる。 As described above, according to the present invention, for example, for the purpose of obtaining a relatively large restored product, reproduced product, or duplicate product with high accuracy, a molding layer for expressing an expression target is formed on the ground. It is a raw material for decorative ceramics, and the molding layer can express the object to be expressed with high accuracy in shape, color, texture, etc., and has excellent heat resistance and fixability to the substrate. Provided with a raw material for decorative ceramics that does not generate cracks or cracks even after molding or repeated firing after molding, is less prone to layer separation from the substrate, and has excellent surface molding state retention As well as a method for producing a raw material for such decorative ceramics. Further, according to the present invention, the decorative ceramic using the raw material for the decorative ceramic according to the present invention, the object to be expressed is expressed with high accuracy in shape, color, texture, etc., and has excellent heat resistance and desired state. It is possible to provide a decorative ceramic having excellent retention.
以下、本発明の実施形態につき本発明の実施例を示す各図に基づいて説明する。以下の記載において、各構成等の後ろに括弧を付して記した数字や記号は、理解を容易にするために用いた構成等の参照符号であるが、本発明がこれらの参照符号によって図面を参照して述べられる実施例の形態又は概念に限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings showing examples of the present invention. In the following description, numerals and symbols in parentheses after each component and the like are reference symbols for the component and the like used for ease of understanding. It is not limited to the form or concept of the embodiments described with reference to FIG.
本発明の実施例は、有形文化財、壁画、絵画、彫刻、工芸品等の再現ないし復元等に用いる装飾セラミックスの原材又は装飾セラミックスの完成品であって、無機質の材料でありながら表現対象の形状、色、質感等を表現可能としたものである。
図2、図3それぞれの(h)、図4の(h3)に示すように、いずれの実施例においても、装飾セラミックスの原材は、第一焼成によって板状に形成された素地(1)と、素地(1)の片面側に形成された成形層(2)(第一成形層)とを含んでおり、或いはさらに成形層(2)上に一層以上形成された付加成形層(第二成形層(3)、第三成形層(4)、・・・)を含んでいる。
The embodiment of the present invention is a raw material of decorative ceramics or a finished product of decorative ceramics used for reproduction or restoration of tangible cultural properties, murals, paintings, sculptures, crafts, etc., and is an object to be expressed even though it is an inorganic material The shape, color, texture, etc. can be expressed.
As shown in (h) of FIG. 2 and FIG. 3 and (h3) of FIG. And a molding layer (2) (first molding layer) formed on one side of the substrate (1), or an additional molding layer (second molding) further formed on the molding layer (2). The molding layer (3), the third molding layer (4), ...) are included.
そしていずれの実施例においても、下記の特徴を有する。
前記素地(1)は、吸水性を有する焼成板状材である。具体的には、成形層(2)の形成材料である混練体(20)を盛土する前の板状成形状態の素地材料を、予め所定の第一焼成温度で第一焼成して得られた焼成板状材であって、混練体(20)を盛土する前の板状成形状態においての吸水率が0.1%以上60%以下である。
前記成形層(2)(第一成形層)或いはさらに付加成形層(第二成形層(3)、第三成形層(4)、・・・)は、それぞれ少なくともペタライト40w%以上を主剤として含む粉粒混合物と水とを混練してなる粘土状の混練体(20)を、所定厚さで素地(1)上に盛土し、この盛土された混練体(20)を、前記第一焼成温度よりも低い温度で第二焼成して得られる。但し、第一成形層については、その形成のための第二焼成の際又は第二焼成の前の盛土状態において、素地(1)が混練体(20)の水分を吸収したのちに自然乾燥及び/又は強制乾燥されることで、混練体(20)が素地(1)の層形成面の微細凹凸部に投錨した被吸水状態かつ乾燥状態となっている。この被吸水状態の混練体(20)が素地(1)上で素地(1)と共に第二焼成されることで、図7に示すような、素地(1)の微細凹凸部に沿って投錨状態で溶融・固化した成形層(2)として定着する。
Each embodiment has the following features.
The substrate (1) is a fired plate material having water absorption. Specifically, it was obtained by first firing a base material in a plate-shaped state before embedding the kneaded body (20) which is a forming material of the molding layer (2) at a predetermined first firing temperature. The fired plate-like material has a water absorption rate of 0.1% or more and 60% or less in a plate-like molded state before embankment of the kneaded body (20).
The molding layer (2) (first molding layer) or further the additional molding layer (second molding layer (3), third molding layer (4),...) Each contains at least 40 w% or more of petalite as a main ingredient. A clay-like kneaded body (20) obtained by kneading a powder mixture and water is embanked on the substrate (1) with a predetermined thickness, and the embanked kneaded body (20) is subjected to the first firing temperature. Obtained by second firing at a lower temperature. However, the first molded layer is naturally dried after the substrate (1) has absorbed the moisture of the kneaded body (20) during the second firing for the formation or in the embankment state before the second firing. By being forcibly dried, the kneaded body (20) is in a water-absorbed state and dried state that is cast on the fine irregularities on the layer forming surface of the substrate (1). The kneaded body (20) in the water-absorbed state is second-fired together with the substrate (1) on the substrate (1), so that it is thrown along the fine irregularities of the substrate (1) as shown in FIG. And fixed as a molded layer (2) melted and solidified by
以下、各構成等につきさらに説明する。
(素地(1))
素地(1)は、ペタライト又は粘土(蛙目粘土、ロー石または陶石の少なくとも一種以上を含む)のいずれかを主剤とする焼成板状材である。素地の混練体を板状に成形し、加熱乾燥、除湿乾燥、熱風乾燥、赤外線乾燥、遠赤外線乾燥又はこれらのうちいずれか2つ以上の組み合わせ乾燥方法で強制乾燥させたのちに、1200℃〜1250℃の範囲内の第一焼成温度で、かつ約3時間〜約10時間(好ましくは5時間〜10時間、或いは8時間〜10時間)の範囲の焼成時間で第一焼成することで、吸水性を有する固化した焼成板状材として得られる。素地(1)の焼成板状材の少なくとも片面には、混練体(20)を盛土するための、微細凹凸部を有する層形成面が一面に露出してなる。素地(1)はまた、成形層の形成工程において、層形成面に盛土された混練体(20)と共に、第二焼成、或いはさらに第三焼成、・・・として繰り返し焼成される。混練体(20)を盛土する前の板状の成形状態において、素地(1)は0.1%以上60%以下の吸水率を有し、また、第二焼成前に予め1.0×106/K以上5.5×106/K以下の低膨張率となっている。
なお前記強制乾燥として例えば、60℃〜200℃の範囲の乾燥温度で1時間〜24時間の範囲の加熱乾燥を行うことができる。
Hereinafter, each configuration and the like will be further described.
(Base (1))
The substrate (1) is a fired plate-like material mainly composed of either petalite or clay (including at least one of glazed clay, rholite, or ceramic stone). After forming the kneaded body of the base into a plate shape, forced drying by heat drying, dehumidifying drying, hot air drying, infrared drying, far infrared drying or any combination of two or more of these, 1200 ° C ~ Water absorption by first firing at a first firing temperature in the range of 1250 ° C. and a firing time in the range of about 3 hours to about 10 hours (preferably 5 hours to 10 hours, or 8 hours to 10 hours). It is obtained as a solidified fired plate-like material. On at least one side of the fired plate-like material of the substrate (1), a layer forming surface having fine uneven portions for embedding the kneaded body (20) is exposed. The substrate (1) is also repeatedly fired in the forming layer forming step together with the kneaded body (20) embanked on the layer forming surface as the second firing, or further as the third firing. In the plate-like molded state before embankment of the kneaded body (20), the substrate (1) has a water absorption rate of 0.1% or more and 60% or less, and 1.0 × 10 6 in advance before the second firing. It has a low expansion coefficient of 6 / K or more and 5.5 × 10 6 / K or less.
For example, the forced drying can be performed by drying at a drying temperature in the range of 60 ° C. to 200 ° C. for 1 hour to 24 hours.
素地(1)の例としては、後述の実施例のように、ペタライト又は粘土のいずれかを主剤とした粘土焼成材が挙げられる。例えば後述の実施例2、3ではペタライトを主剤として、これに少なくとも蛙目粘土と、ロー石または陶石と、シャモット等の骨材と、解膠剤とを加えて水と混ぜた素地の混練体を焼成したものであり、後述の実施例1では粘土を主剤として、これに少なくともロー石または陶石と、シャモット等の骨材と、解膠剤とを加えて水と混ぜた素地の混練体を焼成したものである。この素地の混練体は、必要に応じてさらに発泡剤や、メチルセルロース等の糊剤を混練させる。 As an example of the substrate (1), a clay fired material containing either petalite or clay as a main ingredient can be mentioned as in the examples described later. For example, in Examples 2 and 3, which will be described later, petalite is used as a main ingredient, and at least koji clay, rhostone or porcelain stone, aggregate such as chamotte, and a peptizer are mixed and mixed with water. The body was fired, and in Example 1 described later, clay was the main agent, and at least rhostone or porcelain stone, an aggregate such as chamotte, and a peptizer were mixed and mixed with water. The body is fired. The base kneaded body is further kneaded with a foaming agent or a paste such as methylcellulose as necessary.
(混練体の製造方法)
より具体的な素地の混練体の製造方法として、蛙目粘土、ロー石ないし陶石、長石(ペタライトや大平長石)の少なくとも1種以上を所定の混合割合で配合して、水以外の粉粒体原料からなる粉粒混合物を精製し、この粉粒混合物を混練しながら所定割合の水を少しずつ加えて製造する方法が挙げられる。最初に水以外の粉粒混合物を精製することで、主剤成分の配合率/配合量を容易に調整することができ、さらに水以外の粉粒混合物と水との配合比率を変えることで、耐熱性と吸水性を調整することができる。
(Production method of kneaded body)
As a more specific method for producing a kneaded body, a mixture of at least one kind of glazed clay, rhostone or porcelain stone, and feldspar (petalite or Oohira feldspar) in a predetermined mixing ratio, and powder particles other than water Examples thereof include a method in which a powder mixture made of body materials is purified and a predetermined proportion of water is added little by little while kneading the powder mixture. By first refining the powder mixture other than water, the blending ratio / mixing amount of the main component can be easily adjusted, and by changing the blending ratio between the powder mixture other than water and water, Property and water absorption can be adjusted.
また上記粉粒混合物の混合材のひとつとして骨材を加えることで線膨張係数を下げつつ高耐火性と非収縮性を確保することができる。本発明では第一焼成後の素地(1)が、混練体(20)の盛土後に繰り返し焼成されることとなるため、耐火性と非収縮性を確保することが重要となる。或いは、上記粉粒混合物の混合材のひとつとして発泡剤を加えることで、第一焼成によって微細な多数の発泡部を形成し、吸水性を確保することができる。 Moreover, high fire resistance and non-shrinkability can be ensured while lowering the linear expansion coefficient by adding aggregate as one of the mixed materials of the powder mixture. In the present invention, since the base (1) after the first firing is repeatedly fired after the embankment of the kneaded body (20), it is important to ensure fire resistance and non-shrinkage. Alternatively, by adding a foaming agent as one of the mixed materials of the powder mixture, a large number of fine foamed portions can be formed by the first firing to ensure water absorption.
(成形層(2))
装飾セラミックスの原材は、素地(1)の層形成面に所定厚さで層形成された、固形の焼成材からなる成形層(2)を有する。成形層(2)は、ペタライトを主剤に含む粉粒混合物(複数種の粉体ないし粒体を混合させた混合物をいう。)と水との混練体(20)を、前記第一焼成後の素地(1)の片面側に盛土して素地(1)に吸水された被吸水状態とし、その後に自然乾燥及び/又は強制乾燥を施すことで乾燥状態とし、これを素地(1)と共に前記第一焼成の温度よりも低い温度で第二焼成して得られる固形層である。
(Molded layer (2))
The raw material of the decorative ceramics has a molded layer (2) made of a solid fired material, which is layered with a predetermined thickness on the layer forming surface of the substrate (1). The molding layer (2) is formed by mixing a kneaded body (20) of a powder mixture (which is a mixture of a plurality of types of powders or granules) containing petalite with water and the first baking. The substrate (1) is embanked on one side and made into a water-absorbed state absorbed by the substrate (1), and then dried by natural drying and / or forced drying. It is a solid layer obtained by second baking at a temperature lower than the temperature of one baking.
なお前記自然乾燥とは、常温日陰下で6時間〜48時間のいずれかの時間だけ静置乾燥を行うことをいう。また前記強制乾燥とは、加熱乾燥、赤外線乾燥、遠赤外線乾燥のいずれかの乾燥方法による乾燥をいう。強制乾燥として例えば、60℃〜200℃の範囲の乾燥温度で1時間〜24時間の範囲の加熱乾燥を行うことができる。 In addition, the said natural drying means standing still for any time of 6 hours-48 hours under normal temperature shade. The forced drying means drying by any one of heat drying, infrared drying, and far infrared drying. As forced drying, for example, heat drying in the range of 1 hour to 24 hours can be performed at a drying temperature in the range of 60 ° C. to 200 ° C.
成形層(2)のうち、少なくとも素地(1)と隣接する層部分は、ペタライトを主剤とし、かつ素地(1)の前記微細凹凸部に沿って脱水状態で定着される。この成形層(2)は、ペタライトを主剤に含む粉粒混合物と水とを混練した混練体(20)が、素地(1)の層形成面上に所定厚さで層形成され、その後混練体(20)内の水分の1%以上50%以上が素地(1)に吸収された被吸水状態となり、この被吸水状態で前記第一焼成よりも低い焼成温度の第二焼成によって素地(1)と共に焼成されることで形成され、板状素地(1)上の微細凹凸部に隙間なく投錨様に密着形成され、素地(1)から分離しにくい良好な定着性を有する。 Of the molding layer (2), at least a layer portion adjacent to the substrate (1) is fixed in a dehydrated state along with the fine irregularities of the substrate (1) using petalite as a main agent. In this molded layer (2), a kneaded body (20) obtained by kneading a powder mixture containing petalite as a main ingredient and water is formed in a predetermined thickness on the layer forming surface of the substrate (1), and then the kneaded body. (20) 1% or more and 50% or more of the moisture in the substrate is absorbed by the substrate (1), and the substrate (1) is subjected to the second firing at a firing temperature lower than that of the first firing in the absorbed state. It is formed by firing together, is closely formed in a throw-like manner on the fine irregularities on the plate-like substrate (1) without gaps, and has good fixability that is difficult to separate from the substrate (1).
(ペタライト)
ペタライトは葉長石とも呼ばれ、ロー石やムライトといった他の石材と比べて、Li2Oの割合が高い。このため吸水率が比較的高く、線膨張係数が比較的小さい(2.0〔×10−6/K〕程度)傾向を有する。ペタライトを成形層(2)の主剤とすることで、また、付加形成層の主剤とすることで、成形層は焼成後に素地(1)に対して良好に定着した固化状態を保つことができる。
(Petalite)
Petalite is also called feldspar and has a higher proportion of Li 2 O than other stone materials such as rholite and mullite. Therefore, the water absorption rate is relatively high and the linear expansion coefficient tends to be relatively small (about 2.0 [× 10 −6 / K]). By using petalite as the main component of the molding layer (2) and also as the main component of the additional formation layer, the molding layer can maintain a solid state that is well fixed to the substrate (1) after firing.
(ペタライトの配合割合)
素地や成形総を形成するための、水を配合する前の紛粒混合物が、ペタライトを主剤として配合されたものである場合、「主剤として」とは、水を除く配合成分すべてのうち、最も配合重量比の高い配合成分であることを意味する。紛粒混合物におけるペタライト配合率は具体的には、40w%〜75w%、好ましくは45w%〜60w%の範囲内にある。また、ペタライトの粒度は概ね100μm以上300μm以下であることが好ましい。配合されるペタライトは、粒度が小さすぎる場合には吸水率が小さく、ひび割れしやすくなり、また粒度が大きすぎる場合には表面が粗面となり成形性が悪くなる。
(Petalite compounding ratio)
When the powder mixture before blending water to form a green body or molded total is blended with petalite as the main ingredient, `` as the main ingredient '' is the most out of all the ingredients except water It means that the blending component has a high blending weight ratio. Specifically, the petalite content in the powder mixture is in the range of 40 w% to 75 w%, preferably 45 w% to 60 w%. The particle size of petalite is preferably about 100 μm or more and 300 μm or less. When the particle size of the petalite is too small, the water absorption is small and it is easy to crack, and when the particle size is too large, the surface becomes rough and the moldability deteriorates.
(混練体(20))
前記成形層(2)の焼成前の状態である混練体(20)は、少なくともペタライト40w%以上を含む粉粒混合物と水とを混練した、粘土状の混練体(20)からなる。混練体(20)の混練水の含水率は15%以上である。
前記混練体(20)からなる粘土状の混練体(20)が第一焼成後の素地(1)の表面の層形成面上に盛土され、素地(1)と共に第一焼成よりも低い第二焼成温度で第二焼成されることによって、混練体(20)が層形成面から素地(1)内に吸水されると共に、乾燥・焼成によって、脱水状態の成形層(2)が素地(1)上に定着形成される。
(Kneaded body (20))
The kneaded body (20) in a state before firing of the molding layer (2) is composed of a clay-like kneaded body (20) obtained by kneading a powder mixture containing at least 40 w% or more of petalite and water. The water content of the kneaded water in the kneaded body (20) is 15% or more.
A clay-like kneaded body (20) composed of the kneaded body (20) is embanked on the layer-forming surface of the surface of the base (1) after the first firing, and the second lower than the first firing together with the base (1). By performing the second baking at the baking temperature, the kneaded body (20) is absorbed into the substrate (1) from the layer forming surface, and the dehydrated molding layer (2) is formed into the substrate (1) by drying and baking. Fixed on top.
ペタライト40w%以上を混練した混練体(20)が、焼成によって素地上に溶融・固化することで、優れた耐熱性と定着性とを有した成形層(2)となる。40w%以上もの高配合率のペタライトによって、第二焼成後の成形層(2)と素地(1)との一体的な部材全体の線膨張係数は3.0〔×10-6/K〕以下に抑えられる。これと共に、混練体(20)は素地(1)に溶融・固化することで、素地(1)の表面材の微細凹凸部に投錨した状態で一体化する。このため、乾燥及び焼成によって層表面が反り変形したり、層自体が割れたり、或いは素地(1)から層分離したりすることなく、素地(1)への定着性に優れた成形層(2)が得られる。 When the kneaded body (20) kneaded with 40% by weight or more of petalite is melted and solidified on the substrate by firing, a molded layer (2) having excellent heat resistance and fixability is obtained. Due to the high blending ratio of 40 w% or more of petalite, the linear expansion coefficient of the whole integral member of the molded layer (2) and the base (1) after the second firing is 3.0 [× 10 −6 / K] or less Can be suppressed. At the same time, the kneaded body (20) is integrated into the substrate (1) in a state where the kneaded body (20) is cast on the fine irregularities of the surface material of the substrate (1) by melting and solidifying. For this reason, the molding layer (2) having excellent fixability to the substrate (1) without warping and deforming the layer surface due to drying and firing, cracking of the layer itself, or layer separation from the substrate (1). ) Is obtained.
(装飾セラミックスの製造方法)
そして本発明の実施例の装飾セラミックスの製造方法として、少なくとも以下の装飾セラミックスの原材を得るための基本工程を含む。すなわち、
素地(1)の原料となる素地の混練体(20)を第一焼成することで板状の素地(1)の成形体を得る素地形成工程と、
素地(1)の片面に、成形層(2)の原料となる、粉粒混合物と水とを混練した混練体(20)を盛土して盛土状態(a)とする盛土工程(各図フロー中の「盛土I」の工程)と、
盛土状態(a)のまま静置して24時間以上自然乾燥させ、盛土した混練体(20)から表層部(212)が自然分離した層分離状態(b)とする表層分離工程(各図フロー中の「第二乾燥A」の工程)と、
盛土した混練体(20)から表層分離した表層部(212)を除去して下層部(211)のみの表層除去状態(c)とする表層除去工程(各図フロー中の「加工」の工程)と、
前記表層除去工程後の混練体(20)の下層部(211)を、素地(1)と共に第二焼成して、素地(1)と成形層(2)とが一体形成された焼成状態(h)とする焼成工程(各図フロー中の「第二焼成」の工程)と、である。
(Method for producing decorative ceramics)
And as a manufacturing method of the decorative ceramic of the Example of this invention, the basic process for obtaining the raw material of the following decorative ceramic at least is included. That is,
A substrate forming step of obtaining a molded body of a plate-like substrate (1) by first firing the substrate kneaded body (20) as a raw material of the substrate (1);
The embankment process (in each figure flow) which embanks the kneaded body (20) which knead | mixed the powder mixture and water used as the raw material of a shaping | molding layer (2) on one side of a base | substrate (1), and makes it into an embankment state (a). "Fill I" process)
Surface layer separation step (b) in which the surface layer portion (212) is naturally separated from the kneaded body (20) that has been left standing in the embankment state (a) and naturally dried for 24 hours or more and then embanked. In the “second drying A” step)
Surface layer removal step (c) in which the surface layer part (212) separated from the kneaded body (20) that has been embanked is removed to form a surface layer removal state (c) of only the lower layer part (211) When,
The lower layer part (211) of the kneaded body (20) after the surface layer removing step is second-fired together with the substrate (1), and the substrate (1) and the molded layer (2) are integrally formed (h And a firing step (step of “second firing” in each figure flow).
(層付加工程)
装飾セラミックスの原材の製造方法では、必要に応じて、上記各基本工程の後に、層付加工程をさらに具備することができる。層付加工程は、図3B中の「盛土II」及び「盛土III」の各工程、図3C中の「盛土II」及び「第三焼成」からなる工程、並びに図3C中の「盛土III」及び「第四焼成」からなる工程として、各実施例の製造方法のフロー図にそれぞれ示される。層付加工程は、例えば、表層除去工程後の除去表面の少なくとも一部分に、付加成形層(第二成形層(3)、第三成形層(4))の原料となる、粉粒混合物と水とを混練した粘土状の付加混練体(30,40)を盛土し焼成工程(第二焼成工程)によって焼成し、成形層(2)と共に付加成形層(第二成形層(3)、また必要に応じてさらに第三成形層(4))を形成する工程である。或いは層付加工程は、例えば、表層除去工程及び焼成工程後の焼成表面の少なくとも一部分に、付加成形層(第二成形層(3)、第三成形層(4))の原料となる、粉粒混合物と水とを混練した粘土状の付加混練体(30,40)を盛土して第三焼成し、或いはさらに第四焼成し、成形層(2)の上に付加成形層(第二成形層(3)、第三成形層(4))を形成する工程である。層付加工程として、後述の実施例2では、各成形層/付加成形層のための盛土後に焼成工程をまとめて行っている(図1B参照)。また後述の実施例3では、各成形層のための盛土の度に各盛土を成形層化するための第二、第三焼成工程を行っている(図1C参照)。このように、層付加工程によって複数回の盛土を行う場合は、盛土後の焼成をまとめて行うか、分けて行うかを問わず、焼成工程によって付加形成層が形成される工程をもって層付加工程が完了する。
(Layer addition process)
In the manufacturing method of the raw material of the decorative ceramics, a layer addition step can be further provided after the above basic steps, if necessary. The layer addition step includes the steps of “fill II” and “fill III” in FIG. 3B, the step consisting of “fill II” and “third firing” in FIG. 3C, and “fill III” in FIG. 3C and As a process consisting of “fourth firing”, each is shown in a flow chart of a manufacturing method of each example. In the layer addition step, for example, at least a part of the removal surface after the surface layer removal step, a mixture of powder and water, which is a raw material for the additional molding layer (second molding layer (3), third molding layer (4)), The clay-like additional kneaded body (30, 40) kneaded with the clay is fired in the firing step (second firing step), and the additional molding layer (second molding layer (3), as well as necessary, together with the molding layer (2). In response to this, a third forming layer (4)) is further formed. Alternatively, in the layer addition step, for example, at least a part of the firing surface after the surface layer removal step and the firing step is used as a raw material for the additional molding layer (second molding layer (3), third molding layer (4)). The clay-like additional kneaded body (30, 40) obtained by kneading the mixture and water is embanked and third-fired, or further fourth-fired, and an additional molded layer (second molded layer) is formed on the molded layer (2). (3) A step of forming a third molding layer (4)). As a layer addition process, in Example 2 described later, the firing process is performed collectively after embankment for each molding layer / additional molding layer (see FIG. 1B). In Example 3 to be described later, the second and third firing steps for forming each embankment into a forming layer are performed every time embankment for each forming layer is performed (see FIG. 1C). In this way, when performing the banking multiple times by the layer addition process, the layer addition process includes a process in which the additional formation layer is formed by the firing process regardless of whether the firing after the banking is performed collectively or separately. Is completed.
(仕上げ工程)
装飾セラミックスの製造方法では、必要に応じて、上記各基本工程の後に、又は層付加工程の後に、仕上げ工程をさらに具備することができる。仕上げ工程は、上記のようにして得られる装飾セラミックスの原材に、例えば釉薬の施釉及び釉焼、或いは彩色、模様等の転写、模様等の印字(プリント)とこれらの定着のための仕上げ焼成等によって仕上げ層(5´)を形成する工程である。仕上げ工程は、表面切削等の一つ以上の仕上げ工程を含んでいてもよい。さらに仕上げ焼成後の、出荷及び枠体等への取付前の最終状態とする工程を含んでいてもよい。例えば図1A(第一実施例)では第二焼成後に施釉、彩色仕上げ、及び仕上げ焼成を順に行って最終状態の原材を得ている。また図1B、図1C(第二実施例、第三実施例)では第二焼成後に施釉及び釉焼、転写及び焼成、並びに仕上げ焼成を順に行って最終状態の装飾セラミックスを得ている。
(Finishing process)
In the method for producing decorative ceramics, a finishing step can be further provided after each of the basic steps or after the layer addition step, if necessary. In the finishing process, for example, glaze application and glaze firing of the decorative ceramics obtained as described above, or transfer of coloring and patterns, printing of patterns and the like, and finish firing for fixing them This is a step of forming the finishing layer (5 ′) by, for example. The finishing process may include one or more finishing processes such as surface cutting. Further, it may include a step of making the final state after finish firing and before mounting on the frame and the like. For example, in FIG. 1A (first embodiment), after the second firing, glazing, coloring finish, and finish firing are sequentially performed to obtain a final raw material. Moreover, in FIG. 1B and FIG. 1C (2nd Example, 3rd Example), after the 2nd baking, a glaze and a sinter, transfer and baking, and finish baking are performed in order, and the decorative ceramic of the final state is obtained.
(素地形成フロー、層形成・彩色フロー)
上記各工程のうち素地形成工程は、図1A、図1B、図1Cの各左図に示す素地形成フローに属する。また上記各工程のうち盛土工程から出荷・取付までの各工程は、図1A、図1B、図1Cの各右図に示す層形成・彩色フローに属する。
(Ground formation flow, layer formation / coloring flow)
Of the above steps, the substrate forming step belongs to the substrate forming flow shown in the left diagrams of FIGS. 1A, 1B, and 1C. Of the above steps, each step from the embankment step to shipping / mounting belongs to the layer formation / coloring flow shown in the right diagrams of FIGS. 1A, 1B, and 1C.
(層形成・彩色フロー等のバリエーション)
上記製造方法のうち層形成・彩色フロー等には以下のいくつかのバリエーションがある。これらのバリエーションのいずれかを単独で選択するか、或いは複数のバリエーションを組み合わせて選択してもよい。
(Variations such as layer formation and coloring flow)
Among the manufacturing methods described above, there are several variations in the layer formation / coloring flow and the like. Any one of these variations may be selected alone, or a plurality of variations may be selected in combination.
先ず、層形成・彩色フロー等の第一のバリエーションとして、盛土工程から表層分離工程までの工程のセットを複数回繰り返し、前記繰り返し後に焼成工程を経たものとしてもよい。例えば図1B(実施例2)の層形成・彩色フローでは、粗目の調土Iの盛土工程セットと、粗目よりも小さい平均粒子径である中目の調土IIの盛土工程セットと、中目よりもさらに小さい平均粒子である細目の調土IIIの盛付工程(盛付III)とを順に行い、その後に第二焼成を行っている。具体的には、図2Bに示すフローにおいて、先ず粗目の調土Iの盛土工程セットとして、盛付工程(盛付I)から表層分離工程(第二乾燥A)を経て表層除去工程(加工)までを行った後、強制乾燥(第二乾燥B)を行う。次に中目の調土IIの盛土工程セットとして、盛付工程(盛付II)から自然又は強制乾燥による表層分離工程(第三乾燥)を経て部分的成形の表層除去工程(加工B)までを行い、そして次に細目の調土IIIの盛付工程(盛付III)を行い、これらによって3層に盛土された調土I,II、IIIをまとめて第二焼成している。 First, as a first variation such as layer formation / coloring flow, a set of steps from the embankment step to the surface layer separation step may be repeated a plurality of times, and the firing step may be performed after the repetition. For example, in the layer formation / coloring flow shown in FIG. 1B (Example 2), the coarse texture I fill process set, the medium texture II fill process set having an average particle size smaller than the coarse texture, Further, the step of depositing finely ground soil III, which is an average particle smaller than the above, is performed in order, and then the second firing is performed. Specifically, in the flow shown in FIG. 2B, first, as a banking process set of coarse texture I, a surface layer removal process (processing) through a surface layer separation process (second drying A) from a plating process (laying I). Then, forced drying (second drying B) is performed. Next, as a banking process set for medium-sized preparation II, from the filling process (filling II) to the surface layer removal process (process B) of partial molding through a surface layer separation process (third drying) by natural or forced drying Next, a fine filling III filling process (filling III) is performed, and the soils I, II, and III that have been filled in three layers by these are collectively fired second.
次に、上記層形成・彩色フロー等の第二のバリエーションとして、盛土工程から表層除去工程を経た焼成工程までの一連の工程のセットを、順に複数回繰り返して行ってもよい。例えば一連の工程のセットを2回繰り返す層形成・彩色フローとして、図1C(実施例3)の層形成・彩色フローでは、混練体(20)による盛土工程から表層分離工程、表層除去工程を経た第二焼成工程までの一連の工程のセットによって成形層(2)を固化成形したのち、固化成形層(2)上に、第二混練体(30)による盛土工程から表層分離工程、表層除去工程を経た第三焼成工程までの一連の工程のセットによって付加成形層たる第二成形層(3)を固化成形し、さらにそののち、固化成形層(2,3)上に、第三混練体(40)による盛土工程を経た第四焼成工程までの一連の工程のセットによって付加成形層たる第三成形層(4)を固化成形し、その後に施釉、彩色仕上げ等の表面加工と仕上げ焼成とを順に行うものとしてもよい。 Next, as a second variation of the layer formation / coloring flow and the like, a set of a series of steps from the embankment step to the firing step through the surface layer removal step may be repeated several times in order. For example, in the layer formation / coloring flow of FIG. 1C (Example 3) as a layer formation / coloring flow in which a series of process sets is repeated twice, the embedding process using the kneaded body (20) is followed by a surface layer separation process and a surface layer removal process. After the molding layer (2) is solidified and molded by a set of steps up to the second firing step, on the solidified molding layer (2), from the embankment step by the second kneaded body (30) to the surface layer separation step, the surface layer removal step The second molding layer (3), which is an additional molding layer, is solidified by a set of steps up to the third firing step through which the third kneaded body (2, 3) is further solidified. 40) Solidify and mold the third molding layer (4), which is an additional molding layer, by a set of steps from the embankment step to the fourth firing step, and then surface treatment such as glazing and coloring and finish firing. As what to do in order There.
このうち図1A、図1B、図1Cの右フローの盛土Iから仕上げ焼成までの各状態を概念図として示したのが図2〜図4のそれぞれである。図2は実施例1の各状態を、図3は実施例2の各状態を、図4は実施例3の各状態を、それぞれ示す。いずれの実施例においても、素地(1)の片面に混練体(20)を盛土した盛土状態(a)と、盛土状態(a)の混練体(20)が、自然乾燥によって表層部(212)と下層部(211)とに層分離した層分離状態(b)と、この層分離状態(b)の表層部(212)を除去手段(C)によって除去した表層除去状態(c)を経て、そして図3、図4の実施例では、前記除去面の上に第二成形層(3)ないし第三成形層(4)を層形成した焼成状態(h,h3)を経て、各層が層形成された最終状態となる。 Among these, FIGS. 2 to 4 show the states from the fill I to the finish firing in the right flow of FIGS. 1A, 1B, and 1C as conceptual diagrams. 2 shows each state of the first embodiment, FIG. 3 shows each state of the second embodiment, and FIG. 4 shows each state of the third embodiment. In any of the Examples, the embankment state (a) in which the kneaded body (20) is embanked on one side of the substrate (1) and the kneaded body (20) in the embankment state (a) are surface-layered (212) by natural drying. Through the layer separation state (b) separated into the lower layer part (211) and the surface layer removal state (c) in which the surface layer part (212) in the layer separation state (b) is removed by the removing means (C), In the embodiment of FIGS. 3 and 4, each layer is formed through a fired state (h, h3) in which a second molding layer (3) to a third molding layer (4) are formed on the removal surface. Will be in the final state.
(混練体(20)の表層分離)
特に本発明の実施例では、表層分離工程として、盛土した混練体(20)を第二焼成前に静置乾燥させることで、成形層(2)内にて含水率15%以上の表層部(212)が表層分離した表層分離状態とする(図2(b))ことを特徴とする。具体的には、含水率を15%以上とする粘土状の混練体(20)が盛土後に24時間以上の静置によって自然乾燥されることにより、比較的高含水率かつ比較的細かい粒子層からなる表層部(212)が、比較的低含水率かつ比較的粗い粒子層からなる下層部(211)の上層に自然分離した、層分離状態となる(図2(b))。表層部(212)の表層部化と下層部(211)の沈下とによって、成形層(2)は乾燥時に表面が保護され、かつ成形層(2)の下層内の微細粒子含有率がきわめて小さくなる。このため、成形層(2)が乾燥・焼成後に罅の発生やわれ、欠けを生じにくいものとなる。
(Surface layer separation of kneaded body (20))
Particularly in the examples of the present invention, as the surface layer separation step, the embankment kneaded body (20) is allowed to stand and dry before the second firing, whereby the surface layer portion (with a moisture content of 15% or more in the molding layer (2)) ( 212) is characterized in that the surface layer is separated (FIG. 2B). Specifically, the clay-like kneaded body (20) having a moisture content of 15% or more is naturally dried by standing for 24 hours or more after the embankment, so that a relatively high moisture content and a relatively fine particle layer can be obtained. The surface layer portion (212) is naturally separated into the upper layer of the lower layer portion (211) having a relatively low water content and a relatively coarse particle layer (FIG. 2 (b)). By forming the surface layer part (212) into a surface layer part and the lower layer part (211) sinking, the surface of the molding layer (2) is protected during drying, and the content of fine particles in the lower layer of the molding layer (2) is extremely small. Become. For this reason, generation | occurrence | production of a wrinkle is generated after drying and baking of a shaping | molding layer (2), and it will become difficult to produce a chip.
ここで、表層分離によって盛土表面に表れた表層部(212)は、含水率15%以上の高含水率層からなり、焼成後には例えば図5の拡大顕微鏡写真に示すような、表面粗度の比較的小さい平坦状層面を有し、また例えば図8の粒度分布グラフに示すような、モード径10μm以下かつD50メジアン径10μm以下の粒度分布の粉粒混合物を含有する。 Here, the surface layer part (212) which appeared on the embankment surface by surface layer separation consists of a high water content layer with a water content of 15% or more, and after firing, the surface roughness as shown in the enlarged micrograph of FIG. It has a relatively small flat layer surface and contains a powder mixture having a particle size distribution with a mode diameter of 10 μm or less and a D50 median diameter of 10 μm or less as shown in the particle size distribution graph of FIG.
また、下層部(211)は、表層部(212)よりも含水率が小さく、焼成後には例えば図6の拡大顕微鏡写真に示すような、表面粗度の比較的大きい凹凸層面を有し、また例えば図9の粒度分布グラフに示すような、モード径10μm超かつD50メジアン径10μm超の粒度分布の粉粒混合物を含有する。 Further, the lower layer portion (211) has a moisture content smaller than that of the surface layer portion (212), and has a concavo-convex layer surface having a relatively large surface roughness as shown in the enlarged micrograph of FIG. For example, as shown in the particle size distribution graph of FIG. 9, it contains a powder mixture having a particle size distribution with a mode diameter exceeding 10 μm and a D50 median diameter exceeding 10 μm.
(表層除去工程)
次に、表層除去工程として、表層分離した表面膜である表層部(212)を、カッターやレーザーナイフ、或いはサンドブラストショットを行うブラストガン等の除去手段(C)によって下層部(211)上から全除去する(図2(b)ないし図2(c))。表層除去工程によって表層部(212)をすべて除去することで、不均一な微細粒子層が除去され、比較的均一な下層部(211)の粗面が表出する。この粗面の表出によって、除去面上にさらに重畳形成される成形層や仕上げ層が定着性に優れたものとなる。なお前記除去手段は手加工によって行うもの、手動操作や自動操作によって機械的処理を行うもの、のいずれも含む。
(Surface layer removal process)
Next, as a surface layer removing step, the surface layer portion (212), which is a surface film separated from the surface layer, is completely removed from above the lower layer portion (211) by a removing means (C) such as a cutter, a laser knife, or a blast gun for performing a sandblast shot. It is removed (FIGS. 2B to 2C). By removing all the surface layer portion (212) by the surface layer removing step, the non-uniform fine particle layer is removed, and a relatively uniform rough surface of the lower layer portion (211) is exposed. By exposing the rough surface, the molded layer and the finish layer that are further superimposed on the removal surface have excellent fixability. The removal means includes both manual processing and mechanical processing by manual operation or automatic operation.
(第一焼成、第二焼成)
第一焼成は、板状に成形して強制乾燥させた素地の混練体を、1200℃以上の所定の第一焼成温度、かつ約3時間〜約10時間(好ましくは5時間〜10時間、或いは8時間〜10時間)の範囲の所定の焼成時間で単独焼成することで、成形層(2)の成形前に、予め成形体の素地(1)を得るものである。また第二焼成は、第一焼成後の素地(1)の層形成面に盛土された混練体(20)を、予焼成済みの素地(1)と共に、前記第一焼成温度を超えない焼成温度、かつ前記第一焼成温度を超えない焼成時間で焼成することで、素地(1)と成形層(2)との一体成形体を得るものである。ここで第二焼成の焼成温度は、焼成時間全体に亘って、前記第一焼成の焼成温度よりも低く、或いは、第二焼成の焼成時間は第一焼成時間よりも短時間とされることが好ましい。これにより、第二焼成によって付与される熱エネルギーの総量は第一焼成によって付与される熱エネルギーの総量よりも小さくなる。素地(1)は事前に第一焼成された予焼成済みの成形体であるため、第二焼成時には、予め大部分の熱収縮を完了している。このため第一焼成後の第二焼成によってさらに大きく収縮することはない。さらに線膨張係数の比較的小さいペタライトを主剤とする成形層(2)と共に焼成されることで、素地(1)及び成形層(2)が共に熱収縮性の比較的小さいものとなる。このため、加熱による過度な収縮変形を防ぐことができる。
(First firing, second firing)
In the first firing, a base kneaded body formed into a plate shape and forcibly dried is subjected to a predetermined first firing temperature of 1200 ° C. or higher and about 3 hours to about 10 hours (preferably 5 hours to 10 hours, or The base body (1) of the molded body is obtained in advance before molding the molding layer (2) by firing alone for a predetermined firing time in the range of 8 hours to 10 hours. In the second firing, the kneaded body (20) embanked on the layer-forming surface of the base (1) after the first firing, together with the pre-fired base (1), does not exceed the first firing temperature. And by baking with the baking time which does not exceed said 1st baking temperature, the integral molded object of a base material (1) and a shaping | molding layer (2) is obtained. Here, the firing temperature of the second firing may be lower than the firing temperature of the first firing over the entire firing time, or the firing time of the second firing may be shorter than the first firing time. preferable. Thereby, the total amount of thermal energy applied by the second firing is smaller than the total amount of thermal energy applied by the first firing. Since the substrate (1) is a pre-fired molded body that has been first fired in advance, most of the thermal shrinkage has been completed in advance during the second firing. For this reason, it does not shrink further by the second baking after the first baking. Furthermore, by baking together with the molding layer (2) mainly composed of petalite having a relatively small linear expansion coefficient, both the substrate (1) and the molding layer (2) have relatively small heat shrinkability. For this reason, excessive shrinkage deformation due to heating can be prevented.
<実施例1>
実施例1の装飾セラミックスの原材及び装飾セラミックス、並びにこれらの製造方法を図1A及び図2を参照して説明する。
(A)実施例1の装飾セラミックスの原材及び装飾セラミックス
図1A及び図2に示す実施例1の装飾セラミックスの原材は、第一乾燥とその後の第一焼成とによって板状に成形した締焼素材である素地(1)を予めストックしておき(図1A左フロー)、所定サイズに切断した素地(1)の上面の層成形面に、成形層(2)の原料となる粉粒混合物を調合して水と混練(調土I)してなる混練体(20)を、所定厚さで一層形成(盛土I)(図1A右フロー(a)及び図2(a))する。そして、その後の第二乾燥たる24時間以上の自然乾燥によって盛土状態の混練体(20)の層から表層部(212)を表層分離させ、削り加工により下層部(211)から表層部(212)を除去する(図1A右フロー(c)及び図2(c))。その後、残りの下層部(211(211´))を第二乾燥たる強制乾燥(たとえば、乾燥温度60℃〜200℃で1時間〜24時間の範囲内の乾燥)によって乾燥状態とし、その後の第二焼成(h)により成形層(22´(2))として得られる(図1A右フロー(h)及び図2(h))。
<Example 1>
The raw material of decorative ceramics and decorative ceramics of Example 1 and the manufacturing method thereof will be described with reference to FIGS. 1A and 2.
(A) Decorative ceramic raw material and decorative ceramic of Example 1 The decorative ceramic raw material of Example 1 shown in FIGS. 1A and 2 is a plate formed by first drying and subsequent first firing. The base material (1), which is a baked material, is stocked in advance (the left flow in FIG. 1A), and the powder mixture becomes the raw material of the forming layer (2) on the upper surface of the base material (1) cut into a predetermined size. A kneaded body (20) formed by mixing and kneading with water (soil preparation I) is formed in one layer (banking I) with a predetermined thickness (right flow (a) and FIG. 2 (a) in FIG. 1A). Then, the surface layer portion (212) is separated from the layer of the kneaded body (20) in the embankment state by natural drying for 24 hours or more, which is the second drying thereafter, and the surface layer portion (212) from the lower layer portion (211) by shaving. (FIG. 1A right flow (c) and FIG. 2 (c)). Thereafter, the remaining lower layer portion (211 (211 ′)) is dried by forced drying (for example, drying within a range of 1 hour to 24 hours at a drying temperature of 60 ° C. to 200 ° C.). It is obtained as a molded layer (22 '(2)) by two firings (h) (FIG. 1A right flow (h) and FIG. 2 (h)).
実施例1の装飾セラミックスは、このようにして得られた装飾セラミックスの原材に仕上げ加工を施すことで得られる。本例では、仕上げ加工として、原材に施釉を行い、手彩色及びスプレー塗布にて彩色を施し、最後に仕上げ焼成を施す(z)ことによって得られる。なお前記手彩色とスプレー塗布のいずれかのみによる彩色を行ってもよい。
ここで成形層(2)は、脱水状態である最終状態の成形体におけるペタライト配合率(PR2)が40w%以上75w%以下であり、ペタライトを主剤とする。但し実施例1では、素地(1)はペタライトを含まない。
The decorative ceramic of Example 1 can be obtained by finishing the raw material of the decorative ceramic thus obtained. In this example, as a finishing process, the raw material is glazed, hand-colored and colored by spray coating, and finally finished firing (z). In addition, you may perform the coloring by only one of the said hand coloring and spray application.
Here, the molding layer (2) has a petalite compounding ratio (PR2) of 40% by weight or more and 75% by weight or less in the final state of the molded body in a dehydrated state, and is mainly composed of petalite. However, in Example 1, the substrate (1) does not include petalite.
具体的には、実施例1の装飾セラミックスの原材は、図2に示すように、
吸水性を有するものとして予め板状に固化形成された、ペタライトを含まない素地(1)と、
素地(1)の板上面である層形成面に所定厚さで層形成された、ペタライトを主剤とする成形層(2)とを含んでいる。
これを原材とする装飾セラミックスは、さらに成形層(2)の層上面に所定厚さで施釉等された仕上げ層(5´)を一体的に形成してなる(図2(z))。
Specifically, the decorative ceramic raw material of Example 1 is as shown in FIG.
A substrate (1) that does not contain petalite, which is solidified in advance as a plate having water absorbency,
It includes a molding layer (2) containing petalite as a main ingredient, which is layered with a predetermined thickness on a layer forming surface which is the top surface of the substrate (1).
The decorative ceramic using this as a raw material is formed by integrally forming a finish layer (5 ') that is glazed with a predetermined thickness on the upper surface of the molding layer (2) (FIG. 2 (z)).
(層境界部分)
図7に、実施例1の最終状態の素地(1)と成形層(2)との層境界部分の部分拡大図を示す。図7左図は電子顕微鏡による30倍拡大写真であり、図7右図は各層の層境界線のスケッチ図を示す。図7に示すように、素地(1)は、成形層(2)が層形成される層形成面全体に微細凹凸部を有してなる。そして成形層(2)のうち少なくとも素地(1)と隣接する層部分は、ペタライトを主剤とし、かつ前記素地(1)の前記微細凹凸部(図7右図の破線)に沿って隙間なく投錨様に定着されている。
(Layer boundary part)
In FIG. 7, the elements on larger scale of the layer boundary part of the base body (1) of the final state of Example 1 and a shaping | molding layer (2) are shown. The left figure of FIG. 7 is a 30 times magnified photograph by an electron microscope, and the right figure of FIG. 7 shows a sketch of the layer boundary line of each layer. As shown in FIG. 7, the substrate (1) has fine uneven portions on the entire layer forming surface on which the molding layer (2) is formed. And at least the layer portion adjacent to the substrate (1) in the molding layer (2) is made of petalite as the main agent, and is cast without any gap along the fine irregularities of the substrate (1) (broken line in the right figure of FIG. 7). Is well established.
(素地(1))
実施例1の素地(1)は、ペタライトを含まない粘土を主剤とし、これにロー石及び長石を加えて焼成成形した焼成板状材からなる。実施例1の素地(1)の焼成成形前の原料は、主剤である粘土に、少なくともロー石または陶石と、シャモット等の骨材と、解膠剤とを加え、さらに発泡剤及び糊剤を加え、これらを水と混ぜて得た、素地の混練体(20)からなる。実施例1の素地(1)は、前記素地の混練体(20)を板状に成形し、第一乾燥として60℃以上200℃以下の所定の加熱温度で概ね1時間〜24時間の範囲内で加熱乾燥させた後に、1200℃〜1250℃の範囲内に設定した第一焼成温度、かつ約10時間の焼成時間で第一焼成する第一焼成工程を経ることによって、吸水性を有する固化した板状体として得られる(図1A左フローに示す素地形成工程)。
(Base (1))
The substrate (1) of Example 1 is composed of a calcined plate-like material obtained by calcining a clay containing no petalite as a main ingredient and adding rholite and feldspar thereto. The raw material before firing molding of the base (1) of Example 1 is at least rhostone or porcelain, aggregate such as chamotte, and peptizer, and the foaming agent and paste. And kneaded body (20) obtained by mixing these with water. The substrate (1) of Example 1 is obtained by forming the kneaded body (20) of the substrate into a plate shape, and within a range of approximately 1 hour to 24 hours at a predetermined heating temperature of 60 ° C. or more and 200 ° C. or less as the first drying. After having been heated and dried at 1, the first baking temperature set in the range of 1200 ° C. to 1250 ° C. and the first baking step of first baking at a baking time of about 10 hours, solidified having water absorption. Obtained as a plate-like body (substrate forming step shown in the left flow of FIG. 1A).
(成形層(2))
実施例1の成形層(2)は、ペタライトを主剤とする第一の粉粒混合物に水を混練して得た混練体(20)を、素地(1)の片面に盛土して盛土状態(a)とし、これを第二乾燥たる24時間以上の自然乾燥によって表層部(212)が表層分離した表層分離状態(b)とし、当該表層部(212)を除去した表層除去状態(c)を経て下層部(211(211´))のみに単独形成し、さらにこの単独形成した下層部(211(211´))を強制乾燥によって素地(1)と共に乾燥状態とした後に、素地と共に、第一焼成温度より低い1150℃〜1200℃の範囲の第二焼成温度で、且つ、第一焼成時間と略同じ約10時間の焼成時間で第二焼成することで形成される。実施例1の成形層(2)は少なくとも♯52ペタライトを40w(weight:重量)%以上含んで脱水状態として素地(1)上に溶融・固化した固形層である。
(Molded layer (2))
The molding layer (2) of Example 1 was prepared by embedding a kneaded body (20) obtained by kneading water into the first powder mixture containing petalite as a main component on one side of the substrate (1) ( a), the surface layer separation state (b) in which the surface layer portion (212) is separated into the surface layer by natural drying for 24 hours or more which is the second drying, and the surface layer removal state (c) in which the surface layer portion (212) is removed After forming the single layer only in the lower layer (211 (211 ')), the single layer (211 (211')) formed into a dry state with the substrate (1) by forced drying, It is formed by second firing at a second firing temperature in the range of 1150 ° C. to 1200 ° C., which is lower than the firing temperature, and for a firing time of about 10 hours which is substantially the same as the first firing time. The molding layer (2) of Example 1 is a solid layer that contains at least 40 wt% of # 52 petalite and is melted and solidified on the substrate (1) in a dehydrated state.
(混練体(20))
成形層(2)の、第二焼成による固化前の原材である混練体(20)は、第二焼成前の粘土状の状態において、ペタライトを主剤に含む粉粒混合物と、水と、を混練した粘土状の状態からなる。この混練体(20)が、第二焼成前に、素地(1)の層形成面上に盛土されたまま24時間以上自然乾燥されることによって、盛土内の水が、層形成面から素地(1)内に吸収され、半固化状態にまで脱水した被吸水状態となる。混練体(20)を構成する盛土前の混練体(20)の含水率は15%以上50%以下、好ましくは17%以上50%以下であるが、盛土後の静置乾燥によって、盛土状態の混練体(20)が第二焼成の前に素地(1)内へ吸水されて半固化の乾燥した状態となる。
(Kneaded body (20))
The kneaded body (20), which is the raw material before solidification by the second firing of the molding layer (2), is a clay-like state before the second firing, a powder mixture containing petalite as a main ingredient, and water. It consists of a kneaded clay-like state. The kneaded body (20) is naturally dried for 24 hours or more while being embanked on the layer forming surface of the substrate (1) before the second firing, so that water in the embankment is allowed to flow from the substrate ( 1) It is absorbed in and becomes a water-absorbed state dehydrated to a semi-solidified state. The water content of the kneaded body (20) before embankment constituting the kneaded body (20) is 15% or more and 50% or less, preferably 17% or more and 50% or less. The kneaded body (20) is absorbed into the substrate (1) before the second baking, and becomes semi-solidified and dried.
成形層(2)を焼成固化する前の混練体(20)は具体的には、♯52ペタライト40w%以上75w%以下と、粘土材(蛙目粘土、ロー石、陶石のうちの少なくとも2種以上)4w%以上22w%以下と、0.05w%以上0.4w%以下の無機解膠材と、を混合させた粉粒混合物に、含水率17%以上50%以下となるように水を混練させた粘土状体からなる。♯52ペタライトと、蛙目粘土、ロー石、陶石の少なくとも2種以上からなる粘土材とを配合させることで、5μmから100μmまでに分散した粒子径範囲の粗密粒子を含むものとなっている。また混練体(20)を第二焼成して成形層(2)としたとき、成形層(2)単独の線膨張係数が0.1〔×10-6/K〕以上1.5〔×10-6/K〕以下、好ましくは線膨張係数0.2〔×10-6/K〕以上0.8〔×10-6/K〕以下であることが好ましい。 Specifically, the kneaded body (20) before firing and solidifying the molding layer (2) is # 52 petalite 40 w% or more and 75 w% or less, and a clay material (at least 2 out of Sasame clay, rhostone, pottery stone). Seed or higher) 4w% or more and 22w% or less, and 0.05w% or more and 0.4w% or less inorganic peptizer mixed with the powder mixture, so that the water content is 17% or more and 50% or less. It is made of a clay-like material kneaded with. By blending # 52 petalite with clay material consisting of at least two kinds of glazed clay, rhostone and porcelain, it contains coarse particles with a particle diameter range of 5 μm to 100 μm. . When the kneaded body (20) is second-fired to form a molded layer (2), the linear expansion coefficient of the molded layer (2) alone is 0.1 [× 10 −6 / K] or more and 1.5 [× 10 −6 / K] or less, preferably 0.2 [× 10 −6 / K] or more and 0.8 [× 10 −6 / K] or less.
実施例1の混練体(20)は、粉粒混合物に水を混練し、調土することによって得られる。この混練体(20)の原料となる、水を混練させる前の粉粒混合物における、各混合成分の配合率は、ペタライトが55w%以上65w%以下であり、無機解膠材が0.1w%以上0.4w%以下であることが好ましい。前記配合率であれば、ペタライトが混練体(20)内で十分な分散性を有し、素地(1)に吸水されるに充分な含水量を有するものとなる。そして、成形後の成形層(2)中のペタライトが、55w%以上65w%以下の配合率をもって十分に分散した状態で良好な定着性をもって溶融・固化したものとなる。 The kneaded body (20) of Example 1 is obtained by kneading water into a powder mixture and preparing the soil. In the powder mixture before kneading water, which is a raw material of the kneaded body (20), the blending ratio of each mixed component is 55 w% or more and 65 w% or less for petalite, and 0.1 w% for the inorganic peptizer. It is preferable that it is 0.4 w% or less. If it is the said mixture rate, petalite will have sufficient dispersibility in a kneaded body (20), and will have sufficient water content for water absorption to a base material (1). Then, the petalite in the molded layer (2) after molding is melted and solidified with good fixability in a sufficiently dispersed state with a blending ratio of 55 w% to 65 w%.
素地(1)に吸水されることで被吸水状態となった盛土は、粘土状態の粉粒混合物が層形成面に投錨した投錨状態となる。混練体(20)が前記投錨状態かつ被吸水状態のまま素地(1)と共に第二焼成されることで、素地(1)と共に溶融しながら、素地(1)の表面の微細凹凸部に投錨した成形層(2)として、素地(1)と一体化する。一体化後の成形層(2)は、微細凹凸部に沿って密着した状態となっている。 The embankment that has become water-absorbed by being absorbed by the substrate (1) is in an anchored state in which the clay-like powder mixture is anchored on the layer forming surface. The kneaded body (20) was second-fired together with the substrate (1) while being in the thrown and water-absorbed state, so that the kneaded body (20) was thrown onto the fine irregularities on the surface of the substrate (1) while melting with the substrate (1). The molded layer (2) is integrated with the substrate (1). The molded layer (2) after the integration is in close contact along the fine irregularities.
混練体(20)の混練組成によると、盛土I後の24時間以上の自然乾燥によって、粘土材に含まれるD50のメジアン径を10μm以下とし、或いはモード径を10μm以下とする細かい粒子の分散層が、高い含水率の表層部として成形層(2)の表側に分離することとなる(図9)。その一方、表層部(212)よりも下部に沈下した下層部(211)はD50のメジアン径が10μm超、或いはモード径が10μm超となった粗い粒子の分散層となる。表層部(212)の表層部化と下層部(211)の沈下とによって、成形層(2)は乾燥時に表面が保護され、かつ成形層(2)の下層内の微細粒子含有率がきわめて小さくなる。このため、成形層(2)が乾燥・焼成後にヒビやワレ、欠けを生じにくいものとなる。 According to the kneaded composition of the kneaded body (20), a fine particle dispersion layer in which the median diameter of D50 contained in the clay material is 10 μm or less or the mode diameter is 10 μm or less by natural drying for 24 hours or more after embankment I. However, it will be separated on the front side of the molding layer (2) as a surface layer portion having a high water content (FIG. 9). On the other hand, the lower layer portion (211) submerged below the surface layer portion (212) is a dispersed layer of coarse particles having a D50 median diameter of more than 10 μm or a mode diameter of more than 10 μm. By forming the surface layer part (212) into a surface layer part and the lower layer part (211) sinking, the surface of the molding layer (2) is protected during drying, and the content of fine particles in the lower layer of the molding layer (2) is extremely small. Become. For this reason, the molding layer (2) is less likely to be cracked, cracked or chipped after being dried and fired.
(B)実施例1の装飾セラミックスの原材及び装飾セラミックスの製造方法
実施例1の装飾セラミックスの原材、及び該原材を用いる装飾セラミックス、のそれぞれ製造方法は、図1A及び図2に示すように、以下の各工程を具備してなる。
<図1A左図に示す素地形成フロー>
素地原料となる材料を調合(調土)して水と混ぜて細磨処理することで、素地の混練体を得る。この素地の混練体を板状に成形して第一乾燥として60℃以上200℃以下で加熱乾燥させた後に、1200℃〜1250℃の範囲内の第一焼成温度で第一焼成することで、締焼状態の板状の素地(1)とする素地形成工程を含む、素地形成フロー。素地(1)はストックされ、次の盛土工程の前に所定平面形状に切断される。
<図1A右図に示す層形成・彩色フロー>
層形成フローは次の工程を含む。すなわち、
所定寸法に切断した素地(1)の周囲に枠材(F)を取り付け、素地(1)の上面である層形成面上に、粉粒原料の粉粒混合物と水とを混練(調土I)させてなる粘土状の混練体(20)を所定厚さで盛土して盛土状態(a)とする盛土(盛土I)工程と、
混練体(20)を盛土状態とした盛土を24時間以上の静置による自然乾燥によって表層分離させた半固化状態の表層分離状態(b)とする表層分離(第二乾燥A)工程と、
表層分離工程によって表層分離した表層部(212)を除去手段(C)(本例では切除刃)によって除去すると共に、下層部(211)の上部を表面側から、湾曲傾斜した切削面を以て切削加工して、半固化状態の成形加工済みの下層部(221´)(前駆体)のみとして、加工状態・かつ表層除去状態(c)とする表層除去(加工)工程と、
下層部(211(211´))のみからなる表層除去状態の半固化状態の盛土と、予め固化成形された素地(1)と、を共に、第一焼成温度よりも低い1150℃〜1200℃の範囲内の第二焼成温度で第二焼成することで、成形層(2)である第一成形層を、素地(1)上に密着した重ね固形層として得る第二焼成工程と、である。
そして実施例の装飾セラミックスは、このようにして得られる装飾セラミックスの原材に例えば次のような仕上げ処理を施して得られる。すなわち、
付加成形層である第二成形層(3)の表面全体に釉薬を施釉する施釉工程と、
釉薬を施釉した表面に、手作業及びスプレー塗布等によって彩色を施す彩色工程と、
第二焼成温度よりも低い仕上げ焼成温度で全体をまとめて仕上げ焼成し、仕上げ層(5´)を形成する仕上げ焼成工程と、である。
(B) The raw material of the decorative ceramic of Example 1 and the method of manufacturing the decorative ceramic The manufacturing method of the raw material of the decorative ceramic of Example 1 and the decorative ceramic using the raw material are shown in FIGS. 1A and 2. Thus, it comprises the following steps.
<Ground formation flow shown in the left figure of FIG. 1A>
The base material is prepared (prepared), mixed with water and finely ground to obtain a base kneaded body. After forming the kneaded body of this base into a plate shape and heat drying at 60 ° C. or more and 200 ° C. or less as the first drying, first firing at a first firing temperature within a range of 1200 ° C. to 1250 ° C. A substrate forming flow including a substrate forming step of making a plate-like substrate (1) in a baked state. The substrate (1) is stocked and cut into a predetermined planar shape before the next embankment process.
<Layer formation / coloring flow shown in the right figure of FIG. 1A>
The layer formation flow includes the following steps. That is,
A frame material (F) is attached to the periphery of the substrate (1) cut to a predetermined size, and the powder mixture of the particle raw material and water are kneaded on the layer forming surface which is the upper surface of the substrate (1) (Soil Preparation I ) A clay-like kneaded body (20) that is embanked at a predetermined thickness to form an embankment state (a);
A surface layer separation (second drying A) step in which the embankment with the kneaded body (20) in the embankment state is separated into a surface layer separated state (b) in a semi-solidified state by surface drying by natural drying by standing for 24 hours or more;
The surface layer part (212) separated by the surface layer separation step is removed by the removing means (C) (in this example, a cutting blade), and the upper part of the lower layer part (211) is cut from the surface side with a curved inclined cutting surface. And, as a semi-solidified lower layer portion (221 ') (precursor) that has been processed, a surface layer removal (processing) step that is a processing state and a surface layer removal state (c),
Both the embankment in the semi-solidified state of the surface layer removal state consisting only of the lower layer part (211 (211 ′)) and the base (1) solidified and molded in advance are 1150 ° C. to 1200 ° C. lower than the first firing temperature. A second firing step of obtaining the first molded layer as the molded layer (2) as a stacked solid layer in close contact with the substrate (1) by second firing at a second firing temperature within the range.
And the decorative ceramic of an Example is obtained by giving the following finishing processes to the raw material of the decorative ceramic obtained in this way, for example. That is,
A glazing step of glazing the entire surface of the second molding layer (3), which is an additional molding layer,
A coloring process for coloring the surface of the glaze by manual work or spray application,
A finish firing step in which the whole is collectively fired at a finish firing temperature lower than the second firing temperature to form a finish layer (5 ').
上記実施例1の製造方法における工程についてさらに説明する。
(素地形成工程)
先ず、素地形成フローたる素地形成工程として、粉粒混合物と水を混練させて得た粘土状の素地原料をミルで細磨、混練し、板状に成形した状態で、60℃以上200℃以下の所定の加熱温度で概ね1時間〜24時間加熱乾燥させた後、1200℃〜1250℃の範囲内の第一焼成温度、かつ約3時間〜約10時間の焼成時間で第一焼成し、板状の締焼素材を固化材として予成形する。なお第一焼成の焼成時間は5時間〜10時間の範囲内に設定することが好ましく、さらにいえば8時間〜10時間の範囲内に設定することが好ましい。かかる素地形成工程によって、予め固化形成した板状の素地(1)の締焼素材を乾燥状態でストックしておく。この締焼素材は基材としての役割を果たすと共に、混練体(20)中に配合された発泡剤が発泡してなる多数の微細孔が内部に分散した状態で板状成形される。素地(1)はこの多数の微細孔によって吸水性を有するものとなっている。また上面の層形成面全体に亘って数μm(1μm以上10μm以下)の最大凹凸間高さの微細凹凸部が形成されている。
The steps in the manufacturing method of Example 1 will be further described.
(Base formation process)
First, as a substrate forming process that is a substrate forming flow, a clay-like raw material obtained by kneading a powder mixture and water is finely ground in a mill, kneaded, and molded into a plate shape, in a state of 60 to 200 ° C. The first baking is performed at a predetermined heating temperature of about 1 hour to 24 hours, and then first baking is performed at a first baking temperature within a range of 1200 ° C. to 1250 ° C. and a baking time of about 3 hours to about 10 hours. Pre-molded as a solidified material. The firing time for the first firing is preferably set in the range of 5 hours to 10 hours, and more preferably in the range of 8 hours to 10 hours. In this substrate forming step, the sintered material of the plate-like substrate (1) solidified and formed in advance is stocked in a dry state. This baked material serves as a base material, and is formed into a plate shape with a large number of micropores formed by foaming the foaming agent blended in the kneaded body (20) dispersed therein. The substrate (1) has water absorption due to the large number of fine holes. In addition, a fine uneven portion having a maximum height of unevenness of several μm (1 μm or more and 10 μm or less) is formed over the entire layer formation surface on the upper surface.
ストックされた素地(1)は、所定大の矩形形状に切断されて下記の盛土工程に使用される。素地(1)の切断寸法はここでは平面視で900mm×3000mm、厚さ20mmである。素地(1)の厚さは8mm〜30mm程度の範囲内で調整されることが好ましいが、厚さ、切断寸法を含めて前記範囲に限定されるものではない。素地(1)の寸法については後述する実施例2,3についても同様である。 The stocked substrate (1) is cut into a predetermined rectangular shape and used in the embankment process described below. Here, the cut dimensions of the substrate (1) are 900 mm × 3000 mm and thickness 20 mm in plan view. The thickness of the substrate (1) is preferably adjusted within a range of about 8 mm to 30 mm, but is not limited to the above range including the thickness and the cut dimensions. The dimensions of the substrate (1) are the same in Examples 2 and 3 described later.
(盛土工程)
次に盛土工程として、前記切断された素地(1)の周囲四辺に沿って、非吸水材からなる棒状の枠材(F)を、上半部が上方へ突出するように貼り付け、そして、枠材(F)によって形成された枠内であって、素地(1)の上面である層形成面に、粉粒混合物と水とを混練してなる粘土状の混練体(20)を所定厚さとなるように略均一の厚さで盛土する。本工程後には固形の素地(1)の層形成面上に、枠材(F)によって囲まれた粘土状の混練体(20)が盛土された盛土状態となっている(図2(a))。上記混練体(20)は、40w%以上75w%以下もの高配合率の♯52ペタライトを、4w%以上22w%以下の粘土材(蛙目粘土、ロー石、陶石のうちの少なくとも2種以上)と0.05w%以上0.4w%以下の無機解膠材とによって比較的均一に分散させ、かつ粘土材の配合と17%以上もの高い含水率によって、比較的粗い粒子と微細粒子の両方を含む混練体(20)となっている。
(Filling process)
Next, as the embankment process, along the four sides around the cut substrate (1), stick the rod-shaped frame material (F) made of a non-water-absorbing material so that the upper half projects upward, and A clay-like kneaded body (20) obtained by kneading the powder mixture and water on a layer forming surface which is an upper surface of the substrate (1) in a frame formed by the frame material (F) has a predetermined thickness. Fill with a substantially uniform thickness. After this step, the clay-like kneaded body (20) surrounded by the frame material (F) is filled on the layer forming surface of the solid substrate (1) (FIG. 2 (a)). ). The kneaded body (20) is made of # 52 petalite having a high blending ratio of 40 w% or more and 75 w% or less, and a clay material of 4 w% or more and 22 w% or less (at least two kinds of glazed clay, rhostone, and ceramic stone) ) And an inorganic peptizer of 0.05 w% to 0.4 w%, and both relatively coarse and fine particles due to the blend of clay material and a high water content of 17% or more. The kneaded body (20) containing
混練体(20)の盛土厚さは、前記切断寸法例の素地(1)に対してここでは10mm程度である。盛土による成形層(2)の層厚さは、素地(1)厚さよりも小さい3mm〜20mmの範囲内で調整されることが好ましいが、前記版に限定されるものではない。混練体(20)の盛土厚さについては後述する実施例2,3についても同様である。 The embankment thickness of the kneaded body (20) is about 10 mm in this case with respect to the substrate (1) of the above-described cut dimension example. The layer thickness of the molding layer (2) by embankment is preferably adjusted within a range of 3 mm to 20 mm smaller than the base (1) thickness, but is not limited to the plate. The same applies to the embankment thickness of the kneaded body (20) in Examples 2 and 3 described later.
(表層分離工程)
次に表層分離工程として、盛土状態の盛土20及び素地(1)を常温で静置乾燥することによって、盛土した混練体(20)を、含水率15%以上(15〜80%)の薄層状の表層部(212)と、含水率15%未満(0.1%〜14.0%)の下層部(211)とに層分離させる。この層分離は、比較的小さい粒径の粘土材が水粒子を多量に伴う帯電状態となり、盛土層の表層部分に薄膜状に浮き上がることによって起こる。一方、残りの比較的大きい粒径の粘土材及びペタライト材が、24時間以上の静置による自然乾燥(乾燥工程A)によって混練体(20)の下部に沈降し、盛土層の下部に接した層形成面から素地(1)に吸水されることで、半固化状態からなる大部分の厚さの下層部(211)となる(図2(b))。
(Surface layer separation process)
Next, as the surface layer separation step, the embankment 20 and the base material (1) in the embankment state are left to stand and dry at room temperature, so that the embedding body (20) that has been embanked is a thin layer with a moisture content of 15% or more (15 to 80%). Are separated into a surface layer portion (212) and a lower layer portion (211) having a water content of less than 15% (0.1% to 14.0%). This layer separation occurs when a clay material having a relatively small particle diameter becomes charged with a large amount of water particles and floats in a thin film shape on the surface layer portion of the embankment layer. On the other hand, the remaining relatively large particle size clay material and petalite material settled to the lower part of the kneaded body (20) by natural drying (drying process A) by standing for 24 hours or more, and contacted the lower part of the embankment layer. By absorbing water from the layer forming surface to the substrate (1), it becomes a lower layer part (211) having a large thickness of a semi-solidified state (FIG. 2 (b)).
(表層部(212))
表層部(212)は、含水率15%以上の混練体(20)を、吸水性の素地(1)上で24時間以上の長時間をかけて自然乾燥させることによって盛土の表面に浮出した、微細粒子を多量に含む高含水率の薄層である。具体的には、盛土20層内にて含水率15%以上の高含水率を有し、粘土材に含まれるD50のメジアン径を10μm以下とし、或いはモード径を10μm以下とする細かい粒子のみを含む微細粒の分散薄層となっている。この表層部(212)は、D50のメジアン径10μm以下、或いはモード径10μm以下の少なくともいずれかの条件を満たしていれば、微細粒の分散薄層として好ましいが、さらに言えば前記両条件を共に備えること、すなわちD50のメジアン径10μm以下且つモード径10μm以下であることが、平坦面を構成するための微細粒の分散薄層として、より好ましい。
(Surface part (212))
The surface layer part (212) was raised on the surface of the embankment by naturally drying the kneaded body (20) having a water content of 15% or more on the water-absorbing substrate (1) over a long period of 24 hours or more. A thin layer with a high water content containing a large amount of fine particles. Specifically, only fine particles having a high water content of 15% or more in the embankment 20 layers, the median diameter of D50 contained in the clay material being 10 μm or less, or the mode diameter being 10 μm or less. It is a dispersed thin layer of fine grains. This surface layer portion (212) is preferable as a dispersed thin layer of fine particles if it satisfies at least one of the conditions of D50 median diameter of 10 μm or less, or mode diameter of 10 μm or less. In other words, it is more preferable that the D50 has a median diameter of 10 μm or less and a mode diameter of 10 μm or less as a fine dispersed thin layer for constituting a flat surface.
実施例1の表層部(212)の代表的な粒度分布は、図8の粒度対数頻度グラフに示すような突出した1ピークを有する分散曲線を示し、D50メジアン径及びモード径が、共に5μm以上8μm以下(図8ではメジアン径7.25μm、モード径7.18μm)となる。なお実施例1では、本表層部(212)をその後の表層除去工程によって全除去してから焼成するのであるが、仮に表層部(212)を表層除去せずにそのまま焼成した場合には、その固化層面は、図5に示すような100倍未満の走査電子顕微鏡観察(図5では加速電圧20.00kV、倍率30倍)において、100μmの粒状体が一つも現れない平坦面となる。 The representative particle size distribution of the surface layer portion (212) of Example 1 shows a dispersion curve having one prominent peak as shown in the particle size logarithmic frequency graph of FIG. 8, and both the D50 median diameter and the mode diameter are 5 μm or more. 8 μm or less (in FIG. 8, the median diameter is 7.25 μm and the mode diameter is 7.18 μm). In Example 1, the surface layer portion (212) is completely removed by the subsequent surface layer removing step and then fired. However, if the surface layer portion (212) is directly fired without removing the surface layer, The solidified layer surface is a flat surface in which no granular material of 100 μm appears in a scanning electron microscope observation of less than 100 times as shown in FIG. 5 (acceleration voltage 20.00 kV, magnification 30 times in FIG. 5).
(下層部(211))
下層部(211)は盛土20層内で水と分離して沈降した、代表径10μm以上のペタライト及び粘土材を主剤とする半固化状態の粘土層からなる。実施例では盛土20が吸水性を有する素地(1)に吸水されるとともに表面から蒸発することで脱水され、枠材を取り外しても自己成形性を有する粘土層となる。下層部(211)は具体的には、盛土20層内にて含水率15%未満(0.1%〜14.0%)の低含水率であり、D50のメジアン径を10μm超とし、かつモード径を10μm以下とする粗粒子のみを含む粗粒の分散層となっている。実施例1の下層部(211)の代表的な粒度分布は、図9の粒度対数頻度グラフに示すような突出した2ピーク以上を有する分散曲線を示し、D50メジアン径及びモード径が、共に10μmを大きく超えた、50μm以上150μm以下(図9ではメジアン径59.17μm、モード径82.96μm)の範囲内となる。但し厳密に言えば、下層部(211)内においても、素地に近い下方部分となる程、層内に含まれる分散粒子の平均粒径が大きく、また逆に下層表面に近い上方部分となる程、層内に含まれる分散粒子の平均粒径が小さくなる。半固化状態の被吸水状態では、脱水によって、枠材(F)を取り外しても盛土が自己保形性を有する状態まで半固化した状態となる。
(Lower layer part (211))
The lower layer portion (211) is composed of a semi-solidified clay layer mainly composed of petalite having a representative diameter of 10 μm or more and a clay material, which has settled and separated from water within the 20 embankments. In the embodiment, the embankment 20 is dehydrated by being absorbed by the water-absorbing substrate (1) and evaporating from the surface, and becomes a clay layer having self-molding properties even when the frame material is removed. Specifically, the lower layer portion (211) has a low water content of less than 15% (0.1% to 14.0%) in the 20 layers of the embankment, the median diameter of D50 is more than 10 μm, and This is a coarse-grained dispersion layer containing only coarse particles with a mode diameter of 10 μm or less. The typical particle size distribution of the lower layer portion (211) of Example 1 shows a dispersion curve having two or more prominent peaks as shown in the particle size logarithmic frequency graph of FIG. 9, and both the D50 median diameter and the mode diameter are 10 μm. Is in the range of 50 μm or more and 150 μm or less (median diameter 59.17 μm, mode diameter 82.96 μm in FIG. 9). However, strictly speaking, in the lower layer portion (211), the lower portion closer to the substrate, the larger the average particle diameter of the dispersed particles contained in the layer, and conversely, the upper portion closer to the lower surface. The average particle size of the dispersed particles contained in the layer is reduced. In the semi-solidified water-absorbed state, even if the frame material (F) is removed, the embankment is in a semi-solidified state until it has a self-holding property.
(表層除去工程)
次に実施例1の表層除去工程として、枠材(F)を取り外し、盛土の上部に分離して浮き上がった表層部(212)を、除去手段(C)(本例では切除刃)によって全除去すると共に、下層部(211)の上部を表面側から湾曲傾斜した切削面を以て切削加工して、半固化状態、加工状態、かつ表層除去状態の下層部(221´)(前駆体)のみからなるものとする(図1A、図2(b)〜図2(c))。これは除去手段(C)(本例では切除刃)によって、不均一な下層部の上層部分または下層部の上薄部までをまとめて除去する表層除去工程と、表層部(212)の全除去後の下層部(211)の厚さを所定の形状に整える成形工程とを同時に行うものである。
(Surface layer removal process)
Next, as the surface layer removing step of Example 1, the frame material (F) is removed, and the surface layer portion (212) that has been separated and floated on the upper part of the embankment is completely removed by the removing means (C) (in this example, a cutting blade). At the same time, the upper part of the lower layer part (211) is cut with a cutting surface that is curved and inclined from the surface side, and consists only of the lower layer part (221 ') (precursor) in a semi-solidified state, a processed state, and a surface layer removed state. It shall be (FIG. 1A, FIG.2 (b)-FIG.2 (c)). The removal means (C) (removal blade in this example) removes the upper layer portion of the lower layer portion or the upper thin portion of the lower layer portion at a time, and the entire removal of the surface layer portion (212). The molding step for adjusting the thickness of the subsequent lower layer portion (211) to a predetermined shape is performed simultaneously.
なお本実施例と異なる例として、表層部の除去と下層部の切削加工とを別工程として行ってもよい。この場合、たとえば最初に除去手段(C)たる切除刃によって表層部(212)を全除去して平坦面の下層部(211)のみとし、続けて下層部(211)を前記除去手段と異なる(又は同じ)除去手段によって表面を成形加工する。なお前記除去手段の例として、サンドブラスト処理を行うブラストショットガンがあげられる。必要に応じて適宜箇所にサンドブラスト処理を行うことで、局所的な凹凸成形や下層部の部分除去成形を行うことができる。 As an example different from the present embodiment, removal of the surface layer portion and cutting of the lower layer portion may be performed as separate steps. In this case, for example, the surface layer portion (212) is entirely removed by the cutting blade that is the removal means (C) first to make only the lower surface portion (211) of the flat surface, and the lower layer portion (211) is subsequently different from the removal device ( (Or the same) The surface is formed by removing means. An example of the removing means is a blast shotgun that performs sandblasting. By performing a sandblasting process at an appropriate position as necessary, local uneven molding and partial removal molding of the lower layer can be performed.
表層除去工程を経た下層部(211(211´))のみをその後の焼成工程によって焼成することで、固化層面は、倍率30倍拡大視にて多数の石状部が散在した粗面となる。すなわち、表層除去工程及びその後の焼成工程後の下層部(211(211´))の固化層面は、図6に示す100倍未満の走査電子顕微鏡観察(図6では加速電圧20.00kV、倍率30倍)において、代表径50μm〜200μm程度の石状部が散在し、その間に多孔性の代表径50μm以下の大小の粒状部が集まって充当した凹凸面となる。この固化層面(図6)は、表層分離状態から表層除去工程を経ずに焼成工程を行った場合の固化層面(図5)と比較して、1000μm2以上の面積の平坦面を有さない点、大きさの異なる多数の石状部と粒状部が集積している点、及び、500μm長以上の罅割れを有さない点で顕著な相違がある。 By firing only the lower layer portion (211 (211 ')) that has undergone the surface layer removal step, the solidified layer surface becomes a rough surface in which a large number of stone-like portions are scattered when viewed at a magnification of 30 times. That is, the solidified layer surface of the lower layer portion (211 (211 ')) after the surface layer removing step and the subsequent firing step was observed with a scanning electron microscope less than 100 times shown in FIG. 6 (acceleration voltage 20.00 kV, magnification 30 in FIG. 6). 2), stone-like portions having a representative diameter of about 50 μm to 200 μm are interspersed, and a large and small granular portion having a porous representative diameter of 50 μm or less gathers and becomes an uneven surface. This solidified layer surface (FIG. 6) does not have a flat surface with an area of 1000 μm 2 or more as compared with the solidified layer surface (FIG. 5) when the baking step is performed without the surface layer removal step from the surface layer separation state. There are significant differences in that a large number of stone-like parts and granular parts having different sizes are accumulated and that there are no cracks of 500 μm or more in length.
(第二乾燥工程(B))次いで第二乾燥工程(B)として、表層部(212)を除去した残りの下層部(211(211´))を素地(1)と共に加熱乾燥し、含水率5%以下の脱水状態とする。当該加熱乾燥は、例えば、60℃〜200℃の範囲の乾燥温度で1時間〜24時間の範囲の加熱時間内で行う。 (Second drying step (B)) Next, as the second drying step (B), the remaining lower layer portion (211 (211 ')) from which the surface layer portion (212) has been removed is dried by heating together with the substrate (1), and the moisture content The dehydrated state is 5% or less. The said heat drying is performed within the heating time of the range of 1 hour-24 hours at the drying temperature of the range of 60 degreeC-200 degreeC, for example.
(焼成工程)
次に焼成工程(第二焼成工程)として、下層部(211(211´))を提供している粘土状の混練体(20)を第一焼成温度よりも低い第二焼成温度で、第一焼成温度と同じ焼成時間をかけて第二焼成する。具体的には、実施例1の第二焼成温度を1150℃〜1200℃の範囲内で設定し、混練体(20)が成形状態の成形層(22´(2))となるまで、第一焼成工程と同じ約3時間〜約10時間の範囲内の焼成時間で焼成加熱する。第二焼成の焼成時間は第一焼成時間と同じく5時間〜10時間の範囲内に設定することが好ましく、さらにいえば、第一焼成時間と同じく8時間〜10時間の範囲内に設定することが好ましい。このように、各焼成工程を同じ焼成時間のまま焼成温度のみを順に小さく設定することで、焼成のための熱エネルギー(各形成層の混練体の反応温度域における熱エネルギー)の総量が、前焼成工程たる第一焼成工程よりも小さくなるようにしている。この第二焼成の前又は第二焼成中に、混練体(20)が、素地(1)の層形成面から素地(1)内に吸水されて、素地(1)の微細凹凸部に投錨した被吸水状態となる。この被吸水状態の混練体(20)が素地(1)と共に第二焼成されることで、成形層(2)が素地(1)上に密着形成される(図1中の(h)、図2中の(h1))。焼成状態(図2(h))の実施例1の原材は、側断面視波状の凹凸加工面を上面に有した板状態からなる。
(Baking process)
Next, as a firing step (second firing step), the clay-like kneaded body (20) providing the lower layer portion (211 (211 ')) is first heated at a second firing temperature lower than the first firing temperature. The second firing is performed for the same firing time as the firing temperature. Specifically, the second firing temperature of Example 1 is set within a range of 1150 ° C. to 1200 ° C., and the first until the kneaded body (20) becomes a molded layer (22 ′ (2)) in a molded state. Firing and heating are performed at a firing time in the range of about 3 hours to about 10 hours that is the same as the firing step. The firing time of the second firing is preferably set within the range of 5 hours to 10 hours, as with the first firing time, and more specifically, within the range of 8 hours to 10 hours as with the first firing time. Is preferred. In this way, by setting only the firing temperature in order for each firing step while maintaining the same firing time, the total amount of heat energy for firing (heat energy in the reaction temperature region of the kneaded body of each forming layer) It is made smaller than the 1st baking process which is a baking process. Prior to or during the second firing, the kneaded body (20) is absorbed into the substrate (1) from the layer-forming surface of the substrate (1) and thrown onto the fine irregularities of the substrate (1). It becomes a water-absorbed state. This water-absorbed kneaded body (20) is second-fired together with the substrate (1), whereby the molded layer (2) is formed in close contact with the substrate (1) ((h) in FIG. 1, FIG. (H1) in 2.). The raw material of Example 1 in the fired state (FIG. 2 (h)) is in the form of a plate having a corrugated processed surface with a side-view wave shape on the top surface.
なお、素地形成工程の第一焼成における各焼成温度、ないし焼成工程たる第二焼成における各焼成温度とは、いずれも各焼成における最高焼成温度の設定値を意味する。実際には各工程の焼成過程において、混練体(20)ないし付加混練体の温度を、反応温度域よりも低い温度から加熱を開始する。そして、混練体(20)の温度を設定した焼成温度に至るまで上昇させたのちに、混練体(20)の温度を徐々に下げ、再び反応温度域よりも低い温度として、焼成工程を終える。この焼成工程の一連の流れにおいて、反応温度域における時間が長いほど、焼成のための熱エネルギーの総量が大きいものとなる。 Each firing temperature in the first firing in the substrate forming step or each firing temperature in the second firing as the firing step means a set value of the maximum firing temperature in each firing. Actually, in the firing process of each step, the heating of the kneaded body (20) or the additional kneaded body is started from a temperature lower than the reaction temperature range. Then, after the temperature of the kneaded body (20) is raised to the set firing temperature, the temperature of the kneaded body (20) is gradually lowered to set the temperature again lower than the reaction temperature range, and the firing step is finished. In the series of steps of the firing step, the longer the time in the reaction temperature range, the greater the total amount of heat energy for firing.
上記の如くして実施例1の装飾セラミックスの原材が得られるのであるが、ここでは、さらに例えば次のような仕上げ処理を施して装飾セラミックスを得る。すなわち、
成形層(22´(2))の表面に施釉および仕上げ彩色を施し、仕上げ焼成を経て仕上げ層(5´)が形成される(図1中の(z)、図2中の(z))。かくして仕上げ処理された装飾セラミックスはそのまま、或いは所定の取付け部にとりつけられてやがて出荷される。
As described above, the decorative ceramic raw material of Example 1 is obtained. Here, for example, the following finishing process is performed to obtain the decorative ceramic. That is,
The surface of the molding layer (22 ′ (2)) is subjected to glazing and finish coloring, and a finish layer (5 ′) is formed through finish firing ((z) in FIG. 1, (z) in FIG. 2)). . The decorative ceramics thus finished are shipped as they are or after being attached to a predetermined mounting portion.
<実施例2>
実施例2の装飾セラミックスの原材及び装飾セラミックス、並びにこれらの製造方法を、図1B及び図3を参照して説明する。
(A)実施例2の装飾セラミックスの原材及び装飾セラミックス
図1B及び図3に示す実施例2の装飾セラミックスの原材は、吸水性を有するものとして予成形された素地(1)と、素地(1)の上面に形成された成形層(2)(下層部(221´))と、成形層(2)の上に重畳形成された付加成形層たる第二成形層(3)(固化層(32´))と、成形層(2)及び第二成形層(3)の上に重畳形成された付加成形層たる第三成形層(4)(固化層(40´))と、からなる4層構造の原材である。
実施例2の装飾セラミックスはこの原材の表面全体に、さらに施釉・釉焼等による仕上げ層(5´)を形成した合計5層の固形成形材の最終状態からなる(図3(z))。他の特記しない構成及び製造方法は、実施例1と同様である。
<Example 2>
The raw material of decorative ceramics and decorative ceramics of Example 2 and a method for producing them will be described with reference to FIGS. 1B and 3.
(A) Decorative ceramic raw material and decorative ceramic of Example 2 The decorative ceramic raw material of Example 2 shown in FIG. 1B and FIG. 3 is a base (1) preformed as having water absorption, and a base The molding layer (2) (lower layer part (221 ′)) formed on the upper surface of (1) and the second molding layer (3) (solidified layer) which is an additional molding layer superimposed on the molding layer (2) (32 ')) and a third molding layer (4) (solidified layer (40')) which is an additional molding layer superimposed on the molding layer (2) and the second molding layer (3). It is a raw material with a four-layer structure.
The decorative ceramic of Example 2 is composed of a final state of a total of five layers of solid molding material in which a finishing layer (5 ′) is further formed by glazing, smoldering, or the like on the entire surface of the raw material (FIG. 3 (z)). . Other configurations and manufacturing methods not specifically mentioned are the same as those in the first embodiment.
ここで実施例2の素地(1)は、脱水状態である最終状態の成形体全体におけるペタライト配合率(PR)が40w%以上75w%以下であり、各成形層(2,3,4)と共にペタライトを主剤としている。また素地(1)を得るための混練体は、ペタライトのほかに粘土材と骨材とを含み、さらに成形時の乾燥によって発泡する発泡剤を含むものとなっている。但し、素地(1)のペタライト配合率(PR1)は成形層(2)のペタライト配合率(PR2)よりも小さいものとなっている。
素地(1)が粘土材を含み且つペタライトを主成分とすることで、成形層(2)を形成するための、実施例1の場合と同様の混練体(20)と成分組成の多くが共通することとなり、第二焼成による成形層(2)の素地(1)への溶融定着性に優れたものとなる。また、素地におけるペタライト配合率(PR1)が成形層におけるペタライト配合率(PR2)よりも少ないため、第一焼成において素地(1)をより高温で焼成することができる。また素地は一度予焼成しているため、その後の焼成(第二焼成、第三焼成等)による収縮率が少なく、原材全体の形状安定性に優れている。
Here, the base material (1) of Example 2 has a petalite compounding ratio (PR) of 40% to 75% by weight in the entire molded product in a final state which is a dehydrated state, together with each molded layer (2, 3, 4). The main ingredient is petalite. The kneaded body for obtaining the substrate (1) includes a clay material and an aggregate in addition to petalite, and further includes a foaming agent that foams by drying during molding. However, the petalite blending ratio (PR1) of the substrate (1) is smaller than the petalite blending ratio (PR2) of the molding layer (2).
The base material (1) contains a clay material and contains petalite as a main component, so that many of the component compositions are common to the kneaded body (20) similar to the case of Example 1 for forming the molding layer (2). Thus, the melt-fixing property to the substrate (1) of the molding layer (2) by the second baking is excellent. Moreover, since the petalite compounding ratio (PR1) in the substrate is smaller than the petalite compounding ratio (PR2) in the molded layer, the substrate (1) can be fired at a higher temperature in the first firing. Further, since the substrate is pre-fired once, the shrinkage rate due to the subsequent firing (second firing, third firing, etc.) is small, and the shape stability of the whole raw material is excellent.
具体的には、素地(1)、成形層(2)、付加成形層たる第二成形層(3)、及び再度の付加成形層たる第三成形層(4)は、いずれもペタライトを40w%以上75w%以下の範囲内の所定割合で主剤として配合してなる。但し、仕上げ焼成によって脱水した最終状態における各層のペタライト配合率は、素地におけるペタライト配合率(PR1)よりも成形層におけるペタライト配合率(PR2)の方が大きく、成形層におけるペタライト配合率(PR2)よりも付加成形層たる第二成形層におけるペタライト配合率(PR3)の方が大きく、付加成形層たる第二成形層におけるペタライト配合率(PR3)よりも再度の付加成形層たる第三成形層におけるペタライト配合率(PR4)の方が大きい。また各層の焼成前の原料である混練体(20)から水を除いた粉粒混合物の平均粒度は、素地(1)の粉粒混合物が最も大きく、次いで成形層(2)の粉粒混合物が次に大きく、次いで付加成形層たる第二成形層(3)の粉粒混合物が次に大きく、そして再度の付加成形層たる第三成形層(4)の粒粉混合物が最も小さい。 Specifically, the base (1), the molding layer (2), the second molding layer (3) as the additional molding layer, and the third molding layer (4) as the additional molding layer are all 40 w% of petalite. It is blended as a main agent at a predetermined ratio in the range of 75 w% or less. However, the petalite blending ratio of each layer in the final state dehydrated by finish firing is higher in the petalite blending ratio (PR2) in the molded layer than the petalite blending ratio (PR1) in the substrate, and the petalite blending ratio (PR2) in the molding layer. The petalite blending ratio (PR3) in the second molding layer as the additional molding layer is larger than that in the third molding layer as the additional molding layer again than the petalite blending ratio (PR3) in the second molding layer as the additional molding layer. The petalite compounding ratio (PR4) is larger. Moreover, the average particle size of the powder mixture obtained by removing water from the kneaded body (20) that is the raw material before firing of each layer is the largest in the powder mixture of the substrate (1), and then the powder mixture of the molding layer (2) is Next, the granule mixture of the second molding layer (3), which is the additional molding layer, is next, and the granule mixture of the third molding layer (4), which is the additional molding layer, is the smallest.
(B)実施例2の装飾セラミックスの原材及び装飾セラミックスの製造方法
実施例2の装飾セラミックスの原材及び装飾セラミックスは、以下に示す製造方法によって得られる。先ず素地形成工程として、素地原料となる材料を調合(調土)して水と混ぜて細磨処理することで、素地の混練体を得る。この素地の混練体を板状に成形して第一乾燥として60℃以上200℃以下で加熱乾燥させた後に、1200℃〜1250℃の範囲内の第一焼成温度で第一焼成することで、締焼状態の板状の素地(1)をストック形成する(図1B左フロー)。
(B) The raw material of decorative ceramics of Example 2 and the manufacturing method of decorative ceramics The raw material of decorative ceramics and decorative ceramics of Example 2 are obtained by the manufacturing method shown below. First, as a substrate forming step, a material to be a substrate raw material is prepared (prepared), mixed with water, and finely polished to obtain a base kneaded body. After forming the kneaded body of this base into a plate shape and heat drying at 60 ° C. or more and 200 ° C. or less as the first drying, first firing at a first firing temperature within a range of 1200 ° C. to 1250 ° C. A plate-like substrate (1) in a baked state is formed as a stock (left flow in FIG. 1B).
次に盛土工程として、所定寸法に切断した素地(1)の周囲に枠材(F)を取り付け、素地(1)の上面である層形成面上に、粉粒原料の粉粒混合物と水とを混練(調土I)してなる粘土状の混練体(20)を所定厚さで盛土して盛土状態(図3(a))とする。 Next, as the embankment process, a frame material (F) is attached around the substrate (1) cut to a predetermined size, and on the layer forming surface which is the upper surface of the substrate (1), The clay-like kneaded body (20) obtained by kneading (soil preparation I) is embanked at a predetermined thickness to obtain an embankment state (FIG. 3 (a)).
次いで第二乾燥たる24時間以上の自然乾燥によって、前記盛土した混練体(20)を表層分離させ、表層部(212)と下層部(211)とからなる半固化状態の表層分離状態とする(図3(b))。その後、枠材(F)を取り外したのちに表層部(212)すべてを除去する表層除去工程(図3(b)〜図3(c2))によって下層部(211)の単独層を形成し、この単独層を、さらに第二乾燥たる強制乾燥(ここでは60℃〜200℃の範囲の乾燥温度で1時間〜24時間の範囲の加熱乾燥)によって半固化かつ乾燥状態の表層除去状態(図3(c2))とする。このようにして成形層(2)の前駆体(下層部(221))を得る。 Next, the embedding kneaded body (20) is separated into a surface layer by natural drying for 24 hours or more, which is the second drying, and a semi-solidified surface layer separated state composed of a surface layer portion (212) and a lower layer portion (211) is obtained ( FIG. 3 (b)). Then, after removing the frame material (F), a single layer of the lower layer portion (211) is formed by a surface layer removing step (FIG. 3 (b) to FIG. 3 (c2)) that removes all the surface layer portion (212). The single layer is further subjected to forced drying (here, drying at a drying temperature in the range of 60 ° C. to 200 ° C. for 1 hour to 24 hours) to form a semi-solid and dry surface layer removed (FIG. 3). (C2)). Thus, the precursor (lower layer part (221)) of the molding layer (2) is obtained.
その後、層付加工程として、第二形成層(3)の付加成形層の焼成前原料である第二混練体(30)(調土IIによって得たもの)を、成形層(2)の前駆体(下層部(221))上に、前駆体(下層部(221))の層厚よりも半分以下の薄厚で盛土し(図3(d)「盛土II」)、第三乾燥たる自然及び強制乾燥によって、脱水した半固化状態の第二混練体(30)とする。続いて加工工程として、第二混練体(30)及び前駆体(下層部(221))それぞれの所定の一部分を表面側から各層が露出するように湾曲傾斜した切削面を以て切削加工し、加工状態とする(図3(f))。さらにこの加工状態の露出層表面全体に、再度の付加成形層(第三形成層(4))の焼成前原料である第三混練体(40)(調土IIIによって得たもの)を均一の薄膜厚さに盛土し(「盛土III」)、切削加工済みの四層構造体を得る。そして第二焼成工程として、前記切削加工済みの四層構造体を1150℃〜1200℃の範囲内で前記第一焼成温度より低い第二焼成温度で第二焼成して、図3(h)に示す四層構造の加工済み焼成材、すなわち実施例2の装飾セラミックスの原材が得られる。 Thereafter, as a layer addition step, a second kneaded body (30) (obtained by the soil preparation II), which is a raw material before firing of the additional molded layer of the second forming layer (3), is used as a precursor of the molded layer (2). On the (lower layer part (221)), the earth is filled with a thickness less than half the layer thickness of the precursor (lower layer part (221)) (Fig. 3 (d) "banking II"), natural and forced third dry By drying, a dehydrated semi-solidified second kneaded body (30) is obtained. Subsequently, as a processing step, a predetermined portion of each of the second kneaded body (30) and the precursor (lower layer portion (221)) is cut with a cutting surface that is curved and inclined so that each layer is exposed from the surface side, and the processed state (FIG. 3 (f)). Furthermore, the third kneaded body (40) (obtained by the soil preparation III), which is a raw material before firing of the additional molding layer (third formation layer (4)), is uniformly applied to the entire exposed layer surface in this processed state. Embanking to a thin film thickness (“Embedding III”), a cut four-layer structure is obtained. Then, as the second firing step, the cut four-layer structure is subjected to second firing at a second firing temperature lower than the first firing temperature within a range of 1150 ° C. to 1200 ° C., and FIG. The processed fired material having the four-layer structure shown, that is, the decorative ceramic raw material of Example 2 is obtained.
図3(h)において符号(221´)で示すものは前駆体(下層部(221))から得られた第一成形層たる成形層(2)であり、符号(32´)で示すものは前駆体から得られた第二成形層(3)の固化層であり、符号(40´)で示すものは第三混練体(40)から得られた第三成形層(4)の固化層である。 In FIG. 3 (h), what is indicated by reference numeral (221 ') is a forming layer (2) as a first forming layer obtained from the precursor (lower layer part (221)), and what is indicated by reference numeral (32') The solidified layer of the second molded layer (3) obtained from the precursor and indicated by the reference numeral (40 ') is the solidified layer of the third molded layer (4) obtained from the third kneaded body (40). is there.
上記の如くして実施例2の装飾セラミックスの原材が得られるのであるが、ここでは、さらに例えば次のような仕上げ処理を施して装飾セラミックスを得る。すなわち、
施釉工程として第二焼成後の加工済み焼成材(装飾セラミックスの原材)の表露出面に釉薬を均一に塗布して釉焼し、次いで転写工程として、表面に所望の再現しようとする材の色模様を転写して転写焼成し、最後に仕上げ焼成工程として仕上げ焼成(図3(z))を行う。
As described above, the decorative ceramic raw material of Example 2 is obtained. Here, for example, the following finishing treatment is performed to obtain the decorative ceramic. That is,
As a glazing process, the glaze is uniformly applied to the exposed surface of the processed fired material (decorative ceramic raw material) after the second calcination, followed by calcination. The color pattern is transferred and transferred and fired, and finally finish firing (FIG. 3 (z)) is performed as a finish firing step.
ただし、第一焼成、第二焼成、釉焼、転写焼成、仕上げ焼成のそれぞれにおいて、焼成温度(最高焼成温度)ないし焼成時間の少なくともいずれかは、後の工程になる程順に低く設定され、前焼成温度及び前焼成時間を超えることのないものとしている。これにより、繰返しの焼成による変形や層分離、ひびや割れを防ぐものとしている。本実施例では、仕上げ焼成温度は第一焼成、第二焼成、釉焼、転写焼成のいずれの焼成温度よりも低く設定され、転写焼成温度は第一焼成、第二焼成、釉焼のいずれの焼成温度よりも低く設定され、釉焼温度は第一焼成、第二焼成のいずれの焼成温度よりも低い1150℃以下に設定され、そして第二焼成温度は第一焼成温度よりも低い1150℃〜1200℃の範囲内に設定される。 However, in each of the first firing, the second firing, the sinter firing, the transfer firing, and the finish firing, at least one of the firing temperature (maximum firing temperature) or the firing time is set lower in order so as to be a later step. The firing temperature and pre-baking time are not exceeded. This prevents deformation, layer separation, cracks and cracks due to repeated firing. In this embodiment, the finish firing temperature is set lower than any firing temperature of the first firing, second firing, smoldering, and transfer firing, and the transfer firing temperature is any of the first firing, second firing, or smoldering. It is set lower than the firing temperature, the calcination temperature is set to 1150 ° C. or lower, which is lower than both firing temperatures of the first firing and the second firing, and the second firing temperature is from 1150 ° C. lower than the first firing temperature. It is set within the range of 1200 ° C.
さらに本実施例では、第一焼成、第二焼成の各焼成を同じ焼成時間に設定し、焼成温度のみを前焼成温度よりも順に小さく設定している。これはすなわち、焼成のための熱エネルギー(すなわち各形成層の混練体(20)ないし付加混練体(第二混練体30、第三混練体40、・・・)の反応温度域における熱エネルギー)の総量が、後の焼成工程となるにしたがって小さくなることを意味している。 Further, in this embodiment, the first baking and the second baking are set to the same baking time, and only the baking temperature is set to be smaller in order than the pre-baking temperature. This is the heat energy for firing (that is, the heat energy in the reaction temperature range of the kneaded body (20) to the additional kneaded body (second kneaded body 30, third kneaded body 40,...) Of each forming layer). It means that the total amount of becomes smaller as it becomes a subsequent firing step.
<実施例3>
実施例3の装飾セラミックスの原材及び装飾セラミックス、並びにこれらの製造方法を、図1C及び図4を参照して説明する。
(A)実施例3の装飾セラミックスの原材及び装飾セラミックス
図4及び図1Cに示す実施例3の装飾セラミックスの原材は、
実施例2と同様にして吸水性を有するものとして予成形された素地(1)と、
実施例2におけるものと同様の混練体(20)(調土IIによって得たもの)を、素地(1)の上面に盛土(盛土I)し(図4(a))、第二乾燥A・Bたる自然乾燥及び強制乾燥によって表層部(222)と下層部(221)に表層分離させ(図4(b))、該表層部(222)の除去と共に所定の凹凸形状に切削加工して(図4(c2))、成形層(2)の前駆体である下層部(221)(図4(c2))を得て、これを第二焼成してなる成形層(2(221´))(図4(h1))と、
実施例2におけると同様の第二混練体(30)(調土II(調土Iよりも小さく調土IIIよりも大きい中目の粗度の粉粒混合材)によって得られたもの)を、第二焼成後の成形層(2(221´))の表面に、成形層(2(221´))より薄い厚さで盛土し(図4(d2))「盛土I」)、第三乾燥たる自然乾燥及び強制乾燥の双方の乾燥によって、表層部(312)と下層部(311)に表層分離させる(図4(e2))。
<Example 3>
The raw material of decorative ceramics and decorative ceramics of Example 3 and the manufacturing method thereof will be described with reference to FIGS. 1C and 4.
(A) The decorative ceramic raw material and decorative ceramic of Example 3 The decorative ceramic raw material of Example 3 shown in FIGS.
A substrate (1) preformed as having water absorption in the same manner as in Example 2,
A kneaded body (20) similar to that in Example 2 (obtained by soil preparation II) was embanked (filled I) on the upper surface of the substrate (1) (FIG. 4 (a)), and the second dried A · The surface layer part (222) and the lower layer part (221) are separated into the surface layer (222) and the lower layer part (221) by natural drying and forced drying as B (FIG. 4 (b)), and cut into a predetermined uneven shape along with the removal of the surface layer part (222) ( FIG. 4 (c2)), a lower layer portion (221) (FIG. 4 (c2)) which is a precursor of the molding layer (2) is obtained, and this is subjected to second firing to form a molding layer (2 (221 ′)). (FIG. 4 (h1))
A second kneaded body (30) similar to that in Example 2 (obtained by soil preparation II (a coarse-grained coarse particle mixture smaller than soil preparation I and larger than soil preparation III)), On the surface of the molding layer (2 (221 ′)) after the second firing, the bank is filled with a thickness thinner than that of the molding layer (2 (221 ′)) (FIG. 4 (d2) “banking I”), and the third drying The surface layer is separated into the surface layer portion (312) and the lower layer portion (311) by both natural drying and forced drying (FIG. 4 (e2)).
このようにして、該表層部(312)の除去と共に所定の凹凸形状に切削加工してなる加工形状の、第二成形層(3)の前駆体である下層部(311)を得て、これを第三焼成してなる付加成形層たる第二成形層(3)(図4(h2))を得る。この付加成形層の形成によって三層構造を得る。
さらに、実施例2における混練体(図1Bの調土IIIによって得たもの)と同様の混練体(調土IIIによって得たもの)を用いて、前記三層構造の表面全体を覆うようにスプレー塗布処理で盛土(盛土III)し、これを第四焼成して付加成形層たる第三形成層(4)を得る。この付加成形層たる第三形成層(4)の形成によって四層構造を得る(図4(h3))。
In this way, a lower layer portion (311) which is a precursor of the second molding layer (3) having a processed shape obtained by cutting the surface layer portion (312) together with the removal of the surface layer portion (312) is obtained. A second molded layer (3) (FIG. 4 (h2)), which is an additional molded layer formed by third firing, is obtained. By forming this additional molding layer, a three-layer structure is obtained.
Further, using the same kneaded body (obtained by the soil preparation III) as that of the kneaded body in Example 2 (obtained by the soil preparation III in FIG. 1B), spraying was performed so as to cover the entire surface of the three-layer structure. Filling (banking III) is performed by a coating process, and this is subjected to fourth firing to obtain a third forming layer (4) which is an additional molding layer. A four-layer structure is obtained by forming the third forming layer (4) as the additional molding layer (FIG. 4 (h3)).
実施例3の装飾セラミックスは、この原材の表面に均一に施釉した後の釉焼、さらに釉焼表面に所望の(たとえば再現対象の)着色模様を転写した後の転写焼成を経て、最後に仕上げ焼成によって仕上げ層(図示省略)を形成した合計5層の固形成形材の最終状態からなる。最終状態における素地(1)、下層部(221´)からなる成形層(2)、固化層(311´)からなる第二成形層(3)、及び固化層(40´)からなる第三成形層(4)はいずれも、ペタライト配合率(PR1)が40w%以上75w%以下である。他の特記しない構成及び製造方法は、実施例2と同様である。 The decorative ceramic of Example 3 is finally subjected to calcination after uniformly glazing on the surface of this raw material, and further transfer calcination after transferring a desired (for example, reproduction target) colored pattern to the glazed surface. It consists of a final state of a total of 5 solid molding materials in which a finish layer (not shown) is formed by finish firing. In the final state, the molding (1), the molding layer (2) composed of the lower layer part (221 '), the second molding layer (3) composed of the solidified layer (311'), and the third molding composed of the solidified layer (40 '). In each layer (4), the petalite compounding ratio (PR1) is 40 w% or more and 75 w% or less. Other configurations and manufacturing methods not specifically mentioned are the same as those in the second embodiment.
実施例3の装飾セラミックスの原材及び装飾セラミックスの特徴構成として、次の構成を挙げることができる。すなわち、成形層(2)たる第一成形層、付加成形層たる第二成形層(3)、第三成形層(4)は、各原料となる混練体(20,30,40)を先行して形成される焼成後の固化面上へ盛土した後に、各焼成工程(第二焼成、第三焼成、第四焼成)によって一層ずつ固化焼成してなる。また、成形層(2)及び第二成形層(3)は、乾燥工程(第二乾燥、第三乾燥)を経て表層分離状態とし、その後の表層部(222,312)を除去すると共に残りの下層部(221,311)を所定の成形形状に切削成形してから焼成してなる。 Examples of the characteristic configuration of the decorative ceramic raw material and the decorative ceramic of Example 3 include the following. That is, the first molding layer as the molding layer (2), the second molding layer (3) as the additional molding layer, and the third molding layer (4) are preceded by the kneaded bodies (20, 30, 40) as the raw materials. After embankment on the solidified surface after firing, the layers are solidified and fired one by one in each firing step (second firing, third firing, fourth firing). Further, the molding layer (2) and the second molding layer (3) are subjected to a drying step (second drying, third drying) to be in a surface layer separation state, and the remaining surface layer portions (222, 312) are removed and the remaining layers are removed. The lower layer portions (221, 311) are cut into a predetermined shape and fired.
成形層(2)たる第一成形層、付加成形層たる第二成形層(3)、及び第三成形層(4)は、いずれも、ペタライト配合率(PR1)が40w%以上75w%以下である。但し、原材形成後や仕上げ焼成後の最終状態における各層のペタライト配合率は、成形層におけるペタライト配合率(PR2)よりも、付加成形層たる第二成形層におけるペタライト配合率(PR3)の方が1〜10w%だけ大きく、そして第二成形層におけるペタライト配合率(PR3)よりも、再度の付加成形層たる第三成形層におけるペタライト配合率(PR4)の方が1〜10w%だけ大きい。なお第二成形層におけるペタライト配合率(PR3)と第三成形層におけるペタライト配合率(PR4)は共に、ペタライトの配合率と粘土石の配合率のみが異なるものであり、含水率及び解膠材の調合量が一致している。また各層の焼成前の原料である混練体(20)から水を除いた粉粒混合物の平均粒度は、素地(1)の粉粒混合物が最も大きく、次いで成形層(2)の粉粒混合物が大きく、次いで第二成形層(3)の粉粒混合物が大きく、そして第三成形層(4)の粉粒混合物が最も小さい。 The first molding layer as the molding layer (2), the second molding layer (3) as the additional molding layer, and the third molding layer (4) all have a petalite compounding ratio (PR1) of 40 w% or more and 75 w% or less. is there. However, the petalite compounding ratio of each layer in the final state after forming the raw material and after finish firing is higher than the petalite compounding ratio (PR3) in the second molding layer as the additional molding layer, rather than the petalite compounding ratio (PR2) in the molding layer. Is larger by 1 to 10 w%, and the petalite blending ratio (PR4) in the third molding layer as the additional molding layer is larger by 1 to 10 w% than the petalite blending ratio (PR3) in the second molding layer. The petalite blending ratio (PR3) in the second molding layer and the petalite blending ratio (PR4) in the third molding layer are both different only in petalite blending ratio and clay stone blending ratio. The amount of preparation is the same. Moreover, the average particle size of the powder mixture obtained by removing water from the kneaded body (20) that is the raw material before firing of each layer is the largest in the powder mixture of the substrate (1), and then the powder mixture of the molding layer (2) is Large, then the second mixture layer (3) has the largest powder mixture, and the third molding layer (4) has the smallest powder mixture.
各形成層についてさらに説明する。
(成形層(2))
実施例3の成形層(2)は、45%〜55%程度の含水率とした粘土状の混練体(20)の状態で素地(1)に盛土され、第二乾燥工程A・Bたる自然・強制乾燥によって素地(1)へ定着した後に、加工工程A・Bたる表面削り・成形によって表層部を含む表面部分が切削加工され、その後に第一焼成温度よりも低い、1150℃〜1200℃の温度範囲における焼成温度の第二焼成によって固化形成されて形成される。これは実施例1の表層分離工程、表層除去工程、及びその後の第二焼成と同様である。すなわち混練体を盛土後の24時間以上の自然乾燥とその後の強制乾燥とによって表層分離状態かつ脱水した半固形状態とし、このうち表層部を含む表面部分を除去すると共に所定形状に切削加工することで、比較的粗い粒子からなる半固化状態の混練体(20)部分のみを脱水状態で残し、このような切削加工による成形後に第二焼成することで成形層の成形保持性を促している。焼成後の最終状態の成形層(2)はペタライトを主成分としており、具体的には全体比45〜40w%のペタライト配合率(成形層におけるペタライト配合率(PR2))を有する。
Each forming layer will be further described.
(Molded layer (2))
The molded layer (2) of Example 3 is embanked on the substrate (1) in the state of a clay-like kneaded body (20) having a moisture content of about 45% to 55%, and is a natural material as the second drying step A / B. -After fixing to the substrate (1) by forced drying, the surface portion including the surface layer portion is cut by the surface cutting as the processing steps A and B. After that, the surface portion including the surface layer portion is cut, and then lower than the first firing temperature, 1150C to 1200C It is formed by solidification by the second firing at the firing temperature in the temperature range. This is the same as the surface layer separation step, the surface layer removal step, and the subsequent second firing in Example 1. That is, the kneaded body is made into a semi-solid state in which the surface layer is separated and dehydrated by natural drying for 24 hours or more after embankment and subsequent forced drying, and the surface portion including the surface layer portion is removed and cut into a predetermined shape. Thus, only the semi-solidified kneaded body (20) portion made of relatively coarse particles is left in a dehydrated state, and the second firing is performed after the molding by such a cutting process, thereby promoting the molding retainability of the molding layer. The final molded layer (2) after firing is mainly composed of petalite, and specifically has a petalite blending ratio (peterite blending ratio (PR2) in the molding layer) of 45 to 40% by weight as a whole.
(付加成形層(第二成形層(3)、第三成形層(4)))
実施例3の付加成形層たる第二成形層(3)は、第二混練体(30)を第三乾燥たる自然・強制乾燥によって表層分離させ(図4(e2))、表層部(312)を除去した後の、第二成形層(3)の前駆体である下層部(311)のみを焼成固化してなる固化層(311´)からなる(図4)。すなわち層付加工程として、焼成前原料である第二混練体(30)を、切削加工後かつ第二焼成後の下層部(221´)上に盛土してから第三乾燥たる自然・強制乾燥によって表層部(312)と下層部(311)とに表層分離させ(図4(e2))、このうち表層部(312)を除去すると共に残りの下層部(311)を所定の加工形状に切削加工してから第三焼成して、第二成形層(3)を固化成形している。
(Additional molding layer (second molding layer (3), third molding layer (4)))
In the second molding layer (3) as the additional molding layer of Example 3, the second kneaded body (30) is surface-separated by natural drying / forced drying (FIG. 4 (e2)), and the surface layer portion (312). It consists of a solidified layer (311 ') obtained by baking and solidifying only the lower layer part (311) which is a precursor of the second molding layer (3) after removing (Fig. 4). That is, as a layer addition process, the second kneaded body (30), which is a raw material before firing, is embanked on the lower layer portion (221 ') after cutting and after the second firing, and then by natural / forced drying which is third dried. The surface layer portion (312) and the lower layer portion (311) are separated into surface layers (FIG. 4 (e2)), and the surface layer portion (312) is removed and the remaining lower layer portion (311) is cut into a predetermined processing shape. Then, the second molding layer (3) is solidified and molded by third firing.
層付加工程の際には、自然・強制乾燥工程によって、隣り合う層間で、比較的粗粒子の下層部が、先行形成された層の固化層の微細凹凸部に接するようにし、投錨の進行を促して、層間の定着性の向上を図っている(図4(h2))。また焼成固化前の乾燥工程A・Bによって表層分離させたのち表面の高含水率部分を切削する表層除去と共に、下層部を成形形状に切削成形する成形加工を行ってから焼成している(図4(c2)(h2))。表層分離及び成形加工後に第二成形層(3)を焼成し固化することで、比較的粗い粒子を層内に均等に分散させ、また、隣り合う先行層との定着性を向上させると共に、成形層面の形状安定性の向上を図っている。 During the layer addition process, the lower layer part of relatively coarse particles is in contact with the fine irregularities of the solidified layer of the previously formed layer between adjacent layers by a natural / forced drying process, so The improvement of the fixing property between the layers is promoted (FIG. 4 (h2)). In addition, after the surface layer is separated by the drying steps A and B before solidification by baking, the surface layer is removed by cutting the surface with a high water content, and the lower layer portion is molded into a molded shape and then fired (see FIG. 4 (c2) (h2)). By firing and solidifying the second molding layer (3) after the surface layer separation and molding process, relatively coarse particles are evenly dispersed in the layer, and the fixing property with the adjacent preceding layer is improved and molding is performed. The shape stability of the layer surface is improved.
また実施例3では、層付加工程によって付加成形層たる第二成形層(3)を固化成形した後、再度の層付加工程として、第二成形層(3)の表面に第三混練体(40)を盛土しこれを第四焼成によって固化層(40´)とすることで、付加成形層たる第三成形層(4)の固化成形を行っている。第三混練体(40)の粉粒混合物は、第二混練体(30)の粉粒混合物と同一の混合成分からなる。同一混合成分の混練体(20)を再度の層付加工程として重ねて形成することで、各層の熱膨張率の差を減らすこととなり、層間の定着性を良好なものとすることができる。 Moreover, in Example 3, after solidifying and molding the second molding layer (3) as an additional molding layer in the layer addition process, a third kneaded body (40) is formed on the surface of the second molding layer (3) as a second layer addition process. And the third molding layer (4), which is an additional molding layer, is solidified and molded. The powder mixture of the third kneaded body (40) is composed of the same mixed components as the powder mixture of the second kneaded body (30). By forming the kneaded body (20) having the same mixed components as a layer addition process again, the difference in the thermal expansion coefficient of each layer is reduced, and the fixing property between the layers can be improved.
(B)実施例3の装飾セラミックスの原材及び装飾セラミックスの製造方法
実施例3の装飾セラミックスの原材及び装飾セラミックスは、図1C及び図4に示す製造方法によって製造される。
先ず素地形成工程として、素地原料となる材料を調合(調土)して水と混ぜて細磨処理して、ペタライトを主剤とする、第一混練体である素地の混練体を得る。
この素地の混練体を板状に成形し、第一乾燥として60℃以上200℃以下で加熱乾燥させた後に、1200℃〜1250℃の範囲内の第一焼成によって、締焼状態の板状の素地(1)をストック形成する(図1C左フロー)。
(B) The decorative ceramic raw material and the decorative ceramic manufacturing method of Example 3 The decorative ceramic raw material and the decorative ceramic of Example 3 are manufactured by the manufacturing method shown in FIGS. 1C and 4.
First, as a substrate forming step, a material to be a substrate raw material is prepared (prepared), mixed with water and finely polished to obtain a base kneaded body which is a first kneaded body using petalite as a main agent.
The kneaded body of this base is formed into a plate shape, heat-dried at 60 ° C. or higher and 200 ° C. or lower as the first drying, and then subjected to a first baking within a range of 1200 ° C. to 1250 ° C. The substrate (1) is stock-formed (FIG. 1C left flow).
次に盛土工程として、所定大に切断した素地(1)の周囲に枠材(F)を取り付けたのち、この枠内に、ペタライトを主剤とする混練体(20)(調土Iによって得たもの)を所定厚さで一層盛土(「盛土I」)して盛土状態(図1C及び図4(a))とする。 Next, as a banking process, after attaching a frame material (F) around the substrate (1) cut into a predetermined size, a kneaded body (20) containing petalite as a main ingredient (obtained by the preparation I) A thing) is further filled with a predetermined thickness ("filling I") to obtain a filling state (FIG. 1C and FIG. 4 (a)).
次に第二乾燥A・B工程たる自然・強制乾燥によって、混練体(20)の盛土層を乾燥状態の表層部(222)及び下層部(221)に分離させ、次に表層除去工程を兼ねた加工A・B工程によって表面を切削成形することで、素地(1)上に成形加工済みの下層部(221)の単独層が形成された表層除去・加工状態(図1C及び図4(c2))とする。このようにして下層部(221)からなる成形層(2)の前駆体を得る。 Next, the embankment layer of the kneaded body (20) is separated into a dried surface layer part (222) and a lower layer part (221) by natural / forced drying, which is the second drying A / B process, and also serves as a surface layer removing process. Surface removal / working state in which the single layer of the lower layer part (221) that has been shaped is formed on the substrate (1) by cutting and shaping the surface by the machining A and B processes (FIG. 1C and FIG. 4 (c2)) )). Thus, the precursor of the molding layer (2) which consists of a lower layer part (221) is obtained.
次に第一焼成温度よりも低い、1150℃〜1200℃の温度範囲における第二焼成温度で素地(1)及び成形加工済みの前記成形層の前駆体(下層部(221)からなるもの)を第二焼成し、素地(1)と、下層部(221´)からなる成形層(2)と、からなる加工済みの2層固化成形体を得る(図1C及び図4(h1))。 Next, the substrate (1) and the precursor of the molded layer (formed of the lower layer portion (221)) which has been molded at the second firing temperature in the temperature range of 1150 ° C. to 1200 ° C., which is lower than the first firing temperature. Second firing is performed to obtain a processed two-layer solidified molded body composed of the substrate (1) and the molded layer (2) composed of the lower layer portion (221 ′) (FIG. 1C and FIG. 4 (h1)).
さらにその後、層付加工程として、ペタライトを主剤とする第二混練体(30)を、加工済みの成形層(2)の一部表面の加工形状に沿って、均等厚さとなるように部分盛土する(図1C及び図4(d2))。この部分盛土状態で第三乾燥工程として自然乾燥及び強制乾燥を行って、第二混練体(30)の盛土層を、表層部(312)及び下層部(311)に分離させた表層分離状態(図1C及び図4(e2))とする。続いて加工A・B工程として、付加盛土した第二混練体(30)の表層部(312)全てと下層部(311)の一部を含む表面露出部の一部を、除去手段によって除去し、第二の表層除去・加工状態(図1Cの(f))とする。 Further, as a layer addition step, the second kneaded body (30) containing petalite as a main agent is partially embanked so as to have a uniform thickness along the processed shape of a part of the surface of the processed molded layer (2). (FIG. 1C and FIG. 4 (d2)). In this partial embankment state, natural drying and forced drying are performed as a third drying step, and the embankment layer of the second kneaded body (30) is separated into a surface layer part (312) and a lower layer part (311) (surface layer separated state ( 1C and FIG. 4 (e2)). Subsequently, as a processing A / B step, a part of the surface exposed portion including all of the surface layer portion (312) and a part of the lower layer portion (311) of the second kneaded body (30) subjected to additional embankment is removed by a removing means. The second surface layer is removed and processed ((f) in FIG. 1C).
次に第二焼成温度よりも低い、1100℃〜1150℃の温度範囲における第三焼成温度で素地(1)、下層部(221´)からなる成形層(2)、及び第二混練体(30)の加工済みの下層部(311)を第三焼成し、素地(1)と成形層(2)と第二成形層(3)からなる加工済みの三層固化成形体を得る(図1C及び図4(h2))。 Next, the molding layer (2) composed of the substrate (1), the lower layer portion (221 ′), and the second kneaded body (30) at a third firing temperature in a temperature range of 1100 ° C. to 1150 ° C. lower than the second firing temperature. ) Is subjected to third firing to obtain a processed three-layer solidified molded body comprising the substrate (1), the molding layer (2) and the second molding layer (3) (FIG. 1C and FIG. 4 (h2)).
さらに再度の層付加工程として、ペタライトを主剤とする第三混練体(40)を、三層の切削済み状態の表面全体にスプレー塗布によって盛土(「盛土III」)し、そして第四焼成工程として第三焼成温度よりも低い、1150℃〜1200℃の温度範囲内の第四焼成温度で第四焼成して固化層(40´)からなる第三成形層(4)を形成することで、図1C及び図4の(h3)に示す四層構造の加工済み焼成材である実施例3の装飾セラミックスの原材が得られる。 Furthermore, as a layer addition process again, the third kneaded body (40) mainly composed of petalite is embanked by spray coating over the entire surface of the three-layered state ("bank III"), and as the fourth firing process By forming a third molding layer (4) composed of a solidified layer (40 ′) by fourth firing at a fourth firing temperature within a temperature range of 1150 ° C. to 1200 ° C., which is lower than the third firing temperature. The base material of the decorative ceramic of Example 3 which is a processed fired material having a four-layer structure shown in 1C and (h3) in FIG. 4 is obtained.
実施例3の装飾セラミックスは、このようにして製造される実施例3の装飾セラミックスの原材の表露出面に、釉薬工程として、釉薬を均一に塗布して釉焼し、次いで転写工程として、表面に所望の(例えば再現対象の)色模様を転写して転写焼成し、最後に仕上げ焼成工程として仕上げ焼成を行って得られる。 As the glaze process, the decorative ceramic of Example 3 was applied to the surface exposed surface of the raw material of the decorative ceramic of Example 3 thus manufactured. It is obtained by transferring a desired color pattern (for example, a reproduction target) onto the surface, transferring and firing, and finally performing finish firing as a finish firing step.
ここで、第一の混練体たる混練体(20)は所定範囲内の第一平均粒度の第一粉粒混合物に水を混練した粘土状の混練体(20)であり、第二混練体(30)は前記第一平均粒度よりも粒度の小さい第二平均粒度の第二粉粒混合物に水を混練したものであり、第三混練体(40)は前記第二平均粒度よりも粒度の小さい第三平均粒度の第三粉粒混合物に水を混練したものである。但し、混練水量は素地(1)よりも第一混練体(混練体(20))、第二混練体(30)、第三混練体(40)の各混練体の方が多く、焼成前の混練状態では素地(1)よりも盛土される前記各混練体((混練体(20))、第二混練体(30)、第三混練体(40))の方が高い含水率となっている。 Here, the kneaded body (20) as the first kneaded body is a clay-like kneaded body (20) obtained by kneading water with a first powder mixture having a first average particle size within a predetermined range. 30) is obtained by kneading water into a second powder mixture having a second average particle size smaller than the first average particle size, and the third kneaded body (40) has a particle size smaller than the second average particle size. Water is kneaded with a third powder mixture having a third average particle size. However, the amount of kneading water is larger in each kneaded body of the first kneaded body (kneaded body (20)), second kneaded body (30), and third kneaded body (40) than in the substrate (1), and before firing. In the kneaded state, each of the kneaded bodies ((kneaded body (20)), second kneaded body (30), and third kneaded body (40)) that is embanked than the substrate (1) has a higher water content. Yes.
また、前記施釉工程における釉焼温度は、前記第二焼成温度よりも低く、着色模様の転写後の転写焼成温度は、釉焼温度と同程度であるかこれよりも低く、仕上げ焼成温度は、転写焼成温度と同程度であるかこれよりも低く設定される。これは、第二焼成、釉焼、転写焼成、仕上げ焼成の各焼成における熱エネルギーの総量が、焼成の繰り返しごとに小さくなることを意味している。 Further, the calcination temperature in the glazing step is lower than the second baking temperature, the transfer baking temperature after the transfer of the colored pattern is the same as or lower than the calcination temperature, the finish baking temperature is It is set to be approximately equal to or lower than the transfer baking temperature. This means that the total amount of thermal energy in each firing of the second firing, sinter firing, transfer firing, and finish firing decreases with each firing repetition.
前記素地は、成形層の成形前に第一焼成によって予め焼成成形され、
前記成形層は、ペタライトを主剤に含む粉粒混合物と水とを混練した混練体が、素地の層形成面上で素地に吸水された状態となり、この状態で前記第一焼成よりも低い焼成温度の第二焼成によって素地と共に焼成されることが好ましい。
The substrate is preliminarily fired and molded by first firing before molding of the molding layer,
In the molded layer, a kneaded body obtained by kneading a powder mixture containing petalite as a main ingredient and water is in a state where water is absorbed by the substrate on the layer forming surface of the substrate, and in this state, the firing temperature is lower than that of the first firing. It is preferable that the second baking is performed together with the substrate.
前記付加成形層は、第二焼成前の粘土状の状態において、少なくともペタライトと、無機解膠材と、粘土材と、を含んでなる混練体を素地上に盛土した盛土状態で静置し、盛土層内から水分を含む表層部が下層部上に表層分離した状態とする層分離工程を経てから焼成したものとすることが好ましい。
またさらに、前記層付加成形層は、前記層分離工程ののち、素地上に盛土された混練体の表層部を除去する表層除去工程ののちに、該表層除去工程によって残った下層部のみを第二焼成して得られた焼成体からなる。また、前記素地の第一焼成前の混練体はさらに、板状成形の際又は第一焼成の際のうち少なくとも一方において発泡する発泡剤を含むことが好ましい。
In the clay state before the second firing, the additional molding layer is allowed to stand in an embankment state in which a kneaded body including at least petalite, an inorganic peptizer, and a clay material is embanked on the substrate, It is preferable that the surface layer portion containing moisture from within the embankment layer is fired after a layer separation step in which the surface layer is separated on the lower layer portion.
Furthermore, the layer-added molding layer is formed by removing only the lower layer portion remaining after the surface layer removing step after the surface layer removing step of removing the surface layer portion of the kneaded body embanked on the substrate after the layer separating step. It consists of a fired body obtained by two firings. Moreover, it is preferable that the kneaded body before the first firing of the substrate further includes a foaming agent that foams in at least one of the plate-shaped molding and the first firing.
以上が本発明と本発明の実施例の構成であるが、本発明はその上記実施例の構成ないし製造方法のみに限定されず、その特徴部分の技術的思想を逸脱しない範囲で、層形成の態様の変更、各種割合の変更、製造工程の交換ないし各実施例間での製造工程の組み合わせ、部分的抽出などが可能である。 The above is the configuration of the present invention and the embodiment of the present invention. However, the present invention is not limited to the configuration or manufacturing method of the above-described embodiment, and layer formation can be performed without departing from the technical idea of the characteristic portion. It is possible to change the aspect, change various ratios, exchange manufacturing processes, combine manufacturing processes between the embodiments, and perform partial extraction.
本発明は、有形文化財、壁画、彫刻、絵画、工芸品の復元品や再現品、複製品、或いは、装飾用の立体成形体、或いは内外装の装飾用建築材料等として使用される装飾セラミックスの原材や当該原材を用いた装飾セラミックスを提供することに利用できる。 The present invention relates to decorative ceramics used as tangible cultural properties, murals, sculptures, paintings, restorations and reproductions of crafts, reproductions, three-dimensional molded articles for decoration, or building materials for decoration of interior and exterior It can be used for providing decorative raw materials and decorative ceramics using the raw materials.
(1) 素地
(2) 成形層(第一成形層)
(20) 混練体
(22´)(32´)(211´)(221´)(311´)(40´) 固化層
(212)(222)(312) 表層部
(211)(221)(311) 下層部
(3) 第二成形層
(30) 第二混練体
(4) 第三成形層
(40) 第三混練体
(5´) 仕上げ層
(a) 盛土状態
(b) 表層分離状態
(c) 表層除去状態
(d2) 部分盛土状態
(e2) 表層分離状態
(f) 表層除去・加工状態
(C) 除去手段
(F) 枠材
(PR) 成形体全体におけるペタライト配合率
(PR1) 素地におけるペタライト配合率
(PR2) 成形層(第一成形層)におけるペタライト配合率
(PR3) 第二成形層におけるペタライト配合率
(PR4) 第三成形層におけるペタライト配合率
(1) Base (2) Molded layer (first molded layer)
(20) Kneaded body (22 ') (32') (211 ') (221') (311 ') (40') Solidified layer (212) (222) (312) Surface layer part (211) (221) (311) ) Lower layer part (3) Second molded layer (30) Second kneaded body (4) Third molded layer (40) Third kneaded body (5 ') Finished layer (a) Embankment state (b) Surface layer separation state (c ) Surface layer removed state (d2) Partial embankment state (e2) Surface layer separated state (f) Surface layer removed / processed state (C) Removal means (F) Frame material (PR) Petalite compounding ratio in the entire molded body (PR1) Blending ratio (PR2) Petalite blending ratio in the molding layer (first molding layer) (PR3) Petalite blending ratio in the second molding layer (PR4) Petalite blending ratio in the third molding layer
この発明は、有形文化財、壁画、絵画、彫刻、工芸品の復元品や再現品、複製品、或いは、装飾用の立体成形体、或いは内外装の装飾用建築材料等として使用される装飾セラミックスの原材、及び該原材を用いた装飾セラミックスの製造方法に関する。 The present invention relates to decorative ceramics used as tangible cultural properties, murals, paintings, sculptures, restored or reproduced products of crafts, reproductions, three-dimensional molded articles for decoration, or building materials for decoration of interior and exterior raw material, and a method for manufacturing a decorative ceramics using raw materials.
従来、有形文化財、壁画、絵画、彫刻などを表現するための素材として、例えば、紙、布等の支持体の表面に、表現しようとするオリジナルの写真データをインクジェットプリンタ等でカラー印刷し、その支持体の裏面に、オリジナルを反転して印刷するための版下を製版したスクリーンを用いて第1の顔料でシルクスクリーン印刷し、さらに、オリジナルと同一又は類似の加工を表面に施し、下塗りを施した基底材で裏打ちした素材及びその製造方法が知られている(特許文献1参照)。この例では、前記基底材は、素材の素地ともいえるものである、
また、有形文化財、壁画、絵画、彫刻などを表現するための素材の素地として利用できるものとして、流紋岩、長石質岩石、貢岩、粘板岩、真珠石、黒曜石及び膨張粘土からなる群から選ばれた少なくとも一種100重量部を主剤とする混合物を焼成発泡せしめてなる多孔質セラミックスが知られている(特許文献2参照)。
Conventionally, as a material for expressing tangible cultural properties, murals, paintings, sculptures, etc., the original photographic data to be expressed is color-printed with an inkjet printer or the like on the surface of a support such as paper, cloth, etc. On the back side of the support, silk screen printing is performed with the first pigment using a screen made of a plate for reversing and printing the original, and further, the surface is subjected to the same or similar processing as the original, and the undercoat is applied. A material backed by a base material to which a metal is applied and a manufacturing method thereof are known (see Patent Document 1). In this example, the base material is a material base.
It can also be used as a base for materials for expressing tangible cultural properties, murals, paintings, sculptures, etc., from the group consisting of rhyolite, feldspar rock, tribute, slate, nacre, obsidian and expanded clay. There is known a porous ceramic formed by firing and foaming a mixture containing at least one selected 100 parts by weight as a main component (see Patent Document 2).
しかしながら、上記従来の素材はいずれも、高強度の素地に成形性や表現性に優れた軟質の成形層を定着する構造のため、異種材料層同士を定着固化させなければならない。このため、大型のものや精巧な立体成型品に適用すると、各材料層の熱収縮率ないし含水率の違いによって層分離したり、ヒビやワレが発生したりしてしまう。特に焼成工程を経る場合は層分離し易く、或いはヒビやワレが発生し易いものとなる。また成形後も経年劣化によって層分離したり、表面にひびが発生したりしてしまう場合があり、保存性に欠けるものであった。
そこでこの発明は、例えば比較的大型の復元品や再現品、複製品を高い精度で得ることを目的の一つとして、表現対象を表現するための成形層を素地上に有する装飾セラミックスのための原材であって、該成形層は表現対象を形状、色、質感等において高い精度で表現することが可能でありながら、優れた耐熱性と素地への定着性とを有し、表面の成形状態の保持性に優れた装飾セラミックスのための原材、並びにそのような装飾セラミックスのための原材の製造方法を提供することを課題とする。
また本発明は本発明に係る装飾セラミックスのための原材を用いた装飾セラミックスであって、表現対象が形状、色、質感等において高い精度で表現され、優れた耐熱性と素地への定着性とを有し、表面の成形状態の保持性に優れた装飾セラミックスを提供することを課題とする。
However, any of the above-mentioned conventional materials has a structure in which a soft molding layer having excellent moldability and expressibility is fixed on a high-strength substrate, and thus different material layers must be fixed and solidified. For this reason, when it is applied to a large-sized product or an elaborate three-dimensional molded product, the layers may be separated or cracks and cracks may occur due to the difference in heat shrinkage or moisture content of each material layer. In particular, when going through a firing step, the layers are easily separated or cracks and cracks are likely to occur. Further, even after molding, the layers may be separated due to deterioration over time or cracks may be generated on the surface, resulting in lack of storage stability.
Therefore, the present invention is for decorative ceramics having a molding layer on the substrate for expressing a representation object, for example, for obtaining a relatively large restoration, reproduction, or reproduction with high accuracy. It is a raw material, and the molding layer can express the object to be expressed with high accuracy in terms of shape, color, texture, etc., but has excellent heat resistance and fixability to the substrate, and molding the surface raw materials for superior decorative ceramics on the state of retention, and it is an object to provide a method for producing a raw material for such decorative ceramics.
In addition, the present invention is a decorative ceramic using the raw material for the decorative ceramic according to the present invention, and the object to be expressed is expressed with high accuracy in shape, color, texture, etc., and has excellent heat resistance and fixing property to the substrate. It is an object of the present invention to provide a decorative ceramic that has excellent retention of the molded state of the surface.
前記課題を解決するためこの発明は、次のような装飾セラミックスのための原材、該原材を用いた装飾セラミックスの製造方法を提供する。 In order to solve the above-mentioned problems, the present invention provides the following raw materials for decorative ceramics and a method for producing decorative ceramics using the raw materials.
1.装飾セラミックスの原材及び装飾セラミックス
この発明の装飾セラミックスの原材は、基本構成として、
微細凹凸部を有する層形成面を少なくとも1面に有した素地と、
素地の前記層形成面に層形成された成形層と、を具備して一体的に形成された装飾セラミックスの原材であって、
前記成形層のうち少なくとも素地と隣接する層部分は、ペタライトを主剤とし、かつ素地の前記微細凹凸部に沿って定着されている。
上記のように、後述する特徴を有するペタライトを成形層のうち少なくとも素地と隣接する層部分の主剤とし、成形層を、素地上の微細凹凸部に沿って層形成して定着させることで、成形層は素地から分離しにくい良好な定着性を有するものとなる。
なお、前記素地の層形成面の微細凹凸部とは、要するに、素地の原料となる素地の混練体を焼成することで素地表面部分に形成される、10μm〜900μm程度の凹凸高さの凹凸部のことである。
また本発明に係る装飾セラミックスは、上記の基本構成を備えた本発明に係る原材に所定の仕上げ処理が施されたものである。ここで仕上げ処理とは、施釉処理、彩色処理、表現対象の模様等の転写処理の内の少なくとも一つの処理、或いはさらに仕上げ焼成を含む処理をいう。
1. Decorative ceramics raw material and decorative ceramics The decorative ceramic raw material of the present invention has the following basic structure:
A substrate having at least one layer-forming surface having fine irregularities;
A molding layer formed on the layer forming surface of the substrate, and a raw material of decorative ceramics integrally formed,
At least a portion of the molding layer adjacent to the substrate is fixed along the fine concavo-convex portion of the substrate with petalite as a main agent.
As described above, petalite having the characteristics described below is used as the main component of at least the layer portion adjacent to the substrate, and the molding layer is formed by forming a layer along the fine irregularities on the substrate and fixing it. The layer has good fixability that is difficult to separate from the substrate.
The fine irregularities on the substrate layer forming surface are basically irregularities having an irregularity height of about 10 μm to 900 μm, which are formed on the substrate surface portion by firing a kneaded body of the substrate as a raw material of the substrate. That is.
The decorative ceramic according to the present invention is obtained by subjecting the raw material according to the present invention having the above basic configuration to a predetermined finishing treatment. Here, the finishing process means at least one of a glazing process, a coloring process, and a transfer process of a pattern to be expressed, or a process including finish firing.
2.装飾セラミックスの原材及び該原材を用いる装飾セラミックスの製造方法
この発明の装飾セラミックスの原材は、基本的には、
素地の原料となる素地の混練体を第一焼成することで板状の素地の成形体を得る素地形成工程と、
素地の片面に、成形層の原料となる、ペタライトを主剤とする粉粒混合物と水とを混練した粘土状の混練体を盛土する盛土工程と、
混練体の盛土を静置して盛土から表層部を自然分離させる表層分離工程と、
を含む。
なお、前記素地の層形成面の微細凹凸部とは、要するに、素地の原料となる素地の混練体を焼成することで素地表面部分に形成される、10μm〜900μm程度の凹凸高さの凹凸部のことである。
また本発明に係る装飾セラミックスは、上記の基本構成を備えた本発明に係る原材の製造方法により装飾セラミックスの原材を得る工程に加え、該原材に所定の仕上げ処理を施す工程を含む。ここで仕上げ処理とは、施釉処理、彩色処理、表現対象の模様等の転写処理の内の少なくとも一つの処理、或いはさらに仕上げ焼成を含む処理をいう。
2. A decorative ceramic raw material and a method of manufacturing the decorative ceramic using the raw material The decorative ceramic raw material of the present invention basically includes:
A substrate forming step of obtaining a molded body of a plate-like substrate by first firing a kneaded body of a substrate that is a raw material of the substrate;
A banking step of embedding a clay-like kneaded body obtained by kneading a powder mixture containing petalite and water, which is a raw material of the molding layer, on one side of the substrate;
A surface layer separation step of leaving the embankment of the kneaded body and separating the surface layer from the embankment,
including.
The fine irregularities on the substrate layer forming surface are basically irregularities having an irregularity height of about 10 μm to 900 μm, which are formed on the substrate surface portion by firing a kneaded body of the substrate as a raw material of the substrate. That is.
Moreover, the decorative ceramic according to the present invention includes a step of performing a predetermined finishing process on the raw material in addition to the step of obtaining the raw material of the decorative ceramic by the raw material manufacturing method according to the present invention having the above basic configuration. . Here, the finishing process means at least one of a glazing process, a coloring process, and a transfer process of a pattern to be expressed, or a process including finish firing.
上記装飾セラミックスの原材の製造方法についてさらに説明すると、上記盛土工程によって、素地上に盛土が形成された盛土状態となり、上記表層分離工程によって、盛土状態の盛土が表層部と下層部とに自然分離した層分離状態となる。
本発明の装飾セラミックスの原材の製造方法の代表的な例では、層分離状態の表層部は表層除去工程によって除去されて下層部(下層部の一部である場合を含む)のみの表層除去状態となり、次いで焼成工程によって、表層部を除く表層除去状態の下層部が成形層として素地上に定着した焼成状態となる。この製造方法は、単なる盛土・焼成による層形成ではなく、盛土工程後に表層分離状態を経て、さらに表層除去状態を経た焼成工程によって成形層を形成するものとなっている。
そして上記表層分離工程によって、混練体のうち分離沈下した下層部が素地の層形成面に定着した状態となり、また上記表層除去工程によって、下層部が混練体部の上面に露出した状態となる。ここで、混練体のうち分離沈下した下層部はその後の焼成によって、例えば図6の拡大顕微鏡写真に示すような比較的粗い凹凸状の固化層面をなし、図5の拡大顕微鏡写真に示す、表層部を除去せずに焼成した場合の比較的平坦状の固化層面と比べて、明らかに異なった層面粗度となる。この比較的粗い凹凸状の層面によって、成形層の上部が、当該成形層上に付加形成されることがあるさらなる成形層や、彩色剤ないし釉薬等の良好な定着性をもたらす。また、成形層の下部は素地の層形成面に対して良好な定着性を示す。
The method for producing the decorative ceramic raw material will be further described. The embankment process results in an embankment state in which embankment is formed on the ground surface, and the embankment state in the embankment state is naturally formed in the surface layer part and the lower layer part by the surface layer separation process. A separated layer state is obtained.
In a typical example of the method for producing a raw material for decorative ceramics according to the present invention, the surface layer portion in a layer-separated state is removed by the surface layer removing step and only the lower layer portion (including the case where it is a part of the lower layer portion) is removed. Then, by the firing step, the lower layer portion in the state of removing the surface layer excluding the surface layer portion becomes a fired state in which the molded layer is fixed on the substrate. In this manufacturing method, a layer is not formed simply by embankment and firing, but a molded layer is formed through a surface separation state after the embankment step and a firing step after a surface layer removal state.
In the surface layer separation step, the lower layer portion that has been separated and settled out of the kneaded body is fixed on the layer forming surface of the substrate, and in the surface layer removal step, the lower layer portion is exposed on the upper surface of the kneaded body portion. Here, the lower layer portion of the kneaded body which has been separated and settled has a relatively rough uneven solidified layer surface as shown in, for example, the enlarged micrograph of FIG. 6 by subsequent firing, and the surface layer shown in the enlarged micrograph of FIG. Compared to the relatively flat solidified layer surface when fired without removing the part, the layer surface roughness is clearly different. Due to this relatively rough uneven layer surface, the upper part of the molding layer provides a further fixing layer that may be additionally formed on the molding layer, and good fixability such as a coloring agent or glaze. Further, the lower part of the molding layer exhibits good fixability with respect to the base layer forming surface.
(ペタライトについて)
以上の本発明に係る装飾セラミックスの原材及び装飾セラミックスの製造方法において、ペタライトは、葉長石またはペタル石とも呼ばれるケイ酸塩の単斜晶系鉱物であり、LiAlSi4O2を化学組成とする。ペタライトは一般的に、高い耐熱衝撃性を有しており、熱膨張性が低い特徴を有している。
(主剤の意味)
また本発明において「主剤」とは、水を除く他の配合成分すべてのうち、最も配合重量比の高い配合成分であることを意味する。
(About Petalite)
In the above-mentioned decorative ceramic raw material and decorative ceramic manufacturing method according to the present invention, petalite is a monoclinic mineral of silicate also called feldspar or petalite, and has a chemical composition of LiAlSi 4 O 2. . Petalite generally has a high thermal shock resistance and a low thermal expansion property.
(Meaning of the main agent)
Further, in the present invention, the “main agent” means a blending component having the highest blending weight ratio among all other blending components except water.
以下、本発明の装飾セラミックスの原材及び装飾セラミックスの製造方法に関する事項について例示説明する。
先ず、本発明の装飾セラミックスの原材及び装飾セラミックスの製造方法において、
前記素地は、例えば、成形層の成形前に第一焼成によって予め焼成成形された、吸水性を有するものである。代表例として、吸水性を有する焼成板状材からなるものを挙げることができる。
前記成形層は、ペタライトを主剤に含む粉粒混合物と水とを混練した混練体が、素地の層形成面上で素地に吸水された状態(被吸水状態)となり、この状態(被吸水状態)で前記第一焼成よりも低い焼成温度の第二焼成によって素地と共に焼成された焼成材からなることが好ましい。
・当該混練体は粉粒混合物と水とを混練させて粘土状にしたものであり、第二焼成によって固化した成形層となる。混練体は、前記第二焼成の際または第二焼成の前に、前記素地に盛土され静置されることで混練体の水分が、吸水性を有する素地に吸収され、素地の微細凹凸部に投錨したごとき状態となる(以下、単に「投錨した/投錨する」と表現する)。このように粘土状の混練体が吸水され、かつ投錨した状態で焼成成形済みの素地と共に焼成されることで、素地上に密着した成形層となる。
Hereinafter, the matter regarding the raw material of the decorative ceramic of the present invention and the method of manufacturing the decorative ceramic will be described by way of example.
First, in the method for producing the decorative ceramic raw material and decorative ceramic of the present invention,
The substrate is water-absorbing material that is preliminarily fired and molded by first firing before molding of the molding layer, for example. As a typical example, there can be mentioned one made of a fired plate material having water absorption.
In the molding layer, a kneaded body obtained by kneading a powder mixture containing petalite as a main ingredient and water is in a state where water is absorbed by the substrate on the layer forming surface of the substrate (water absorption state), and this state (water absorption state) Preferably, it is made of a fired material fired together with the substrate by second firing at a firing temperature lower than that of the first firing.
-The said kneaded body knead | mixes a powder-particle mixture and water, and becomes a clay form, and becomes a shaping | molding layer solidified by the 2nd baking. During the second firing or before the second firing, the kneaded body is embanked and allowed to stand so that the moisture of the kneaded body is absorbed by the water-absorbing substrate, and the fine uneven portions of the substrate are absorbed. It becomes a state when it is thrown (hereinafter simply expressed as “throwed / throwed”). In this way, the clay-like kneaded body is water-absorbed and fired together with the fire-molded substrate in the thrown state, thereby forming a molded layer in close contact with the substrate.
上記装飾セラミックスの原材はさらに言えば、例えば、第一焼成によって板状に形成された素地の片面側に、粉粒混合物と水とを混練してなる粘土状の混練体を所定厚さで盛土して該盛土を前記第一焼成温度よりも低い温度で第二焼成して得られる成形層を有する装飾セラミックスの原材である。
・前記素地は、例えば、混練体を盛土する前の板状の成形体の状態において、吸水率0.1%以上60%以下であり、
・前記素地上に形成する成形層は、1層の成形層だけでもよいが、後述する付加成形層(第二成形層、第三成形層、・・・)等も形成する場合のように、複数層形成してもよい。いずれにしても、素地以外の層のうち、少なくとも素地と隣接して形成される成形層は、脱水した最終成形体の状態において、少なくともペタライト40w(weight:重量をいう。以下同じ)%以上75w%以下を含むことが好ましい。
More specifically, the decorative ceramic raw material is, for example, a clay-like kneaded body obtained by kneading a powder mixture and water at a predetermined thickness on one side of a substrate formed into a plate shape by first firing. It is a raw material for decorative ceramics having a molded layer obtained by embankment and second firing the embankment at a temperature lower than the first firing temperature.
-The substrate is, for example, in a state of a plate-shaped molded body before embankment of the kneaded body, the water absorption rate is 0.1% or more and 60% or less,
-Although the molding layer formed on the substrate may be only one molding layer, as in the case of forming an additional molding layer (second molding layer, third molding layer, ...) described later, Multiple layers may be formed. In any case, among the layers other than the base material, at least the molding layer formed adjacent to the base material is at least 40 w (weight: refers to weight; hereinafter the same)% or more 75 w in the state of the dehydrated final molded body. % Or less is preferable.
本例の装飾セラミックスの原材及び装飾セラミックスの製造方法は、ペタライトを主剤とした混練体を焼成によって成形層として定着させることを大きな特徴のひとつとする。
ここで「ペタライトを主剤とする」とは、焼成して脱水させた最終成形体の状態でペタライトを40w%以上75W%以下含むように、焼成前の混練体へのペタライト含有率を調整したものをいう。脱水した最終成形体の状態でペタライトを40w%以上75W%以下含むように、ペタライトを主剤として混練した混練体は、焼成(後述の実施例の第二焼成)によって素地上に溶融・固化し、優れた耐熱性と定着性とを有した成形層となる。前記混練体は粘土状の状態で第一焼成成形後の素地上に盛土され、素地と共に焼成(第二焼成)されることで、素地に溶融・固化し、素地の表面材の微細凹凸部に投錨した状態で素地と一体化した成形層となる。この成形層は素地への定着性に優れ、成形層の形成後(後述の実施例にいう第二焼成後)の乾燥及び焼成によって層表面が反り変形したり、素地から分離したりすることがない。
なお上記に加え、前記混練体はさらに15%以上(好ましくは17%以上)50%以下の含水率とすることが好ましい。前記のように含水率調整した混練体を素地と共に焼成(実施例に言う第二焼成)して成形層とすることで、混練体の初めての焼成(第二焼成)直後の全体の線膨張係数が3.0〔×10-6/K〕以下に抑えられる。
Method for producing a raw material and decorative ceramics Decorative ceramics of this example is one of the major features in that to fix the molded layer by firing a kneaded body has a main agent and petalite.
Here, “mainly containing petalite” means that the content of petalite in the kneaded body before firing is adjusted so that it contains 40 w% or more and 75 W% or less of petalite in the state of the final molded body that has been fired and dehydrated. Say. The kneaded body kneaded with petalite as the main agent so as to contain 40 w% or more and 75 W% or less of petalite in the state of the dehydrated final molded body is melted and solidified on the substrate by firing (second firing in examples described later), A molded layer having excellent heat resistance and fixability is obtained. The kneaded body is embanked on the substrate after the first firing molding in a clay state, and is fired together with the substrate (second firing) to melt and solidify into the substrate, thereby forming a fine uneven portion on the surface material of the substrate. The molded layer is integrated with the substrate in the thrown state. This molded layer has excellent fixability to the substrate, and the layer surface may be warped or separated from the substrate by drying and firing after the formation of the molded layer (after the second firing in the examples described later). Absent.
In addition to the above, the kneaded body preferably further has a moisture content of 15% or more (preferably 17% or more) and 50% or less. By firing the kneaded body adjusted for water content as described above together with the substrate (second firing in the examples) to form a molded layer, the overall linear expansion coefficient immediately after the first firing (second firing) of the kneaded body Is suppressed to 3.0 [× 10 −6 / K] or less.
(臨界的意義)
前記素地上の成形層の材料である前記混練体がペタライトを主剤としない場合、或いは素地が吸水性を有さない場合においては、乾燥及び第二焼成、ないしその後の例えば第三焼成、第四焼成・・・(さらに成形層を形成する場合における第三焼成、第四焼成・・・)によって収縮・変形して全体のワレが生じてしまったり、成形層の層境界で層分離したりする恐れがある。特に、混練体の粉粒混合物中のペタライト配合率が40w%に満たない場合、或いは成形後の成形層の最終的なペタライト配合率が40w%に満たない場合にはワレの発生が生じやすいものとなる。また素地は事前に第一焼成された予焼成済みの成形体であるため、第二焼成時には、予め大部分の収縮を完了している。このため第一焼成温度よりも低い第二焼成によってさらに大きく収縮することはなく、ペタライトを主剤とする成形層・・・と共に焼成されることで、過度な収縮変形を防ぐことができる。また素地が適度な吸水率を保たない場合、例えば素地の吸水率が0.1%に満たない場合は、素地と混練体との定着性が悪く、焼成後にヒビやワレが生じてしまう。その一方、素地の吸水率が60%を超えてくると、例えば65%以上と高すぎる場合には、成形層の材料である混練体の乾燥時又は第二焼成時、ないしその後の第三焼成時等において混練体から水を吸いすぎることで、素地の強度が低く耐久性に欠けるものとなってしまう。
(Critical significance)
When the kneaded body, which is the material of the molding layer on the substrate, does not contain petalite as the main ingredient, or when the substrate does not have water absorption, drying and second firing, or subsequent third firing, fourth, etc. Firing ... (3rd firing, 4th firing ... when forming a molding layer) Shrinkage / deformation causes overall cracking, or layer separation occurs at the layer boundary of the molding layer There is a fear. In particular, cracking is likely to occur when the blend ratio of petalite in the powder mixture of the kneaded body is less than 40 w%, or when the final blend ratio of the molded layer after molding is less than 40 w%. It becomes. Since the substrate is a pre-fired molded body that has been first fired in advance, most of the shrinkage has been completed in advance during the second firing. For this reason, it does not shrink | contract much more by the 2nd baking lower than a 1st baking temperature, and an excessive shrink deformation can be prevented by baking with the shaping | molding layer ... which uses a petalite as a main ingredient. Further, when the substrate does not maintain an appropriate water absorption rate, for example, when the water absorption rate of the substrate is less than 0.1%, the fixing property between the substrate and the kneaded body is poor, and cracks and cracks occur after firing. On the other hand, when the water absorption rate of the substrate exceeds 60%, for example, when it is too high, such as 65% or more, when the kneaded body that is the material of the molding layer is dried or during the second firing, or the subsequent third firing. If the water is excessively sucked from the kneaded body at times, the strength of the substrate is low and the durability is insufficient.
また、前記の装飾セラミックスの原材及び装飾セラミックスの製造方法においては、前記第二焼成後の、素地と成形層とからなる一体的な部材全体としての線膨張係数が、1.0〔×10-6/K〕以上5.5〔×10-6/K〕以下であることが好ましい。
上記のように成形層が素地上に良好に定着し、定着後の素地と成形層とが一体化した成形後の部材(この部材には、原材の場合、さらに付加形成層を形成すべき部材の場合の双方を含む)は、部材全体の線膨張係数が1.0〔×10-6/K〕以上であって5.5〔×10-6/K〕以下に抑えられたものとなり、各層の膨張による剥離ないし分離が生じにくいものとなる。一方、第二焼成後の部材全体の線膨張係数が1.0〔×10-6/K〕より小さすぎる、または第二焼成後の部材全体の線膨張係数が5.5〔×10-6/K〕より大きすぎるとその後の仕上げ焼成の際に層表面が反り変形したり、素地と成形層とが分離したりする場合がある。
Moreover, in the said raw material of decorative ceramics , and the manufacturing method of decorative ceramics , the linear expansion coefficient as the whole integral member which consists of a base material and a shaping | molding layer after said 2nd baking is 1.0 [x10. -6 / K] or more and 5.5 [× 10 -6 / K] or less.
As described above, the molded layer is well fixed on the substrate, and the molded substrate and the molded layer are integrated with each other after molding (an additional layer should be formed on this member in the case of raw materials) In both cases, the linear expansion coefficient of the entire member is 1.0 [× 10 −6 / K] or more and is suppressed to 5.5 [× 10 −6 / K] or less. Further, peeling or separation due to expansion of each layer is difficult to occur. On the other hand, the linear expansion coefficient of the whole member after the second firing is too small than 1.0 [× 10 −6 / K], or the linear expansion coefficient of the whole member after the second firing is 5.5 [× 10 −6. If it is larger than / K], the layer surface may be warped and deformed during the subsequent finish firing, or the substrate and the molded layer may be separated.
また上記に加え、或いは上記とは別に、前記素地と隣接して盛土される混練体は、例えば、第二焼成前の粘土状の状態において、少なくともペタライトと、無機解膠材と、水と、を含む混練体(すなわち、「ペタライトと無機解膠材とを少なくとも含む粉粒混合物」を、水と共に混練した混練体)からなることが好ましい。本例によれば、無機解膠材の配合によってペタライトを含む粉粒混合物を水内に比較的均一に分散させることができる。これにより、混練体は第二焼成において素地に溶融・固化し、素地の表面材の微細凹凸部に投錨した状態で一体化でき、40w%以上もの高配合率のペタライトを均一に分散させた成形層が、素地上に良好に定着する。但し、本発明全てをこれら又はこれらのうちいずれかの要素を具備するものに限定する趣旨ではない。 In addition to the above, or separately from the above, the kneaded body that is embanked adjacent to the substrate is, for example, in a clay-like state before the second firing, at least petalite, an inorganic peptizer, water, (That is, a “kneaded body obtained by kneading a powder mixture containing at least petalite and an inorganic peptizer” together with water). According to this example, the powder mixture containing petalite can be dispersed relatively uniformly in water by blending the inorganic peptizer. As a result, the kneaded body is melted and solidified in the base material in the second firing, and can be integrated in a state where it is cast on the fine irregularities of the surface material of the base material, and uniformly molded with a high blending ratio of 40 w% or more of petalite. The layer settles well on the substrate. However, the present invention is not intended to limit the present invention to those provided with these or any of these elements.
また、前記いずれかの装飾セラミックスの原材及び装飾セラミックスの製造方法においては、前記素地と隣接して盛土される混練体は、例えば、第二焼成前の粘土状の状態において、少なくともペタライトと、少量の無機解膠材と、粘土材と、を含んでなり、該混練体が第二焼成の前の素地上に盛土された状態で層内分離することで、水分を含む表層部が下層部の上部に表層分離したものであることが好ましい。 Further, in any of the decorative ceramic raw material and the method of manufacturing the decorative ceramic , the kneaded body that is embanked adjacent to the base is, for example, at least petalite in a clay state before the second firing, A small amount of an inorganic peptizer and a clay material, and the kneaded body is separated into layers in a state where the kneaded body is embanked on the substrate before the second firing, so that the surface layer portion containing moisture becomes the lower layer portion. It is preferable that the surface layer is separated on the upper part of.
また上記混練体は例えば、「40w%以上もの高配合率のペタライトと、5w%以上35w%以下の粘土材(蛙目粘土、ロー石、又は陶石の少なくとも一種以上をいう。本発明において以下同じ。)と、少量の無機解膠材とを少なくとも含む粉粒混合物」を、水と共に混練した混練体からなり、この混練体を静置することにより、粘土材に含まれる粒度100μm未満の細かい粒子が高い含水率の表層部として混練体の表側に分離することとなる。水分を含む表層部が下層部と分離して表層部化することによって、残りの下層部内の微細粒子含有率が極めて小さくなる。このため、乾燥・焼成後の成形層がヒビ割れや欠けを生じにくいものとなる。なお表層部は、D50のメジアン径を50%以下とする粒度分布で構成されることが好ましく、また、粒度を頻度分布表示したときに1μm以上100μm以下の範囲内、さらにいえば1μm〜20μmの範囲内に最大ピーク値(すなわちモード径)を有することが好ましい。但し、本発明全てをこれら又はこれらのうちいずれかの要素を具備するものに限定する趣旨ではない。 The kneaded body is, for example, “peterite having a high blending ratio of 40 w% or more and a clay material (bath clay, rhostone, or ceramic stone) of 5 w% or more and 35 w% or less. The same)) and a small amount of a powder mixture containing at least a small amount of an inorganic peptizer "and a kneaded body kneaded with water. By leaving the kneaded body to stand still, a fine particle having a particle size of less than 100 µm contained in the clay material The particles are separated on the front side of the kneaded body as a surface layer portion having a high water content. When the surface layer part containing moisture is separated from the lower layer part to form the surface layer part, the fine particle content in the remaining lower layer part becomes extremely small. For this reason, the molded layer after drying and firing is less likely to be cracked or chipped. The surface layer portion is preferably composed of a particle size distribution in which the median diameter of D50 is 50% or less. Further, when the particle size is displayed as a frequency distribution, the surface layer portion is in the range of 1 μm to 100 μm, and more specifically, 1 μm to 20 μm. It is preferable to have a maximum peak value (ie, mode diameter) within the range. However, the present invention is not intended to limit the present invention to those provided with these or any of these elements.
また、前記いずれかの装飾セラミックスの原材及び装飾セラミックスの製造方法において、前記成形層は、素地上に盛土された混練体のうち、前記表層部を除去することで残った下層部のみを第二焼成した、下層部の第二焼成体からなることが好ましい。
上記により、除去された残りの表面は下層部で構成されると共に成形層が下層部のみで構成されるため、形状安定性に優れたものとなり、或いは、さらに上層付加される場合の上層定着性にも優れたものとなる。
In the manufacturing method of the raw materials and decorative ceramics of the one of decorative ceramic, the forming layer of fill has been kneaded material on matrix, only the lower part remaining by removing the surface layer portion first It is preferable that it consists of the 2nd baking body of the lower layer part which carried out 2 baking.
According to the above, since the remaining removed surface is composed of the lower layer portion and the molding layer is composed of only the lower layer portion, it has excellent shape stability, or upper layer fixability when further upper layer is added Even better.
例えば表層部が除去されないまま残った場合は、表面の表層部が反り変形したりして表面の性状が不均一となる。また前記いずれかの装飾セラミックスの原材及び装飾セラミックスの製造方法において、前記成形層の上に付加成形層や仕上げ層を形成してもよいが、 その場合に、当該付加成形層や仕上げ層との定着性が悪いために、ピンホールと呼ばれる微小な気泡が生じたりすることがある。これに対して、成形層の上層部を除去して下層部のみで構成された前記成形層であれば、表面の性状が比較的均一となるため、成形層の上に付加成形層や仕上げ層を形成する場合の当該付加成形層や仕上げ層との定着性が悪くなることがなく、層表面に仕上げ用の釉薬塗布といった仕上げ処理を施した場合にも、ピンホールと呼ばれる微小な気泡が生じたりすることが抑制される。但し、本発明全てをこれら又はこれらのうちいずれかの要素を具備するものに限定する趣旨ではない。なお後述の実施例では、表層除去工程における、除去手段による表層除去をもって表層部を除去するものとしている。 For example, when the surface layer portion remains without being removed, the surface layer portion on the surface is warped and deformed, resulting in non-uniform surface properties. The method of manufacturing a raw material and decorative ceramics of the one of decorative ceramics, may form an additional molded layer and finishing layer on the molded layer, but in that case, and the additional molded layer and the finishing layer Due to the poor fixing property, minute bubbles called pinholes may be generated. On the other hand, if the molding layer is composed of only the lower layer portion by removing the upper layer portion of the molding layer, the surface properties are relatively uniform. Fixation with the additional molding layer and finish layer when forming the surface does not deteriorate, and even when finishing treatment such as finishing glaze application is applied to the surface of the layer, minute bubbles called pinholes are generated. Is suppressed. However, the present invention is not intended to limit the present invention to those provided with these or any of these elements. In the examples described later, the surface layer portion is removed by removing the surface layer by the removing means in the surface layer removing step.
また、前記いずれかの装飾セラミックスの原材及び装飾セラミックスの製造方法において、素地は例えば、少なくともペタライトを主剤としてなるもの、或いは少なくともペタライトを主剤とし、かつ素地のペタライト配合率(PR1)は成形層のペタライト配合率(PR2)以下であるものを挙げることができる。さらに例えば、少なくともペタライト40w%以上と粘土材と骨材とを含み、かつ、素地のペタライト配合率(PR1)は成形層のペタライト配合率(PR2)以下であるものを挙げることができる。
上記構成によれば、前記いずれかの装飾セラミックスの原材及び装飾セラミックスの製造方法において、素地が粘土材を含み且つペタライトを主成分とすることで、混練体と成分組成の多くが共通することとなり、第二焼成による溶融定着性に優れたものとなる。また、素地におけるペタライト配合率(PR1)が成形層におけるペタライト配合率(PR2)と同程度であるか或いはこれよりも少ないため、第一焼成において素地をより高温で焼成することができる。また素地は第二焼成前に第一焼成として予焼成されているため、収縮率が少なく形状安定性に優れた一次成形品として得られる。但し、本発明全てをこれら又はこれらのうちいずれかの要素を具備するものに限定する趣旨ではない。
Further, in any of the above-mentioned decorative ceramic raw materials and the method for producing the decorative ceramic, the substrate is, for example, at least containing petalite as a main agent, or at least petalite as a main agent, and the petalite compounding ratio (PR1) of the substrate is a molding layer. The petalite compounding ratio (PR2) or less can be mentioned. Further, for example, it is possible to include at least 40 w% or more of petalite, clay material and aggregate, and the petalite blending ratio (PR1) of the base is not more than the petalite blending ratio (PR2) of the molded layer.
According to the above configuration, in the manufacturing method of the raw materials and decorative ceramics of the one of decorative ceramics, that green body composed mainly of and petalite comprises clay materials, that many of the kneading member and the chemical composition are common Thus, the melt-fixing property by the second baking is excellent. In addition, since the petalite blending ratio (PR1) in the substrate is similar to or less than the petalite blending ratio (PR2) in the molded layer, the substrate can be fired at a higher temperature in the first firing. Further, since the substrate is pre-fired as the first firing before the second firing, it can be obtained as a primary molded article having a small shrinkage rate and excellent shape stability. However, the present invention is not intended to limit the present invention to those provided with these or any of these elements.
また、前記いずれかの装飾セラミックスの原材及び装飾セラミックスの製造方法において、前記素地の第一焼成前の混練体はさらに、板状成形の際又は第一焼成の際のうち少なくとも一方において発泡する発泡剤を含むことが好ましい。
この態様によれば、成形後の素地が発泡部分を含むことで、乾燥雰囲気の湿度条件によらず高い含水率を確保することができ、また表面及び表面近傍に微細凹凸部が形成され、ここに混練体が溶融投錨することで、混練体の定着性がきわめて良好なものとなる。但し、本発明全てをこれら又はこれらのうちいずれかの要素を具備するものに限定する趣旨ではない。
In the manufacturing method of the raw materials and decorative ceramics of the one of decorative ceramic, first baking before kneading of the green body is further expanded in at least one of the time when the plate-like molding or first firing A foaming agent is preferably included.
According to this aspect, since the base after molding includes a foamed portion, a high moisture content can be ensured regardless of the humidity condition of the dry atmosphere, and fine irregularities are formed on the surface and in the vicinity of the surface. When the kneaded body is melt cast, the fixability of the kneaded body becomes extremely good. However, the present invention is not intended to limit the present invention to those provided with these or any of these elements.
また、前記の「2.装飾セラミックスの原材及び該原材を用いる装飾セラミックスの製造方法」に記載した本発明に係る製造方法の代表例においては、
混練体の盛土から表層分離した表層部を除去して下層部のみとする表層除去工程と、
前記表層除去工程後の混練体の下層部を、素地と共に第二焼成して成形層を形成する焼成工程と、をさらに含んでいる。
或いはさらに、当該装飾セラミックスの原材及び該原材を用いる装飾セラミックスの製造方法においては、表層除去工程後の除去表面の少なくとも一部分に、付加成形層(第二成形層、第三成形層・・・)の原料となる、粉粒混合物と水とを混練した粘土状の付加混練体を盛土して付加焼成(第三焼成、第四焼成・・・)し、成形層の上に1又は2以上の付加成形層(第二成形層、第三成形層・・・)を形成する層付加工程をさらに含んでいてもよい。なお、これは後述する実施例3の製造方法に相当する。
以上の他、装飾セラミックスの原材の製造方法として、次の方法も挙げることができる。すなわち、前記の表層除去工程後の混練体残部表面の少なくとも一部分に、付加成形層(第二成形層、第三成形層、・・・)の原料となる。粉粒混合物と水とを混練した粘土状の付加混練体を盛土する工程を経て積層構造の焼成前成形層を形成し、その後にこれらを素地と共に第二焼成する方法である。
或いはさらに、当該付加成形層を形成するための付加混練体の平均粒度は、前記盛土工程における混練体の平均粒度よりも小さく、かつ前記層付加形成における付加焼成温度(第三焼成温度、第四焼成温度・・・)は、当該付加焼成工程よりも前に行ったいずれの焼成工程(前焼成工程)の焼成温度をも超えることの無いことが好ましい。なおさらに好ましくは、前記層付加形成における各焼成温度は、当該層付加形成よりも前のいずれの前焼成工程の焼成温度よりも低い。
或いはさらに、前記の「2.装飾セラミックスの原材及び装飾セラミックスの製造方法」に記載した本発明に係る製造方法においては、前記素地形成工程において、少なくともペタライト40w%以上75w%以下と粘土材と骨材とを水と混練させた素地の混練体を第一焼成するものとしてもよい。但し、本発明全てをこれら又はこれらいずれかの要素を具備するものに限定する趣旨ではない。
Moreover, in the representative example of the manufacturing method according to the present invention described in the above-mentioned “2. The raw material of decorative ceramics and the manufacturing method of decorative ceramics using the raw material”,
A surface layer removing step in which the surface layer part separated from the embankment of the kneaded body is removed to make only the lower layer part,
A firing step in which the lower layer portion of the kneaded body after the surface layer removing step is second-fired together with the substrate to form a molded layer.
Alternatively, in addition, in the decorative ceramic raw material and the decorative ceramic manufacturing method using the raw material, an additional molded layer (second molded layer, third molded layer,. (1) or 2 on the molding layer by embedding a clay-like additional kneaded material kneaded with the powder mixture and water, and performing additional firing (third firing, fourth firing ...). A layer addition step for forming the above additional molding layers (second molding layer, third molding layer,...) May be further included. This corresponds to the manufacturing method of Example 3 described later.
In addition to the above, the following method can also be mentioned as a method for producing the decorative ceramic raw material. That is, it becomes a raw material for the additional molding layer (second molding layer, third molding layer,...) On at least a part of the surface of the remaining kneaded body after the surface layer removing step. This is a method of forming a pre-firing molded layer having a laminated structure through a step of embedding a clay-like additional kneaded material obtained by kneading a powder mixture and water, and then firing them together with a substrate.
Alternatively, the average particle size of the additional kneaded body for forming the additional molded layer is smaller than the average particle size of the kneaded body in the embankment step, and the additional firing temperature (third firing temperature, fourth in the layer addition formation). It is preferable that the firing temperature... Does not exceed the firing temperature of any firing step (pre-baking step) performed before the additional firing step. Still more preferably, each firing temperature in the layer addition formation is lower than the firing temperature in any pre-baking step prior to the layer addition formation.
Alternatively, in the manufacturing method according to the present invention described in the above-mentioned “2. Manufacturing method of decorative ceramic raw material and decorative ceramic”, at least the petalite 40 w% to 75 w% and the clay material A base kneaded body obtained by kneading an aggregate with water may be first fired. However, the present invention is not intended to limit the present invention to those provided with these or any of these elements.
上記層付加工程によって、付加成形層である第二成形層、第三成形層・・・が、成形層である第一成形層の上に層付加形成される。ここで前記表層除去工程によって、層付加工程前の成形層の層上部は、盛土の表層部が除去されて比較的粗い粒度の粉粒混合物を含む下層部が上面露出した状態となっている。そして上記の層付加工程によって、上面露出した下層部に、比較的小さい平均粒度の粉粒混合物からなる付加混練体が盛土され、これによって、下層部の比較的粗い層上面の凹凸に、より微細な付加混練体の粉粒混合物が入り込むこととなり、特に良好な定着性を有する。また、第三焼成温度が第二焼成温度よりも低いため、第三焼成によっても素地や成形層たる第一成形層に反り変形、乃至ヒビやワレが発生しにくく、耐久性に優れた最終状態の原材となる。 By the layer addition step, the second molding layer, which is an additional molding layer, the third molding layer,... Are formed on the first molding layer which is a molding layer. Here, by the surface layer removal step, the upper layer portion of the molding layer before the layer addition step is in a state in which the surface layer portion of the embankment is removed and the lower layer portion containing a relatively coarse particle size mixture is exposed on the upper surface. Then, by the above layer addition process, an additional kneaded body made of a powder mixture having a relatively small average particle size is embanked in the lower layer portion exposed on the upper surface, thereby making the unevenness of the upper surface of the relatively coarse layer in the lower layer portion finer. The powder mixture of the additional kneaded material enters and has particularly good fixability. In addition, since the third firing temperature is lower than the second firing temperature, the first firing layer, which is the substrate or the molding layer, is also less likely to be warped, cracked or cracked by the third firing, and the final state is excellent in durability. It becomes the raw material of.
以上説明したように、本発明によると、例えば比較的大型の復元品や再現品、複製品を高い精度で得ることを目的の一つとして、表現対象を表現するための成形層を素地上に有する装飾セラミックスのための原材であって、該成形層は表現対象を形状、色、質感等において高い精度で表現することが可能でありながら、優れた耐熱性と素地への定着性とを有し、成形や成形後の繰り返し焼成によってもヒビやワレが発生せず、また素地との層分離を起こしにくく、表面の成形状態の保持性に優れた装飾セラミックスのための原材、並びにそのような装飾セラミックスのための原材の製造方法を提供することができる。また 本発明によると、本発明に係る装飾セラミックスのための原材を用いた装飾セラミックスであって、表現対象が形状、色、質感等において高い精度で表現され、優れた耐熱性と所望状態の保持性に優れた装飾セラミックスの製造方法を提供することができる。 As described above, according to the present invention, for example, for the purpose of obtaining a relatively large restored product, reproduced product, or duplicate product with high accuracy, a molding layer for expressing an expression target is formed on the ground. It is a raw material for decorative ceramics, and the molding layer can express the object to be expressed with high accuracy in shape, color, texture, etc., and has excellent heat resistance and fixability to the substrate. has not occurred cracks or cracks by repeated firing after molding and molding, also difficult to cause phase separation of the base material, the surface raw material for superior decorative ceramics retention of molding conditions, as well as its The raw material manufacturing method for such decorative ceramics can be provided. Further, according to the present invention, the decorative ceramic using the raw material for the decorative ceramic according to the present invention, the object to be expressed is expressed with high accuracy in shape, color, texture, etc., and has excellent heat resistance and desired state. It is possible to provide a method for producing decorative ceramics having excellent retainability.
以下、本発明の実施形態につき本発明の実施例を示す各図に基づいて説明する。以下の記載において、各構成等の後ろに括弧を付して記した数字や記号は、理解を容易にするために用いた構成等の参照符号であるが、本発明がこれらの参照符号によって図面を参照して述べられる実施例の形態又は概念に限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings showing examples of the present invention. In the following description, numerals and symbols in parentheses after each component and the like are reference symbols for the component and the like used for ease of understanding. It is not limited to the form or concept of the embodiments described with reference to FIG.
本発明の実施例は、有形文化財、壁画、絵画、彫刻、工芸品等の再現ないし復元等に用いる装飾セラミックスの原材又は装飾セラミックスの完成品であって、無機質の材料でありながら表現対象の形状、色、質感等を表現可能としたものである。
図2、図3それぞれの(h)、図4の(h3)に示すように、いずれの実施例においても、装飾セラミックスの原材は、第一焼成によって板状に形成された素地(1)と、素地(1)の片面側に形成された成形層(2)(第一成形層)とを含んでおり、或いはさらに成形層(2)上に一層以上形成された付加成形層(第二成形層(3)、第三成形層(4)、・・・)を含んでいる。
The embodiment of the present invention is a raw material of decorative ceramics or a finished product of decorative ceramics used for reproduction or restoration of tangible cultural properties, murals, paintings, sculptures, crafts, etc., and is an object to be expressed even though it is an inorganic material The shape, color, texture, etc. can be expressed.
As shown in (h) of FIG. 2 and FIG. 3 and (h3) of FIG. And a molding layer (2) (first molding layer) formed on one side of the substrate (1), or an additional molding layer (second molding) further formed on the molding layer (2). The molding layer (3), the third molding layer (4), ...) are included.
そしていずれの実施例においても、下記の特徴を有する。
前記素地(1)は、吸水性を有する焼成板状材である。具体的には、成形層(2)の形 成材料である混練体(20)を盛土する前の板状成形状態の素地材料を、予め所定の第一焼成温度で第一焼成して得られた焼成板状材であって、混練体(20)を盛土する前の板状成形状態においての吸水率が0.1%以上60%以下である。
前記成形層(2)(第一成形層)或いはさらに付加成形層(第二成形層(3)、第三成 形層(4)、・・・)は、それぞれ少なくともペタライト40w%以上を主剤として含む粉粒混合物と水とを混練してなる粘土状の混練体(20)を、所定厚さで素地(1)上に盛土し、この盛土された混練体(20)を、前記第一焼成温度よりも低い温度で第二焼成して得られる。但し、第一成形層については、その形成のための第二焼成の際又は第二焼成の前の盛土状態において、素地(1)が混練体(20)の水分を吸収したのちに自然乾燥及び/又は強制乾燥されることで、混練体(20)が素地(1)の層形成面の微細凹凸部に投錨した被吸水状態かつ乾燥状態となっている。この被吸水状態の混練体(20)が素地(1)上で素地(1)と共に第二焼成されることで、図7に示すような、素地(1)の微細凹凸部に沿って投錨状態で溶融・固化した成形層(2)として定着する。
Each embodiment has the following features.
The substrate (1) is a fired plate material having water absorption. Specifically, the base material in a plate-shaped state before the kneaded body (20), which is the forming material of the forming layer (2), is first fired at a predetermined first firing temperature in advance. The fired plate-like material has a water absorption rate of 0.1% or more and 60% or less in a plate-like molded state before embankment of the kneaded body (20).
The molding layer (2) (first molding layer) or the additional molding layer (second molding layer (3), third molding layer (4),...), Respectively, contains at least 40 w% or more of petalite as a main ingredient. A clay-like kneaded body (20) formed by kneading a powder mixture containing water and water is embanked on the substrate (1) with a predetermined thickness, and the embossed kneaded body (20) is subjected to the first firing. It is obtained by second firing at a temperature lower than the temperature. However, the first molded layer is naturally dried after the substrate (1) has absorbed the moisture of the kneaded body (20) during the second firing for the formation or in the embankment state before the second firing. By being forcibly dried, the kneaded body (20) is in a water-absorbed state and dried state that is cast on the fine irregularities on the layer forming surface of the substrate (1). The kneaded body (20) in the water-absorbed state is second-fired together with the substrate (1) on the substrate (1), so that it is thrown along the fine irregularities of the substrate (1) as shown in FIG. And fixed as a molded layer (2) melted and solidified by
以下、各構成等につきさらに説明する。
(素地(1))
素地(1)は、ペタライト又は粘土(蛙目粘土、ロー石または陶石の少なくとも一種以上を含む)のいずれかを主剤とする焼成板状材である。素地の混練体を板状に成形し、加熱乾燥、除湿乾燥、熱風乾燥、赤外線乾燥、遠赤外線乾燥又はこれらのうちいずれか2つ以上の組み合わせ乾燥方法で強制乾燥させたのちに、1200℃〜1250℃の範囲内の第一焼成温度で、かつ約3時間〜約10時間(好ましくは5時間〜10時間、或いは8時間〜10時間)の範囲の焼成時間で第一焼成することで、吸水性を有する固化した焼成板状材として得られる。素地(1)の焼成板状材の少なくとも片面には、混練体(20)を盛土するための、微細凹凸部を有する層形成面が一面に露出してなる。素地(1)はまた、成形層の形成工程において、層形成面に盛土された混練体(20)と共に、第二焼成、或いはさらに第三焼成、・・・として繰り返し焼成される。混練体(20)を盛土する前の板状の成形状態において、素地(1)は0.1%以上60%以下の吸水率を有し、また、第二焼成前に予め1.0×10 -6/K以上5.5×10 -6/K以下の低膨張率となっている。
なお前記強制乾燥として例えば、60℃〜200℃の範囲の乾燥温度で1時間〜24時間の範囲の加熱乾燥を行うことができる。
Hereinafter, each configuration and the like will be further described.
(Base (1))
The substrate (1) is a fired plate-like material mainly composed of either petalite or clay (including at least one of glazed clay, rholite, or ceramic stone). After the base kneaded body is formed into a plate shape and subjected to forced drying by heat drying, dehumidifying drying, hot air drying, infrared drying, far infrared drying, or a combination drying method of any two or more of these, 1200 ° C to Water absorption by first firing at a first firing temperature in the range of 1250 ° C. and a firing time in the range of about 3 hours to about 10 hours (preferably 5 hours to 10 hours, or 8 hours to 10 hours). It is obtained as a solidified fired plate-like material. On at least one side of the fired plate-like material of the substrate (1), a layer forming surface having fine uneven portions for embedding the kneaded body (20) is exposed. The substrate (1) is also repeatedly fired in the forming layer forming step together with the kneaded body (20) embanked on the layer forming surface as the second firing, or further as the third firing. In the plate-like molded state before embankment of the kneaded body (20), the substrate (1) has a water absorption rate of 0.1% or more and 60% or less, and 1.0 × 10 6 in advance before the second firing. - 6 / K or 5.5 × 10 - it has a 6 / K or lower expansion rate.
For example, the forced drying can be performed by drying at a drying temperature in the range of 60 ° C. to 200 ° C. for 1 hour to 24 hours.
素地(1)の例としては、後述の実施例のように、ペタライト又は粘土のいずれかを主剤とした粘土焼成材が挙げられる。例えば後述の実施例2、3ではペタライトを主剤として、これに少なくとも蛙目粘土と、ロー石または陶石と、シャモット等の骨材と、解膠剤とを加えて水と混ぜた素地の混練体を焼成したものであり、後述の実施例1では粘土を主剤として、これに少なくともロー石または陶石と、シャモット等の骨材と、解膠剤とを加えて水と混ぜた素地の混練体を焼成したものである。この素地の混練体は、必要に応じてさらに発泡剤や、メチルセルロース等の糊剤を混練させる。 As an example of the substrate (1), a clay fired material containing either petalite or clay as a main ingredient can be mentioned as in the examples described later. For example, in Examples 2 and 3, which will be described later, petalite is used as a main ingredient, and at least koji clay, rhostone or porcelain stone, aggregate such as chamotte, and a peptizer are mixed and mixed with water. The body was fired, and in Example 1 described later, clay was the main agent, and at least rhostone or porcelain stone, an aggregate such as chamotte, and a peptizer were mixed and mixed with water. The body is fired. The base kneaded body is further kneaded with a foaming agent or a paste such as methylcellulose as necessary.
(混練体の製造方法)
より具体的な素地の混練体の製造方法として、蛙目粘土、ロー石ないし陶石、長石(ペタライトや大平長石)の少なくとも1種以上を所定の混合割合で配合して、水以外の粉粒体原料からなる粉粒混合物を精製し、この粉粒混合物を混練しながら所定割合の水を少しずつ加えて製造する方法が挙げられる。最初に水以外の粉粒混合物を精製することで、主剤成分の配合率/配合量を容易に調整することができ、さらに水以外の粉粒混合物と水との配合比率を変えることで、耐熱性と吸水性を調整することができる。
(Production method of kneaded body)
As a more specific method for producing a kneaded body, a mixture of at least one kind of glazed clay, rhostone or porcelain stone, and feldspar (petalite or Oohira feldspar) in a predetermined mixing ratio, and powder particles other than water Examples thereof include a method in which a powder mixture made of body materials is purified and a predetermined proportion of water is added little by little while kneading the powder mixture. By first refining the powder mixture other than water, the blending ratio / mixing amount of the main component can be easily adjusted, and by changing the blending ratio between the powder mixture other than water and water, Property and water absorption can be adjusted.
また上記粉粒混合物の混合材のひとつとして骨材を加えることで線膨張係数を下げつつ高耐火性と非収縮性を確保することができる。本発明では第一焼成後の素地(1)が、混練体(20)の盛土後に繰り返し焼成されることとなるため、耐火性と非収縮性を確保することが重要となる。或いは、上記粉粒混合物の混合材のひとつとして発泡剤を加えることで、第一焼成によって微細な多数の発泡部を形成し、吸水性を確保することができる。 Moreover, high fire resistance and non-shrinkability can be ensured while lowering the linear expansion coefficient by adding aggregate as one of the mixed materials of the powder mixture. In the present invention, since the base (1) after the first firing is repeatedly fired after the embankment of the kneaded body (20), it is important to ensure fire resistance and non-shrinkage. Alternatively, by adding a foaming agent as one of the mixed materials of the powder mixture, a large number of fine foamed portions can be formed by the first firing to ensure water absorption.
(成形層(2))
装飾セラミックスの原材は、素地(1)の層形成面に所定厚さで層形成された、固形の焼成材からなる成形層(2)を有する。成形層(2)は、ペタライトを主剤に含む粉粒混合物(複数種の粉体ないし粒体を混合させた混合物をいう。)と水との混練体(20)を、前記第一焼成後の素地(1)の片面側に盛土して素地(1)に吸水された被吸水状態とし、その後に自然乾燥及び/又は強制乾燥を施すことで乾燥状態とし、これを素地(1)と共に前記第一焼成の温度よりも低い温度で第二焼成して得られる固形層である。
(Molded layer (2))
The raw material of the decorative ceramics has a molded layer (2) made of a solid fired material, which is layered with a predetermined thickness on the layer forming surface of the substrate (1). The molding layer (2) is formed by mixing a kneaded body (20) of a powder mixture (which is a mixture of a plurality of types of powders or granules) containing petalite with water and the first baking. The substrate (1) is embanked on one side and made into a water-absorbed state absorbed by the substrate (1), and then dried by natural drying and / or forced drying. It is a solid layer obtained by second baking at a temperature lower than the temperature of one baking.
なお前記自然乾燥とは、常温日陰下で6時間〜48時間のいずれかの時間だけ静置乾燥を行うことをいう。また前記強制乾燥とは、加熱乾燥、赤外線乾燥、遠赤外線乾燥のいずれかの乾燥方法による乾燥をいう。強制乾燥として例えば、60℃〜200℃の範囲の乾燥温度で1時間〜24時間の範囲の加熱乾燥を行うことができる。 In addition, the said natural drying means standing still for any time of 6 hours-48 hours under normal temperature shade. The forced drying means drying by any one of heat drying, infrared drying, and far infrared drying. As forced drying, for example, heat drying in the range of 1 hour to 24 hours can be performed at a drying temperature in the range of 60 ° C. to 200 ° C.
成形層(2)のうち、少なくとも素地(1)と隣接する層部分は、ペタライトを主剤とし、かつ素地(1)の前記微細凹凸部に沿って脱水状態で定着される。この成形層(2)は、ペタライトを主剤に含む粉粒混合物と水とを混練した混練体(20)が、素地(1)の層形成面上に所定厚さで層形成され、その後混練体(20)内の水分の1%以上50%以上が素地(1)に吸収された被吸水状態となり、この被吸水状態で前記第一焼成よりも低い焼成温度の第二焼成によって素地(1)と共に焼成されることで形成され、板状素地(1)上の微細凹凸部に隙間なく投錨様に密着形成され、素地(1)から分離しにくい良好な定着性を有する。 Of the molding layer (2), at least a layer portion adjacent to the substrate (1) is fixed in a dehydrated state along with the fine irregularities of the substrate (1) using petalite as a main agent. In this molded layer (2), a kneaded body (20) obtained by kneading a powder mixture containing petalite as a main ingredient and water is formed in a predetermined thickness on the layer forming surface of the substrate (1), and then the kneaded body. (20) 1% or more and 50% or more of the moisture in the substrate is absorbed by the substrate (1), and the substrate (1) is subjected to the second firing at a firing temperature lower than that of the first firing in the absorbed state. It is formed by firing together, is closely formed in a throw-like manner on the fine irregularities on the plate-like substrate (1) without gaps, and has good fixability that is difficult to separate from the substrate (1).
(ペタライト)
ペタライトは葉長石とも呼ばれ、ロー石やムライトといった他の石材と比べて、Li2Oの割合が高い。このため吸水率が比較的高く、線膨張係数が比較的小さい(2.0〔×10 -6/K〕程度)傾向を有する。ペタライトを成形層(2)の主剤とすることで、ま た、付加形成層の主剤とすることで、成形層は焼成後に素地(1)に対して良好に定着した固化状態を保つことができる。
(Petalite)
Petalite is also called feldspar and has a higher proportion of Li 2 O than other stones such as rholite and mullite. Thus water absorption is relatively high, a relatively small linear expansion coefficient - having (2.0 [× 10 6 / K] or so) trend. By using petalite as the main component of the molding layer (2), and by using it as the main component of the additional formation layer, the molding layer can maintain a solid state that is well fixed to the substrate (1) after firing. .
(ペタライトの配合割合)
素地や成形層を形成するための、水を配合する前の粉粒混合物が、ペタライトを主剤として配合されたものである場合、「主剤として」とは、水を除く配合成分すべてのうち、最も配合重量比の高い配合成分であることを意味する。粉粒混合物におけるペタライト配合率は具体的には、40w%〜75w%、好ましくは45w%〜60w%の範囲内にある。また、ペタライトの粒度は概ね100μm以上300μm以下であることが好ましい。配合されるペタライトは、粒度が小さすぎる場合には吸水率が小さく、ひび割れしやすくなり、また粒度が大きすぎる場合には表面が粗面となり成形性が悪くなる。
(Petalite compounding ratio)
When the powder mixture before blending water to form the substrate or molded layer is blended with petalite as the main ingredient, `` as the main ingredient '' means the most of all the ingredients except water It means that the blending component has a high blending weight ratio. Specifically, the blending ratio of petalite in the powder mixture is 40 w% to 75 w%, preferably 45 w% to 60 w%. The particle size of petalite is preferably about 100 μm or more and 300 μm or less. When the particle size of the petalite is too small, the water absorption is small and it is easy to crack, and when the particle size is too large, the surface becomes rough and the moldability deteriorates.
(混練体(20))
前記成形層(2)の焼成前の状態である混練体(20)は、少なくともペタライト40w%以上を含む粉粒混合物と水とを混練した、粘土状の混練体(20)からなる。混練体(20)の混練水の含水率は15%以上である。
前記混練体(20)からなる粘土状の混練体(20)が第一焼成後の素地(1)の表面の層形成面上に盛土され、素地(1)と共に第一焼成よりも低い第二焼成温度で第二焼成されることによって、混練体(20)が層形成面から素地(1)内に吸水されると共に、乾燥・焼成によって、脱水状態の成形層(2)が素地(1)上に定着形成される。
(Kneaded body (20))
The kneaded body (20) in a state before firing of the molding layer (2) is composed of a clay-like kneaded body (20) obtained by kneading a powder mixture containing at least 40 w% or more of petalite and water. The water content of the kneaded water in the kneaded body (20) is 15% or more.
A clay-like kneaded body (20) composed of the kneaded body (20) is embanked on the layer-forming surface of the surface of the base (1) after the first firing, and the second lower than the first firing together with the base (1). By performing the second baking at the baking temperature, the kneaded body (20) is absorbed into the substrate (1) from the layer forming surface, and the dehydrated molding layer (2) is formed into the substrate (1) by drying and baking. Fixed on top.
ペタライト40w%以上を混練した混練体(20)が、焼成によって素地上に溶融・固化することで、優れた耐熱性と定着性とを有した成形層(2)となる。40w%以上もの高配合率のペタライトによって、第二焼成後の成形層(2)と素地(1)との一体的な部材全体の線膨張係数は3.0〔×10-6/K〕以下に抑えられる。これと共に、混練体(20)は素地(1)に溶融・固化することで、素地(1)の表面材の微細凹凸部に投錨した状態で一体化する。このため、乾燥及び焼成によって層表面が反り変形したり、層自体が割れたり、或いは素地(1)から層分離したりすることなく、素地(1)への定着性に優れた成形層(2)が得られる。 When the kneaded body (20) kneaded with 40% by weight or more of petalite is melted and solidified on the substrate by firing, a molded layer (2) having excellent heat resistance and fixability is obtained. Due to petalite having a high blending ratio of 40 w% or more, the linear expansion coefficient of the whole integral member of the molded layer (2) and the base (1) after the second firing is 3.0 [× 10 −6 / K] or less. Can be suppressed. At the same time, the kneaded body (20) is integrated into the substrate (1) in a state where the kneaded body (20) is cast on the fine irregularities of the surface material of the substrate (1) by melting and solidifying. For this reason, the molding layer (2) having excellent fixability to the substrate (1) without warping and deforming the layer surface due to drying and firing, cracking of the layer itself, or layer separation from the substrate (1). ) Is obtained.
(装飾セラミックスの製造方法)
そして本発明の実施例の装飾セラミックスの製造方法として、少なくとも以下の装飾セラミックスの原材を得るための基本工程を含む。すなわち、
素地(1)の原料となる素地の混練体(20)を第一焼成することで板状の素地(1)の成形体を得る素地形成工程と、
素地(1)の片面に、成形層(2)の原料となる、粉粒混合物と水とを混練した混練体(20)を盛土して盛土状態(a)とする盛土工程(各図フロー中の「盛土I」の工程)と、
盛土状態(a)のまま静置して24時間以上自然乾燥させ、盛土した混練体(20)から表層部(212)が自然分離した層分離状態(b)とする表層分離工程(各図フロー中の「第二乾燥A」の工程)と、
盛土した混練体(20)から表層分離した表層部(212)を除去して下層部(211)のみの表層除去状態(c)とする表層除去工程(各図フロー中の「加工」の工程)と、
前記表層除去工程後の混練体(20)の下層部(211)を、素地(1)と共に第二焼成して、素地(1)と成形層(2)とが一体形成された焼成状態(h)とする焼成工程(各図フロー中の「第二焼成」の工程)と、である。
(Method for producing decorative ceramics)
And as a manufacturing method of the decorative ceramic of the Example of this invention, the basic process for obtaining the raw material of the following decorative ceramic at least is included. That is,
A substrate forming step of obtaining a molded body of a plate-like substrate (1) by first firing the substrate kneaded body (20) as a raw material of the substrate (1);
The embankment process (in each figure flow) which embanks the kneaded body (20) which knead | mixed the powder mixture and water used as the raw material of a shaping | molding layer (2) on one side of a base | substrate (1), and makes it into an embankment state (a). "Fill I" process)
Surface layer separation step (b) in which the surface layer portion (212) is naturally separated from the kneaded body (20) that has been left standing in the embankment state (a) and naturally dried for 24 hours or more and then embanked. In the “second drying A” step)
Surface layer removal step (c) in which the surface layer part (212) separated from the kneaded body (20) that has been embanked is removed to form a surface layer removal state (c) of only the lower layer part (211) When,
The lower layer part (211) of the kneaded body (20) after the surface layer removing step is second-fired together with the substrate (1), and the substrate (1) and the molded layer (2) are integrally formed (h And a firing step (step of “second firing” in each figure flow).
(層付加工程)
装飾セラミックスの原材の製造方法では、必要に応じて、上記各基本工程の後に、層付加工程をさらに具備することができる。層付加工程は、図3B中の「盛土II」及び「盛土III」の各工程、図3C中の「盛土II」及び「第三焼成」からなる工程、並びに図3C中の「盛土III」及び「第四焼成」からなる工程として、各実施例の製造方法のフロー図にそれぞれ示される。層付加工程は、例えば、表層除去工程後の除去表面の少なくとも一部分に、付加成形層(第二成形層(3)、第三成形層(4))の原料となる、粉粒混合物と水とを混練した粘土状の付加混練体(30,40)を盛土し焼成工程(第二焼成工程)によって焼成し、成形層(2)と共に付加成形層(第二成形層(3)、また必要に応じてさらに第三成形層(4))を形成する工程である。或いは層付加工程は、例えば、表層除去工程及び焼成工程後の焼成表面の少なくとも一部分に、付加成形層(第二成形層(3)、第三成形層(4))の原料となる、粉粒混合物と水とを混練した粘土状の付加混練体(30,40)を盛土して第三焼成し、或いはさらに第四焼成し、成形層(2)の上に付加成形層(第二成形層(3)、第三成形層(4))を形成する工程である。層付加工程として、後述の実施例2では、各成形層/付加成形層のための盛土後に焼成工程をまとめて行っている(図1B参照)。また後述の実施例3では、各成形層のための盛土の度に各盛土を成形層化するための第二、第三焼成工程を行っている(図1C参照)。このように、層付加工程によって複数回の盛土を行う場合は、盛土後の焼成をまとめて行うか、分けて行うかを問わず、焼成工程によって付加形成層が形成される工程をもって層付加工程が完了する。
(Layer addition process)
In the manufacturing method of the raw material of the decorative ceramics, a layer addition step can be further provided after the above basic steps, if necessary. The layer addition step includes the steps of “fill II” and “fill III” in FIG. 3B, the step consisting of “fill II” and “third firing” in FIG. 3C, and “fill III” in FIG. 3C and As a process consisting of “fourth firing”, each is shown in a flow chart of a manufacturing method of each example. In the layer addition step, for example, at least a part of the removal surface after the surface layer removal step, a mixture of powder and water, which is a raw material for the additional molding layer (second molding layer (3), third molding layer (4)), The clay-like additional kneaded body (30, 40) kneaded with the clay is fired in the firing step (second firing step), and the additional molding layer (second molding layer (3), as well as necessary, together with the molding layer (2). In response to this, a third forming layer (4)) is further formed. Alternatively, in the layer addition step, for example, at least a part of the firing surface after the surface layer removal step and the firing step is used as a raw material for the additional molding layer (second molding layer (3), third molding layer (4)). The clay-like additional kneaded body (30, 40) obtained by kneading the mixture and water is embanked and third-fired, or further fourth-fired, and an additional molded layer (second molded layer) is formed on the molded layer (2). (3) A step of forming a third molding layer (4)). As a layer addition process, in Example 2 described later, the firing process is performed collectively after embankment for each molding layer / additional molding layer (see FIG. 1B). In Example 3 to be described later, the second and third firing steps for forming each embankment into a forming layer are performed every time embankment for each forming layer is performed (see FIG. 1C). In this way, when performing the banking multiple times by the layer addition process, the layer addition process includes a process in which the additional formation layer is formed by the firing process regardless of whether the firing after the banking is performed collectively or separately. Is completed.
(仕上げ工程)
装飾セラミックスの製造方法では、必要に応じて、上記各基本工程の後に、又は層付加工程の後に、仕上げ工程をさらに具備することができる。仕上げ工程は、上記のようにして得られる装飾セラミックスの原材に、例えば釉薬の施釉及び釉焼、或いは彩色、模様等の転写、模様等の印字(プリント)とこれらの定着のための仕上げ焼成等によって仕上げ層(5´)を形成する工程である。仕上げ工程は、表面切削等の一つ以上の仕上げ工程を含んでいてもよい。さらに仕上げ焼成後の、出荷及び枠体等への取付前の最終状態とする工程を含んでいてもよい。例えば図1A(第一実施例)では第二焼成後に施釉、彩色仕上げ、及び仕上げ焼成を順に行って最終状態の原材を得ている。また図1B、図1C(第二実施例、第三実施例)では第二焼成後に施釉及び釉焼、転写及び焼成、並びに仕上げ焼成を順に行って最終状態の装飾セラミックスを得ている。
(Finishing process)
In the method for producing decorative ceramics, a finishing step can be further provided after each of the basic steps or after the layer addition step, if necessary. In the finishing process, for example, glaze application and glaze firing of the decorative ceramics obtained as described above, or transfer of coloring and patterns, printing of patterns and the like, and finish firing for fixing them This is a step of forming the finishing layer (5 ′) by, for example. The finishing process may include one or more finishing processes such as surface cutting. Further, it may include a step of making the final state after finish firing and before mounting on the frame and the like. For example, in FIG. 1A (first embodiment), after the second firing, glazing, coloring finish, and finish firing are sequentially performed to obtain a final raw material. Moreover, in FIG. 1B and FIG. 1C (2nd Example, 3rd Example), after the 2nd baking, a glaze and a sinter, transfer and baking, and finish baking are performed in order, and the decorative ceramic of the final state is obtained.
(素地形成フロー、層形成・彩色フロー)
上記各工程のうち素地形成工程は、図1A、図1B、図1Cの各左図に示す素地形成フローに属する。また上記各工程のうち盛土工程から出荷・取付までの各工程は、図1A、図1B、図1Cの各右図に示す層形成・彩色フローに属する。
(Ground formation flow, layer formation / coloring flow)
Of the above steps, the substrate forming step belongs to the substrate forming flow shown in the left diagrams of FIGS. 1A, 1B, and 1C. Of the above steps, each step from the embankment step to shipping / mounting belongs to the layer formation / coloring flow shown in the right diagrams of FIGS. 1A, 1B, and 1C.
(層形成・彩色フロー等のバリエーション)
上記製造方法のうち層形成・彩色フロー等には以下のいくつかのバリエーションがある。これらのバリエーションのいずれかを単独で選択するか、或いは複数のバリエーションを組み合わせて選択してもよい。
(Variations such as layer formation and coloring flow)
Among the manufacturing methods described above, there are several variations in the layer formation / coloring flow and the like. Any one of these variations may be selected alone, or a plurality of variations may be selected in combination.
先ず、層形成・彩色フロー等の第一のバリエーションとして、盛土工程から表層分離工程までの工程のセットを複数回繰り返し、前記繰り返し後に焼成工程を経たものとしてもよい。例えば図1B(実施例2)の層形成・彩色フローでは、粗目の調土Iの盛土工程セットと、粗目よりも小さい平均粒子径である中目の調土IIの盛土工程セットと、中目よりもさらに小さい平均粒子である細目の調土IIIの盛付工程(盛付III)とを順に行い、その後に第二焼成を行っている。具体的には、図2Bに示すフローにおいて、先ず粗目の調土Iの盛土工程セットとして、盛付工程(盛付I)から表層分離工程(第二乾燥A)を経て表層除去工程(加工)までを行った後、強制乾燥(第二乾燥B)を行う。次に中目の調土IIの盛土工程セットとして、盛付工程(盛付II)から自然又は強制乾燥による表層分離工程(第三乾燥)を経て部分的成形の表層除去工程(加工B)までを行い、そして次に細目の調土IIIの盛付工程(盛付III)を行い、これらによって3層に盛土された調土I,II、IIIをまとめて第二焼成している。 First, as a first variation such as layer formation / coloring flow, a set of steps from the embankment step to the surface layer separation step may be repeated a plurality of times, and the firing step may be performed after the repetition. For example, in the layer formation / coloring flow shown in FIG. 1B (Example 2), the coarse texture I fill process set, the medium texture II fill process set having an average particle size smaller than the coarse texture, Further, the step of depositing finely ground soil III, which is an average particle smaller than the above, is performed in order, and then the second firing is performed. Specifically, in the flow shown in FIG. 2B, first, as a banking process set of coarse texture I, a surface layer removal process (processing) through a surface layer separation process (second drying A) from a plating process (laying I). Then, forced drying (second drying B) is performed. Next, as a banking process set for medium-sized preparation II, from the filling process (filling II) to the surface layer removal process (process B) of partial molding through a surface layer separation process (third drying) by natural or forced drying Next, a fine filling III filling process (filling III) is performed, and the soils I, II, and III that have been filled in three layers by these are collectively fired second.
次に、上記層形成・彩色フロー等の第二のバリエーションとして、盛土工程から表層除去工程を経た焼成工程までの一連の工程のセットを、順に複数回繰り返して行ってもよい。例えば一連の工程のセットを2回繰り返す層形成・彩色フローとして、図1C(実施例3)の層形成・彩色フローでは、混練体(20)による盛土工程から表層分離工程、表層除去工程を経た第二焼成工程までの一連の工程のセットによって成形層(2)を固化成形したのち、固化成形層(2)上に、第二混練体(30)による盛土工程から表層分離工程、表層除去工程を経た第三焼成工程までの一連の工程のセットによって付加成形層たる第二成形層(3)を固化成形し、さらにそののち、固化成形層(2,3)上に、第三混練体(40)による盛土工程を経た第四焼成工程までの一連の工程のセットによって付加成形層たる第三成形層(4)を固化成形し、その後に施釉、彩色仕上げ等の表面加工と仕上げ焼成とを順に行うものとしてもよい。 Next, as a second variation of the layer formation / coloring flow and the like, a set of a series of steps from the embankment step to the firing step through the surface layer removal step may be repeated several times in order. For example, in the layer formation / coloring flow of FIG. 1C (Example 3) as a layer formation / coloring flow in which a series of process sets is repeated twice, the embedding process using the kneaded body (20) is followed by a surface layer separation process and a surface layer removal process. After the molding layer (2) is solidified and molded by a set of steps up to the second firing step, on the solidified molding layer (2), from the embankment step by the second kneaded body (30) to the surface layer separation step, the surface layer removal step The second molding layer (3), which is an additional molding layer, is solidified by a set of steps up to the third firing step through which the third kneaded body (2, 3) is further solidified. 40) Solidify and mold the third molding layer (4), which is an additional molding layer, by a set of steps from the embankment step to the fourth firing step, and then surface treatment such as glazing and coloring and finish firing. As what to do in order There.
このうち図1A、図1B、図1Cの右フローの盛土Iから仕上げ焼成までの各状態を概念図として示したのが図2〜図4のそれぞれである。図2は実施例1の各状態を、図3は実施例2の各状態を、図4は実施例3の各状態を、それぞれ示す。いずれの実施例においても、素地(1)の片面に混練体(20)を盛土した盛土状態(a)と、盛土状態(a)の混練体(20)が、自然乾燥によって表層部(212)と下層部(211)とに層分離した層分離状態(b)と、この層分離状態(b)の表層部(212)を除去手段(C)によって除去した表層除去状態(c)を経て、そして図3、図4の実施例では、前記除去面の上に第二成形層(3)ないし第三成形層(4)を層形成した焼成状態(h,h3)を経て、各層が層形成された最終状態となる。 Among these, FIGS. 2 to 4 show the states from the fill I to the finish firing in the right flow of FIGS. 1A, 1B, and 1C as conceptual diagrams. 2 shows each state of the first embodiment, FIG. 3 shows each state of the second embodiment, and FIG. 4 shows each state of the third embodiment. In any of the Examples, the embankment state (a) in which the kneaded body (20) is embanked on one side of the substrate (1) and the kneaded body (20) in the embankment state (a) are surface-layered (212) by natural drying. Through the layer separation state (b) separated into the lower layer part (211) and the surface layer removal state (c) in which the surface layer part (212) in the layer separation state (b) is removed by the removing means (C), In the embodiment of FIGS. 3 and 4, each layer is formed through a fired state (h, h3) in which a second molding layer (3) to a third molding layer (4) are formed on the removal surface. Will be in the final state.
(混練体(20)の表層分離)
特に本発明の実施例では、表層分離工程として、盛土した混練体(20)を第二焼成前に静置乾燥させることで、成形層(2)内にて含水率15%以上の表層部(212)が表層分離した表層分離状態とする(図2(b))ことを特徴とする。具体的には、含水率を15%以上とする粘土状の混練体(20)が盛土後に24時間以上の静置によって自然乾燥されることにより、比較的高含水率かつ比較的細かい粒子層からなる表層部(212)が、比較的低含水率かつ比較的粗い粒子層からなる下層部(211)の上層に自然分離した、層分離状態となる(図2(b))。表層部(212)の表層部化と下層部(211)の沈下とによって、成形層(2)は乾燥時に表面が保護され、かつ成形層(2)の下層内の微細粒子含有率がきわめて小さくなる。このため、成形層(2)が乾燥・焼成後に罅の発生やわれ、欠けを生じにくいものとなる。
(Surface layer separation of kneaded body (20))
Particularly in the examples of the present invention, as the surface layer separation step, the embankment kneaded body (20) is allowed to stand and dry before the second firing, whereby the surface layer portion (with a moisture content of 15% or more in the molding layer (2)) ( 212) is characterized in that the surface layer is separated (FIG. 2B). Specifically, the clay-like kneaded body (20) having a moisture content of 15% or more is naturally dried by standing for 24 hours or more after the embankment, so that a relatively high moisture content and a relatively fine particle layer can be obtained. The surface layer portion (212) is naturally separated into the upper layer of the lower layer portion (211) having a relatively low water content and a relatively coarse particle layer (FIG. 2 (b)). By forming the surface layer part (212) into a surface layer part and the lower layer part (211) sinking, the surface of the molding layer (2) is protected during drying, and the content of fine particles in the lower layer of the molding layer (2) is extremely small. Become. For this reason, generation | occurrence | production of a wrinkle is generated after drying and baking of a shaping | molding layer (2), and it will become difficult to produce a chip.
ここで、表層分離によって盛土表面に表れた表層部(212)は、含水率15%以上の高含水率層からなり、焼成後には例えば図5の拡大顕微鏡写真に示すような、表面粗度の比較的小さい平坦状層面を有し、また例えば図8の粒度分布グラフに示すような、モード径10μm以下かつD50メジアン径10μm以下の粒度分布の粉粒混合物を含有する。 Here, the surface layer part (212) which appeared on the embankment surface by surface layer separation consists of a high water content layer with a water content of 15% or more, and after firing, the surface roughness as shown in the enlarged micrograph of FIG. It has a relatively small flat layer surface and contains a powder mixture having a particle size distribution with a mode diameter of 10 μm or less and a D50 median diameter of 10 μm or less as shown in the particle size distribution graph of FIG.
また、下層部(211)は、表層部(212)よりも含水率が小さく、焼成後には例えば図6の拡大顕微鏡写真に示すような、表面粗度の比較的大きい凹凸層面を有し、また例えば図9の粒度分布グラフに示すような、モード径10μm超かつD50メジアン径10μm超の粒度分布の粉粒混合物を含有する。 Further, the lower layer portion (211) has a moisture content smaller than that of the surface layer portion (212), and has a concavo-convex layer surface having a relatively large surface roughness as shown in the enlarged micrograph of FIG. For example, as shown in the particle size distribution graph of FIG. 9, it contains a powder mixture having a particle size distribution with a mode diameter exceeding 10 μm and a D50 median diameter exceeding 10 μm.
(表層除去工程)
次に、表層除去工程として、表層分離した表面膜である表層部(212)を、カッターやレーザーナイフ、或いはサンドブラストショットを行うブラストガン等の除去手段(C)によって下層部(211)上から全除去する(図2(b)ないし図2(c))。表層除去工程によって表層部(212)をすべて除去することで、不均一な微細粒子層が除去され、比較的均一な下層部(211)の粗面が表出する。この粗面の表出によって、除去面上にさらに重畳形成される成形層や仕上げ層が定着性に優れたものとなる。なお前記除去手段は手加工によって行うもの、手動操作や自動操作によって機械的処理を行うもの、のいずれも含む。
(Surface layer removal process)
Next, as a surface layer removing step, the surface layer portion (212), which is a surface film separated from the surface layer, is completely removed from above the lower layer portion (211) by a removing means (C) such as a cutter, a laser knife, or a blast gun for performing a sandblast shot. It is removed (FIGS. 2B to 2C). By removing all the surface layer portion (212) by the surface layer removing step, the non-uniform fine particle layer is removed, and a relatively uniform rough surface of the lower layer portion (211) is exposed. By exposing the rough surface, the molded layer and the finish layer that are further superimposed on the removal surface have excellent fixability. The removal means includes both manual processing and mechanical processing by manual operation or automatic operation.
(第一焼成、第二焼成)
第一焼成は、板状に成形して強制乾燥させた素地の混練体を、1200℃以上の所定の第一焼成温度、かつ約3時間〜約10時間(好ましくは5時間〜10時間、或いは8時間〜10時間)の範囲の所定の焼成時間で単独焼成することで、成形層(2)の成形前に、予め成形体の素地(1)を得るものである。また第二焼成は、第一焼成後の素地(1)の層形成面に盛土された混練体(20)を、予焼成済みの素地(1)と共に、前記第一焼成温度を超えない焼成温度、かつ前記第一焼成温度を超えない焼成時間で焼成することで、素地(1)と成形層(2)との一体成形体を得るものである。ここで第二焼成の焼成温度は、焼成時間全体に亘って、前記第一焼成の焼成温度よりも低く、或いは、第二焼成の焼成時間は第一焼成時間よりも短時間とされることが好ましい。これにより、第二焼成によって付与される熱エネルギーの総量は第一焼成によって付与される熱エネルギーの総量よりも小さくなる。素地(1)は事前に第一焼成された予焼成済みの成形体であるため、第二焼成時には、予め大部分の熱収縮を完了している。このため第一焼成後の第二焼成によってさらに大きく収縮することはない。さらに線膨張係数の比較的小さいペタライトを主剤とする成形層(2)と共に焼成されることで、素地(1)及び成形層(2)が共に熱収縮性の比較的小さいものとなる。このため、加熱による過度な収縮変形を防ぐことができる。
(First firing, second firing)
In the first firing, a base kneaded body formed into a plate shape and forcibly dried is subjected to a predetermined first firing temperature of 1200 ° C. or higher and about 3 hours to about 10 hours (preferably 5 hours to 10 hours, or The base body (1) of the molded body is obtained in advance before molding the molding layer (2) by firing alone for a predetermined firing time in the range of 8 hours to 10 hours. In the second firing, the kneaded body (20) embanked on the layer-forming surface of the base (1) after the first firing, together with the pre-fired base (1), does not exceed the first firing temperature. And by baking with the baking time which does not exceed said 1st baking temperature, the integral molded object of a base material (1) and a shaping | molding layer (2) is obtained. Here, the firing temperature of the second firing may be lower than the firing temperature of the first firing over the entire firing time, or the firing time of the second firing may be shorter than the first firing time. preferable. Thereby, the total amount of thermal energy applied by the second firing is smaller than the total amount of thermal energy applied by the first firing. Since the substrate (1) is a pre-fired molded body that has been first fired in advance, most of the thermal shrinkage has been completed in advance during the second firing. For this reason, it does not shrink further by the second baking after the first baking. Furthermore, by baking together with the molding layer (2) mainly composed of petalite having a relatively small linear expansion coefficient, both the substrate (1) and the molding layer (2) have relatively small heat shrinkability. For this reason, excessive shrinkage deformation due to heating can be prevented.
<実施例1>
実施例1の装飾セラミックスの原材及び装飾セラミックス、並びにこれらの製造方法を図1A及び図2を参照して説明する。
(A)実施例1の装飾セラミックスの原材及び装飾セラミックス
図1A及び図2に示す実施例1の装飾セラミックスの原材は、第一乾燥とその後の第一焼成とによって板状に成形した締焼素材である素地(1)を予めストックしておき(図1A左フロー)、所定サイズに切断した素地(1)の上面の層成形面に、成形層(2)の原料となる粉粒混合物を調合して水と混練(調土I)してなる混練体(20)を、所定厚さで一層形成(盛土I)(図1A右フロー(a)及び図2(a))する。そして、その後の第二乾燥たる24時間以上の自然乾燥によって盛土状態の混練体(20)の層から表層部(212)を表層分離させ、削り加工により下層部(211)から表層部(212)を除去する(図1A右フロー(c)及び図2(c))。その後、残りの下層部(211(211´))を第二乾燥たる強制乾燥(たとえば、乾燥温度60℃〜200℃で1時間〜24時間の範囲内の乾燥)によって乾燥状態とし、その後の第二焼成(h)により成形層(22´(2))として得られる(図1A右フロー(h)及び図2(h))。
<Example 1>
The raw material of decorative ceramics and decorative ceramics of Example 1 and the manufacturing method thereof will be described with reference to FIGS. 1A and 2.
(A) Decorative ceramic raw material and decorative ceramic of Example 1 The decorative ceramic raw material of Example 1 shown in FIGS. 1A and 2 is a plate formed by first drying and subsequent first firing. The base material (1), which is a baked material, is stocked in advance (the left flow in FIG. 1A), and the powder mixture becomes the raw material of the forming layer (2) on the upper surface of the base material (1) cut into a predetermined size. A kneaded body (20) formed by mixing and kneading with water (soil preparation I) is formed in one layer (banking I) with a predetermined thickness (right flow (a) and FIG. 2 (a) in FIG. 1A). Then, the surface layer portion (212) is separated from the layer of the kneaded body (20) in the embankment state by natural drying for 24 hours or more, which is the second drying thereafter, and the surface layer portion (212) from the lower layer portion (211) by shaving. (FIG. 1A right flow (c) and FIG. 2 (c)). Thereafter, the remaining lower layer portion (211 (211 ′)) is dried by forced drying (for example, drying within a range of 1 hour to 24 hours at a drying temperature of 60 ° C. to 200 ° C.). It is obtained as a molded layer (22 '(2)) by two firings (h) (FIG. 1A right flow (h) and FIG. 2 (h)).
実施例1の装飾セラミックスは、このようにして得られた装飾セラミックスの原材に仕上げ加工を施すことで得られる。本例では、仕上げ加工として、原材に施釉を行い、手彩色及びスプレー塗布にて彩色を施し、最後に仕上げ焼成を施す(z)ことによって得られる。なお前記手彩色とスプレー塗布のいずれかのみによる彩色を行ってもよい。
ここで成形層(2)は、脱水状態である最終状態の成形体におけるペタライト配合率(PR2)が40w%以上75w%以下であり、ペタライトを主剤とする。但し実施例1で は、素地(1)はペタライトを含まない。
The decorative ceramic of Example 1 can be obtained by finishing the raw material of the decorative ceramic thus obtained. In this example, as a finishing process, the raw material is glazed, hand-colored and colored by spray coating, and finally finished firing (z). In addition, you may perform the coloring by only one of the said hand coloring and spray application.
Here, the molding layer (2) has a petalite compounding ratio (PR2) of 40% by weight or more and 75% by weight or less in the final state of the molded body in a dehydrated state, and is mainly composed of petalite. However, in Example 1, the substrate (1) does not contain petalite.
具体的には、実施例1の装飾セラミックスの原材は、図2に示すように、
吸水性を有するものとして予め板状に固化形成された、ペタライトを含まない素地(1)と、
素地(1)の板上面である層形成面に所定厚さで層形成された、ペタライトを主剤とする成形層(2)とを含んでいる。
これを原材とする装飾セラミックスは、さらに成形層(2)の層上面に所定厚さで施釉等された仕上げ層(5´)を一体的に形成してなる(図2(z))。
Specifically, the decorative ceramic raw material of Example 1 is as shown in FIG.
A substrate (1) that does not contain petalite, which is solidified in advance as a plate having water absorbency,
It includes a molding layer (2) containing petalite as a main ingredient, which is layered with a predetermined thickness on a layer forming surface which is the top surface of the substrate (1).
The decorative ceramic using this as a raw material is formed by integrally forming a finish layer (5 ') that is glazed with a predetermined thickness on the upper surface of the molding layer (2) (FIG. 2 (z)).
(層境界部分)
図7に、実施例1の最終状態の素地(1)と成形層(2)との層境界部分の部分拡大図を示す。図7左図は電子顕微鏡による30倍拡大写真であり、図7右図は各層の層境界線のスケッチ図を示す。図7に示すように、素地(1)は、成形層(2)が層形成される層形成面全体に微細凹凸部を有してなる。そして成形層(2)のうち少なくとも素地(1)と隣接する層部分は、ペタライトを主剤とし、かつ前記素地(1)の前記微細凹凸部(図7右図の破線)に沿って隙間なく投錨様に定着されている。
(Layer boundary part)
In FIG. 7, the elements on larger scale of the layer boundary part of the base body (1) of the final state of Example 1 and a shaping | molding layer (2) are shown. The left figure of FIG. 7 is a 30 times magnified photograph by an electron microscope, and the right figure of FIG. 7 shows a sketch of the layer boundary line of each layer. As shown in FIG. 7, the substrate (1) has fine uneven portions on the entire layer forming surface on which the molding layer (2) is formed. And at least the layer portion adjacent to the substrate (1) in the molding layer (2) is made of petalite as the main agent, and is cast without any gap along the fine irregularities of the substrate (1) (broken line in the right figure of FIG. 7). Is well established.
(素地(1))
実施例1の素地(1)は、ペタライトを含まない粘土を主剤とし、これにロー石及び長石を加えて焼成成形した焼成板状材からなる。実施例1の素地(1)の焼成成形前の原料は、主剤である粘土に、少なくともロー石または陶石と、シャモット等の骨材と、解膠剤とを加え、さらに発泡剤及び糊剤を加え、これらを水と混ぜて得た、素地の混練体(20)からなる。実施例1の素地(1)は、前記素地の混練体(20)を板状に成形し、第一乾燥として60℃以上200℃以下の所定の加熱温度で概ね1時間〜24時間の範囲内で加熱乾燥させた後に、1200℃〜1250℃の範囲内に設定した第一焼成温度、かつ約10時間の焼成時間で第一焼成する第一焼成工程を経ることによって、吸水性を有する固化した板状体として得られる(図1A左フローに示す素地形成工程)。
(Base (1))
The substrate (1) of Example 1 is composed of a calcined plate-like material obtained by calcining a clay containing no petalite as a main ingredient and adding rholite and feldspar thereto. The raw material before firing molding of the base (1) of Example 1 is at least rhostone or porcelain, aggregate such as chamotte, and peptizer, and the foaming agent and paste. And kneaded body (20) obtained by mixing these with water. The substrate (1) of Example 1 is obtained by forming the kneaded body (20) of the substrate into a plate shape, and within a range of approximately 1 hour to 24 hours at a predetermined heating temperature of 60 ° C. or more and 200 ° C. or less as the first drying. After having been heated and dried at 1, the first baking temperature set in the range of 1200 ° C. to 1250 ° C. and the first baking step of first baking at a baking time of about 10 hours, solidified having water absorption. Obtained as a plate-like body (substrate forming step shown in the left flow of FIG. 1A).
(成形層(2))
実施例1の成形層(2)は、ペタライトを主剤とする第一の粉粒混合物に水を混練して得た混練体(20)を、素地(1)の片面に盛土して盛土状態(a)とし、これを第二乾燥たる24時間以上の自然乾燥によって表層部(212)が表層分離した表層分離状態(b)とし、当該表層部(212)を除去した表層除去状態(c)を経て下層部(211(211´))のみに単独形成し、さらにこの単独形成した下層部(211(211´))を強制乾燥によって素地(1)と共に乾燥状態とした後に、素地と共に、第一焼成温度より低い1150℃〜1200℃の範囲の第二焼成温度で、且つ、第一焼成時間と略同じ約10時間の焼成時間で第二焼成することで形成される。実施例1の成形層(2)は少なくとも♯52ペタライトを40w(weight:重量)%以上含んで脱水状態として素地(1)上に溶融・固化した固形層である。
(Molded layer (2))
The molding layer (2) of Example 1 was prepared by embedding a kneaded body (20) obtained by kneading water into the first powder mixture containing petalite as a main component on one side of the substrate (1) ( a), the surface layer separation state (b) in which the surface layer portion (212) is separated into the surface layer by natural drying for 24 hours or more which is the second drying, and the surface layer removal state (c) in which the surface layer portion (212) is removed After forming the single layer only in the lower layer (211 (211 ')), the single layer (211 (211')) formed into a dry state with the substrate (1) by forced drying, It is formed by second firing at a second firing temperature in the range of 1150 ° C. to 1200 ° C., which is lower than the firing temperature, and for a firing time of about 10 hours which is substantially the same as the first firing time. The molding layer (2) of Example 1 is a solid layer that contains at least 40 wt% of # 52 petalite and is melted and solidified on the substrate (1) in a dehydrated state.
(混練体(20))
成形層(2)の、第二焼成による固化前の原材である混練体(20)は、第二焼成前の粘土状の状態において、ペタライトを主剤に含む粉粒混合物と、水と、を混練した粘土状の状態からなる。この混練体(20)が、第二焼成前に、素地(1)の層形成面上に盛土されたまま24時間以上自然乾燥されることによって、盛土内の水が、層形成面から素地(1)内に吸収され、半固化状態にまで脱水した被吸水状態となる。混練体(20)を構成する盛土前の混練体(20)の含水率は15%以上50%以下、好ましくは17%以上50%以下であるが、盛土後の静置乾燥によって、盛土状態の混練体(20)が第二焼成の前に素地(1)内へ吸水されて半固化の乾燥した状態となる。
(Kneaded body (20))
The kneaded body (20), which is the raw material before solidification by the second firing of the molding layer (2), is a clay-like state before the second firing, a powder mixture containing petalite as a main ingredient, and water. It consists of a kneaded clay-like state. The kneaded body (20) is naturally dried for 24 hours or more while being embanked on the layer forming surface of the substrate (1) before the second firing, so that water in the embankment is allowed to flow from the substrate ( 1) It is absorbed in and becomes a water-absorbed state dehydrated to a semi-solidified state. The water content of the kneaded body (20) before embankment constituting the kneaded body (20) is 15% or more and 50% or less, preferably 17% or more and 50% or less. The kneaded body (20) is absorbed into the substrate (1) before the second baking, and becomes semi-solidified and dried.
成形層(2)を焼成固化する前の混練体(20)は具体的には、♯52ペタライト40w%以上75w%以下と、粘土材(蛙目粘土、ロー石、陶石のうちの少なくとも2種以上)4w%以上22w%以下と、0.05w%以上0.4w%以下の無機解膠材と、を混合させた粉粒混合物に、含水率17%以上50%以下となるように水を混練させた粘土状体からなる。♯52ペタライトと、蛙目粘土、ロー石、陶石の少なくとも2種以上からなる粘土材とを配合させることで、5μmから100μmまでに分散した粒子径範囲の粗密粒子を含むものとなっている。また混練体(20)を第二焼成して成形層(2)としたとき、成形層(2)単独の線膨張係数が0.1〔×10-6/K〕以上1.5〔×10-6/K〕以下、好ましくは線膨張係数0.2〔×10-6/K〕以上0.8〔×10-6/ K〕以下であることが好ましい。 Specifically, the kneaded body (20) before firing and solidifying the molding layer (2) is # 52 petalite 40 w% or more and 75 w% or less, and a clay material (at least 2 out of Sasame clay, rhostone, pottery stone). Seed or higher) 4w% or more and 22w% or less, and 0.05w% or more and 0.4w% or less inorganic peptizer mixed with the powder mixture, so that the water content is 17% or more and 50% or less. It is made of a clay-like material kneaded with. By blending # 52 petalite with clay material consisting of at least two kinds of glazed clay, rhostone and porcelain, it contains coarse particles with a particle diameter range of 5 μm to 100 μm. . When the kneaded body (20) is second-fired to form a molded layer (2), the linear expansion coefficient of the molded layer (2) alone is 0.1 [× 10 −6 / K] or more and 1.5 [× 10]. −6 / K] or less, preferably 0.2 [× 10 −6 / K] or more and 0.8 [× 10 −6 / K] or less.
実施例1の混練体(20)は、粉粒混合物に水を混練し、調土することによって得られる。この混練体(20)の原料となる、水を混練させる前の粉粒混合物における、各混合成分の配合率は、ペタライトが55w%以上65w%以下であり、無機解膠材が0.1w%以上0.4w%以下であることが好ましい。前記配合率であれば、ペタライトが混練体(20)内で十分な分散性を有し、素地(1)に吸水されるに充分な含水量を有するものとなる。そして、成形後の成形層(2)中のペタライトが、55w%以上65w%以下の配合率をもって十分に分散した状態で良好な定着性をもって溶融・固化したものとなる。 The kneaded body (20) of Example 1 is obtained by kneading water into a powder mixture and preparing the soil. In the powder mixture before kneading water, which is a raw material of the kneaded body (20), the blending ratio of each mixed component is 55 w% or more and 65 w% or less for petalite, and 0.1 w% for the inorganic peptizer. It is preferable that it is 0.4 w% or less. If it is the said mixture rate, petalite will have sufficient dispersibility in a kneaded body (20), and will have sufficient water content for water absorption to a base material (1). Then, the petalite in the molded layer (2) after molding is melted and solidified with good fixability in a sufficiently dispersed state with a blending ratio of 55 w% to 65 w%.
素地(1)に吸水されることで被吸水状態となった盛土は、粘土状態の粉粒混合物が層形成面に投錨した投錨状態となる。混練体(20)が前記投錨状態かつ被吸水状態のまま素地(1)と共に第二焼成されることで、素地(1)と共に溶融しながら、素地(1)の表面の微細凹凸部に投錨した成形層(2)として、素地(1)と一体化する。一体化後の成形層(2)は、微細凹凸部に沿って密着した状態となっている。 The embankment that has become water-absorbed by being absorbed by the substrate (1) is in an anchored state in which the clay-like powder mixture is anchored on the layer forming surface. The kneaded body (20) was second-fired together with the substrate (1) while being in the thrown and water-absorbed state, so that the kneaded body (20) was thrown onto the fine irregularities on the surface of the substrate (1) while melting with the substrate (1). The molded layer (2) is integrated with the substrate (1). The molded layer (2) after the integration is in close contact along the fine irregularities.
混練体(20)の混練組成によると、盛土I後の24時間以上の自然乾燥によって、粘土材に含まれるD50のメジアン径を10μm以下とし、或いはモード径を10μm以下とする細かい粒子の分散層が、高い含水率の表層部として成形層(2)の表側に分離することとなる(図9)。その一方、表層部(212)よりも下部に沈下した下層部(211)はD50のメジアン径が10μm超、或いはモード径が10μm超となった粗い粒子の分散層となる。表層部(212)の表層部化と下層部(211)の沈下とによって、成形層(2)は乾燥時に表面が保護され、かつ成形層(2)の下層内の微細粒子含有率がきわめて小さくなる。このため、成形層(2)が乾燥・焼成後にヒビやワレ、欠けを生じにくいものとなる。 According to the kneaded composition of the kneaded body (20), a fine particle dispersion layer in which the median diameter of D50 contained in the clay material is 10 μm or less or the mode diameter is 10 μm or less by natural drying for 24 hours or more after embankment I. However, it will be separated on the front side of the molding layer (2) as a surface layer portion having a high water content (FIG. 9). On the other hand, the lower layer portion (211) submerged below the surface layer portion (212) is a dispersed layer of coarse particles having a D50 median diameter of more than 10 μm or a mode diameter of more than 10 μm. By forming the surface layer part (212) into a surface layer part and the lower layer part (211) sinking, the surface of the molding layer (2) is protected during drying, and the content of fine particles in the lower layer of the molding layer (2) is extremely small. Become. For this reason, the molding layer (2) is less likely to be cracked, cracked or chipped after being dried and fired.
(B)実施例1の装飾セラミックスの原材及び装飾セラミックスの製造方法
実施例1の装飾セラミックスの原材、及び該原材を用いる装飾セラミックス、のそれぞれ製造方法は、図1A及び図2に示すように、以下の各工程を具備してなる。
<図1A左図に示す素地形成フロー>
素地原料となる材料を調合(調土)して水と混ぜて細磨処理することで、素地の混練体を得る。この素地の混練体を板状に成形して第一乾燥として60℃以上200℃以下で加熱乾燥させた後に、1200℃〜1250℃の範囲内の第一焼成温度で第一焼成することで、締焼状態の板状の素地(1)とする素地形成工程を含む、素地形成フロー。素地(1) はストックされ、次の盛土工程の前に所定平面形状に切断される。
<図1A右図に示す層形成・彩色フロー>
層形成フローは次の工程を含む。すなわち、
所定寸法に切断した素地(1)の周囲に枠材(F)を取り付け、素地(1)の上面である層形成面上に、粉粒原料の粉粒混合物と水とを混練(調土I)させてなる粘土状の混練体(20)を所定厚さで盛土して盛土状態(a)とする盛土(盛土I)工程と、
混練体(20)を盛土状態とした盛土を24時間以上の静置による自然乾燥によって表層分離させた半固化状態の表層分離状態(b)とする表層分離(第二乾燥A)工程と、
表層分離工程によって表層分離した表層部(212)を除去手段(C)(本例では切除刃)によって除去すると共に、下層部(211)の上部を表面側から、湾曲傾斜した切削面を以て切削加工して、半固化状態の成形加工済みの下層部(221´)(前駆体)のみとして、加工状態・かつ表層除去状態(c)とする表層除去(加工)工程と、
下層部(211(211´))のみからなる表層除去状態の半固化状態の盛土と、予め固化成形された素地(1)と、を共に、第一焼成温度よりも低い1150℃〜1200℃の範囲内の第二焼成温度で第二焼成することで、成形層(2)である第一成形層を、素地(1)上に密着した重ね固形層として得る第二焼成工程と、である。
そして実施例の装飾セラミックスは、このようにして得られる装飾セラミックスの原材に例えば次のような仕上げ処理を施して得られる。すなわち、
付加成形層である第二成形層(3)の表面全体に釉薬を施釉する施釉工程と、
釉薬を施釉した表面に、手作業及びスプレー塗布等によって彩色を施す彩色工程と、
第二焼成温度よりも低い仕上げ焼成温度で全体をまとめて仕上げ焼成し、仕上げ層(5´)を形成する仕上げ焼成工程と、である。
(B) The raw material of the decorative ceramic of Example 1 and the method of manufacturing the decorative ceramic The manufacturing method of the raw material of the decorative ceramic of Example 1 and the decorative ceramic using the raw material are shown in FIGS. 1A and 2. Thus, it comprises the following steps.
<Ground formation flow shown in the left figure of FIG. 1A>
The base material is prepared (prepared), mixed with water and finely ground to obtain a base kneaded body. After forming the kneaded body of this base into a plate shape and heat drying at 60 ° C. or more and 200 ° C. or less as the first drying, first firing at a first firing temperature within a range of 1200 ° C. to 1250 ° C. A substrate forming flow including a substrate forming step of making a plate-like substrate (1) in a baked state. The substrate (1) is stocked and cut into a predetermined planar shape before the next embankment process.
<Layer formation / coloring flow shown in the right figure of FIG. 1A>
The layer formation flow includes the following steps. That is,
A frame material (F) is attached to the periphery of the substrate (1) cut to a predetermined size, and the powder mixture of the particle raw material and water are kneaded on the layer forming surface which is the upper surface of the substrate (1) (Soil Preparation I ) A clay-like kneaded body (20) that is embanked at a predetermined thickness to form an embankment state (a);
A surface layer separation (second drying A) step in which the embankment with the kneaded body (20) in the embankment state is separated into a surface layer separated state (b) in a semi-solidified state by surface drying by natural drying by standing for 24 hours or more;
The surface layer part (212) separated by the surface layer separation step is removed by the removing means (C) (in this example, a cutting blade), and the upper part of the lower layer part (211) is cut from the surface side with a curved inclined cutting surface. And, as a semi-solidified lower layer portion (221 ') (precursor) that has been processed, a surface layer removal (processing) step that is a processing state and a surface layer removal state (c),
Both the embankment in the semi-solidified state of the surface layer removal state consisting only of the lower layer part (211 (211 ′)) and the base (1) solidified and molded in advance are 1150 ° C. to 1200 ° C. lower than the first firing temperature. A second firing step of obtaining the first molded layer as the molded layer (2) as a stacked solid layer in close contact with the substrate (1) by second firing at a second firing temperature within the range.
And the decorative ceramic of an Example is obtained by giving the following finishing processes to the raw material of the decorative ceramic obtained in this way, for example. That is,
A glazing step of glazing the entire surface of the second molding layer (3), which is an additional molding layer,
A coloring process for coloring the surface of the glaze by manual work or spray application,
A finish firing step in which the whole is collectively fired at a finish firing temperature lower than the second firing temperature to form a finish layer (5 ').
上記実施例1の製造方法における工程についてさらに説明する。
(素地形成工程)
先ず、素地形成フローたる素地形成工程として、粉粒混合物と水を混練させて得た粘土状の素地原料をミルで細磨、混練し、板状に成形した状態で、60℃以上200℃以下の所定の加熱温度で概ね1時間〜24時間加熱乾燥させた後、1200℃〜1250℃の範囲内の第一焼成温度、かつ約3時間〜約10時間の焼成時間で第一焼成し、板状の締焼素材を固化材として予成形する。なお第一焼成の焼成時間は5時間〜10時間の範囲内に設定することが好ましく、さらにいえば8時間〜10時間の範囲内に設定することが好ましい。かかる素地形成工程によって、予め固化形成した板状の素地(1)の締焼素材を乾燥状態でストックしておく。この締焼素材は基材としての役割を果たすと共に、混練体(20)中に配合された発泡剤が発泡してなる多数の微細孔が内部に分散した状態で板状成形される。素地(1)はこの多数の微細孔によって吸水性を有するものとなっている。また上面の層形成面全体に亘って数μm(1μm以上10μm以下)の最大凹凸間高さの微細凹凸部が形成されている。
The steps in the manufacturing method of Example 1 will be further described.
(Base formation process)
First, as a substrate forming process that is a substrate forming flow, a clay-like raw material obtained by kneading a powder mixture and water is finely ground in a mill, kneaded, and molded into a plate shape, in a state of 60 to 200 ° C. The first baking is performed at a predetermined heating temperature of about 1 hour to 24 hours, and then first baking is performed at a first baking temperature within a range of 1200 ° C. to 1250 ° C. and a baking time of about 3 hours to about 10 hours. Pre-molded as a solidified material. The firing time for the first firing is preferably set in the range of 5 hours to 10 hours, and more preferably in the range of 8 hours to 10 hours. In this substrate forming step, the sintered material of the plate-like substrate (1) solidified and formed in advance is stocked in a dry state. This baked material serves as a base material, and is formed into a plate shape with a large number of micropores formed by foaming the foaming agent blended in the kneaded body (20) dispersed therein. The substrate (1) has water absorption due to the large number of fine holes. In addition, a fine uneven portion having a maximum height of unevenness of several μm (1 μm or more and 10 μm or less) is formed over the entire layer formation surface on the upper surface.
ストックされた素地(1)は、所定大の矩形形状に切断されて下記の盛土工程に使用される。素地(1)の切断寸法はここでは平面視で900mm×3000mm、厚さ20mmである。素地(1)の厚さは8mm〜30mm程度の範囲内で調整されることが好ましいが、厚さ、切断寸法を含めて前記範囲に限定されるものではない。素地(1)の寸法については後述する実施例2,3についても同様である。 The stocked substrate (1) is cut into a predetermined rectangular shape and used in the embankment process described below. Here, the cut dimensions of the substrate (1) are 900 mm × 3000 mm and thickness 20 mm in plan view. The thickness of the substrate (1) is preferably adjusted within a range of about 8 mm to 30 mm, but is not limited to the above range including the thickness and the cut dimensions. The dimensions of the substrate (1) are the same in Examples 2 and 3 described later.
(盛土工程)
次に盛土工程として、前記切断された素地(1)の周囲四辺に沿って、非吸水材からなる棒状の枠材(F)を、上半部が上方へ突出するように貼り付け、そして、枠材(F)によって形成された枠内であって、素地(1)の上面である層形成面に、粉粒混合物と水とを混練してなる粘土状の混練体(20)を所定厚さとなるように略均一の厚さで盛土する。本工程後には固形の素地(1)の層形成面上に、枠材(F)によって囲まれた粘土状の混練体(20)が盛土された盛土状態となっている(図2(a))。上記混練体(20)は、40w%以上75w%以下もの高配合率の♯52ペタライトを、4w%以上22w%以下の粘土材(蛙目粘土、ロー石、陶石のうちの少なくとも2種以上)と0.05w%以上0.4w%以下の無機解膠材とによって比較的均一に分散させ、かつ粘土材の配合と17%以上もの高い含水率によって、比較的粗い粒子と微細粒子の両方を含む混練体(20)となっている。
(Filling process)
Next, as the embankment process, along the four sides around the cut substrate (1), stick the rod-shaped frame material (F) made of a non-water-absorbing material so that the upper half projects upward, and A clay-like kneaded body (20) obtained by kneading the powder mixture and water on a layer forming surface which is an upper surface of the substrate (1) in a frame formed by the frame material (F) has a predetermined thickness. Fill with a substantially uniform thickness. After this step, the clay-like kneaded body (20) surrounded by the frame material (F) is filled on the layer forming surface of the solid substrate (1) (FIG. 2 (a)). ). The kneaded body (20) is made of # 52 petalite having a high blending ratio of 40 w% or more and 75 w% or less, and a clay material of 4 w% or more and 22 w% or less (at least two kinds of glazed clay, rhostone, and ceramic stone) ) And an inorganic peptizer of 0.05 w% to 0.4 w%, and both relatively coarse and fine particles due to the blend of clay material and a high water content of 17% or more. The kneaded body (20) containing
混練体(20)の盛土厚さは、前記切断寸法例の素地(1)に対してここでは10mm程度である。盛土による成形層(2)の層厚さは、素地(1)厚さよりも小さい3mm〜20mmの範囲内で調整されることが好ましいが、前記に限定されるものではない。混練体(20)の盛土厚さについては後述する実施例2,3についても同様である。 The embankment thickness of the kneaded body (20) is about 10 mm in this case with respect to the substrate (1) of the above-described cut dimension example. The layer thickness of the molded layer by embankment (2) is preferably adjusted within the range of matrix (1) is smaller than the thickness 3 mm to 20 mm, but is not limited to the. The same applies to the embankment thickness of the kneaded body (20) in Examples 2 and 3 described later.
(表層分離工程)
次に表層分離工程として、盛土状態の盛土20及び素地(1)を常温で静置乾燥することによって、盛土した混練体(20)を、含水率15%以上(15〜80%)の薄層状の表層部(212)と、含水率15%未満(0.1%〜14.0%)の下層部(211)とに層分離させる。この層分離は、比較的小さい粒径の粘土材が水粒子を多量に伴う帯電状態となり、盛土層の表層部分に薄膜状に浮き上がることによって起こる。一方、残りの比較的大きい粒径の粘土材及びペタライト材が、24時間以上の静置による自然乾燥(乾燥工程A)によって混練体(20)の下部に沈降し、盛土層の下部に接した層形成面から素地(1)に吸水されることで、半固化状態からなる大部分の厚さの下層部(211)となる(図2(b))。
(Surface layer separation process)
Next, as the surface layer separation step, the embankment 20 and the base material (1) in the embankment state are left to stand and dry at room temperature, so that the embedding body (20) that has been embanked is a thin layer with a moisture content of 15% or more (15 to 80%). Are separated into a surface layer portion (212) and a lower layer portion (211) having a water content of less than 15% (0.1% to 14.0%). This layer separation occurs when a clay material having a relatively small particle diameter becomes charged with a large amount of water particles and floats in a thin film shape on the surface layer portion of the embankment layer. On the other hand, the remaining relatively large particle size clay material and petalite material settled to the lower part of the kneaded body (20) by natural drying (drying process A) by standing for 24 hours or more, and contacted the lower part of the embankment layer. By absorbing water from the layer forming surface to the substrate (1), it becomes a lower layer part (211) having a large thickness of a semi-solidified state (FIG. 2 (b)).
(表層部(212))
表層部(212)は、含水率15%以上の混練体(20)を、吸水性の素地(1)上で24時間以上の長時間をかけて自然乾燥させることによって盛土の表面に浮出した、微細粒子を多量に含む高含水率の薄層である。具体的には、盛土20層内にて含水率15%以上の高含水率を有し、粘土材に含まれるD50のメジアン径を10μm以下とし、或いはモード径を10μm以下とする細かい粒子のみを含む微細粒の分散薄層となっている。この表層部(212)は、D50のメジアン径10μm以下、或いはモード径10μm以下の少なくともいずれかの条件を満たしていれば、微細粒の分散薄層として好ましいが、さらに言えば前記両条件を共に備えること、すなわちD50のメジアン径10μm以下且つモード径10μm以下であることが、平坦面を構成するための微細粒の分散薄層として、より好ましい。
(Surface part (212))
The surface layer part (212) was raised on the surface of the embankment by naturally drying the kneaded body (20) having a water content of 15% or more on the water-absorbing substrate (1) over a long period of 24 hours or more. A thin layer with a high water content containing a large amount of fine particles. Specifically, only fine particles having a high water content of 15% or more in the embankment 20 layers, the median diameter of D50 contained in the clay material being 10 μm or less, or the mode diameter being 10 μm or less. It is a dispersed thin layer of fine grains. This surface layer portion (212) is preferable as a dispersed thin layer of fine particles if it satisfies at least one of the conditions of D50 median diameter of 10 μm or less, or mode diameter of 10 μm or less. In other words, it is more preferable that the D50 has a median diameter of 10 μm or less and a mode diameter of 10 μm or less as a fine dispersed thin layer for constituting a flat surface.
実施例1の表層部(212)の代表的な粒度分布は、図8の粒度対数頻度グラフに示すような突出した1ピークを有する分散曲線を示し、D50メジアン径及びモード径が、共に5μm以上8μm以下(図8ではメジアン径7.25μm、モード径7.18μm)となる。なお実施例1では、本表層部(212)をその後の表層除去工程によって全除去してから焼成するのであるが、仮に表層部(212)を表層除去せずにそのまま焼成した場合には、その固化層面は、図5に示すような100倍未満の走査電子顕微鏡観察(図5では加速電圧20.00kV、倍率30倍)において、100μmの粒状体が一つも現れない平坦面となる。 The representative particle size distribution of the surface layer portion (212) of Example 1 shows a dispersion curve having one prominent peak as shown in the particle size logarithmic frequency graph of FIG. 8, and both the D50 median diameter and the mode diameter are 5 μm or more. 8 μm or less (in FIG. 8, the median diameter is 7.25 μm and the mode diameter is 7.18 μm). In Example 1, the surface layer portion (212) is completely removed by the subsequent surface layer removing step and then fired. However, if the surface layer portion (212) is directly fired without removing the surface layer, The solidified layer surface is a flat surface in which no granular material of 100 μm appears in a scanning electron microscope observation of less than 100 times as shown in FIG. 5 (acceleration voltage 20.00 kV, magnification 30 times in FIG. 5).
(下層部(211))
下層部(211)は盛土20層内で水と分離して沈降した、代表径10μm以上のペタライト及び粘土材を主剤とする半固化状態の粘土層からなる。実施例では盛土20が吸水性を有する素地(1)に吸水されるとともに表面から蒸発することで脱水され、枠材を取り外しても自己成形性を有する粘土層となる。下層部(211)は具体的には、盛土20層内にて含水率15%未満(0.1%〜14.0%)の低含水率であり、D50のメジアン径を10μm超とし、かつモード径を10μm超とする粗粒子のみを含む粗粒の分散層となっている。実施例1の下層部(211)の代表的な粒度分布は、図9の粒度対数頻度グラフに示すような突出した2ピーク以上を有する分散曲線を示し、D50メジアン径及びモード径が、共に10μmを大きく超えた、50μm以上150μm以下(図9ではメジアン径59.17μm、モード径82.96μm)の範囲内となる。但し厳密に言えば、下層部(211)内においても、素地に近い下方部分となる程、層内に含まれる分散粒子の平均粒径が大きく、また逆に下層表面に近い上方部分となる程、層内に含まれる分散粒子の平均粒径が小さくなる。半固化状態の被吸水状態では、脱水によって、枠材(F)を取り外しても盛土が自己保形性を有する状態まで半固化した状態となる。
(Lower layer part (211))
The lower layer portion (211) is composed of a semi-solidified clay layer mainly composed of petalite having a representative diameter of 10 μm or more and a clay material, which has settled and separated from water within the 20 embankments. In the embodiment, the embankment 20 is dehydrated by being absorbed by the water-absorbing substrate (1) and evaporating from the surface, and becomes a clay layer having self-molding properties even when the frame material is removed. Specifically, the lower layer portion (211) has a low water content of less than 15% (0.1% to 14.0%) in the 20 layers of the embankment, the median diameter of D50 is more than 10 μm, and the mode diameter and has a coarse grain dispersion layer containing only coarse particles to 10μm greater. The typical particle size distribution of the lower layer portion (211) of Example 1 shows a dispersion curve having two or more prominent peaks as shown in the particle size logarithmic frequency graph of FIG. 9, and both the D50 median diameter and the mode diameter are 10 μm. Is in the range of 50 μm or more and 150 μm or less (median diameter 59.17 μm, mode diameter 82.96 μm in FIG. 9). However, strictly speaking, in the lower layer portion (211), the lower portion closer to the substrate, the larger the average particle diameter of the dispersed particles contained in the layer, and conversely, the upper portion closer to the lower surface. The average particle size of the dispersed particles contained in the layer is reduced. In the semi-solidified water-absorbed state, even if the frame material (F) is removed, the embankment is in a semi-solidified state until it has a self-holding property.
(表層除去工程)
次に実施例1の表層除去工程として、枠材(F)を取り外し、盛土の上部に分離して浮き上がった表層部(212)を、除去手段(C)(本例では切除刃)によって全除去すると共に、下層部(211)の上部を表面側から湾曲傾斜した切削面を以て切削加工して、半固化状態、加工状態、かつ表層除去状態の下層部(221´)(前駆体)のみからなるものとする(図1A、図2(b)〜図2(c))。これは除去手段(C)(本例では切除刃)によって、不均一な下層部の上層部分または下層部の上薄部までをまとめて除去する表層除去工程と、表層部(212)の全除去後の下層部(211)の厚さを所定の形状に整える成形工程とを同時に行うものである。
(Surface layer removal process)
Next, as the surface layer removing step of Example 1, the frame material (F) is removed, and the surface layer portion (212) that has been separated and floated on the upper part of the embankment is completely removed by the removing means (C) (in this example, a cutting blade). At the same time, the upper part of the lower layer part (211) is cut with a cutting surface that is curved and inclined from the surface side, and consists only of the lower layer part (221 ') (precursor) in a semi-solidified state, a processed state, and a surface layer removed state. It shall be (FIG. 1A, FIG.2 (b)-FIG.2 (c)). The removal means (C) (removal blade in this example) removes the upper layer portion of the lower layer portion or the upper thin portion of the lower layer portion at a time, and the entire removal of the surface layer portion (212). The molding step for adjusting the thickness of the subsequent lower layer portion (211) to a predetermined shape is performed simultaneously.
なお本実施例と異なる例として、表層部の除去と下層部の切削加工とを別工程として行ってもよい。この場合、たとえば最初に除去手段(C)たる切除刃によって表層部(212)を全除去して平坦面の下層部(211)のみとし、続けて下層部(211)を前記除去手段と異なる(又は同じ)除去手段によって表面を成形加工する。なお前記除去手段の例として、サンドブラスト処理を行うブラストショットガンがあげられる。必要に応じて適宜箇所にサンドブラスト処理を行うことで、局所的な凹凸成形や下層部の部分除去成形を行うことができる。 As an example different from the present embodiment, removal of the surface layer portion and cutting of the lower layer portion may be performed as separate steps. In this case, for example, the surface layer portion (212) is entirely removed by the cutting blade that is the removal means (C) first to make only the lower surface portion (211) of the flat surface, and the lower layer portion (211) is subsequently different from the removal device ( (Or the same) The surface is formed by removing means. An example of the removing means is a blast shotgun that performs sandblasting. By performing a sandblasting process at an appropriate position as necessary, local uneven molding and partial removal molding of the lower layer can be performed.
表層除去工程を経た下層部(211(211´))のみをその後の焼成工程によって焼成することで、固化層面は、倍率30倍拡大視にて多数の石状部が散在した粗面となる。すなわち、表層除去工程及びその後の焼成工程後の下層部(211(211´))の固化層面は、図6に示す100倍未満の走査電子顕微鏡観察(図6では加速電圧20.00kV、倍率30倍)において、代表径50μm〜200μm程度の石状部が散在し、その間に多孔性の代表径50μm以下の大小の粒状部が集まって充当した凹凸面となる。この固化層面(図6)は、表層分離状態から表層除去工程を経ずに焼成工程を行った場合の固化層面(図5)と比較して、1000μm2以上の面積の平坦面を有さない点、大きさの異なる多数の石状部と粒状部が集積している点、及び、500μm長以上の罅割れを有さない点で顕著な相違がある。 By firing only the lower layer portion (211 (211 ')) that has undergone the surface layer removal step, the solidified layer surface becomes a rough surface in which a large number of stone-like portions are scattered when viewed at a magnification of 30 times. That is, the solidified layer surface of the lower layer portion (211 (211 ')) after the surface layer removing step and the subsequent firing step was observed with a scanning electron microscope less than 100 times shown in FIG. 6 (acceleration voltage 20.00 kV, magnification 30 in FIG. 6). 2), stone-like portions having a representative diameter of about 50 μm to 200 μm are interspersed, and a large and small granular portion having a porous representative diameter of 50 μm or less gathers and becomes an uneven surface. This solidified layer surface (FIG. 6) does not have a flat surface with an area of 1000 μm 2 or more compared to the solidified layer surface (FIG. 5) when the baking step is performed without the surface layer removal step from the surface layer separation state. There are significant differences in that a large number of stone-like parts and granular parts having different sizes are accumulated and that there are no cracks of 500 μm or more in length.
(第二乾燥工程(B))次いで第二乾燥工程(B)として、表層部(212)を除去した残りの下層部(211(211´))を素地(1)と共に加熱乾燥し、含水率5%以下の脱水状態とする。当該加熱乾燥は、例えば、60℃〜200℃の範囲の乾燥温度で1時間〜24時間の範囲の加熱時間内で行う。 (Second drying step (B)) Next, as the second drying step (B), the remaining lower layer portion (211 (211 ')) from which the surface layer portion (212) has been removed is dried by heating together with the substrate (1), and the moisture content The dehydrated state is 5% or less. The said heat drying is performed within the heating time of the range of 1 hour-24 hours at the drying temperature of the range of 60 degreeC-200 degreeC, for example.
(焼成工程)
次に焼成工程(第二焼成工程)として、下層部(211(211´))を提供している粘土状の混練体(20)を第一焼成温度よりも低い第二焼成温度で、第一焼成温度と同じ焼成時間をかけて第二焼成する。具体的には、実施例1の第二焼成温度を1150℃〜1200℃の範囲内で設定し、混練体(20)が成形状態の成形層(22´(2))となるまで、第一焼成工程と同じ約3時間〜約10時間の範囲内の焼成時間で焼成加熱する。第二焼成の焼成時間は第一焼成時間と同じく5時間〜10時間の範囲内に設定することが好ましく、さらにいえば、第一焼成時間と同じく8時間〜10時間の範囲内に設定することが好ましい。このように、各焼成工程を同じ焼成時間のまま焼成温度のみを順に小さく設定することで、焼成のための熱エネルギー(各形成層の混練体の反応温度域における熱エネルギー)の総量が、前焼成工程たる第一焼成工程よりも小さくなるようにしている。この第二焼成の前又は第二焼成中に、混練体(20)が、素地(1)の層形成面から素地(1)内に吸水されて、素地(1)の微細凹凸部に投錨した被吸水状態となる。この被吸水状態の混練体(20)が素地(1)と共に第二焼成されることで、成形層(2)が素地(1)上に密着形成される(図1中の(h)、図2中の(h1))。焼成状態(図2(h))の実施例1の原材は、側断面視波状の凹凸加工面を上面に有した板状態からなる。
(Baking process)
Next, as a firing step (second firing step), the clay-like kneaded body (20) providing the lower layer portion (211 (211 ')) is first heated at a second firing temperature lower than the first firing temperature. The second firing is performed for the same firing time as the firing temperature. Specifically, the second firing temperature of Example 1 is set within a range of 1150 ° C. to 1200 ° C., and the first until the kneaded body (20) becomes a molded layer (22 ′ (2)) in a molded state. Firing and heating are performed at a firing time in the range of about 3 hours to about 10 hours that is the same as the firing step. The firing time of the second firing is preferably set within the range of 5 hours to 10 hours, as with the first firing time, and more specifically, within the range of 8 hours to 10 hours as with the first firing time. Is preferred. In this way, by setting only the firing temperature in order for each firing step while maintaining the same firing time, the total amount of heat energy for firing (heat energy in the reaction temperature region of the kneaded body of each forming layer) It is made smaller than the 1st baking process which is a baking process. Prior to or during the second firing, the kneaded body (20) is absorbed into the substrate (1) from the layer-forming surface of the substrate (1) and thrown onto the fine irregularities of the substrate (1). It becomes a water-absorbed state. This water-absorbed kneaded body (20) is second-fired together with the substrate (1), whereby the molded layer (2) is formed in close contact with the substrate (1) ((h) in FIG. 1, FIG. (H1) in 2.). The raw material of Example 1 in the fired state (FIG. 2 (h)) is in the form of a plate having a corrugated processed surface with a side-view wave shape on the top surface.
なお、素地形成工程の第一焼成における各焼成温度、ないし焼成工程たる第二焼成における各焼成温度とは、いずれも各焼成における最高焼成温度の設定値を意味する。実際には各工程の焼成過程において、混練体(20)ないし付加混練体の温度を、反応温度域よりも低い温度から加熱を開始する。そして、混練体(20)の温度を設定した焼成温度に至るまで上昇させたのちに、混練体(20)の温度を徐々に下げ、再び反応温度域よりも低い温度として、焼成工程を終える。この焼成工程の一連の流れにおいて、反応温度域における時間が長いほど、焼成のための熱エネルギーの総量が大きいものとなる。 Each firing temperature in the first firing in the substrate forming step or each firing temperature in the second firing as the firing step means a set value of the maximum firing temperature in each firing. Actually, in the firing process of each step, the heating of the kneaded body (20) or the additional kneaded body is started from a temperature lower than the reaction temperature range. Then, after the temperature of the kneaded body (20) is raised to the set firing temperature, the temperature of the kneaded body (20) is gradually lowered to set the temperature again lower than the reaction temperature range, and the firing step is finished. In the series of steps of the firing step, the longer the time in the reaction temperature range, the greater the total amount of heat energy for firing.
上記の如くして実施例1の装飾セラミックスの原材が得られるのであるが、ここでは、さらに例えば次のような仕上げ処理を施して装飾セラミックスを得る。すなわち、
成形層(22´(2))の表面に施釉および仕上げ彩色を施し、仕上げ焼成を経て仕上げ層(5´)が形成される(図1中の(z)、図2中の(z))。かくして仕上げ処理された装飾セラミックスはそのまま、或いは所定の取付け部にとりつけられてやがて出荷される。
As described above, the decorative ceramic raw material of Example 1 is obtained. Here, for example, the following finishing process is performed to obtain the decorative ceramic. That is,
The surface of the molding layer (22 ′ (2)) is subjected to glazing and finish coloring, and a finish layer (5 ′) is formed through finish firing ((z) in FIG. 1, (z) in FIG. 2)). . The decorative ceramics thus finished are shipped as they are or after being attached to a predetermined mounting portion.
<実施例2>
実施例2の装飾セラミックスの原材及び装飾セラミックス、並びにこれらの製造方法を、図1B及び図3を参照して説明する。
(A)実施例2の装飾セラミックスの原材及び装飾セラミックス
図1B及び図3に示す実施例2の装飾セラミックスの原材は、吸水性を有するものとして予成形された素地(1)と、素地(1)の上面に形成された成形層(2)(下層部(221´))と、成形層(2)の上に重畳形成された付加成形層たる第二成形層(3)(固化層(32´))と、成形層(2)及び第二成形層(3)の上に重畳形成された付加成形層たる第三成形層(4)(固化層(40´))と、からなる4層構造の原材である。
実施例2の装飾セラミックスはこの原材の表面全体に、さらに施釉・釉焼等による仕上げ層(5´)を形成した合計5層の固形成形材の最終状態からなる(図3(z))。他の特記しない構成及び製造方法は、実施例1と同様である。
<Example 2>
The raw material of decorative ceramics and decorative ceramics of Example 2 and a method for producing them will be described with reference to FIGS. 1B and 3.
(A) Decorative ceramic raw material and decorative ceramic of Example 2 The decorative ceramic raw material of Example 2 shown in FIG. 1B and FIG. 3 is a base (1) preformed as having water absorption, and a base The molding layer (2) (lower layer part (221 ′)) formed on the upper surface of (1) and the second molding layer (3) (solidified layer) which is an additional molding layer superimposed on the molding layer (2) (32 ')) and a third molding layer (4) (solidified layer (40')) which is an additional molding layer superimposed on the molding layer (2) and the second molding layer (3). It is a raw material with a four-layer structure.
The decorative ceramic of Example 2 is composed of a final state of a total of five layers of solid molding material in which a finishing layer (5 ′) is further formed by glazing, smoldering, or the like on the entire surface of the raw material (FIG. 3 (z)). . Other configurations and manufacturing methods not specifically mentioned are the same as those in the first embodiment.
ここで実施例2の素地(1)は、脱水状態である最終状態の成形体全体におけるペタライト配合率(PR)が40w%以上75w%以下であり、各成形層(2,3,4)と共にペタライトを主剤としている。また素地(1)を得るための混練体は、ペタライトのほかに粘土材と骨材とを含み、さらに成形時の乾燥によって発泡する発泡剤を含むものとなっている。但し、素地(1)のペタライト配合率(PR1)は成形層(2)のペタライト配合率(PR2)よりも小さいものとなっている。
素地(1)が粘土材を含み且つペタライトを主成分とすることで、成形層(2)を形成するための、実施例1の場合と同様の混練体(20)と成分組成の多くが共通することとなり、第二焼成による成形層(2)の素地(1)への溶融定着性に優れたものとなる。また、素地におけるペタライト配合率(PR1)が成形層におけるペタライト配合率(PR2)よりも少ないため、第一焼成において素地(1)をより高温で焼成することができる。また素地は一度予焼成しているため、その後の焼成(第二焼成、第三焼成等)による収縮率が少なく、原材全体の形状安定性に優れている。
Here, the base material (1) of Example 2 has a petalite compounding ratio (PR) of 40% to 75% by weight in the entire molded product in a final state which is a dehydrated state, together with each molded layer (2, 3, 4). The main ingredient is petalite. The kneaded body for obtaining the substrate (1) includes a clay material and an aggregate in addition to petalite, and further includes a foaming agent that foams by drying during molding. However, the petalite blending ratio (PR1) of the substrate (1) is smaller than the petalite blending ratio (PR2) of the molding layer (2).
The base material (1) contains a clay material and contains petalite as a main component, so that many of the component compositions are common to the kneaded body (20) similar to the case of Example 1 for forming the molding layer (2). Thus, the melt-fixing property to the substrate (1) of the molding layer (2) by the second baking is excellent. Moreover, since the petalite compounding ratio (PR1) in the substrate is smaller than the petalite compounding ratio (PR2) in the molded layer, the substrate (1) can be fired at a higher temperature in the first firing. Further, since the substrate is pre-fired once, the shrinkage rate due to the subsequent firing (second firing, third firing, etc.) is small, and the shape stability of the whole raw material is excellent.
具体的には、素地(1)、成形層(2)、付加成形層たる第二成形層(3)、及び再度の付加成形層たる第三成形層(4)は、いずれもペタライトを40w%以上75w%以下の範囲内の所定割合で主剤として配合してなる。但し、仕上げ焼成によって脱水した最終状態における各層のペタライト配合率は、素地におけるペタライト配合率(PR1)よりも成形層におけるペタライト配合率(PR2)の方が大きく、成形層におけるペタライト配合率(PR2)よりも付加成形層たる第二成形層におけるペタライト配合率(PR3)の方が大きく、付加成形層たる第二成形層におけるペタライト配合率(PR3)よりも再度の付加成形層たる第三成形層におけるペタライト配合率(PR4)の方が大きい。また各層の焼成前の原料である混練体(20)から水を除いた粉粒混合物の平均粒度は、素地(1)の粉粒混合物が最も大きく、次いで成形層(2)の粉粒混合物が次に大きく、次いで付加成形層たる第二成形層(3)の粉粒混合物が次に大きく、そして再度の付加成形層たる第三成形層(4)の粒粉混合物が最も小さい。 Specifically, the base (1), the molding layer (2), the second molding layer (3) as the additional molding layer, and the third molding layer (4) as the additional molding layer are all 40 w% of petalite. It is blended as a main agent at a predetermined ratio in the range of 75 w% or less. However, the petalite blending ratio of each layer in the final state dehydrated by finish firing is higher in the petalite blending ratio (PR2) in the molded layer than the petalite blending ratio (PR1) in the substrate, and the petalite blending ratio (PR2) in the molding layer. The petalite blending ratio (PR3) in the second molding layer as the additional molding layer is larger than that in the third molding layer as the additional molding layer again than the petalite blending ratio (PR3) in the second molding layer as the additional molding layer. The petalite compounding ratio (PR4) is larger. Moreover, the average particle size of the powder mixture obtained by removing water from the kneaded body (20) that is the raw material before firing of each layer is the largest in the powder mixture of the substrate (1), and then the powder mixture of the molding layer (2) is Next, the granule mixture of the second molding layer (3), which is the additional molding layer, is next, and the granule mixture of the third molding layer (4), which is the additional molding layer, is the smallest.
(B)実施例2の装飾セラミックスの原材及び装飾セラミックスの製造方法
実施例2の装飾セラミックスの原材及び装飾セラミックスは、以下に示す製造方法によって得られる。先ず素地形成工程として、素地原料となる材料を調合(調土)して水と混ぜて細磨処理することで、素地の混練体を得る。この素地の混練体を板状に成形して第一乾燥として60℃以上200℃以下で加熱乾燥させた後に、1200℃〜1250℃の範囲内の第一焼成温度で第一焼成することで、締焼状態の板状の素地(1)をストック形成する(図1B左フロー)。
(B) The raw material of decorative ceramics of Example 2 and the manufacturing method of decorative ceramics The raw material of decorative ceramics and decorative ceramics of Example 2 are obtained by the manufacturing method shown below. First, as a substrate forming step, a material to be a substrate raw material is prepared (prepared), mixed with water, and finely polished to obtain a base kneaded body. After forming the kneaded body of this base into a plate shape and heat drying at 60 ° C. or more and 200 ° C. or less as the first drying, first firing at a first firing temperature within a range of 1200 ° C. to 1250 ° C. A plate-like substrate (1) in a baked state is formed as a stock (left flow in FIG. 1B).
次に盛土工程として、所定寸法に切断した素地(1)の周囲に枠材(F)を取り付け、素地(1)の上面である層形成面上に、粉粒原料の粉粒混合物と水とを混練(調土I)してなる粘土状の混練体(20)を所定厚さで盛土して盛土状態(図3(a))とする。 Next, as the embankment process, a frame material (F) is attached around the substrate (1) cut to a predetermined size, and on the layer forming surface which is the upper surface of the substrate (1), The clay-like kneaded body (20) obtained by kneading (soil preparation I) is embanked at a predetermined thickness to obtain an embankment state (FIG. 3 (a)).
次いで第二乾燥たる24時間以上の自然乾燥によって、前記盛土した混練体(20)を表層分離させ、表層部(212)と下層部(211)とからなる半固化状態の表層分離状態とする(図3(b))。その後、枠材(F)を取り外したのちに表層部(212)すべてを除去する表層除去工程(図3(b)〜図3(c2))によって下層部(211)の単独層を形成し、この単独層を、さらに第二乾燥たる強制乾燥(ここでは60℃〜200℃の範囲の乾燥温度で1時間〜24時間の範囲の加熱乾燥)によって半固化かつ乾燥状態の表層除去状態(図3(c2))とする。このようにして成形層(2)の前駆体(下層部(221))を得る。 Next, the embedding kneaded body (20) is separated into a surface layer by natural drying for 24 hours or more, which is the second drying, and a semi-solidified surface layer separated state composed of a surface layer portion (212) and a lower layer portion (211) is obtained ( FIG. 3 (b)). Then, after removing the frame material (F), a single layer of the lower layer portion (211) is formed by a surface layer removing step (FIG. 3 (b) to FIG. 3 (c2)) that removes all the surface layer portion (212). The single layer is further subjected to forced drying (here, drying at a drying temperature in the range of 60 ° C. to 200 ° C. for 1 hour to 24 hours) to form a semi-solid and dry surface layer removed (FIG. 3). (C2)). Thus, the precursor (lower layer part (221)) of the molding layer (2) is obtained.
その後、層付加工程として、第二形成層(3)の付加成形層の焼成前原料である第二混練体(30)(調土IIによって得たもの)を、成形層(2)の前駆体(下層部(221))上に、前駆体(下層部(221))の層厚よりも半分以下の薄厚で盛土し(図3(d)「盛土II」)、第三乾燥たる自然及び強制乾燥によって、脱水した半固化状態の第二混練体(30)とする。続いて加工工程として、第二混練体(30)及び前駆体(下層部(221))それぞれの所定の一部分を表面側から各層が露出するように湾曲傾斜した切削面を以て切削加工し、加工状態とする(図3(f))。さらにこの加工状態の露出層表面全体に、再度の付加成形層(第三形成層(4))の焼成前原料である第三混練体(40)(調土IIIによって得たもの)を均一の薄膜厚さに盛土し(「盛土III」)、切削加工済みの四層構造体を得る。そして第二焼成工程として、前記切削加工済みの四層構造体を1150℃〜1200℃の範囲内で前記第一焼成温度より低い第二焼成温度で第二焼成して、図3(h)に示す四層構造の加工済み焼成材、すなわち実施例2の装飾セラミックスの原材が得られる。 Thereafter, as a layer addition step, a second kneaded body (30) (obtained by the soil preparation II), which is a raw material before firing of the additional molded layer of the second forming layer (3), is used as a precursor of the molded layer (2). On the (lower layer part (221)), the earth is filled with a thickness less than half the layer thickness of the precursor (lower layer part (221)) (Fig. 3 (d) "banking II"), natural and forced third dry By drying, a dehydrated semi-solidified second kneaded body (30) is obtained. Subsequently, as a processing step, a predetermined portion of each of the second kneaded body (30) and the precursor (lower layer portion (221)) is cut with a cutting surface that is curved and inclined so that each layer is exposed from the surface side, and the processed state (FIG. 3 (f)). Furthermore, the third kneaded body (40) (obtained by the soil preparation III), which is a raw material before firing of the additional molding layer (third formation layer (4)), is uniformly applied to the entire exposed layer surface in this processed state. Embanking to a thin film thickness (“Embedding III”), a cut four-layer structure is obtained. Then, as the second firing step, the cut four-layer structure is subjected to second firing at a second firing temperature lower than the first firing temperature within a range of 1150 ° C. to 1200 ° C., and FIG. The processed fired material having the four-layer structure shown, that is, the decorative ceramic raw material of Example 2 is obtained.
図3(h)において符号(221´)で示すものは前駆体(下層部(221))から得られた第一成形層たる成形層(2)であり、符号(32´)で示すものは前駆体から得られた第二成形層(3)の固化層であり、符号(40´)で示すものは第三混練体(40)から得られた第三成形層(4)の固化層である。 In FIG. 3 (h), what is indicated by reference numeral (221 ') is a forming layer (2) as a first forming layer obtained from the precursor (lower layer part (221)), and what is indicated by reference numeral (32') The solidified layer of the second molded layer (3) obtained from the precursor and indicated by the reference numeral (40 ') is the solidified layer of the third molded layer (4) obtained from the third kneaded body (40). is there.
上記の如くして実施例2の装飾セラミックスの原材が得られるのであるが、ここでは、さらに例えば次のような仕上げ処理を施して装飾セラミックスを得る。すなわち、
施釉工程として第二焼成後の加工済み焼成材(装飾セラミックスの原材)の表露出面に釉薬を均一に塗布して釉焼し、次いで転写工程として、表面に所望の再現しようとする材の色模様を転写して転写焼成し、最後に仕上げ焼成工程として仕上げ焼成(図3(z))を行う。
As described above, the decorative ceramic raw material of Example 2 is obtained. Here, for example, the following finishing treatment is performed to obtain the decorative ceramic. That is,
As a glazing process, the glaze is uniformly applied to the exposed surface of the processed fired material (decorative ceramic raw material) after the second calcination, followed by calcination. The color pattern is transferred and transferred and fired, and finally finish firing (FIG. 3 (z)) is performed as a finish firing step.
ただし、第一焼成、第二焼成、釉焼、転写焼成、仕上げ焼成のそれぞれにおいて、焼成温度(最高焼成温度)ないし焼成時間の少なくともいずれかは、後の工程になる程順に低く設定され、前焼成温度及び前焼成時間を超えることのないものとしている。これにより、繰返しの焼成による変形や層分離、ひびや割れを防ぐものとしている。本実施例では、仕上げ焼成温度は第一焼成、第二焼成、釉焼、転写焼成のいずれの焼成温度よりも低く設定され、転写焼成温度は第一焼成、第二焼成、釉焼のいずれの焼成温度よりも低く設定され、釉焼温度は第一焼成、第二焼成のいずれの焼成温度よりも低い1150℃以下に設定され、そして第二焼成温度は第一焼成温度よりも低い1150℃〜1200℃の範囲内に設定される。 However, in each of the first firing, the second firing, the sinter firing, the transfer firing, and the finish firing, at least one of the firing temperature (maximum firing temperature) or the firing time is set lower in order so as to be a later step. The firing temperature and pre-baking time are not exceeded. This prevents deformation, layer separation, cracks and cracks due to repeated firing. In this embodiment, the finish firing temperature is set lower than any firing temperature of the first firing, second firing, smoldering, and transfer firing, and the transfer firing temperature is any of the first firing, second firing, or smoldering. It is set lower than the firing temperature, the calcination temperature is set to 1150 ° C. or lower, which is lower than both firing temperatures of the first firing and the second firing, and the second firing temperature is from 1150 ° C. lower than the first firing temperature. It is set within the range of 1200 ° C.
さらに本実施例では、第一焼成、第二焼成の各焼成を同じ焼成時間に設定し、焼成温度のみを前焼成温度よりも順に小さく設定している。これはすなわち、焼成のための熱エネルギー(すなわち各形成層の混練体(20)ないし付加混練体(第二混練体30、第三混練体40、・・・)の反応温度域における熱エネルギー)の総量が、後の焼成工程となるにしたがって小さくなることを意味している。 Further, in this embodiment, the first baking and the second baking are set to the same baking time, and only the baking temperature is set to be smaller in order than the pre-baking temperature. This is the heat energy for firing (that is, the heat energy in the reaction temperature range of the kneaded body (20) to the additional kneaded body (second kneaded body 30, third kneaded body 40,...) Of each forming layer). It means that the total amount of becomes smaller as it becomes a subsequent firing step.
<実施例3>
実施例3の装飾セラミックスの原材及び装飾セラミックス、並びにこれらの製造方法を、図1C及び図4を参照して説明する。
(A)実施例3の装飾セラミックスの原材及び装飾セラミックス
図4及び図1Cに示す実施例3の装飾セラミックスの原材は、
実施例2と同様にして吸水性を有するものとして予成形された素地(1)と、
実施例2におけるものと同様の混練体(20)(調土IIによって得たもの)を、素地(1)の上面に盛土(盛土I)し(図4(a))、第二乾燥A・Bたる自然乾燥及び強制乾燥によって表層部(222)と下層部(221)に表層分離させ(図4(b))、該表層部(222)の除去と共に所定の凹凸形状に切削加工して(図4(c2))、成形層(2)の前駆体である下層部(221)(図4(c2))を得て、これを第二焼成してなる成形層(2(221´))(図4(h1))と、
実施例2におけると同様の第二混練体(30)(調土II(調土Iよりも小さく調土IIIよりも大きい中目の粗度の粉粒混合材)によって得られたもの)を、第二焼成後の成形層(2(221´))の表面に、成形層(2(221´))より薄い厚さで盛土し(図4(d2))「盛土I」)、第三乾燥たる自然乾燥及び強制乾燥の双方の乾燥によって、表層部(312)と下層部(311)に表層分離させる(図4(e2))。
<Example 3>
The raw material of decorative ceramics and decorative ceramics of Example 3 and the manufacturing method thereof will be described with reference to FIGS. 1C and 4.
(A) The decorative ceramic raw material and decorative ceramic of Example 3 The decorative ceramic raw material of Example 3 shown in FIGS.
A substrate (1) preformed as having water absorption in the same manner as in Example 2,
A kneaded body (20) similar to that in Example 2 (obtained by soil preparation II) was embanked (filled I) on the upper surface of the substrate (1) (FIG. 4 (a)), and the second dried A · The surface layer part (222) and the lower layer part (221) are separated into the surface layer (222) and the lower layer part (221) by natural drying and forced drying as B (FIG. 4 (b)), and cut into a predetermined uneven shape along with the removal of the surface layer part (222) ( FIG. 4 (c2)), a lower layer portion (221) (FIG. 4 (c2)) which is a precursor of the molding layer (2) is obtained, and this is subjected to second firing to form a molding layer (2 (221 ′)). (FIG. 4 (h1))
A second kneaded body (30) similar to that in Example 2 (obtained by soil preparation II (a coarse-grained coarse particle mixture smaller than soil preparation I and larger than soil preparation III)), On the surface of the molding layer (2 (221 ′)) after the second firing, the bank is filled with a thickness thinner than that of the molding layer (2 (221 ′)) (FIG. 4 (d2) “banking I”), and the third drying The surface layer is separated into the surface layer portion (312) and the lower layer portion (311) by both natural drying and forced drying (FIG. 4 (e2)).
このようにして、該表層部(312)の除去と共に所定の凹凸形状に切削加工してなる加工形状の、第二成形層(3)の前駆体である下層部(311)を得て、これを第三焼成してなる付加成形層たる第二成形層(3)(図4(h2))を得る。この付加成形層の形成によって三層構造を得る。
さらに、実施例2における混練体(図1Bの調土IIIによって得たもの)と同様の混練体(調土IIIによって得たもの)を用いて、前記三層構造の表面全体を覆うようにスプレー塗布処理で盛土(盛土III)し、これを第四焼成して付加成形層たる第三形成層(4)を得る。この付加成形層たる第三形成層(4)の形成によって四層構造を得る(図4(h3))。
In this way, a lower layer portion (311) which is a precursor of the second molding layer (3) having a processed shape obtained by cutting the surface layer portion (312) together with the removal of the surface layer portion (312) is obtained. A second molded layer (3) (FIG. 4 (h2)), which is an additional molded layer formed by third firing, is obtained. By forming this additional molding layer, a three-layer structure is obtained.
Further, using the same kneaded body (obtained by the soil preparation III) as that of the kneaded body in Example 2 (obtained by the soil preparation III in FIG. 1B), spraying was performed so as to cover the entire surface of the three-layer structure. Filling (banking III) is performed by a coating process, and this is subjected to fourth firing to obtain a third forming layer (4) which is an additional molding layer. A four-layer structure is obtained by forming the third forming layer (4) as the additional molding layer (FIG. 4 (h3)).
実施例3の装飾セラミックスは、この原材の表面に均一に施釉した後の釉焼、さらに釉焼表面に所望の(たとえば再現対象の)着色模様を転写した後の転写焼成を経て、最後に仕上げ焼成によって仕上げ層(図示省略)を形成した合計5層の固形成形材の最終状態からなる。最終状態における素地(1)、下層部(221´)からなる成形層(2)、固化層(311´)からなる第二成形層(3)、及び固化層(40´)からなる第三成形層(4)はいずれも、ペタライト配合率(PR1)が40w%以上75w%以下である。他の特記しない構成及び製造方法は、実施例2と同様である。 The decorative ceramic of Example 3 is finally subjected to calcination after uniformly glazing on the surface of this raw material, and further transfer calcination after transferring a desired (for example, reproduction target) colored pattern to the glazed surface. It consists of a final state of a total of 5 solid molding materials in which a finish layer (not shown) is formed by finish firing. In the final state, the molding (1), the molding layer (2) composed of the lower layer part (221 '), the second molding layer (3) composed of the solidified layer (311'), and the third molding composed of the solidified layer (40 '). In each layer (4), the petalite compounding ratio (PR1) is 40 w% or more and 75 w% or less. Other configurations and manufacturing methods not specifically mentioned are the same as those in the second embodiment.
実施例3の装飾セラミックスの原材及び装飾セラミックスの特徴構成として、次の構成を挙げることができる。すなわち、成形層(2)たる第一成形層、付加成形層たる第二成形層(3)、第三成形層(4)は、各原料となる混練体(20,30,40)を先行して形成される焼成後の固化面上へ盛土した後に、各焼成工程(第二焼成、第三焼成、第四焼成)によって一層ずつ固化焼成してなる。また、成形層(2)及び第二成形層(3)は、乾燥工程(第二乾燥、第三乾燥)を経て表層分離状態とし、その後の表層部(222,312)を除去すると共に残りの下層部(221,311)を所定の成形形状に切削成形してから焼成してなる。 Examples of the characteristic configuration of the decorative ceramic raw material and the decorative ceramic of Example 3 include the following. That is, the first molding layer as the molding layer (2), the second molding layer (3) as the additional molding layer, and the third molding layer (4) are preceded by the kneaded bodies (20, 30, 40) as the raw materials. After embankment on the solidified surface after firing, the layers are solidified and fired one by one in each firing step (second firing, third firing, fourth firing). Further, the molding layer (2) and the second molding layer (3) are subjected to a drying step (second drying, third drying) to be in a surface layer separation state, and the remaining surface layer portions (222, 312) are removed and the remaining layers are removed. The lower layer portions (221, 311) are cut into a predetermined shape and fired.
成形層(2)たる第一成形層、付加成形層たる第二成形層(3)、及び第三成形層(4)は、いずれも、ペタライト配合率(PR1)が40w%以上75w%以下である。但し、原材形成後や仕上げ焼成後の最終状態における各層のペタライト配合率は、成形層におけるペタライト配合率(PR2)よりも、付加成形層たる第二成形層におけるペタライト配合率(PR3)の方が1〜10w%だけ大きく、そして第二成形層におけるペタライト配合率(PR3)よりも、再度の付加成形層たる第三成形層におけるペタライト配合率(PR4)の方が1〜10w%だけ大きい。なお第二成形層におけるペタライト配合率(PR3)と第三成形層におけるペタライト配合率(PR4)は共に、ペタライトの配合率と粘土石の配合率のみが異なるものであり、含水率及び解膠材の調合量が一致している。また各層の焼成前の原料である混練体(20)から水を除いた粉粒混合物の平均粒度は、素地(1)の粉粒混合物が最も大きく、次いで成形層(2)の粉粒混合物が大きく、次いで第二成形層(3)の粉粒混合物が大きく、そして第三成形層(4)の粉粒混合物が最も小さい。 The first molding layer as the molding layer (2), the second molding layer (3) as the additional molding layer, and the third molding layer (4) all have a petalite compounding ratio (PR1) of 40 w% or more and 75 w% or less. is there. However, the petalite compounding ratio of each layer in the final state after forming the raw material and after finish firing is higher than the petalite compounding ratio (PR3) in the second molding layer as the additional molding layer, rather than the petalite compounding ratio (PR2) in the molding layer. Is larger by 1 to 10 w%, and the petalite blending ratio (PR4) in the third molding layer as the additional molding layer is larger by 1 to 10 w% than the petalite blending ratio (PR3) in the second molding layer. The petalite blending ratio (PR3) in the second molding layer and the petalite blending ratio (PR4) in the third molding layer are both different only in petalite blending ratio and clay stone blending ratio. The amount of preparation is the same. Moreover, the average particle size of the powder mixture obtained by removing water from the kneaded body (20) that is the raw material before firing of each layer is the largest in the powder mixture of the substrate (1), and then the powder mixture of the molding layer (2) is Large, then the second mixture layer (3) has the largest powder mixture, and the third molding layer (4) has the smallest powder mixture.
各形成層についてさらに説明する。
(成形層(2))
実施例3の成形層(2)は、45%〜55%程度の含水率とした粘土状の混練体(20)の状態で素地(1)に盛土され、第二乾燥工程A・Bたる自然・強制乾燥によって素地(1)へ定着した後に、加工工程A・Bたる表面削り・成形によって表層部を含む表面部分が切削加工され、その後に第一焼成温度よりも低い、1150℃〜1200℃の温度範囲における焼成温度の第二焼成によって固化形成されて形成される。これは実施例1の表層分離工程、表層除去工程、及びその後の第二焼成と同様である。すなわち混練体を盛土後の24時間以上の自然乾燥とその後の強制乾燥とによって表層分離状態かつ脱水した半固形状態とし、このうち表層部を含む表面部分を除去すると共に所定形状に切削加工することで、比較的粗い粒子からなる半固化状態の混練体(20)部分のみを脱水状態で残し、このような切削加工による成形後に第二焼成することで成形層の成形保持性を促している。焼成後の最終状態の成形層(2)はペタライトを主成分としており、具体的には全体比45〜40w%のペタライト配合率(成形層におけるペタライト配合率(PR2))を有する。
Each forming layer will be further described.
(Molded layer (2))
The molded layer (2) of Example 3 is embanked on the substrate (1) in the state of a clay-like kneaded body (20) having a moisture content of about 45% to 55%, and is a natural material as the second drying step A / B. -After fixing to the substrate (1) by forced drying, the surface portion including the surface layer portion is cut by the surface cutting as the processing steps A and B. After that, the surface portion including the surface layer portion is cut, and then lower than the first firing temperature, 1150C to 1200C It is formed by solidification by the second firing at the firing temperature in the temperature range. This is the same as the surface layer separation step, the surface layer removal step, and the subsequent second firing in Example 1. That is, the kneaded body is made into a semi-solid state in which the surface layer is separated and dehydrated by natural drying for 24 hours or more after embankment and subsequent forced drying, and the surface portion including the surface layer portion is removed and cut into a predetermined shape. Thus, only the semi-solidified kneaded body (20) portion made of relatively coarse particles is left in a dehydrated state, and the second firing is performed after the molding by such a cutting process, thereby promoting the molding retainability of the molding layer. The final molded layer (2) after firing is mainly composed of petalite, and specifically has a petalite blending ratio (peterite blending ratio (PR2) in the molding layer) of 45 to 40% by weight as a whole.
(付加成形層(第二成形層(3)、第三成形層(4)))
実施例3の付加成形層たる第二成形層(3)は、第二混練体(30)を第三乾燥たる自然・強制乾燥によって表層分離させ(図4(e2))、表層部(312)を除去した後の、第二成形層(3)の前駆体である下層部(311)のみを焼成固化してなる固化層(311´)からなる(図4)。すなわち層付加工程として、焼成前原料である第二混練体(30)を、切削加工後かつ第二焼成後の下層部(221´)上に盛土してから第三乾燥たる自然・強制乾燥によって表層部(312)と下層部(311)とに表層分離させ(図4(e2))、このうち表層部(312)を除去すると共に残りの下層部(311)を所定の加工形状に切削加工してから第三焼成して、第二成形層(3)を固化成形している。
(Additional molding layer (second molding layer (3), third molding layer (4)))
In the second molding layer (3) as the additional molding layer of Example 3, the second kneaded body (30) is surface-separated by natural drying / forced drying (FIG. 4 (e2)), and the surface layer portion (312). It consists of a solidified layer (311 ') obtained by baking and solidifying only the lower layer part (311) which is a precursor of the second molding layer (3) after removing (Fig. 4). That is, as a layer addition process, the second kneaded body (30), which is a raw material before firing, is embanked on the lower layer portion (221 ') after cutting and after the second firing, and then by natural / forced drying which is third dried. The surface layer portion (312) and the lower layer portion (311) are separated into surface layers (FIG. 4 (e2)), and the surface layer portion (312) is removed and the remaining lower layer portion (311) is cut into a predetermined processing shape. Then, the second molding layer (3) is solidified and molded by third firing.
層付加工程の際には、自然・強制乾燥工程によって、隣り合う層間で、比較的粗粒子の下層部が、先行形成された層の固化層の微細凹凸部に接するようにし、投錨の進行を促して、層間の定着性の向上を図っている(図4(h2))。また焼成固化前の乾燥工程A・Bによって表層分離させたのち表面の高含水率部分を切削する表層除去と共に、下層部を成形形状に切削成形する成形加工を行ってから焼成している(図4(c2)(h2))。表層分離及び成形加工後に第二成形層(3)を焼成し固化することで、比較的粗い粒子を層内に均等に分散させ、また、隣り合う先行層との定着性を向上させると共に、成形層面の形状安定性の向上を図っている。 During the layer addition process, the lower layer part of relatively coarse particles is in contact with the fine irregularities of the solidified layer of the previously formed layer between adjacent layers by a natural / forced drying process, so The improvement of the fixing property between the layers is promoted (FIG. 4 (h2)). In addition, after the surface layer is separated by the drying steps A and B before solidification by baking, the surface layer is removed by cutting the surface with a high water content, and the lower layer portion is molded into a molded shape and then fired (see FIG. 4 (c2) (h2)). By firing and solidifying the second molding layer (3) after the surface layer separation and molding process, relatively coarse particles are evenly dispersed in the layer, and the fixing property with the adjacent preceding layer is improved and molding is performed. The shape stability of the layer surface is improved.
また実施例3では、層付加工程によって付加成形層たる第二成形層(3)を固化成形した後、再度の層付加工程として、第二成形層(3)の表面に第三混練体(40)を盛土しこれを第四焼成によって固化層(40´)とすることで、付加成形層たる第三成形層(4)の固化成形を行っている。第三混練体(40)の粉粒混合物は、第二混練体(30)の粉粒混合物と同一の混合成分からなる。同一混合成分の混練体(20)を再度の層付加工程として重ねて形成することで、各層の熱膨張率の差を減らすこととなり、層間の定着性を良好なものとすることができる。 Moreover, in Example 3, after solidifying and molding the second molding layer (3) as an additional molding layer in the layer addition process, a third kneaded body (40) is formed on the surface of the second molding layer (3) as a second layer addition process. And the third molding layer (4), which is an additional molding layer, is solidified and molded. The powder mixture of the third kneaded body (40) is composed of the same mixed components as the powder mixture of the second kneaded body (30). By forming the kneaded body (20) having the same mixed components as a layer addition process again, the difference in the thermal expansion coefficient of each layer is reduced, and the fixing property between the layers can be improved.
(B)実施例3の装飾セラミックスの原材及び装飾セラミックスの製造方法
実施例3の装飾セラミックスの原材及び装飾セラミックスは、図1C及び図4に示す製造方法によって製造される。
先ず素地形成工程として、素地原料となる材料を調合(調土)して水と混ぜて細磨処理して、ペタライトを主剤とする、第一混練体である素地の混練体を得る。
この素地の混練体を板状に成形し、第一乾燥として60℃以上200℃以下で加熱乾燥させた後に、1200℃〜1250℃の範囲内の第一焼成によって、締焼状態の板状の素地(1)をストック形成する(図1C左フロー)。
(B) The decorative ceramic raw material and the decorative ceramic manufacturing method of Example 3 The decorative ceramic raw material and the decorative ceramic of Example 3 are manufactured by the manufacturing method shown in FIGS. 1C and 4.
First, as a substrate forming step, a material to be a substrate raw material is prepared (prepared), mixed with water and finely polished to obtain a base kneaded body which is a first kneaded body using petalite as a main agent.
The kneaded body of this base is formed into a plate shape, heat-dried at 60 ° C. or higher and 200 ° C. or lower as the first drying, and then subjected to a first baking within a range of 1200 ° C. to 1250 ° C. The substrate (1) is stock-formed (FIG. 1C left flow).
次に盛土工程として、所定大に切断した素地(1)の周囲に枠材(F)を取り付けたのち、この枠内に、ペタライトを主剤とする混練体(20)(調土Iによって得たもの)を所定厚さで一層盛土(「盛土I」)して盛土状態(図1C及び図4(a))とする。 Next, as a banking process, after attaching a frame material (F) around the substrate (1) cut into a predetermined size, a kneaded body (20) containing petalite as a main ingredient (obtained by the preparation I) A thing) is further filled with a predetermined thickness ("filling I") to obtain a filling state (FIG. 1C and FIG. 4 (a)).
次に第二乾燥A・B工程たる自然・強制乾燥によって、混練体(20)の盛土層を乾燥状態の表層部(222)及び下層部(221)に分離させ、次に表層除去工程を兼ねた加工A・B工程によって表面を切削成形することで、素地(1)上に成形加工済みの下層部(221)の単独層が形成された表層除去・加工状態(図1C及び図4(c2))とする。このようにして下層部(221)からなる成形層(2)の前駆体を得る。 Next, the embankment layer of the kneaded body (20) is separated into a dried surface layer part (222) and a lower layer part (221) by natural / forced drying, which is the second drying A / B process, and also serves as a surface layer removing process. Surface removal / working state in which the single layer of the lower layer part (221) that has been shaped is formed on the substrate (1) by cutting and shaping the surface by the machining A and B processes (FIG. 1C and FIG. 4 (c2)) )). Thus, the precursor of the molding layer (2) which consists of a lower layer part (221) is obtained.
次に第一焼成温度よりも低い、1150℃〜1200℃の温度範囲における第二焼成温度で素地(1)及び成形加工済みの前記成形層の前駆体(下層部(221)からなるもの)を第二焼成し、素地(1)と、下層部(221´)からなる成形層(2)と、からなる加工済みの2層固化成形体を得る(図1C及び図4(h1))。 Next, the substrate (1) and the precursor of the molded layer (formed of the lower layer portion (221)) which has been molded at the second firing temperature in the temperature range of 1150 ° C. to 1200 ° C., which is lower than the first firing temperature. Second firing is performed to obtain a processed two-layer solidified molded body composed of the substrate (1) and the molded layer (2) composed of the lower layer portion (221 ′) (FIG. 1C and FIG. 4 (h1)).
さらにその後、層付加工程として、ペタライトを主剤とする第二混練体(30)を、加工済みの成形層(2)の一部表面の加工形状に沿って、均等厚さとなるように部分盛土する(図1C及び図4(d2))。この部分盛土状態で第三乾燥工程として自然乾燥及び強制乾燥を行って、第二混練体(30)の盛土層を、表層部(312)及び下層部(311)に分離させた表層分離状態(図1C及び図4(e2))とする。続いて加工A・B工程として、付加盛土した第二混練体(30)の表層部(312)全てと下層部(311)の一部を含む表面露出部の一部を、除去手段によって除去し、第二の表層除去・加工状態(図1Cの(f))とする。 Further, as a layer addition step, the second kneaded body (30) containing petalite as a main agent is partially embanked so as to have a uniform thickness along the processed shape of a part of the surface of the processed molded layer (2). (FIG. 1C and FIG. 4 (d2)). In this partial embankment state, natural drying and forced drying are performed as a third drying step, and the embankment layer of the second kneaded body (30) is separated into a surface layer part (312) and a lower layer part (311) (surface layer separated state ( 1C and FIG. 4 (e2)). Subsequently, as a processing A / B step, a part of the surface exposed portion including all of the surface layer portion (312) and a part of the lower layer portion (311) of the second kneaded body (30) subjected to additional embankment is removed by a removing means. The second surface layer is removed and processed ((f) in FIG. 1C).
次に第二焼成温度よりも低い、1100℃〜1150℃の温度範囲における第三焼成温度で素地(1)、下層部(221´)からなる成形層(2)、及び第二混練体(30)の加工済みの下層部(311)を第三焼成し、素地(1)と成形層(2)と第二成形層(3)からなる加工済みの三層固化成形体を得る(図1C及び図4(h2))。 Next, the molding layer (2) composed of the substrate (1), the lower layer portion (221 ′), and the second kneaded body (30) at a third firing temperature in a temperature range of 1100 ° C. to 1150 ° C. lower than the second firing temperature. ) Is subjected to third firing to obtain a processed three-layer solidified molded body comprising the substrate (1), the molding layer (2) and the second molding layer (3) (FIG. 1C and FIG. 4 (h2)).
さらに再度の層付加工程として、ペタライトを主剤とする第三混練体(40)を、三層の切削済み状態の表面全体にスプレー塗布によって盛土(「盛土III」)し、そして第四焼成工程として第三焼成温度よりも低い、1150℃〜1200℃の温度範囲内の第四焼成温度で第四焼成して固化層(40´)からなる第三成形層(4)を形成することで、図1C及び図4の(h3)に示す四層構造の加工済み焼成材である実施例3の装飾セラミックスの原材が得られる。 Furthermore, as a layer addition process again, the third kneaded body (40) mainly composed of petalite is embanked by spray coating over the entire surface of the three-layered state ("bank III"), and as the fourth firing process By forming a third molding layer (4) composed of a solidified layer (40 ′) by fourth firing at a fourth firing temperature within a temperature range of 1150 ° C. to 1200 ° C., which is lower than the third firing temperature. The base material of the decorative ceramic of Example 3 which is a processed fired material having a four-layer structure shown in 1C and (h3) in FIG. 4 is obtained.
実施例3の装飾セラミックスは、このようにして製造される実施例3の装飾セラミックスの原材の表露出面に、釉薬工程として、釉薬を均一に塗布して釉焼し、次いで転写工程として、表面に所望の(例えば再現対象の)色模様を転写して転写焼成し、最後に仕上げ焼成工程として仕上げ焼成を行って得られる。 As the glaze process, the decorative ceramic of Example 3 was applied to the surface exposed surface of the raw material of the decorative ceramic of Example 3 thus manufactured. It is obtained by transferring a desired color pattern (for example, a reproduction target) onto the surface, transferring and firing, and finally performing finish firing as a finish firing step.
ここで、第一の混練体たる混練体(20)は所定範囲内の第一平均粒度の第一粉粒混合物に水を混練した粘土状の混練体(20)であり、第二混練体(30)は前記第一平均粒度よりも粒度の小さい第二平均粒度の第二粉粒混合物に水を混練したものであり、第三混練体(40)は前記第二平均粒度よりも粒度の小さい第三平均粒度の第三粉粒混合物に水を混練したものである。但し、混練水量は素地(1)よりも第一混練体(混練体(20))、第二混練体(30)、第三混練体(40)の各混練体の方が多く、焼成前の混練状態では素地(1)よりも盛土される前記各混練体((混練体(20))、第二混練体(30)、第三混練体(40))の方が高い含水率となっている。 Here, the kneaded body (20) as the first kneaded body is a clay-like kneaded body (20) obtained by kneading water with a first powder mixture having a first average particle size within a predetermined range. 30) is obtained by kneading water into a second powder mixture having a second average particle size smaller than the first average particle size, and the third kneaded body (40) has a particle size smaller than the second average particle size. Water is kneaded with a third powder mixture having a third average particle size. However, the amount of kneading water is larger in each kneaded body of the first kneaded body (kneaded body (20)), second kneaded body (30), and third kneaded body (40) than in the substrate (1), and before firing. In the kneaded state, each of the kneaded bodies ((kneaded body (20)), second kneaded body (30), and third kneaded body (40)) that is embanked than the substrate (1) has a higher water content. Yes.
また、前記施釉工程における釉焼温度は、前記第二焼成温度よりも低く、着色模様の転写後の転写焼成温度は、釉焼温度と同程度であるかこれよりも低く、仕上げ焼成温度は、転写焼成温度と同程度であるかこれよりも低く設定される。これは、第二焼成、釉焼、転写焼成、仕上げ焼成の各焼成における熱エネルギーの総量が、焼成の繰り返しごとに小さくなることを意味している。 Further, the calcination temperature in the glazing step is lower than the second baking temperature, the transfer baking temperature after the transfer of the colored pattern is the same as or lower than the calcination temperature, the finish baking temperature is It is set to be approximately equal to or lower than the transfer baking temperature. This means that the total amount of thermal energy in each firing of the second firing, sinter firing, transfer firing, and finish firing decreases with each firing repetition.
前記素地は、成形層の成形前に第一焼成によって予め焼成成形され、
前記成形層は、ペタライトを主剤に含む粉粒混合物と水とを混練した混練体が、素地の層形成面上で素地に吸水された状態となり、この状態で前記第一焼成よりも低い焼成温度の第二焼成によって素地と共に焼成されることが好ましい。
The substrate is preliminarily fired and molded by first firing before molding of the molding layer,
In the molded layer, a kneaded body obtained by kneading a powder mixture containing petalite as a main ingredient and water is in a state where water is absorbed by the substrate on the layer forming surface of the substrate, and in this state, the firing temperature is lower than that of the first firing. It is preferable that the second baking is performed together with the substrate.
前記付加成形層は、第二焼成前の粘土状の状態において、少なくともペタライトと、無機解膠材と、粘土材と、を含んでなる混練体を素地上に盛土した盛土状態で静置し、盛土層内から水分を含む表層部が下層部上に表層分離した状態とする層分離工程を経てから焼成したものとすることが好ましい。
またさらに、前記層付加成形層は、前記層分離工程ののち、素地上に盛土された混練体の表層部を除去する表層除去工程ののちに、該表層除去工程によって残った下層部のみを第二焼成して得られた焼成体からなる。また、前記素地の第一焼成前の混練体はさらに、板状成形の際又は第一焼成の際のうち少なくとも一方において発泡する発泡剤を含むことが好ましい。
In the clay state before the second firing, the additional molding layer is allowed to stand in an embankment state in which a kneaded body including at least petalite, an inorganic peptizer, and a clay material is embanked on the substrate, It is preferable that the surface layer portion containing moisture from within the embankment layer is fired after a layer separation step in which the surface layer is separated on the lower layer portion.
Furthermore, the layer-added molding layer is formed by removing only the lower layer portion remaining after the surface layer removing step after the surface layer removing step of removing the surface layer portion of the kneaded body embanked on the substrate after the layer separating step. It consists of a fired body obtained by two firings. Moreover, it is preferable that the kneaded body before the first firing of the substrate further includes a foaming agent that foams in at least one of the plate-shaped molding and the first firing.
以上が本発明と本発明の実施例の構成であるが、本発明はその上記実施例の構成ないし製造方法のみに限定されず、その特徴部分の技術的思想を逸脱しない範囲で、層形成の態様の変更、各種割合の変更、製造工程の交換ないし各実施例間での製造工程の組み合わせ、部分的抽出などが可能である。 The above is the configuration of the present invention and the embodiment of the present invention. However, the present invention is not limited to the configuration or manufacturing method of the above-described embodiment, and layer formation can be performed without departing from the technical idea of the characteristic portion. It is possible to change the aspect, change various ratios, exchange manufacturing processes, combine manufacturing processes between the embodiments, and perform partial extraction.
本発明は、有形文化財、壁画、彫刻、絵画、工芸品の復元品や再現品、複製品、或いは、装飾用の立体成形体、或いは内外装の装飾用建築材料等として使用される装飾セラミックスの原材や当該原材を用いた装飾セラミックスを提供することに利用できる。 The present invention relates to decorative ceramics used as tangible cultural properties, murals, sculptures, paintings, restorations and reproductions of crafts, reproductions, three-dimensional molded articles for decoration, or building materials for decoration of interior and exterior It can be used for providing decorative raw materials and decorative ceramics using the raw materials.
(1) 素地
(2) 成形層(第一成形層)
(20) 混練体
(22´)(32´)(211´)(221´)(311´)(40´) 固化層
(212)(222)(312) 表層部
(211)(221)(311) 下層部
(3) 第二成形層
(30) 第二混練体
(4) 第三成形層
(40) 第三混練体
(5´) 仕上げ層
(a) 盛土状態
(b) 表層分離状態
(c) 表層除去状態
(d2) 部分盛土状態
(e2) 表層分離状態
(f) 表層除去・加工状態
(C) 除去手段
(F) 枠材
(PR) 成形体全体におけるペタライト配合率
(PR1) 素地におけるペタライト配合率
(PR2) 成形層(第一成形層)におけるペタライト配合率
(PR3) 第二成形層におけるペタライト配合率
(PR4) 第三成形層におけるペタライト配合率
(1) Base (2) Molded layer (first molded layer)
(20) Kneaded body (22 ') (32') (211 ') (221') (311 ') (40') Solidified layer (212) (222) (312) Surface layer part (211) (221) (311) ) Lower layer part (3) Second molded layer (30) Second kneaded body (4) Third molded layer (40) Third kneaded body (5 ') Finished layer (a) Embankment state (b) Surface layer separation state (c ) Surface layer removed state (d2) Partial embankment state (e2) Surface layer separated state (f) Surface layer removed / processed state (C) Removal means (F) Frame material (PR) Petalite compounding ratio in the entire molded body (PR1) Blending ratio (PR2) Petalite blending ratio in the molding layer (first molding layer) (PR3) Petalite blending ratio in the second molding layer (PR4) Petalite blending ratio in the third molding layer
Claims (13)
前記素地の前記層形成面に層形成された成形層と、を具備して一体的に形成された装飾セラミックスの原材であって、
前記成形層のうち少なくとも前記素地と隣接する層部分は、ペタライトを主剤とし、かつ前記素地の前記微細凹凸部に沿って定着されていることを特徴とする装飾セラミックスの原材。 A substrate having at least one layer-forming surface having fine irregularities;
A molding layer formed on the layer forming surface of the substrate, and a raw material for decorative ceramics integrally formed,
A base material for decorative ceramics, characterized in that at least a layer portion adjacent to the substrate of the molded layer has petalite as a main agent and is fixed along the fine irregularities of the substrate.
前記素地の原料となる素地の混練体を第一焼成することで、微細凹凸部を有する層形成面を少なくとも1面に有した板状の素地の成形体を得る素地形成工程と、
前記素地の前記層形成面に、成形層の原料となる、粉粒混合物と水とを混練した粘土状の混練体を盛土する盛土工程と、
前記混練体の盛土を静置して該盛土から表層部を自然分離させる表層分離工程と、
を含むことを特徴とする装飾セラミックスの原材の製造方法。 A method for producing a raw material for decorative ceramics, comprising a substrate having a layer forming surface on at least one surface, and a molded layer formed on the layer forming surface of the substrate. ,
A substrate forming step of obtaining a molded body of a plate-like substrate having at least one layer forming surface having fine irregularities by first firing the substrate kneaded body that is the raw material of the substrate;
Filling step of embedding a clay-like kneaded body kneaded with a powder mixture and water, which is a raw material of the molding layer, on the layer forming surface of the substrate;
A surface layer separating step of allowing the surface of the kneaded body to stand and separating the surface layer from the surface of the embankment;
The manufacturing method of the raw material of the decorative ceramic characterized by including this.
前記表層除去工程後の混練体の下層部を、前記素地と共に第二焼成して成形層を形成する焼成工程と、
をさらに含む請求項8記載の装飾セラミックスの原材の製造方法。 A surface layer removing step of removing the surface layer portion separated from the surface layer of the kneaded body and exposing the lower layer portion;
A firing step in which the lower layer portion of the kneaded body after the surface layer removing step is second-fired together with the substrate to form a molded layer;
The manufacturing method of the raw material of the decorative ceramics of Claim 8 which further contains these.
前記混練体の平均粒度は、前記盛土工程における混練体の平均粒度よりも小さく、
前記層付加形成における第三焼成温度は、前記第二焼成温度を超えることがない請求項9記載の装飾セラミックスの原材の製造方法。 The method further includes a layer addition step of embedding a clay-like kneaded body, which is a raw material of the additional molding layer, and performing additional firing on at least a part of the removal surface after the surface layer removal step, thereby forming the additional molding layer on the molding layer. ,
The average particle size of the kneaded body is smaller than the average particle size of the kneaded body in the embankment step,
The method for producing a decorative ceramic raw material according to claim 9, wherein a third firing temperature in the layer addition formation does not exceed the second firing temperature.
13. The decorative ceramics according to claim 12, wherein the finishing process is a process including at least one of a glazing process, a coloring process, and a transfer process of a pattern to be expressed, and a finish firing. Production method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014267097A JP5785656B1 (en) | 2014-03-25 | 2014-12-30 | Decorative ceramic raw material and method of manufacturing decorative ceramic |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014062218 | 2014-03-25 | ||
JP2014062218 | 2014-03-25 | ||
JP2014267097A JP5785656B1 (en) | 2014-03-25 | 2014-12-30 | Decorative ceramic raw material and method of manufacturing decorative ceramic |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015129361A Division JP6099701B2 (en) | 2014-03-25 | 2015-06-28 | Decorative ceramic raw materials and decorative ceramics |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5785656B1 JP5785656B1 (en) | 2015-09-30 |
JP2015199636A true JP2015199636A (en) | 2015-11-12 |
Family
ID=54207137
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014267097A Active JP5785656B1 (en) | 2014-03-25 | 2014-12-30 | Decorative ceramic raw material and method of manufacturing decorative ceramic |
JP2015129361A Active JP6099701B2 (en) | 2014-03-25 | 2015-06-28 | Decorative ceramic raw materials and decorative ceramics |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015129361A Active JP6099701B2 (en) | 2014-03-25 | 2015-06-28 | Decorative ceramic raw materials and decorative ceramics |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP5785656B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018048546A (en) * | 2016-09-17 | 2018-03-29 | 株式会社エフコンサルタント | Surface material |
CN113561305A (en) * | 2021-07-04 | 2021-10-29 | 内蒙古建能兴辉陶瓷有限公司 | Decorative surface wallboard device based on foamed ceramic matrix, preparation device and method |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2514026B2 (en) * | 1987-03-16 | 1996-07-10 | 尾池工業株式会社 | Laminated material |
JP2006176374A (en) * | 2004-12-24 | 2006-07-06 | Ginpo Toki Kk | Heat-resistant earthenware and its manufacturing method |
JP2006176734A (en) * | 2004-12-24 | 2006-07-06 | Seiko Epson Corp | Ink curable with uv-ray for ink jet and ink jet recording method |
JP2008100875A (en) * | 2006-10-19 | 2008-05-01 | Asahi Token Kk | Enamel for microwave-absorbing earthenware, and microwave-absorbing earthenware |
JP5845500B2 (en) * | 2011-07-12 | 2016-01-20 | 長崎県 | Heat resistant product and manufacturing method thereof |
-
2014
- 2014-12-30 JP JP2014267097A patent/JP5785656B1/en active Active
-
2015
- 2015-06-28 JP JP2015129361A patent/JP6099701B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP6099701B2 (en) | 2017-03-22 |
JP2015214484A (en) | 2015-12-03 |
JP5785656B1 (en) | 2015-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8962507B2 (en) | Product and process | |
Lima et al. | 3D printing of porcelain by layerwise slurry deposition | |
US20160023375A1 (en) | Slip mixture for 3d printed molds and 3d printing ceramic material | |
CN111646786B (en) | Ceramic brick prepared by micro powder composite ink-jet positioning dry particle process and preparation method thereof | |
CN105198490B (en) | A kind of preparation method of ink-jet infiltration micro powder polished brick | |
CN110885256A (en) | Digital dry particle inner wall brick with stereoscopic luminous effect and preparation method thereof | |
CN104875540A (en) | Inlaying process of Nixing pottery | |
JP5785656B1 (en) | Decorative ceramic raw material and method of manufacturing decorative ceramic | |
CN107266023A (en) | Colored polished brick in porcelain character and preparation method are oozed in the gentle ink-jet as jade has translucency in surface | |
CN108546080A (en) | Composite foamed entire body dalle of once-firing multi-density and preparation method thereof | |
KR100829487B1 (en) | Manufacturing method of porcelain tile and porcelain tile manufactured therefrom | |
CN113211610A (en) | Glazed tile capable of forming positioning crystallization effect and preparation process thereof | |
WO2005044908A2 (en) | Investment casting slurry composition and method of use | |
CN114477982B (en) | Preparation method of ceramic tile back texture | |
JP5173208B2 (en) | Method for producing inorganic fired body | |
JP2015178429A (en) | Method for producing ceramic product, and ceramic product | |
KR101694912B1 (en) | Crystal glaze pottery and method for manufacturing thereof | |
CN106673711A (en) | Method for producing stain-bleeding porcelain tile | |
CN104591803B (en) | Preparation method of ceramic brick with good antifouling effects | |
KR102257539B1 (en) | Manufacturing method of ceramic tile using glaze composition for forming glaze layer having high contact angle and high whiteness | |
CN107459272A (en) | Porous ceramic structure and its manufacture method | |
JP2023532539A (en) | 3D ceramic printing | |
CN106631164A (en) | Glass-ceramic tile preparation method | |
JP2009204292A (en) | Heat treatment setter for glass substrate, method for manufacturing the same, and heat treatment method for glass substrate | |
KR102420988B1 (en) | Manufacturing Method of Ceramic Products and Ceramic Products by the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150628 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150721 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150724 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5785656 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |