JP2015197311A - infrared sensor - Google Patents

infrared sensor Download PDF

Info

Publication number
JP2015197311A
JP2015197311A JP2014073701A JP2014073701A JP2015197311A JP 2015197311 A JP2015197311 A JP 2015197311A JP 2014073701 A JP2014073701 A JP 2014073701A JP 2014073701 A JP2014073701 A JP 2014073701A JP 2015197311 A JP2015197311 A JP 2015197311A
Authority
JP
Japan
Prior art keywords
opening
optical filter
light receiving
infrared sensor
photoreceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014073701A
Other languages
Japanese (ja)
Other versions
JP6469353B2 (en
Inventor
雄太 高木
Yuta Takagi
雄太 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Electronics Co Ltd
Original Assignee
Asahi Kasei Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Electronics Co Ltd filed Critical Asahi Kasei Electronics Co Ltd
Priority to JP2014073701A priority Critical patent/JP6469353B2/en
Publication of JP2015197311A publication Critical patent/JP2015197311A/en
Application granted granted Critical
Publication of JP6469353B2 publication Critical patent/JP6469353B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Light Receiving Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce an output signal from a sub-field of vision in an infrared sensor.SOLUTION: An infrared sensor device according to the present invention comprises a sensor unit having a photodetector for outputting a signal corresponding to an incident infrared ray, a resin package formed so as to wrap the photodetector therein via an opening, and an optical filter provided inside the opening. The opening is configured from a first opening, a second opening, and a third opening. The first opening is open to the outside of the resin package, filled with the optical filter, and is contiguously arranged with the second and third openings in the vertical direction so as to constitute a gap on the light-receiving side of the photodetector. The third opening is arranged on the sensor unit side, and the second opening is arranged between the first and the third openings so that it communicates with both the first and the third openings, the aperture areas of the first and third openings being larger than the aperture diameter of the second opening.

Description

本発明は赤外線センサに関し、より詳細には、視野角を制限するようにした赤外線センサに関する。   The present invention relates to an infrared sensor, and more particularly to an infrared sensor that limits a viewing angle.

温度、圧力、光等の物理的な変化量を、電流や電圧などの電気的な変化量に変換するものとして、センサが知られている。センサを使用することにより、様々な物理的な変化量を数値として測定することが可能となる。特に、近年の環境問題への関心の高まりから、省エネルギー化、高効率化に貢献することが可能なセンサが注目を集めている。   Sensors are known for converting physical changes such as temperature, pressure, and light into electrical changes such as current and voltage. By using a sensor, various physical changes can be measured as numerical values. In particular, sensors that can contribute to energy saving and higher efficiency are attracting attention due to recent interest in environmental issues.

上述したセンサには、赤外線の変化量を検出して赤外線を電気信号に変換する赤外線センサがある。赤外線センサは、人間の目に影響を与えることなく情報を送信できることから、テレビのリモコン装置等に利用されている。   Among the sensors described above, there is an infrared sensor that detects the amount of change in infrared rays and converts infrared rays into electrical signals. Infrared sensors are used in television remote control devices and the like because they can transmit information without affecting human eyes.

さらに、赤外線センサは対象物の温度を直接接触せずに感知できるという特徴を有し、人体などの熱源を感知する人感センサや非接触温度計として赤外線センサを用いることができる。例えば赤外線センサを人感センサとして利用する場合には、赤外線センサを照明などに搭載することで不要な電力を有効に削減できる。また、赤外領域に吸収帯を有する気体(二酸化炭素、一酸化炭素など)に対しては、赤外線センサはガスセンサとしても応用可能であり、人感センサよりも様々な用途で利用することが期待されている。   Further, the infrared sensor has a feature that it can sense the temperature of an object without directly contacting it, and the infrared sensor can be used as a human sensor for sensing a heat source such as a human body or a non-contact thermometer. For example, when an infrared sensor is used as a human sensor, unnecessary power can be effectively reduced by mounting the infrared sensor on illumination or the like. In addition, for gases having an absorption band in the infrared region (carbon dioxide, carbon monoxide, etc.), the infrared sensor can be applied as a gas sensor, and is expected to be used in various applications rather than human sensors. Has been.

赤外線センサはその動作原理から、熱型センサと量子型センサに分類される。熱型センサは人感センサなどで広く用いられているが、周波数応答性が低いという課題がある。また、熱型センサをガスセンサとして使用する場合には、ガス検出の応答性が低く、迅速な異常検知の点で課題がある。   Infrared sensors are classified into thermal sensors and quantum sensors based on their operating principles. Thermal sensors are widely used in human sensors, but have a problem of low frequency response. Further, when the thermal sensor is used as a gas sensor, the gas detection response is low, and there is a problem in terms of rapid abnormality detection.

一方、量子型センサは、周波数応答性が高いという特徴があり、この点で、熱型センサに比べて非常に有望である。   On the other hand, the quantum sensor is characterized by high frequency response, and is very promising in this respect compared to the thermal sensor.

特開平6−67013号公報JP-A-6-67013

赤外線センサは、測定対象物以外からの外乱光の影響を減らし、所定の視野範囲から入射した赤外線に応じた信号を精度よく出力するものとするために、視野角を絞るための開口部が形成された構造体を設ける形態が知られている。また、赤外線センサの受光体を独立に複数にし、受光体ごとに構造体に開口部を設ける形態も知られている。それぞれの受光体に異なる視野に対する信号出力特性を与え、異なる視野の各受光体からの信号を利用し、物体の位置の検出も可能となる。   The infrared sensor reduces the influence of disturbance light from other than the measurement object, and an opening for narrowing the viewing angle is formed in order to accurately output a signal corresponding to the incident infrared light from a predetermined viewing field range. There is known a form in which the structured body is provided. There is also known a configuration in which a plurality of light receiving bodies of the infrared sensor are provided independently and an opening is provided in the structure for each light receiving body. Signal output characteristics for different visual fields are given to the respective photoreceptors, and the position of the object can be detected using signals from the respective photoreceptors having different visual fields.

特許文献1には、赤外線センサに入射する入射光の視野を制限する光隔壁により仕切られた光学フィルタを有する光学センサが開示されている。特許文献1の赤外線センサは、光学フィルタを光隔壁により仕切り、赤外線センサ受光体に入射する赤外線の視野を制限する構成を考えることができる。   Patent Document 1 discloses an optical sensor having an optical filter partitioned by an optical partition that limits the field of incident light incident on the infrared sensor. The infrared sensor of patent document 1 can consider the structure which restrict | limits the visual field of the infrared rays which partition an optical filter by an optical partition, and inject into an infrared sensor light-receiving body.

図1は、特許文献1に記載の赤外線センサ装置100の構成を示す断面図である。赤外線センサ100は、入射した赤外線に応じた信号を出力する受光体111を複数有する赤外線センサユニット110と、受光体111の視野を制限する光隔壁120と、光隔壁120により仕切られた光学フィルタ130とを備える。   FIG. 1 is a cross-sectional view showing a configuration of an infrared sensor device 100 described in Patent Document 1. As shown in FIG. The infrared sensor 100 includes an infrared sensor unit 110 having a plurality of light receivers 111 that output signals corresponding to incident infrared rays, an optical partition 120 that limits the field of view of the light receiver 111, and an optical filter 130 that is partitioned by the optical partition 120. With.

図1に記載の赤外線センサ装置100では、光学フィルタ130の側面(光隔壁120)による光の反射の影響によってフィルタ側面で反射しない主視野と、光学フィルタ側面の反射による副視野の2種類の視野が生じる。この場合、図1から分かる通り、副視野(主視野外)から入射された赤外線が、光学フィルタ130において屈折後、光隔壁120において反射してしまい、受光体111に到達してしまう。したがって、外乱光が受光部111に到達してしまい、主視野における精度の高い赤外線検知ができないという課題がある。さらに独立した複数の受光体を持つ場合、副視野の影響により出力結果の大小関係を判断することが困難である。   In the infrared sensor device 100 shown in FIG. 1, there are two types of visual fields: a main visual field that is not reflected by the side surface of the filter due to the influence of light reflection by the side surface (optical partition wall 120) of the optical filter 130, and a sub field by the reflection of the side surface of the optical filter. Occurs. In this case, as can be seen from FIG. 1, the infrared light incident from the sub-field (outside the main field) is refracted by the optical filter 130, reflected by the optical partition 120, and reaches the photoreceptor 111. Therefore, disturbance light reaches the light receiving unit 111, and there is a problem that infrared detection with high accuracy in the main visual field cannot be performed. In addition, when there are a plurality of independent photoreceptors, it is difficult to determine the magnitude relationship of the output results due to the influence of the subfield.

このような課題を解決するために、本発明の第1の態様の赤外線センサは、入射された赤外線に応じた信号を出力する受光体を有するセンサユニットと、前記受光体を、開口部を介して包み込むように形成された樹脂パッケージと、前記開口部内に設けられた光学フィルタとを備える赤外線センサであって、前記開口部は、第1開口部と、第2開口部と、第3開口部とから構成され、前記第1開口部は、前記樹脂パッケージ外部に対して開口し、前記光学フィルタが充填され、前記第2開口部と前記第3開口部とは、前記受光体の受光面側の空隙部となるように垂直方向に連続して配置され、前記第3開口部は前記センサユニット側に、前記第2開口部は前記第1開口部と前記第3開口部との間に前記第1開口部及び前記第3開口部双方に連通するよう配置され、前記第1開口部の開口面積および前記第3開口部の開口面積が、前記第2開口部の開口径よりも大きいことを特徴とする。   In order to solve such a problem, the infrared sensor according to the first aspect of the present invention includes a sensor unit having a light receiving body that outputs a signal corresponding to incident infrared light, and the light receiving body through an opening. An infrared sensor comprising a resin package formed so as to be wrapped and an optical filter provided in the opening, wherein the opening includes a first opening, a second opening, and a third opening. The first opening is open to the outside of the resin package, is filled with the optical filter, and the second opening and the third opening are on the light receiving surface side of the photoreceptor. The third opening is disposed on the sensor unit side, and the second opening is disposed between the first opening and the third opening. Connected to both the first opening and the third opening Arranged to the opening area and the opening area of the third opening of the first opening, being greater than the opening diameter of the second opening.

また、本発明の第2の態様の赤外線センサは、前記受光体の受光面方向の幅をL、前記光学フィルタの前記受光面方向の幅をd、前記光学フィルタの前記受光面に対して垂直方向の厚みをh、前記光学フィルタの屈折率をn、前記第2開口部の記受光面方向の幅を幅をd、前記光学フィルタの前記受光体側端面から前記前記受光体までの垂直方向の距離をh、及び空気の屈折率をnとしたときに、前記L、d、h、n、d、h、及びnが、 In the infrared sensor of the second aspect of the present invention, the width in the light receiving surface direction of the photoreceptor is L, the width in the light receiving surface direction of the optical filter is d 1 , and the light receiving surface of the optical filter is The thickness in the vertical direction is h 1 , the refractive index of the optical filter is n 2 , the width in the light receiving surface direction of the second opening is the width d 2 , and the light receiving side end surface of the optical filter is connected to the light receiving body. L, d 1 , h 1 , n 2 , d 2 , h, and n 1, where h is the vertical distance and n 1 is the refractive index of air,

Figure 2015197311
Figure 2015197311

の式を満たすことを特徴とする。   It satisfies the following formula.

前記受光体の受光面方向の幅をx、前記光学フィルタの前記第2開口部の前記受光面方向の幅をδ、前記光学フィルタの前記受光体側端面から、前記前記受光体までの垂直方向の距離をh、前記第2開口部の前記受光面方向の厚みをZとしたときに、前記x、δ、h及びZが、   The width in the light receiving surface direction of the light receiver is x, the width in the light receiving surface direction of the second opening of the optical filter is δ, and the vertical direction from the light receiving side end surface of the optical filter to the light receiving body is the vertical direction. When the distance is h and the thickness of the second opening in the light receiving surface direction is Z, the x, δ, h, and Z are

Figure 2015197311
Figure 2015197311

の式を満たすことを特徴とする。   It satisfies the following formula.

また、本発明の第4の態様の赤外線センサは、第1の態様から第3の態様のいずれか1つの赤外線センサであって、前記樹脂パッケージは、放射率が0.7以上であることを特徴とする。   The infrared sensor of the fourth aspect of the present invention is the infrared sensor according to any one of the first to third aspects, wherein the resin package has an emissivity of 0.7 or more. Features.

本発明の赤外線センサ装置によれば、外乱光の影響の原因となる副視野から出力信号を低減し主視野の赤外線量を精度よく定量することが可能になる。   According to the infrared sensor device of the present invention, it is possible to reduce the output signal from the sub-field that causes the influence of disturbance light, and to accurately quantify the amount of infrared light in the main field.

特許文献1に記載の赤外線センサの構成を示す断面模式図である。It is a cross-sectional schematic diagram which shows the structure of the infrared sensor of patent document 1. FIG. 本発明の1実施形態の赤外線センサの構成例を示す平面図である。It is a top view which shows the structural example of the infrared sensor of one Embodiment of this invention. 図2に記載の赤外線センサのA−A´における断面図である。It is sectional drawing in AA 'of the infrared sensor of FIG. 図2の赤外線センサの断面図に、式(1)を説明するための光路等を加えた図である。It is the figure which added the optical path etc. for demonstrating Formula (1) to sectional drawing of the infrared sensor of FIG. 図2の赤外線センサの断面図に、式(2)を説明するための光路等を加えた図である。It is the figure which added the optical path etc. for demonstrating Formula (2) to sectional drawing of the infrared sensor of FIG. 図2の赤外線センサの視野を示す断面図である。It is sectional drawing which shows the visual field of the infrared sensor of FIG. 従来の赤外線センサの視野を示す断面図である。It is sectional drawing which shows the visual field of the conventional infrared sensor.

以下、本発明を実施するための実施形態を、図面を参酌しながら説明する。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

図2は、本発明の1実施形態に係る赤外線センサ200の構成例を示す平面図である。また、図3は、図2に記載の赤外線センサ200のA−A´における断面図である。図3において、赤外線センサ200は、一方の面(上面)に受光体211を有するセンサユニット210と、センサユニット210の上面側に設けられ、受光体211を、開口部221を介して包み込むように形成された樹脂パッケージ220と、開口部221内に設けられた光学フィルタ230とを備える。樹脂パッケージは放射率が0.7以上の材料により形成される。   FIG. 2 is a plan view showing a configuration example of the infrared sensor 200 according to the embodiment of the present invention. 3 is a cross-sectional view taken along line AA ′ of the infrared sensor 200 shown in FIG. In FIG. 3, the infrared sensor 200 is provided on one side (upper surface) of a sensor unit 210 having a photoreceptor 211, and on the upper surface side of the sensor unit 210, so as to wrap the photoreceptor 211 through an opening 221. A formed resin package 220 and an optical filter 230 provided in the opening 221 are provided. The resin package is formed of a material having an emissivity of 0.7 or more.

受光体211は入射した赤外線に応じた電気信号を出力する。また、受光体211は、センサユニット210の上面に、開口部221が形成された樹脂パッケージ220を備えることにより、視野角が制限される。受光体211の視野角は、樹脂パッケージ220の開口径及び開口深さによって、一定角度内に制限される。   The photoreceptor 211 outputs an electrical signal corresponding to the incident infrared ray. In addition, the photoreceptor 211 is provided with the resin package 220 in which the opening 221 is formed on the upper surface of the sensor unit 210, so that the viewing angle is limited. The viewing angle of the photoreceptor 211 is limited within a certain angle by the opening diameter and opening depth of the resin package 220.

開口部221は、樹脂パッケージ220のセンサユニット210が設けられた面と反対側の面(樹脂パッケージ上面)に対して開口し、第1開口部221aと、第2開口部221bと、第3開口部221cとから構成される。ここで、第1開口部221aは、樹脂パッケージ220外部に対して開口し、光学フィルタ230充填される。本実施形態において、第1開口部221aと、第2開口部221bと、第3開口部221cとは、角柱状に形成されている。   The opening 221 opens with respect to the surface (resin package upper surface) opposite to the surface on which the sensor unit 210 of the resin package 220 is provided. The first opening 221a, the second opening 221b, and the third opening Part 221c. Here, the first opening 221 a opens to the outside of the resin package 220 and is filled with the optical filter 230. In the present embodiment, the first opening 221a, the second opening 221b, and the third opening 221c are formed in a prismatic shape.

第2開口部221bと第3開口部221cとは、受光体211の受光面側の空隙部となるように垂直方向に連続して配置され、第3開口部221cはセンサユニット211側に、第2開口部221bは第1開口部221aと第3開口部221cとの間に配置される。第2開口部221bは、第1開口部221a及び第3開口部221c双方に連通する。   The second opening 221b and the third opening 221c are continuously arranged in the vertical direction so as to be a gap on the light receiving surface side of the photoreceptor 211, and the third opening 221c is arranged on the sensor unit 211 side. The two openings 221b are disposed between the first opening 221a and the third opening 221c. The second opening 221b communicates with both the first opening 221a and the third opening 221c.

再び図2に戻り、赤外線センサ200は、平面視したときに、第1開口部221aおよび第3開口部221cの外縁内に、第2開口部221bの外縁が配置される。つまり、第1開口部221aの開口径および第3開口部221cの開口面積が、第2開口部221bの開口面積よりも大きい。   Returning to FIG. 2 again, when the infrared sensor 200 is viewed in plan, the outer edge of the second opening 221b is disposed within the outer edges of the first opening 221a and the third opening 221c. That is, the opening diameter of the first opening 221a and the opening area of the third opening 221c are larger than the opening area of the second opening 221b.

第1開口部221aおよび第3開口部221cの外縁内に、第2開口部221bの外縁が配置されることにより、樹脂パッケージ220の第1開口部221a内の開口部壁(光学フィルタ230の側面)で反射した光が、第2開口部221bに入射せずに、第2開口部221bを形成する樹脂パッケージ壁で反射または吸収される。したがって、副視野からの赤外線の受光体211への入光を低減し、主視野から入射される赤外線量を高精度に定量することが可能になる。   By arranging the outer edge of the second opening 221b in the outer edge of the first opening 221a and the third opening 221c, the opening wall in the first opening 221a of the resin package 220 (the side surface of the optical filter 230). ) Is reflected or absorbed by the resin package wall forming the second opening 221b without entering the second opening 221b. Therefore, it is possible to reduce the incident light of the infrared rays from the sub visual field to the photoreceptor 211 and to quantify the amount of infrared rays incident from the main visual field with high accuracy.

ここで、本実施形態において、赤外線センサ200の寸法を、具体的に以下のように設計することとする。まず、図2に記載の赤外線センサ200の各構成の寸法を示すパラメータを、次のように設定する。
L:受光体211の(x軸方向の)幅
:光学フィルタ230の(x軸方向の)幅
:光学フィルタ230の(z軸方向の)厚み
:第2開口部221bの(x軸方向の)幅
h:受光体211から光学フィルタ230の受光体211側端面までの(z軸方向の)距離
:第2開口部221bの(z軸方向の)厚み
:空気の屈折率
:光学フィルタ230の屈折率
次に、各構成のパラメータL、d、h、d、h、n、及びnが下記式(1)を満たすように設定する。
Here, in the present embodiment, the dimensions of the infrared sensor 200 are specifically designed as follows. First, parameters indicating dimensions of each component of the infrared sensor 200 illustrated in FIG. 2 are set as follows.
L: width d 1 of the photoreceptor 211 (in the x-axis direction): width h 1 of the optical filter 230 (in the x-axis direction): thickness d 2 of the optical filter 230 (in the z-axis direction) d: of the second opening 221b Width h (in the x-axis direction): Distance (in the z-axis direction) from the photoreceptor 211 to the end surface of the optical filter 230 on the side of the photoreceptor 211 h 2 : Thickness n 1 in the second opening 221b (in the z-axis direction): Refractive index n 2 of air: Refractive index of optical filter 230 Next, parameters L, d 1 , h 1 , d 2 , h, n 1 , and n 2 of each component are set so as to satisfy the following formula (1). To do.

Figure 2015197311
Figure 2015197311

また、L、d、h、及びhが下記式(2)を満たすように設定する。 Further, L, d 2 , h, and h 2 are set so as to satisfy the following formula (2).

Figure 2015197311
Figure 2015197311

ここで、本実施形態の赤外線センサ200は、効率的に副視野から出力信号を低減し主視野の赤外線量を精度よく定量するために、断面視したときに第1開口部221a〜第3開口部221cの重心と、受光体211の中心が一直線上になるように配置されることが好ましい。   Here, the infrared sensor 200 of the present embodiment has a first opening 221a to a third opening when viewed in cross section in order to efficiently reduce the output signal from the sub-field and accurately quantify the amount of infrared in the main field. It is preferable that the center of gravity of the portion 221c and the center of the photoreceptor 211 are arranged in a straight line.

以下、式(1)及び式(2)の技術的意義を、図面を参酌しながら説明する。   Hereinafter, the technical significance of Formula (1) and Formula (2) will be described with reference to the drawings.

図4は、図2の赤外線センサ200を示す断面図に、式(1)を説明するための光路等を加えた図である。   FIG. 4 is a cross-sectional view showing the infrared sensor 200 of FIG. 2 with an optical path and the like for explaining the formula (1).

図4において、第3開口部221c側の受光体211の端点kと、第1開口部211a側の第2開口部221bの端点kとを線で結び、結んだ線分を線分1とする。第1開口部211a側の第2開口部221bの端点kから受光体211の受光面に対して垂線を引き、引いた線分を線分2とする。また、線分2と受光体211の受光面との交点をkとする。θを線分1と線分2のなす角とすると、パラメータL、d、h、及びθについて下記式(3)が成り立つ。 4, the end point k 1 of a third opening 221c side of the photoreceptor 211, connected by a line and end point k 2 of the first opening 211a side of the second opening 221b, the line segment a line segment connecting 1 And A vertical line with respect to the light-receiving surface of the photoreceptor 211 from the end point k 2 of the first opening 211a side of the second opening 221b, and the segment 2 to segment minus. Further, the intersection of the line segment 2 and the light receiving surface of the photoreceptor 211 is denoted by k 3 . When θ 1 is an angle formed by the line segment 1 and the line segment 2, the following expression (3) is established for the parameters L, d 2 , h, and θ 1 .

Figure 2015197311
Figure 2015197311

第2開口部221b側の第1開口部221aの端点kから第1開口部221aの開口側の端点kを線で結び、結んだ線分を線分3とする。そして、線分2を延長して第1開口部221aの開口面と交差する点をkとする。線分3と線分2とのなす角をθとする。 The end point k 2 of the first opening 221 a on the second opening 221 b side is connected to the end point k 4 on the opening side of the first opening 221 a with a line, and the connected line segment is defined as a line segment 3. Then, a point which intersects the opening of the first opening portion 221a by extending the line segments 2, k 5. An angle formed by the line segment 3 and the line segment 2 is defined as θ 2 .

ここで、線分2を、樹脂パッケージ220外部から端点kに反射して第1開口部221a内の光学フィルタ230に入射する光線の光路と考え、線分1を、第1開口部221aから第2開口部221b及び第3開口部221cを介して受光体211の端点kに入射する光線の光路と考える。樹脂パッケージ220外部から第1開口部221a内の光学フィルタ230への入射角はθであり、第1開口部221a内の光学フィルタ230から第2開口部221bへの入射角はθである。パラメータθ、θ、n、及びnについて、下記式(4)が成り立つ。 Here, the line segment 2, consider the optical path of the light beam incident on the optical filter 230 in the first opening 221a is reflected from the resin package 220 outside the end point k 4, the line segment 1, through the first opening 221a through the second opening 221b, and a third opening 221c considered optical paths of light rays incident on the end point k 1 of the light receiving member 211. Angle of incidence from the resin package 220 external to the optical filter 230 in the first opening 221a is theta 2, the angle of incidence is the theta 1 from the optical filter 230 in the first opening 221a into the second opening 221b . For the parameters θ 1 , θ 2 , n 1 , and n 2 , the following equation (4) is established.

Figure 2015197311
Figure 2015197311

とkとを結ぶ線分の距離Pが、パラメータd及びdとの間で下記式(5)の関係を満たすことで、光学フィルタ230側面で反射した赤外線が、受光体211に到達することを低減できる。 When the distance P between the line segment connecting k 4 and k 5 satisfies the relationship of the following formula (5) between the parameters d 1 and d 2 , the infrared ray reflected by the side surface of the optical filter 230 is received by the photoreceptor 211. Can be reduced.

Figure 2015197311
Figure 2015197311

さらにP、h及びθ2は下記式(6)の関係を満たす。 Furthermore, P, h 1 and θ 2 satisfy the relationship of the following formula (6).

Figure 2015197311
Figure 2015197311

式(6)をPについて解くと下記式(7)となる   Solving Equation (6) for P yields Equation (7) below.

Figure 2015197311
Figure 2015197311

式(7)を因数分解をすると下記式(8)が導出される。   When the equation (7) is factorized, the following equation (8) is derived.

Figure 2015197311
Figure 2015197311

式(8)式と式(5)より、下記式(9)が導出される。   The following equation (9) is derived from the equations (8) and (5).

Figure 2015197311
Figure 2015197311

式(9)式と式(4)より下記式(10)が導出される。   The following equation (10) is derived from the equations (9) and (4).

Figure 2015197311
Figure 2015197311

そして、式(10)と式(3)から、式(1)が算出される。   Then, Expression (1) is calculated from Expression (10) and Expression (3).

Figure 2015197311
Figure 2015197311

すなわち、式(1)を満たせば、所望の視野以外からの赤外線の入射を効率的に低減することが可能になる。   That is, if Expression (1) is satisfied, it is possible to efficiently reduce the incidence of infrared rays from other than the desired field of view.

次に、式(2)の技術的意義を説明する。   Next, the technical significance of the formula (2) will be described.

図5は、図2の本実施形態の赤外線センサ装置200の断面図に、式(2)を説明するための光路等を加えた図である。   FIG. 5 is a cross-sectional view of the infrared sensor device 200 of the present embodiment in FIG. 2 with an optical path and the like for explaining the formula (2).

図5において、第2開口部221bの第3開口部221c側の2つの端点k及びkを線で結び、結んだ線を線分4とし、線分1(図4と同一)と線分4の交点をkとする。kとkを結んだ線分の長さをQとする。Qがdより大きいと、第2開口部221bが受光体211の端に入射する光を遮蔽してしまうため、受光体211の主視野が狭くなってしまう。そこで、d及びQが下記式(11)を満たすことで、第2開口部221bが受光体211の主視野の光路を遮蔽しないようにすることが可能となる。 5, the two end points k 6 and k 7 of the third opening 221c of the second opening portion 221b connected by a line, the line connecting the segment 4, and segment 1 (identical to Figure 4) line minute 4 of the intersection and k 8. It signed a k 7 and k 8 the length of the line segment and Q. If Q is larger than d 2 , the second opening 221b shields the light incident on the end of the photoreceptor 211, so the main field of view of the photoreceptor 211 is narrowed. Therefore, when d 2 and Q satisfy the following formula (11), it is possible to prevent the second opening 221 b from blocking the optical path of the main field of view of the photoreceptor 211.

Figure 2015197311
Figure 2015197311

端点k(図4と同一)と交点k(図4と同一)を結んだ線分を線分5とする。ここで、線分1と線分2と線分5からなる三角形と線分1と線分2と線分4がなす三角形が相似であるため、各辺の比の式(12)が成り立つ。 A line segment connecting the end point k 1 (same as FIG. 4) and the intersection k 3 (same as FIG. 4) is defined as a line segment 5. Here, since the triangle formed by the line segment 1, the line segment 2, and the line segment 5 is similar to the triangle formed by the line segment 1, the line segment 2, and the line segment 4, the equation (12) of the ratio of each side is established.

Figure 2015197311
Figure 2015197311

そうすると、Qの値が算出できる(式(13))。   Then, the value of Q can be calculated (Formula (13)).

Figure 2015197311
Figure 2015197311

式(11)と式(13)より、下記式(14)の関係を得る。   From the equations (11) and (13), the relationship of the following equation (14) is obtained.

Figure 2015197311
Figure 2015197311

式(14)をdについてまとめると、式(2)が導ける。 Summarizing equation (14) for d 2 , equation (2) can be derived.

Figure 2015197311
Figure 2015197311

図6は、図2及び図3において示した赤外線センサ装置の視野を説明するための断面図である。図6において、破線で示した範囲内が、光学フィルタ230の側面(第1開口部221aの壁面)での反射を考慮しない場合の主視野の範囲となる。   FIG. 6 is a cross-sectional view for explaining the field of view of the infrared sensor device shown in FIGS. 2 and 3. In FIG. 6, the range indicated by the broken line is the range of the main visual field when reflection on the side surface of the optical filter 230 (the wall surface of the first opening 221a) is not considered.

ここで、主視野外(副視野)から出力された赤外線の一部(実線により示す)は、光学フィルタ230に入射して屈折し、光学フィルタ230の側面(第1開口部221aの壁面)に反射する。しかし、第1開口部221aの底部の壁面を形成する樹脂パッケージにより光路が遮蔽され、第2開口部221b内には侵入しないことが理解される。   Here, a part of infrared rays (indicated by a solid line) output from outside the main field of view (sub-field of view) enters the optical filter 230 and is refracted, and is incident on the side surface of the optical filter 230 (the wall surface of the first opening 221a). reflect. However, it is understood that the optical path is shielded by the resin package that forms the bottom wall surface of the first opening 221a and does not enter the second opening 221b.

すなわち、第2開口部221bおよび第3開口部221cが受光体211上の中空部となるように樹脂パッケージ220がセンサユニット210上に配置され、赤外線センサ装置200を平面視したときに、第1開口部221aおよび第3開口部221cの外縁内に、第2開口部221bの外縁が配置されることにより、副視野からの赤外線の受光体211への到達を低減し、主視野から入射される赤外線量を高精度に定量することが可能になることが理解される。   That is, when the resin package 220 is arranged on the sensor unit 210 so that the second opening 221b and the third opening 221c are hollow portions on the photoreceptor 211, the first view is obtained when the infrared sensor device 200 is viewed in plan. Arranging the outer edge of the second opening 221b within the outer edges of the opening 221a and the third opening 221c reduces the arrival of infrared rays from the sub-field to the photoreceptor 211 and makes it incident from the main field. It is understood that the amount of infrared rays can be quantified with high accuracy.

一方、図7は、従来の赤外線センサ装置の視野を説明するための断面模式図である。光学フィルタ部が配置される開口部(図2の第1開口部221aに相当)と、その下の開口部(図2の第2開口部221bに相当)が、同じ形状(断面視したときに幅が同一、平面視したときに外縁が重なる)である。図7から分かる通り、副視野(主視野外)から入射した赤外線が、光学フィルタにおける屈折および反射により、受光体に到達してしまうことが理解される
以下、本実施形態の赤外線センサ装置の各構成要件について説明する。以下の説明は、上述の赤外線センサ装置にそれぞれ独立または組み合わせて適用することができる。
On the other hand, FIG. 7 is a schematic cross-sectional view for explaining the field of view of a conventional infrared sensor device. The opening (corresponding to the first opening 221a in FIG. 2) in which the optical filter unit is disposed and the opening below (corresponding to the second opening 221b in FIG. 2) have the same shape (when viewed in cross section) The width is the same, and the outer edges overlap when viewed in plan). As can be seen from FIG. 7, it is understood that the infrared light incident from the sub-field (outside the main field) reaches the photoreceptor by refraction and reflection in the optical filter. Each of the infrared sensor devices of the present embodiment will be described below. The configuration requirements will be described. The following description can be applied to the above-described infrared sensor devices independently or in combination.

(センサユニット)
センサユニット210に使用する赤外線センサは、熱型赤外線センサ、量子型赤外線センサ等が挙げられるが、感度や応答性の観点から、量子型赤外線センサであることが好ましい。センサユニット210は、必要に応じて受光体211を支持する基板を備えていてもよい。
(Sensor unit)
Examples of the infrared sensor used in the sensor unit 210 include a thermal infrared sensor, a quantum infrared sensor, and the like. From the viewpoints of sensitivity and responsiveness, a quantum infrared sensor is preferable. The sensor unit 210 may include a substrate that supports the photoreceptor 211 as necessary.

受光体211は1つであってもよいし、複数であってもよい。受光体211が複数の場合、それぞれの受光体から出力されるそれぞれの信号の大きさの大小関係を用いた位置検出や、それぞれの信号変化の微分値を用いた動き検出する赤外線センサ装置として応用が可能になる。ここで、それぞれの受光体は異なる視野を有するが、この際、受光体のそれぞれが副視野を有することになる。すなわち、ある受光体に対する主視野が、別の受光体に対する副視野(主視野外)となる。   There may be one photoreceptor 211 or a plurality of photoreceptors. When there are a plurality of light receiving bodies 211, it is applied as an infrared sensor device for position detection using the magnitude relation of the magnitude of each signal output from each light receiving body and motion detection using the differential value of each signal change. Is possible. Here, each photoreceptor has a different field of view, and at this time, each of the photoreceptors has a sub-field. That is, the main field of view for one photoreceptor is a sub-field (outside the main field) for another photoreceptor.

従来の赤外線センサ装置では、副視野からの赤外線が受光体に到達し得るため、上述した位置検出や動き検出の誤検知が生じてしまうが、本実施形態の赤外線センサ装置によれば、副視野からの赤外線が低減されるため、より高精度に位置検出や動き検出が可能になる。   In the conventional infrared sensor device, since the infrared rays from the sub field of view can reach the photoreceptor, the above-described misdetection of position detection and motion detection occurs. Therefore, position detection and motion detection can be performed with higher accuracy.

また、赤外線センサ装置200は、受光体211から出力される信号を増幅・演算するための回路部を更に備えていてもよい。   The infrared sensor device 200 may further include a circuit unit for amplifying and calculating a signal output from the photoreceptor 211.

(樹脂パッケージ)
樹脂パッケージ220に形成された第1開口部221a〜第3開口部221cの形状は、本実施形態においては、角柱状に形成されているが、第1開口部221aおよび第3の開口部221cの外縁内に、第2開口部221bの外縁が配置されていれば特に制限されず、角柱状に限らず、円柱状でもよい。また樹脂パッケージを構成する材料としては、放射率が0.7以上の材料であれば特に制限されず、例えば熱硬化性のエポキシ樹脂等が挙げられる。
(Resin package)
The first opening 221a to the third opening 221c formed in the resin package 220 are formed in a prismatic shape in this embodiment, but the first opening 221a and the third opening 221c If the outer edge of the 2nd opening part 221b is arrange | positioned in an outer edge, it will not restrict | limit in particular, Not only prismatic shape but cylindrical shape may be sufficient. The material constituting the resin package is not particularly limited as long as the emissivity is 0.7 or more, and examples thereof include a thermosetting epoxy resin.

効率的に副視野からの赤外線を低減する観点から、第1開口部221a〜第3開口部221cの側面(樹脂パッケージ220の内壁面)と、受光体211平面のなす角が90±5°であることが好ましい。   From the viewpoint of efficiently reducing the infrared rays from the sub-field of view, the angle formed by the side surfaces of the first opening 221a to the third opening 221c (the inner wall surface of the resin package 220) and the plane of the photoreceptor 211 is 90 ± 5 °. Preferably there is.

(光学フィルタ)
光学フィルタ230は、入射した赤外線を選択的に透過させるものであり、所定の波長以上の光を透過させるものであってもよいし、所定の波長以下の光を透過させるものであってもよいし、所定の帯域の波長を透過させるものであってもよい。また複数の材料から構成されるものであってもよい。光学フィルタ230の具体的な材料としてはSi等が挙げられる。外乱光の遮断や、異物の侵入を防止する観点から、光学フィルタ230は第1の開口部を充填していることが好ましい。
(Optical filter)
The optical filter 230 selectively transmits incident infrared rays, and may transmit light having a predetermined wavelength or more, or may transmit light having a predetermined wavelength or less. However, it may transmit a wavelength in a predetermined band. Moreover, it may be composed of a plurality of materials. Specific examples of the material for the optical filter 230 include Si. From the viewpoint of blocking ambient light and preventing entry of foreign matter, the optical filter 230 preferably fills the first opening.

本発明は、位置検出や動き検出に適用される赤外線センサ装置として好適である。   The present invention is suitable as an infrared sensor device applied to position detection and motion detection.

100、200 赤外線センサ
110、210 センサユニット
111、211 受光体
120 光隔壁
130、230 光学フィルタ
220 樹脂パッケージ
221、221a、221b、221c 開口部
〜k
100, 200 Infrared sensor 110, 210 Sensor unit 111, 211 Photoreceptor 120 Optical partition wall 130, 230 Optical filter 220 Resin packages 221, 221a, 221b, 221c Openings k 1 -k 8 points

Claims (4)

入射された赤外線に応じた信号を出力する受光体を有するセンサユニットと、
前記受光体を、開口部を介して包み込むように形成された樹脂パッケージと、
前記開口部内に設けられた光学フィルタとを備える赤外線センサであって、
前記開口部は、第1開口部と、第2開口部と、第3開口部とから構成され、前記第1開口部は、前記樹脂パッケージ外部に対して開口し、前記光学フィルタが充填され、前記第2開口部と前記第3開口部とは、前記受光体の受光面側の空隙部となるように垂直方向に連続して配置され、前記第3開口部は前記センサユニット側に、前記第2開口部は前記第1開口部と前記第3開口部との間に前記第1開口部及び前記第3開口部双方に連通するよう配置され、
前記第1開口部の開口面積および前記第3開口部の開口面積が、前記第2開口部の開口径よりも大きい
ことを特徴とする赤外線センサ。
A sensor unit having a photoreceptor that outputs a signal corresponding to incident infrared rays;
A resin package formed so as to wrap the photoreceptor through an opening;
An infrared sensor comprising an optical filter provided in the opening,
The opening is composed of a first opening, a second opening, and a third opening. The first opening opens to the outside of the resin package, and is filled with the optical filter. The second opening and the third opening are continuously arranged in a vertical direction so as to be a gap on the light receiving surface side of the photoreceptor, and the third opening is on the sensor unit side, The second opening is disposed between the first opening and the third opening so as to communicate with both the first opening and the third opening.
The infrared sensor, wherein an opening area of the first opening and an opening area of the third opening are larger than an opening diameter of the second opening.
前記受光体の受光面方向の幅をL、前記光学フィルタの前記受光面方向の幅をd、前記光学フィルタの前記受光面に対して垂直方向の厚みをh、前記光学フィルタの屈折率をn、前記第2開口部の前記受光面方向の幅をd、前記光学フィルタの前記受光体側端面から前記前記受光体までの垂直方向の距離をh、及び空気の屈折率をnとしたときに、前記L、d、h、n、d、h、及びnが、
Figure 2015197311
の式を満たすことを特徴とする請求項1に記載の赤外線センサ。
The width in the light receiving surface direction of the photoreceptor is L, the width in the light receiving surface direction of the optical filter is d 1 , the thickness in the direction perpendicular to the light receiving surface of the optical filter is h 1 , and the refractive index of the optical filter N 2 , the width of the second opening in the light receiving surface direction is d 2 , the vertical distance from the light receiving body side end surface of the optical filter to the light receiving body is h, and the refractive index of air is n 1. When L, d 1 , h 1 , n 2 , d 2 , h, and n 1 are
Figure 2015197311
The infrared sensor according to claim 1, wherein:
前記受光体の受光面方向の幅をx、前記光学フィルタの前記第2開口部の前記受光面方向の幅をδ、前記光学フィルタの前記受光体側端面から、前記前記受光体までの垂直方向の距離をh、前記第2開口部の前記受光面方向の厚みをZとしたときに、前記x、δ、h及びZが、
Figure 2015197311
の式を満たすことを特徴とする請求項1または2に記載の赤外線センサ。
The width in the light receiving surface direction of the light receiver is x, the width in the light receiving surface direction of the second opening of the optical filter is δ, and the vertical direction from the light receiving side end surface of the optical filter to the light receiving body is the vertical direction. When the distance is h and the thickness of the second opening in the light receiving surface direction is Z, the x, δ, h, and Z are
Figure 2015197311
The infrared sensor according to claim 1, wherein the following equation is satisfied.
前記樹脂パッケージは、放射率が0.7以上であることを特徴とする請求項1乃至4に記載の赤外線センサ。   The infrared sensor according to claim 1, wherein the resin package has an emissivity of 0.7 or more.
JP2014073701A 2014-03-31 2014-03-31 Infrared sensor Active JP6469353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014073701A JP6469353B2 (en) 2014-03-31 2014-03-31 Infrared sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014073701A JP6469353B2 (en) 2014-03-31 2014-03-31 Infrared sensor

Publications (2)

Publication Number Publication Date
JP2015197311A true JP2015197311A (en) 2015-11-09
JP6469353B2 JP6469353B2 (en) 2019-02-13

Family

ID=54547108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014073701A Active JP6469353B2 (en) 2014-03-31 2014-03-31 Infrared sensor

Country Status (1)

Country Link
JP (1) JP6469353B2 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950454U (en) * 1982-09-24 1984-04-03 富士通株式会社 Photoelectric conversion device
JPS5979127A (en) * 1982-10-28 1984-05-08 Fujitsu Ltd Infrared-ray photoelectric converter
JPS6255359U (en) * 1985-09-25 1987-04-06
JPH0440327A (en) * 1990-06-06 1992-02-10 Fujitsu Ltd Cold shield
JPH10132654A (en) * 1996-10-30 1998-05-22 Mitsubishi Electric Corp Container for infrared detection element, and production thereof
JP2004077461A (en) * 2002-08-17 2004-03-11 Lg Electronics Inc Infrared sensor assembly and refrigerator having the same
JP2004077462A (en) * 2002-08-17 2004-03-11 Lg Electronics Inc Infrared sensor assembly and refrigerator having the same
WO2005121727A1 (en) * 2004-06-09 2005-12-22 Perkinelmer Optoelectronics Gmbh & Co. Kg Sensor
JP2007101513A (en) * 2005-10-07 2007-04-19 Seiko Npc Corp Infrared sensor
JP2010537177A (en) * 2007-08-20 2010-12-02 パーキンエルマー テクノロジーズ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コー. カーゲー Sensor cap assembly, sensor, circuit
JP2011095143A (en) * 2009-10-30 2011-05-12 Asahi Kasei Electronics Co Ltd Infrared sensor
JP2012181157A (en) * 2011-03-02 2012-09-20 Omron Corp Infrared temperature sensor, electronic device and manufacturing method of infrared temperature sensor
JP2013195293A (en) * 2012-03-21 2013-09-30 Asahi Kasei Electronics Co Ltd Infrared detector

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950454U (en) * 1982-09-24 1984-04-03 富士通株式会社 Photoelectric conversion device
JPS5979127A (en) * 1982-10-28 1984-05-08 Fujitsu Ltd Infrared-ray photoelectric converter
JPS6255359U (en) * 1985-09-25 1987-04-06
JPH0440327A (en) * 1990-06-06 1992-02-10 Fujitsu Ltd Cold shield
JPH10132654A (en) * 1996-10-30 1998-05-22 Mitsubishi Electric Corp Container for infrared detection element, and production thereof
JP2004077461A (en) * 2002-08-17 2004-03-11 Lg Electronics Inc Infrared sensor assembly and refrigerator having the same
JP2004077462A (en) * 2002-08-17 2004-03-11 Lg Electronics Inc Infrared sensor assembly and refrigerator having the same
WO2005121727A1 (en) * 2004-06-09 2005-12-22 Perkinelmer Optoelectronics Gmbh & Co. Kg Sensor
JP2007101513A (en) * 2005-10-07 2007-04-19 Seiko Npc Corp Infrared sensor
JP2010537177A (en) * 2007-08-20 2010-12-02 パーキンエルマー テクノロジーズ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コー. カーゲー Sensor cap assembly, sensor, circuit
JP2011095143A (en) * 2009-10-30 2011-05-12 Asahi Kasei Electronics Co Ltd Infrared sensor
JP2012181157A (en) * 2011-03-02 2012-09-20 Omron Corp Infrared temperature sensor, electronic device and manufacturing method of infrared temperature sensor
JP2013195293A (en) * 2012-03-21 2013-09-30 Asahi Kasei Electronics Co Ltd Infrared detector

Also Published As

Publication number Publication date
JP6469353B2 (en) 2019-02-13

Similar Documents

Publication Publication Date Title
JP2013080130A5 (en)
WO2014153633A1 (en) Multiparameter device for measuring by optical means the filling level of tanks and reservoirs of liquids and liquefied products, the index of refraction, and for image analysis, without moving parts
EP2325597B1 (en) Non-contact optical probe and measuring machine
CN105928903A (en) Optical sensor based on cascaded optical resonant cavities
CN105445491A (en) Hot-wire-type high sensitivity flow speed meter based on micro-resonant cavity
CN103075966A (en) Displacement measuring system
CN104374515A (en) Arrangement structure of optical fiber bundles in probe of reflection type optical fiber pressure sensor
JP5786191B2 (en) Temperature sensitive body, optical temperature sensor, temperature measuring device and heat flux measuring device
CN112284565B (en) Anti-resonance optical fiber temperature detector
JP6469353B2 (en) Infrared sensor
JP5773770B2 (en) Liquid sensor
US20090010588A1 (en) Optimized optical resonator device for sensing applications
US7368704B2 (en) Self-contained fork sensor having a wide effective beam
US20210095952A1 (en) A device for determining orientation of an object
CN112955710A (en) Detector and method for determining the position of at least one object
JP2007033075A (en) Optical water level gauge
JP2019100987A (en) Radiation thermometer
US20220214267A1 (en) Compact gas sensor
JP6267018B2 (en) Infrared sensor device
JP2014169968A (en) Infrared sensor apparatus, and manufacturing method for the same
CN206740631U (en) Multichannel optical fiber freezing sensor
CN104154968A (en) Liquid level sensor on basis of fine-core tilted fiber bragg grating
JP2006071549A (en) Temperature sensor
JP2008089554A (en) Optical fiber sensor
RU2607731C1 (en) Angular velocity and linear acceleration micro-opto-electromechanical three-axis sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190116

R150 Certificate of patent or registration of utility model

Ref document number: 6469353

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150