JP2015195779A - Artificial soil particles and artificial soil culture medium - Google Patents

Artificial soil particles and artificial soil culture medium Download PDF

Info

Publication number
JP2015195779A
JP2015195779A JP2014076667A JP2014076667A JP2015195779A JP 2015195779 A JP2015195779 A JP 2015195779A JP 2014076667 A JP2014076667 A JP 2014076667A JP 2014076667 A JP2014076667 A JP 2014076667A JP 2015195779 A JP2015195779 A JP 2015195779A
Authority
JP
Japan
Prior art keywords
artificial soil
base
soil particles
inorganic porous
porous body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014076667A
Other languages
Japanese (ja)
Inventor
吉幸 五百蔵
Yoshiyuki Iokura
吉幸 五百蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2014076667A priority Critical patent/JP2015195779A/en
Publication of JP2015195779A publication Critical patent/JP2015195779A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide inexpensive artificial soil particles which can hold moisture required for growth of a plant while maintaining strength, and which is easy to handle when planting.SOLUTION: An artificial soil particle 50 comprises a base 10 including an inorganic porous body 1, and a coating layer 20 including a fiber 2 which coats at least one part of a surface of the base 10. The inorganic porous body 1 is perlite, and the fiber 2 is a hydrophilic fiber with a fiber length of 0.3-1 mm. The ratio (a/b) of the average thickness (a) of the coating layer 20 and the mean diameter (b) of the base 10 is 1/20-1/2.

Description

本発明は、人工土壌粒子、及び当該人工土壌粒子を用いた人工土壌培地に関する。   The present invention relates to artificial soil particles and an artificial soil medium using the artificial soil particles.

近年、居住空間を緑化する屋内緑化や、野菜等の植物を屋内で栽培する植物工場が増加している。このような屋内緑化や植物工場等において、天然土壌に代えて高度な機能を付加した人工土壌を用いる動きがある。人工土壌として、例えば、安価な無機多孔質体が用いられることがある。しかしながら、無機多孔質体は一般に十分な強度を備えていないため、搬送や植え付け作業中に無機多孔質体の多孔質構造が破壊され、保水性等の土壌としての機能が低下したり、微粉等が発生して作業性が低下することがあった。また、無機多孔質体は、表面の凹凸により粒子間の摩擦が大きいため、植物の植え付けがし難く、作業性が低下することがあった。   In recent years, there have been an increase in indoor planting for planting living spaces and plant factories for growing plants such as vegetables indoors. In such indoor greening and plant factories, there is a movement to use artificial soil with advanced functions instead of natural soil. For example, an inexpensive inorganic porous material may be used as the artificial soil. However, since the inorganic porous body generally does not have sufficient strength, the porous structure of the inorganic porous body is destroyed during transportation and planting work, and the function as soil such as water retention is reduced, fine powder etc. May occur and workability may be reduced. In addition, since the inorganic porous body has a large friction between particles due to the unevenness of the surface, it is difficult to plant a plant and the workability may be lowered.

上記問題点を解消するため、例えば、特許文献1に記載の人工土壌では、粒状発泡資材の表面にパーライト等の緑化資材を被覆し、土壌としての形態を維持しながら、保水性を向上させようとしている。   In order to solve the above problems, for example, in the artificial soil described in Patent Document 1, the surface of the granular foamed material is covered with a greening material such as pearlite, and the water retention is improved while maintaining the soil form. It is said.

また、特許文献2のように、合成樹脂製の発泡体粒子の表面に、ゼオライト及びポリエステル短繊維を付着させて粒状化した土壌代替物も知られている。   Further, as in Patent Document 2, a soil substitute is also known in which zeolite and polyester short fibers are attached to the surface of foam particles made of synthetic resin and granulated.

特開2009−11190号公報JP 2009-11190 A 特開平7−50923号公報Japanese Patent Laid-Open No. 7-50923

しかしながら、特許文献1の人工土壌では、パーライトが発泡資材の表面側に存在しているため、搬送や植え付け作業、あるいは潅水等によって生じるパーライトの構造の破壊を完全には抑制することはできず、その結果、保水性等の人工土壌としての機能を維持することは困難である。また、パーライト等の無機多孔質体は、多孔質構造により水分を保持することができるが、水の吸収速度が遅いため、無機多孔質体が外部に露出していると、灌水等により水を供給しても早期に流失し、植物の成長に必要な水を十分保持できない虞がある。   However, in the artificial soil of Patent Document 1, since pearlite is present on the surface side of the foamed material, it is not possible to completely suppress the destruction of the structure of pearlite caused by transportation, planting work, irrigation, etc. As a result, it is difficult to maintain the function as artificial soil such as water retention. In addition, inorganic porous bodies such as pearlite can retain moisture due to the porous structure, but the water absorption rate is slow, so if the inorganic porous body is exposed to the outside, water can be absorbed by irrigation or the like. Even if it supplies, it will be washed away early and there is a possibility that water required for the growth of the plant cannot be sufficiently retained.

一方、特許文献2の土壌代替物は、基材として合成樹脂製の発泡体を使用しているため、ある程度の強度は維持されると考えられる。しかしながら、合成樹脂製の発泡体は、無機多孔質体と比較して保水性が劣るため、例えば、根菜類等を栽培する場合において、人工土壌として十分に機能し得るものではない。また、合成樹脂製の発泡体や、その表面に付着させるポリエステル短繊維は、無機多孔質体と比較して高価な材料であるため、大量に使用する人工土壌として普及させることも難しいと考えられる。   On the other hand, since the soil substitute of patent document 2 uses the synthetic resin foam as a base material, it is thought that a certain amount of intensity | strength is maintained. However, since the foam made of synthetic resin is inferior in water retention compared with the inorganic porous body, for example, when cultivating root vegetables and the like, it cannot function sufficiently as artificial soil. Moreover, since the synthetic resin foam and the polyester short fiber adhered to the surface thereof are expensive materials compared to the inorganic porous body, it is considered difficult to disseminate them as artificial soil to be used in large quantities. .

本発明は、上記問題点に鑑みてなされたものであり、強度を維持しながら、植物の生育に必要な水分を保持することができ、且つ植え付け等の作業の際に取り扱いが容易である安価な人工土壌粒子を提供することを目的とする。また、当該人工土壌粒子を使用した高性能且つ安価な人工土壌培地を提供することを目的とする。   The present invention has been made in view of the above problems, and can maintain moisture and retain moisture necessary for plant growth, and is easy to handle at the time of operations such as planting. The purpose is to provide artificial soil particles. Another object of the present invention is to provide a high-performance and inexpensive artificial soil medium using the artificial soil particles.

上記課題を解決するための本発明に係る人工土壌粒子の特徴構成は、
無機多孔質体を含む基部と、
前記基部の表面の少なくとも一部を被覆する繊維を含む被覆層と、
を備えたことにある。
The characteristic configuration of the artificial soil particles according to the present invention for solving the above problems is as follows:
A base including an inorganic porous body;
A coating layer comprising fibers covering at least a part of the surface of the base;
It is in having.

本構成の人工土壌粒子によれば、無機多孔質体を含む基部の表面の少なくとも一部を繊維で被覆することにより、人工土壌粒子の強度を向上させている。このため、例えば、植栽等の作業時において外的な圧力が加わった場合でも、人工土壌粒子の構造は破壊され難いものとなり、人工土壌培地として安定した機能を発揮させることができる。また、被覆層の繊維は、無機多孔質体よりも摩擦が小さいため、人工土壌粒子が適度な流動性を備えることになり、スムーズな植え付けが可能となって、作業性が向上する。さらに、被覆層の繊維は、灌水時に速やかに水分を吸着し、繊維間の隙間に水を留めることができるため、灌水直後の水分の早期流失を抑制することができる。その結果、基部に含まれる無機多孔質体の細孔に水分を効率よく吸収、保持することができ、人工土壌粒子の保水性を向上させることができる。また、繊維は基部の表面を被覆することのみに使用されるため、比較的高価な繊維の使用量を削減でき、人工土壌粒子のコストダウンにも寄与し得る。   According to the artificial soil particle of this structure, the intensity | strength of the artificial soil particle is improved by coat | covering at least one part of the surface of the base containing an inorganic porous body with a fiber. For this reason, for example, even when an external pressure is applied during operations such as planting, the structure of the artificial soil particles is difficult to be destroyed, and a stable function as an artificial soil medium can be exhibited. Further, since the fibers of the covering layer have a smaller friction than the inorganic porous body, the artificial soil particles have appropriate fluidity, enabling smooth planting and improving workability. Furthermore, since the fibers of the coating layer can quickly adsorb moisture during irrigation and retain water in the gaps between the fibers, it is possible to suppress early loss of moisture immediately after irrigation. As a result, moisture can be efficiently absorbed and retained in the pores of the inorganic porous material contained in the base, and the water retention of the artificial soil particles can be improved. Further, since the fiber is used only for coating the surface of the base, the amount of the relatively expensive fiber used can be reduced, which can contribute to the cost reduction of the artificial soil particles.

本発明に係る人工土壌粒子において、
前記無機多孔質体は、パーライトであることが好ましい。
In the artificial soil particles according to the present invention,
The inorganic porous body is preferably pearlite.

本構成の人工土壌粒子によれば、無機多孔質体として高い空隙率及び適切なサイズの細孔を有するパーライトを基部に使用していることから、基部の保水力を十分に確保することができる。その結果、人工土壌粒子の保水性をさらに向上させることができる。また、パーライトは、無機多孔質体の中でも特に空隙率が高く、固形分が非常に少ないため、廃棄の際の廃棄物量を低減させることができる。さらに、パーライトは安価であるため、大量に使用する人工土壌に適しており、経済的にも有利となる。   According to the artificial soil particle of this structure, since the pearlite which has a high porosity and the pore of an appropriate size is used for a base as an inorganic porous body, the water retention power of a base can fully be ensured. . As a result, the water retention of artificial soil particles can be further improved. In addition, pearlite has a particularly high porosity among inorganic porous bodies and has a very small solid content, and therefore, the amount of waste at the time of disposal can be reduced. Furthermore, since pearlite is inexpensive, it is suitable for artificial soil used in large quantities and is economically advantageous.

本発明に係る人工土壌粒子において、
前記繊維は、0.3〜1mmの繊維長を有することが好ましい。
In the artificial soil particles according to the present invention,
The fiber preferably has a fiber length of 0.3 to 1 mm.

本構成の人工土壌粒子によれば、繊維が適切な繊維長を有することから、基部を効果的に補強しながら、人工土壌粒子の水分吸着力を向上させることができる。その結果、強度及び保水性のバランスが優れた安価な人工土壌粒子を提供することができる。   According to the artificial soil particle of this structure, since the fiber has an appropriate fiber length, the moisture adsorption force of the artificial soil particle can be improved while effectively reinforcing the base. As a result, inexpensive artificial soil particles having an excellent balance between strength and water retention can be provided.

本発明に係る人工土壌粒子において、
前記繊維は、親水性繊維であることが好ましい。
In the artificial soil particles according to the present invention,
The fiber is preferably a hydrophilic fiber.

本構成の人工土壌粒子によれば、基部を被覆する繊維として親水性繊維を使用することで、基部を確実に補強しながら、人工土壌粒子の水分吸着力を確実に向上させることができる。その結果、強度及び保水性のバランスが優れた安価な人工土壌粒子を提供することができる。   According to the artificial soil particle of this structure, the water | moisture-content adsorption | suction power of artificial soil particle can be improved reliably, using a hydrophilic fiber as a fiber which coat | covers a base part, reinforcing a base part reliably. As a result, inexpensive artificial soil particles having an excellent balance between strength and water retention can be provided.

本発明に係る人工土壌粒子において、
前記被覆層の平均厚(a)と前記基部の平均径(b)との比率(a/b)は、1/20〜1/2であることが好ましい。
In the artificial soil particles according to the present invention,
The ratio (a / b) between the average thickness (a) of the coating layer and the average diameter (b) of the base is preferably 1/20 to 1/2.

本構成の人工土壌粒子によれば、被覆層の平均厚と基部の平均径との比率が適切な範囲に設定されていることから、基部に起因する保水力と、被覆層に起因する強度、流動性、及び水分吸着力と、材料コストとの適切なバランスが維持される。その結果、強度、流動性、及び保水性のバランスが優れた安価な人工土壌粒子を提供することができる。   According to the artificial soil particles of this configuration, since the ratio of the average thickness of the coating layer and the average diameter of the base is set in an appropriate range, the water retention force resulting from the base and the strength resulting from the coating layer, An appropriate balance between fluidity and moisture adsorption and material costs is maintained. As a result, it is possible to provide inexpensive artificial soil particles having an excellent balance of strength, fluidity, and water retention.

本発明に係る人工土壌粒子において、
前記無機多孔質体は、80%以上の空隙率を有することが好ましい。
In the artificial soil particles according to the present invention,
The inorganic porous body preferably has a porosity of 80% or more.

本構成の人工土壌粒子によれば、無機多孔質体は、80%以上の空隙率を有することから、無機多孔質体に保持可能な水分量、いわゆる保水力を十分に確保することができる。その結果、人工土壌粒子の保水性をさらに向上させることができる。   According to the artificial soil particles of this configuration, since the inorganic porous body has a porosity of 80% or more, it is possible to sufficiently ensure the amount of water that can be retained in the inorganic porous body, so-called water retention capacity. As a result, the water retention of artificial soil particles can be further improved.

本発明に係る人工土壌粒子において、
2〜10mmの粒径を有することが好ましい。
In the artificial soil particles according to the present invention,
It preferably has a particle size of 2 to 10 mm.

本構成の人工土壌粒子によれば、粒状体の粒径を適切な範囲に調整していることから、強度及び保水性のバランスが維持され、根菜類の栽培に適した取り扱いの容易な人工土壌培地を提供することができる。   According to the artificial soil particles of this configuration, since the particle size of the granular material is adjusted to an appropriate range, the balance between strength and water retention is maintained, and easy-to-handle artificial soil suitable for root vegetable cultivation. A medium can be provided.

上記課題を解決するための本発明に係る人工土壌培地の特徴構成は、
上記の何れか一つの人工土壌粒子を使用したことにある。
The characteristic configuration of the artificial soil culture medium according to the present invention for solving the above problems is
The use of any one of the above artificial soil particles.

本構成の人工土壌培地によれば、無機多孔質体を含む基部の表面の少なくとも一部を繊維で被覆した人工土壌粒子を使用していることから、例えば、植栽等の作業時において外的な圧力が加わった場合でも、人工土壌粒子の構造は破壊され難いものとなり、人工土壌培地としての安定した機能を発揮させることができる。また、人工土壌粒子の被覆層の繊維は、無機多孔質体よりも摩擦が小さいため、人工土壌粒子が適度な流動性を備えることになり、スムーズな植え付けが可能となって、作業性が向上する。さらに、被覆層の繊維は、灌水時に速やかに水分を吸着し、繊維間の隙間に水を留めることができるため、灌水直後の水分の早期流失を抑制することができる。その結果、人工土壌粒子の基部に含まれる無機多孔質体の細孔に水分を効率よく吸収、保持することができ、人工土壌培地の保水性を向上させることができる。また、人工土壌粒子に使用される繊維は基部の表面を被覆することのみに使用されるため、比較的高価な繊維の使用量を削減でき、人工土壌培地のコストダウンにも寄与し得る。   According to the artificial soil culture medium of this configuration, since artificial soil particles in which at least a part of the surface of the base including the inorganic porous body is covered with fibers are used, for example, externally at the time of work such as planting Even when a certain pressure is applied, the structure of the artificial soil particles becomes difficult to be destroyed, and the stable function as the artificial soil medium can be exhibited. In addition, since the fibers of the artificial soil particle coating layer have less friction than the inorganic porous material, the artificial soil particles have adequate fluidity, enabling smooth planting and improving workability. To do. Furthermore, since the fibers of the coating layer can quickly adsorb moisture during irrigation and retain water in the gaps between the fibers, it is possible to suppress early loss of moisture immediately after irrigation. As a result, moisture can be efficiently absorbed and retained in the pores of the inorganic porous body contained in the base of the artificial soil particles, and the water retention of the artificial soil medium can be improved. Moreover, since the fiber used for the artificial soil particles is used only to coat the surface of the base, the amount of the relatively expensive fiber used can be reduced, which can contribute to the cost reduction of the artificial soil medium.

図1は、本発明に係る人工土壌粒子を模式的に示した説明図である。FIG. 1 is an explanatory view schematically showing artificial soil particles according to the present invention. 図2は、本発明に係る人工土壌粒子を使用した人工土壌培地を模式的に示した説明図である。FIG. 2 is an explanatory view schematically showing an artificial soil culture medium using artificial soil particles according to the present invention. 図3は、本発明に係る人工土壌粒子の散水保水量を示したグラフである。FIG. 3 is a graph showing the water retention amount of artificial soil particles according to the present invention.

以下、本発明に係る人工土壌粒子、及び当該人工土壌粒子を用いた人工土壌培地に関する実施形態を図1〜図3に基づいて説明する。ただし、本発明は、以下に説明する実施形態や図面に記載される構成に限定されることを意図しない。   Hereinafter, the embodiment regarding the artificial soil particle which concerns on this invention, and the artificial soil culture medium using the said artificial soil particle is described based on FIGS. 1-3. However, the present invention is not intended to be limited to the configurations described in the embodiments and drawings described below.

<人工土壌粒子>
図1は、本発明に係る人工土壌粒子50を模式的に示した説明図である。図1(a)は、粒状物である無機多孔質体1をそのまま基部10として使用した人工土壌粒子50であり、図1(b)は微小な複数の無機多孔質体1を集合して基部10を形成した人工土壌粒子50である。図2は、図1(a)の本発明に係る人工土壌粒子50を使用した人工土壌培地100を模式的に示した説明図である。人工土壌粒子50は、無機多孔質体1を含む基部10と、基部10の表面の少なくとも一部を繊維2で被覆する被覆層20とを備えている。無機多孔質体1は、表面から内部にかけて多数の細孔3を有しており、当該細孔3に水分を保持することができる。被覆層20は、基部10の表面の一部又は全体を繊維2で被覆することで、基部10を構成する無機多孔質体1を補強し、人工土壌粒子50としての強度を維持している。基部10は、図1(a)に示すように無機多孔質体1の粒状物でも、図1(b)に示すように微小な複数の無機多孔質体1をバインダー等で造粒して形成した造粒物でもよい。基部10を図1(b)に示す造粒物として形成する場合、無機多孔質体1の間には空隙4が形成され、当該空隙4にも水分を保持することができる。従って、空隙4の状態(例えば、空隙4の大きさ、数、形状等)は、人工土壌粒子50が保持可能な水分量、いわゆる保水力に関係する。空隙4の状態は、基部10を造粒する際の無機多孔質体1の使用量、種類、大きさ等を変更することにより調整可能である。
<Artificial soil particles>
FIG. 1 is an explanatory view schematically showing artificial soil particles 50 according to the present invention. FIG. 1A shows an artificial soil particle 50 using the inorganic porous body 1 that is a granular material as a base 10 as it is, and FIG. 1B shows a base by assembling a plurality of minute inorganic porous bodies 1. 10 is an artificial soil particle 50 having formed 10. FIG. 2 is an explanatory view schematically showing an artificial soil culture medium 100 using the artificial soil particles 50 according to the present invention of FIG. The artificial soil particle 50 includes a base 10 including the inorganic porous body 1 and a coating layer 20 that covers at least a part of the surface of the base 10 with the fibers 2. The inorganic porous body 1 has a large number of pores 3 from the surface to the inside, and can retain moisture in the pores 3. The coating layer 20 reinforces the inorganic porous body 1 constituting the base 10 by covering a part or the whole of the surface of the base 10 with the fibers 2 and maintains the strength as the artificial soil particles 50. The base 10 is formed by granulating a plurality of minute inorganic porous bodies 1 with a binder or the like as shown in FIG. 1B, even if the inorganic porous body 1 is granular as shown in FIG. It may be a granulated product. When the base 10 is formed as a granulated product shown in FIG. 1B, voids 4 are formed between the inorganic porous bodies 1, and moisture can also be retained in the voids 4. Therefore, the state of the void 4 (for example, the size, number, shape, etc. of the void 4) relates to the amount of water that can be held by the artificial soil particles 50, so-called water retention capacity. The state of the void 4 can be adjusted by changing the amount, type, size, and the like of the inorganic porous body 1 when the base 10 is granulated.

無機多孔質体1は、高い空隙率を備えているため、大きな保水力を有している。例えば、無機多孔質体1としてパーライトを採用する場合、空隙率、つまり単位体積あたりの空間の占める割合は80〜90%であり、当該空間に水分を保持することができる。従って、パーライト等の無機多孔質体1は、優れた保水材として利用することができる。しかし、パーライト等は、火山岩原石を粉砕、焼成した後、発泡させて空隙率を高めているため、その構造は非常に脆く、搬送や植え付け作業中に無機多孔質体の多孔質構造が破壊され、保水性等の土壌としての機能が低下する場合がある。また、無機多孔質体1の中でも、特に真珠岩パーライト等は、表面の凹凸がいびつであるため粒子間の摩擦が特に大きくなり、植物の根を無機多孔質体1の土壌に直接植え付けることが難しく、根を入れてから真珠岩パーライト等の土壌を被せる必要があった。そこで、本発明の人工土壌粒子50では、無機多孔質体1の表面に被覆層20を設け、人工土壌粒子50の強度を向上させるとともに、人工土壌粒子50間の摩擦を低減させて人工土壌粒子50の流動性を向上させている。その結果、保水性等の土壌としての機能を維持しながら、植物のスムーズな植え付けが可能となる。繊維2は、基部10の表面にバインダー等で固定され、基部10の表面を補強する補強材及び人工土壌粒子50間の摩擦を低減する摩擦低減材として機能する。被覆層20は、例えば、基部10に、繊維2とバインダーとを添加して造粒することにより形成することができる。なお、本実施形態の人工土壌粒子50の形状は、図1に示すように、球状に近い立体形状に構成されているが、例えば、扁平したラグビーボール形状、突起を有する金平糖形状、多面体形状、一定以上の厚みを有する板状、不定形状等に構成することも可能である。また、繊維2を予め色素や染料等で染色することで、カラフルで美観に優れた人工土壌粒子50を作製することができる。   Since the inorganic porous body 1 has a high porosity, it has a large water holding capacity. For example, when pearlite is employed as the inorganic porous body 1, the porosity, that is, the proportion of the space per unit volume is 80 to 90%, and moisture can be retained in the space. Therefore, the inorganic porous body 1 such as pearlite can be used as an excellent water retention material. However, pearlite, etc., crushed and fired volcanic rocks and then foamed them to increase the porosity, so the structure is very fragile, and the porous structure of the inorganic porous material is destroyed during transportation and planting operations. In addition, functions as soil such as water retention may be reduced. Among the inorganic porous bodies 1, in particular, the pearlite pearlite and the like have irregular surface irregularities, so that the friction between the particles becomes particularly large, and plant roots can be directly planted in the soil of the inorganic porous body 1. Difficult, it was necessary to cover the soil such as pearlite perlite after roots. Therefore, in the artificial soil particles 50 of the present invention, the coating layer 20 is provided on the surface of the inorganic porous body 1 to improve the strength of the artificial soil particles 50 and reduce the friction between the artificial soil particles 50 to reduce the artificial soil particles. 50 fluidity is improved. As a result, the plant can be planted smoothly while maintaining the function as soil such as water retention. The fiber 2 is fixed to the surface of the base 10 with a binder or the like, and functions as a reinforcing material that reinforces the surface of the base 10 and a friction reducing material that reduces friction between the artificial soil particles 50. The coating layer 20 can be formed, for example, by adding the fiber 2 and the binder to the base 10 and granulating. In addition, although the shape of the artificial soil particle 50 of this embodiment is comprised in the solid shape close | similar to a spherical shape as shown in FIG. 1, for example, a flat rugby ball shape, a confetti shape having protrusions, a polyhedral shape, It is also possible to configure a plate shape, an indefinite shape or the like having a certain thickness or more. Moreover, the artificial soil particle 50 which is colorful and excellent in aesthetics can be produced by dye | staining the fiber 2 previously with a pigment | dye, dye, etc.

図2に示すように、人工土壌培地100は、複数の人工土壌粒子50が集合した団粒構造の状態で、人工土壌粒子50間に一定の間隙30を形成する。当該間隙30は、空気及び水が通過することができるため、植物Pに必要な水を保持しながら余分な水を排出することができる。人工土壌粒子50の基部10に使用するパーライト等の無機多孔質体1は、高い空隙率を備えているため保水力は大きいが、細孔3のサイズが比較的小さく、細孔3内への水の吸収速度が遅い。このため、灌水等により水を供給しても、水が無機多孔質体1内に十分吸収しきれず、間隙30から流失して、植物が水を有効に利用できない場合がある。そこで、基部10を被覆する被覆層20に使用する繊維2としては、親水性繊維を使用することが好ましい。被覆層20に親水性繊維を使用すると、図2に示すように、被覆層20の繊維2に水分Wが吸着し、複数の人工土壌粒子50間に形成される間隙30にも水分Wが保持される。つまり、繊維2は、水に対する吸着材として機能する。これにより、人工土壌培地100からの水分Wの早期流失を抑制することができる。被覆層20の繊維2に吸着した水分Wは、徐々に無機多孔質体1の細孔3に吸収され、人工土壌粒子50の基部10内で保持される。人工土壌培地100を構成する人工土壌粒子50が図1(b)の造粒物である場合は、水分Wは毛細管現象により無機多孔質体1間に形成される空隙4に吸収され、さらに無機多孔質体1の細孔3に吸収される。また、間隙30に水分Wが過剰に存在する状態となっても、人工土壌粒子50の基部10に水分Wが吸収されるため、人工土壌培地100の通気性を一定以上確保することができ、栽培植物の根腐れ等が生じる虞も少ない。人工土壌培地100の間隙30に存在する水分Wが少なくなると、基部10内に保持されている水分Wが徐々に放出され、植物に供給される。このような現象を利用すれば、植物への水遣りを低減することが可能となる。   As shown in FIG. 2, the artificial soil culture medium 100 forms a fixed gap 30 between the artificial soil particles 50 in a state of aggregate structure in which a plurality of artificial soil particles 50 are aggregated. Since air and water can pass through the gap 30, excess water can be discharged while holding water necessary for the plant P. The inorganic porous body 1 such as pearlite used for the base 10 of the artificial soil particle 50 has a high water retention capacity because of its high porosity, but the size of the pores 3 is relatively small, and the pores 3 enter the pores 3. Water absorption rate is slow. For this reason, even if water is supplied by irrigation or the like, the water may not be sufficiently absorbed into the inorganic porous body 1 and may be washed away from the gaps 30 and the plant may not be able to use the water effectively. Therefore, it is preferable to use hydrophilic fibers as the fibers 2 used in the coating layer 20 that covers the base 10. When hydrophilic fibers are used for the covering layer 20, as shown in FIG. 2, moisture W is adsorbed to the fibers 2 of the covering layer 20, and the moisture W is also retained in the gaps 30 formed between the plurality of artificial soil particles 50. Is done. That is, the fiber 2 functions as an adsorbent for water. Thereby, the early runoff of the water | moisture content W from the artificial soil culture medium 100 can be suppressed. Moisture W adsorbed on the fibers 2 of the coating layer 20 is gradually absorbed by the pores 3 of the inorganic porous body 1 and is held in the base 10 of the artificial soil particles 50. When the artificial soil particle 50 constituting the artificial soil medium 100 is the granulated product of FIG. 1B, the water W is absorbed into the voids 4 formed between the inorganic porous bodies 1 by capillary action, and further inorganic. It is absorbed by the pores 3 of the porous body 1. In addition, even when the moisture W is excessively present in the gap 30, the moisture W is absorbed by the base 10 of the artificial soil particles 50, so that the air permeability of the artificial soil culture medium 100 can be ensured more than a certain level. There is little risk of root rot of cultivated plants. When the moisture W present in the gap 30 of the artificial soil culture medium 100 decreases, the moisture W held in the base 10 is gradually released and supplied to the plant. If such a phenomenon is utilized, it becomes possible to reduce watering to a plant.

無機多孔質体1の空隙率は、基部10の保水力と関係している。基部10に使用する無機多孔質体1の空隙率が低いと、基部10の保水力が低下し、人工土壌粒子50としての保水性を十分に維持できない虞がある。そこで、基部10に使用する無機多孔質体1は、空隙率が80%以上を有するものが好ましく、より好ましくは85〜95%の空隙率を有するものを使用する。無機多孔質体1の空隙率が80%に満たないと、人工土壌粒子50としての保水性を十分に維持できない虞がある。   The porosity of the inorganic porous body 1 is related to the water retention capacity of the base 10. If the porosity of the inorganic porous body 1 used for the base 10 is low, the water retention capacity of the base 10 is lowered, and the water retention as the artificial soil particles 50 may not be sufficiently maintained. Therefore, the inorganic porous body 1 used for the base 10 preferably has a porosity of 80% or more, and more preferably has a porosity of 85 to 95%. If the porosity of the inorganic porous body 1 is less than 80%, the water retention as the artificial soil particles 50 may not be sufficiently maintained.

基部10に使用する無機多孔質体1は、多孔質鉱物、無機発泡体、無機多孔質骨材を含む。多孔質鉱物として、例えば、パーライト、珪藻土、バーミキュライト、パミスが挙げられ、無機発泡体として、例えば、ガラス発泡体、頁岩発泡体、シラスバルーンが挙げられ、無機多孔質骨材として、例えば、発泡コンクリート、発泡レンガが挙げられ、その中でも、パーライトが好ましい。上掲の無機多孔質体1は二種以上を混合した状態で使用することも可能である。これら無機多孔質体1の中でも、パーライトは、特に空隙率が高いため、基部10の保水力を十分確保することができる。また、パーライトは、保肥性、微生物の活性化、根の伸長の促進、肥料焼けの防止等、優れた機能を備えるとともに、火山岩原石を焼成、発泡して形成したものであるため清潔感もある。したがって、パーライトは、植物工場や屋内で使用する人工土壌粒子50の基部10として好適に利用することができる。さらに、パーライトは安価であるため、大量に使用する人工土壌に適しており、経済的にも有利となる。無機多孔質体1はミネラル成分を多く含んでいるため、人工土壌粒子50の基部10として無機多孔質体1を使用すると、植物の栽培時にミネラル成分を別途添加しなくとも、植物を成長させることができる。例えば、真珠岩パーライトの組成は、SiO:75%、Al:14%、Fe:0.9%、CaO:0.1%、KO:4.2%、NaO:3.5%であり、植物の必須元素であるカリウム、カルシウム、鉄等を多く含んでいる。本発明の人工土壌粒子50の基部10にパーライトを使用すると、パーライトの優れた機能を維持しながら、パーライトの欠点である、強度、流動性、及び吸水速度を補うことが可能となり、優れた人工土壌粒子を得ることができる。 The inorganic porous body 1 used for the base 10 includes a porous mineral, an inorganic foam, and an inorganic porous aggregate. Examples of the porous mineral include pearlite, diatomaceous earth, vermiculite, and pumice. Examples of the inorganic foam include glass foam, shale foam, and shirasu balloon. Examples of the inorganic porous aggregate include foam concrete. And foam bricks, and among them, perlite is preferable. The above-described inorganic porous body 1 can be used in a state where two or more kinds are mixed. Among these inorganic porous bodies 1, pearlite has a particularly high porosity, so that the water retention capacity of the base 10 can be sufficiently secured. In addition, pearlite has excellent functions such as fertilization, activation of microorganisms, promotion of root elongation, prevention of fertilizer burning, etc. is there. Therefore, perlite can be suitably used as the base 10 of the artificial soil particle 50 used in a plant factory or indoors. Furthermore, since pearlite is inexpensive, it is suitable for artificial soil used in large quantities and is economically advantageous. Since the inorganic porous body 1 contains a lot of mineral components, if the inorganic porous body 1 is used as the base 10 of the artificial soil particles 50, the plant can be grown without adding a mineral component separately at the time of plant cultivation. Can do. For example, the composition of perlite pearlite is SiO 2 : 75%, Al 2 O 3 : 14%, Fe 2 O 3 : 0.9%, CaO: 0.1%, K 2 O: 4.2%, Na 2 O: 3.5%, which contains a lot of plant essential elements such as potassium, calcium, and iron. When pearlite is used for the base 10 of the artificial soil particle 50 of the present invention, it is possible to compensate for the disadvantages of pearlite, strength, fluidity, and water absorption speed while maintaining the excellent function of pearlite, and excellent artificial Soil particles can be obtained.

被覆層20を構成する繊維2には、合成繊維、又は天然繊維が適宜選択される。合成繊維として、例えば、ビニロン、ポリエステル、ナイロン、アクリル、アセテート、ウレタン、ポリオレフィン等が挙げられ、天然繊維として、例えば、羊毛、綿、レーヨン、セルロース等が挙げられる。これら繊維のうち、好ましい親水性繊維として、例えば、ビニロン、ウレタン、ナイロン、アセテート、綿、羊毛、レーヨン、セルロースが挙げられ、その中でもビニロンがより好ましい。   Synthetic fibers or natural fibers are appropriately selected for the fibers 2 constituting the coating layer 20. Examples of synthetic fibers include vinylon, polyester, nylon, acrylic, acetate, urethane, and polyolefin. Examples of natural fibers include wool, cotton, rayon, and cellulose. Among these fibers, preferable hydrophilic fibers include, for example, vinylon, urethane, nylon, acetate, cotton, wool, rayon, and cellulose, and among these, vinylon is more preferable.

被覆層20の繊維2は、上述の如く、人工土壌粒子50の補強材としての機能と、人工土壌粒子50間の摩擦を低減する摩擦低減材としての機能と、水分に対する吸着材としての機能とを備えている。ここで、人工土壌粒子50の強度及び保水性は、基部10を被覆する繊維2の繊維長及び繊維径を変更することにより調整可能である。繊維2の繊維長は、好ましくは0.3〜1mmであり、より好ましくは0.4〜0.6mmである。繊維2の繊維長が、0.3mmより短いと、被覆層20の繊維2の水分吸着力が低下し、人工土壌培地100の間隙30に水分Wを十分保持できなくなる虞がある。また、繊維2が固定され難くなり、人工土壌粒子50の強度を十分向上させることができなくなる虞がある。一方、繊維2の繊維長が1mmより長いと、人工土壌粒子50の基部10の表面に繊維2が十分固着せず、毛羽立った状態となり、人工土壌粒子50の強度を十分向上させることができなくなる虞がある。繊維2の繊維径は、好ましくは15μm以上である。繊維2の繊維径が、15μmより小さいと、人工土壌粒子50の乾燥時に水の表面張力で収縮して繊維2間に形成される隙間が小さくなり、繊維2間の隙間に水分Wを十分留めることができなくなって、灌水直後の水分Wの早期流出を抑制することが困難になる虞がある。   As described above, the fiber 2 of the covering layer 20 functions as a reinforcing material for the artificial soil particles 50, functions as a friction reducing material that reduces friction between the artificial soil particles 50, and functions as an adsorbent for moisture. It has. Here, the strength and water retention of the artificial soil particles 50 can be adjusted by changing the fiber length and fiber diameter of the fibers 2 covering the base 10. The fiber length of the fiber 2 is preferably 0.3 to 1 mm, more preferably 0.4 to 0.6 mm. When the fiber length of the fiber 2 is shorter than 0.3 mm, the moisture adsorption force of the fiber 2 of the coating layer 20 is lowered, and there is a possibility that the moisture W cannot be sufficiently retained in the gap 30 of the artificial soil culture medium 100. Moreover, it becomes difficult to fix the fibers 2 and the strength of the artificial soil particles 50 may not be sufficiently improved. On the other hand, when the fiber length of the fiber 2 is longer than 1 mm, the fiber 2 is not sufficiently fixed to the surface of the base portion 10 of the artificial soil particle 50 and becomes fuzzy, and the strength of the artificial soil particle 50 cannot be sufficiently improved. There is a fear. The fiber diameter of the fiber 2 is preferably 15 μm or more. When the fiber diameter of the fiber 2 is smaller than 15 μm, the gap formed between the fibers 2 is reduced by shrinkage due to the surface tension of water when the artificial soil particles 50 are dried, and the moisture W is sufficiently retained in the gap between the fibers 2. It becomes impossible to control the early outflow of the water W immediately after irrigation.

人工土壌粒子50の強度、流動性、及び保水性を向上させるためには、被覆層20の平均厚a及び基部10の平均径bを適切なサイズに設定し、基部10に起因する保水力と、被覆層20の繊維2に起因する強度、流動性、及び水分吸着力とのバランスを考慮する必要がある。本実施形態では、被覆層20の平均厚aは、500〜3000μm、好ましくは1000〜2000μmに設定される。被覆層20の平均厚aを500μmより小さく設定すると、人工土壌粒子50の外部に存在する水分Wを十分に吸着、保水することができなくなり、水分Wの間隙30からの早期流失を抑制することが困難になる虞がある。また、被覆層20は、人工土壌粒子50に剛性及び流動性を付与しているため、平均厚aを500μmより小さく設定すると、人工土壌粒子50の十分な強度及び流動性が得られなくなる虞がある。一方、被覆層20の平均厚aを3000μmより大きく設定すると、基部10の通水性が悪くなって保持できる水分量が減少する虞がある。また、比較的高価な繊維2を多く使用することになるため、経済的にも不利になる。基部10の平均径bは、1.5〜9mm、好ましくは3〜6mmに設定される。基部10の平均径bを1.5mmより小さく設定すると、基部10内に十分な水分を蓄えることが難しくなる。一方、基部10の平均径bを9mmより大きく設定すると、人工土壌粒子50間の間隙30が大きくなり過ぎて人工土壌培地100の排水性が過剰となり、植物が水を吸収し難くなって枯死する虞がある。また、被覆層20の平均厚aと基部10の平均径bとの関係において、両者の比率a/bを適切な範囲に設定することも重要であり、本実施形態では、比率a/bは、1/20〜1/2に、好ましくは1/10〜1/5に設定される。比率a/bを1/20より小さく設定すると、基部10に対して被覆層2の厚みが薄くなり過ぎて外部に存在する水分Wを十分に吸着することができず、人工土壌粒子50の保水性が低下する虞がある。また、人工土壌粒子50としての強度及び流動性を維持できなくなる虞もある。一方、比率a/bを1/2より大きく設定すると、基部10が被覆層2に対して相対的に小さくなり、人工土壌粒子50が十分に水分Wを保持することができなくなる虞がある。   In order to improve the strength, fluidity, and water retention of the artificial soil particles 50, the average thickness a of the coating layer 20 and the average diameter b of the base 10 are set to appropriate sizes, and the water retention due to the base 10 is It is necessary to consider the balance between the strength, fluidity, and moisture adsorption force due to the fibers 2 of the coating layer 20. In this embodiment, the average thickness a of the coating layer 20 is set to 500 to 3000 μm, preferably 1000 to 2000 μm. If the average thickness a of the coating layer 20 is set to be smaller than 500 μm, the moisture W existing outside the artificial soil particles 50 cannot be sufficiently adsorbed and retained, and the early loss of the moisture W from the gap 30 can be suppressed. May become difficult. Moreover, since the covering layer 20 provides the artificial soil particles 50 with rigidity and fluidity, if the average thickness a is set to be smaller than 500 μm, there is a possibility that sufficient strength and fluidity of the artificial soil particles 50 may not be obtained. is there. On the other hand, if the average thickness a of the coating layer 20 is set to be greater than 3000 μm, the water permeability of the base portion 10 is deteriorated and the amount of water that can be retained may be reduced. Moreover, since many comparatively expensive fibers 2 are used, it becomes economically disadvantageous. The average diameter b of the base 10 is set to 1.5 to 9 mm, preferably 3 to 6 mm. If the average diameter b of the base 10 is set to be smaller than 1.5 mm, it becomes difficult to store sufficient moisture in the base 10. On the other hand, if the average diameter b of the base 10 is set to be larger than 9 mm, the gap 30 between the artificial soil particles 50 becomes too large, the drainage of the artificial soil medium 100 becomes excessive, and the plant becomes difficult to absorb water and die. There is a fear. In addition, in the relationship between the average thickness a of the coating layer 20 and the average diameter b of the base portion 10, it is also important to set the ratio a / b in an appropriate range. In this embodiment, the ratio a / b is , 1/20 to 1/2, preferably 1/10 to 1/5. If the ratio a / b is set to be smaller than 1/20, the thickness of the coating layer 2 becomes too thin with respect to the base portion 10, and the water W existing outside cannot be sufficiently adsorbed. There is a risk that the performance will be reduced. Moreover, there exists a possibility that the intensity | strength and fluidity | liquidity as the artificial soil particle 50 cannot be maintained. On the other hand, when the ratio a / b is set to be larger than 1/2, the base 10 becomes relatively small with respect to the coating layer 2, and there is a possibility that the artificial soil particles 50 cannot sufficiently retain the moisture W.

人工土壌粒子50の粒径は、2〜10mmに設定される。人工土壌粒子50の粒径を2mmより小さく設定すると、人工土壌粒子50間に形成される間隙30が小さくなり過ぎて、人工土壌培地100の通気性が低下し、栽培植物の根腐れが生じる虞がある。また、基部10に被覆層20を形成することが難しくなる。一方、人工土壌粒子50の粒径を10mmより大きく設定すると、人工土壌粒子50間に形成される間隙30が大きくなり過ぎて人工土壌培地100の排水性が過剰となり、植物が水分を吸収し難くなって枯死する虞がある。また、植物の支持力も低下する虞がある。   The particle size of the artificial soil particles 50 is set to 2 to 10 mm. If the particle size of the artificial soil particles 50 is set to be smaller than 2 mm, the gap 30 formed between the artificial soil particles 50 becomes too small, the air permeability of the artificial soil medium 100 is lowered, and root rot of the cultivated plant may occur. There is. Moreover, it becomes difficult to form the coating layer 20 on the base 10. On the other hand, if the particle size of the artificial soil particles 50 is set to be larger than 10 mm, the gaps 30 formed between the artificial soil particles 50 become too large, the drainage of the artificial soil medium 100 becomes excessive, and the plant hardly absorbs moisture. There is a risk of becoming dead. Moreover, there is a possibility that the supporting ability of the plant also decreases.

<人工土壌粒子の製造方法>
本発明の人工土壌粒子50の製造方法について説明する。基部10に無機多孔質体1の粒状物を使用する場合、篩などにかけて所望の粒径の粒状物を選別し、基部10としてそのまま使用する。また、人工土壌粒子50の基部10を微小な複数の無機多孔質体1を集合して形成する場合、無機多孔質体1にバインダーや溶媒等を加えて混合し、混合物を造粒機に導入し、転動造粒、流動層造粒、攪拌造粒、圧縮造粒、押出造粒、破砕造粒、溶融造粒、噴霧造粒等の公知の造粒法により造粒物を形成することができる。得られた造粒物は、必要に応じて乾燥及び分級が行われ、基部10として用いられる。また、無機多孔質体1にバインダーを加え、さらに必要に応じて溶媒等を加えて混練し、これを乾燥してブロック状にしたものを、乳鉢及び乳棒、ハンマーミル、ロールクラッシャー等の粉砕手段で適宜粉砕して造粒物とすることも可能である。当該造粒物は、そのまま基部10として用いることもできるが、篩にかけて所望の粒径に調整することが好ましい。
<Method for producing artificial soil particles>
The manufacturing method of the artificial soil particle 50 of this invention is demonstrated. When the granular material of the inorganic porous body 1 is used for the base 10, the granular material having a desired particle diameter is selected through a sieve or the like and used as it is as the base 10. When the base 10 of the artificial soil particle 50 is formed by assembling a plurality of minute inorganic porous bodies 1, the inorganic porous body 1 is mixed by adding a binder or a solvent, and the mixture is introduced into the granulator. And forming a granulated product by a known granulation method such as rolling granulation, fluidized bed granulation, stirring granulation, compression granulation, extrusion granulation, crush granulation, melt granulation, spray granulation or the like. Can do. The obtained granulated product is dried and classified as necessary and used as the base 10. In addition, a binder is added to the inorganic porous body 1, and further a solvent or the like is added and kneaded as necessary, and this is dried and made into a block shape, and pulverizing means such as a mortar and pestle, a hammer mill, a roll crusher, etc. It is also possible to obtain a granulated product by pulverizing as appropriate. The granulated product can be used as the base 10 as it is, but it is preferable to adjust to a desired particle size by sieving.

バインダーとしては、例えば、ポリオレフィン系バインダー、ポリビニルアルコール系バインダー、ポリウレタン系バインダー、酢酸ビニル、エチレン酢酸ビニル等の酢酸ビニル系バインダー、ウレタン樹脂、ビニルウレタン樹脂等のウレタン樹脂系バインダー、アクリル樹脂系バインダー、シリコーン樹脂系バインダー等の合成樹脂系バインダー;デンプン、カラギーナン、キサンタンガム、ジェランガム、アルギン酸塩等の多糖類、ポリアミノ酸、膠等のたんぱく質等の天然物系バインダーが挙げられる。   Examples of the binder include polyolefin-based binders, polyvinyl alcohol-based binders, polyurethane-based binders, vinyl acetate-based binders such as vinyl acetate and ethylene vinyl acetate, urethane resin-based binders such as urethane resins and vinyl-urethane resins, acrylic resin-based binders, Examples include synthetic resin binders such as silicone resin binders; polysaccharides such as starch, carrageenan, xanthan gum, gellan gum, and alginates, and natural product binders such as proteins such as polyamino acids and glues.

被覆層20を形成するにあたっては、得られた基部10の表面を繊維2で被覆して被覆層20を形成する。例えば、基部10に繊維2とバインダーとを添加して混合し、基部10の表面に繊維2を付着させる。このとき、水不溶性のバインダーを用いることが好ましい。これにより、灌水等によって被覆層20が崩壊することを防止することができるため、人工土壌粒子50の強度及び耐久性を維持することができる。水不溶性のバインダーとして、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂、ポリエチレンテレフタレート等のポリエステル系樹脂、ポリウレタン、ビニルウレタン等のウレタン系樹脂等を主成分とするバインダーが挙げられる。これらのうち、ポリエチレンを主成分とする水不溶性バインダーが好ましい。   In forming the covering layer 20, the surface of the obtained base 10 is covered with the fibers 2 to form the covering layer 20. For example, the fiber 2 and the binder are added to the base 10 and mixed, and the fiber 2 is attached to the surface of the base 10. At this time, it is preferable to use a water-insoluble binder. Thereby, since it can prevent that the coating layer 20 collapses by irrigation etc., the intensity | strength and durability of the artificial soil particle 50 can be maintained. Examples of the water-insoluble binder include binders mainly composed of polyolefin resins such as polyethylene and polypropylene, polyester resins such as polyethylene terephthalate, and urethane resins such as polyurethane and vinyl urethane. Of these, a water-insoluble binder mainly composed of polyethylene is preferred.

本発明の人工土壌粒子に関する実施例について説明する。実施例では、人工土壌培地の散水時の保水量(散水保水量)を測定し、人工土壌粒子の構造の違いによる人工土壌培地の保水性を評価した。   The Example regarding the artificial soil particle of this invention is described. In the examples, the water retention amount (sprinkling water retention amount) at the time of watering the artificial soil medium was measured, and the water retention capacity of the artificial soil medium due to the difference in the structure of the artificial soil particles was evaluated.

〔人工土壌粒子の作製〕
人工土壌粒子の基部を構成する無機多孔質体として、パーライト(太平洋マテリアル株式会社製)を使用し、人工土壌粒子の被覆層を構成する繊維として、ビニロン短繊維(長さ0.5mm 株式会社クラレ製)を使用した。パーライトを篩にかけて、基部の平均粒径が、2〜4mmとなるように調整した。次いで、パーライトを撹拌混合造粒装置(有限会社G−Labo製)で撹拌しながら、ポリエチレンエマルジョン(セポルジョン(登録商標)G315、住友精化株式会社製、濃度40重量%)をスプレーで塗布するとともにビニロン短繊維を投入してパーライトの表面にビニロン短繊維を均一に付着させた。ポリエチレンエマルジョンのスプレー及びビニロン短繊維の投入は、人工土壌粒子の粒径が所望の大きさになるまで繰り返し実行した。使用したポリエチレンエマルジョン及びビニロン短繊維の量は、パーライトの重量に対して、それぞれ10重量%及び20重量%に調整した。ビニロン短繊維が付着したパーライトを、60℃で乾燥した後、100℃に加熱し、ポリエチレンエマルジョン中のポリエチレン樹脂を溶融させてビニロン短繊維を融着して固定化し、ビニロン短繊維でパーライトの表面全体が被覆された人工土壌粒子を作製した。人工土壌粒子を篩がけし、粒径が3〜5mmの範囲となるように調整したものを実施例の人工土壌粒子とした。比較例1の人工土壌粒子は、パーライトの基部を繊維で被覆せず、パーライトの表面が露出している粒子をそのまま人工土壌粒子として使用した。比較例2の人工土壌粒子は、市販のハイドロコーン(有限会社三浦園芸社製)をそのまま使用した。
[Production of artificial soil particles]
Perlite (manufactured by Taiheiyo Material Co., Ltd.) is used as the inorganic porous material constituting the base of the artificial soil particles, and vinylon short fibers (length 0.5 mm, Kuraray Co., Ltd.) are used as the fibers constituting the coating layer of the artificial soil particles. Made). The pearlite was sieved and adjusted so that the average particle size of the base was 2 to 4 mm. Next, while stirring pearlite with a stirring and mixing granulator (manufactured by G-Labo Co., Ltd.), a polyethylene emulsion (Sepoljon (registered trademark) G315, manufactured by Sumitomo Seika Co., Ltd., concentration 40% by weight) is applied by spraying. A vinylon short fiber was added to uniformly adhere the vinylon short fiber to the surface of the pearlite. The spraying of the polyethylene emulsion and the introduction of the vinylon short fibers were repeatedly performed until the particle size of the artificial soil particles became a desired size. The amounts of polyethylene emulsion and vinylon short fibers used were adjusted to 10 wt% and 20 wt%, respectively, based on the weight of pearlite. The pearlite with vinylon short fibers attached is dried at 60 ° C, then heated to 100 ° C, the polyethylene resin in the polyethylene emulsion is melted, and the vinylon short fibers are fused and fixed. Artificial soil particles covered with the whole were prepared. Artificial soil particles were sieved and adjusted so that the particle size was in the range of 3 to 5 mm. For the artificial soil particles of Comparative Example 1, the base of pearlite was not covered with fibers, and the particles with the exposed pearlite surface were used as artificial soil particles as they were. As the artificial soil particles of Comparative Example 2, a commercially available hydrocorn (manufactured by Miura Gardening Co., Ltd.) was used as it was.

<散水保水量>
クロマト管に試験対象の各人工土壌粒子を140cc充填し、水110ml(10ml×6回+20ml×3回)を3分〜5分間隔でクロマト管上部より注入し、注入した水がクロマト管の下部から落水する間隔が3分以上となった時の保水量を測定し、試験対象の土壌100ccに対する保水量に換算して散水保水量(容量%)とした。保水量の測定は、上記試験を行った土壌の重量から予め測定しておいた試験対象の土壌の重量を差し引くことにより算出した。
<Watering capacity>
Fill the chromatographic tube with 140 cc of each artificial soil particle to be tested and inject 110 ml of water (10 ml x 6 times + 20 ml x 3 times) from the top of the chromatographic tube at intervals of 3 to 5 minutes. The water retention amount when the interval of falling water from the water was 3 minutes or more was measured, and converted to the water retention amount for 100 cc of the soil to be tested as the water spray retention amount (volume%). The amount of water retention was calculated by subtracting the weight of the soil to be tested that had been measured in advance from the weight of the soil subjected to the above test.

<試験結果>
図3は、本発明に係る人工土壌粒子の散水保水量を示したグラフである。図3に示すように、実施例の人工土壌粒子の散水保水量は35容量%であった。これに対し、比較例1の人工土壌粒子では、散水保水量は25容量%であり、実施例の人工土壌粒子の約7割の性能に留まっていた。これは、パーライトの水の吸収速度が遅いため、十分に水分を吸収しきれず、系外に排出されたものと考えられる。比較例2の人工土壌粒子においては、散水保水量は10容量%であり、実施例の人工土壌粒子の3割未満の性能に過ぎなかった。このように、本発明の人工土壌粒子は、従来の人工土壌粒子と比べて高い散水保水量を有するものであり、安価な材料を使用しながら高い保水性を実現可能であることが示された。
<Test results>
FIG. 3 is a graph showing the water retention amount of artificial soil particles according to the present invention. As shown in FIG. 3, the water retention amount of the artificial soil particles of the example was 35% by volume. On the other hand, in the artificial soil particles of Comparative Example 1, the water spray retention amount was 25% by volume, which was about 70% of the performance of the artificial soil particles of Examples. This is probably because the water absorption rate of pearlite was slow, so that water could not be absorbed sufficiently and was discharged out of the system. In the artificial soil particles of Comparative Example 2, the water retention amount was 10% by volume, which was only less than 30% of the performance of the artificial soil particles of the Examples. Thus, the artificial soil particles of the present invention have a high water sprinkling capacity compared to conventional artificial soil particles, and it was shown that high water retention can be realized while using inexpensive materials. .

本発明に係る人工土壌粒子、及び当該人工土壌粒子を用いた人工土壌培地は、家庭菜園、植物工場、屋内緑化等における農業、園芸分野に利用することができる。   The artificial soil particles according to the present invention and the artificial soil medium using the artificial soil particles can be used in agriculture and horticulture in home gardens, plant factories, indoor greening, and the like.

1 無機多孔質体
2 繊維
4 空隙
10 基部
20 被覆層
50 人工土壌粒子
100 人工土壌培地
a 被覆層の平均厚
b 基部の平均径
DESCRIPTION OF SYMBOLS 1 Inorganic porous body 2 Fiber 4 Cavity 10 Base part 20 Coating layer 50 Artificial soil particle 100 Artificial soil medium a Average thickness of coating layer b Average diameter of base part

Claims (8)

無機多孔質体を含む基部と、
前記基部の表面の少なくとも一部を被覆する繊維を含む被覆層と、
を備えた人工土壌粒子。
A base including an inorganic porous body;
A coating layer comprising fibers covering at least a part of the surface of the base;
Artificial soil particles with.
前記無機多孔質体は、パーライトである請求項1に記載の人工土壌粒子。   The artificial soil particle according to claim 1, wherein the inorganic porous body is pearlite. 前記繊維は、0.3〜1mmの繊維長を有する請求項1又は2に記載の人工土壌粒子。   The artificial soil particles according to claim 1 or 2, wherein the fibers have a fiber length of 0.3 to 1 mm. 前記繊維は、親水性繊維である請求項1〜3の何れか一項に記載の人工土壌粒子。   The artificial soil particle according to any one of claims 1 to 3, wherein the fiber is a hydrophilic fiber. 前記被覆層の平均厚(a)と前記基部の平均径(b)との比率(a/b)は、1/20〜1/2である請求項1〜4の何れか一項に記載の人工土壌粒子。   The ratio (a / b) between the average thickness (a) of the coating layer and the average diameter (b) of the base is 1/20 to 1/2. Artificial soil particles. 前記無機多孔質体は、80%以上の空隙率を有する請求項1〜5の何れか一項に記載の人工土壌粒子。   The artificial soil particles according to any one of claims 1 to 5, wherein the inorganic porous body has a porosity of 80% or more. 2〜10mmの粒径を有する請求項1〜6の何れか一項に記載の人工土壌粒子。   The artificial soil particle according to any one of claims 1 to 6, which has a particle size of 2 to 10 mm. 請求項1〜7の何れか一項に記載の人工土壌粒子を使用した人工土壌培地。   The artificial soil culture medium using the artificial soil particle as described in any one of Claims 1-7.
JP2014076667A 2014-04-03 2014-04-03 Artificial soil particles and artificial soil culture medium Pending JP2015195779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014076667A JP2015195779A (en) 2014-04-03 2014-04-03 Artificial soil particles and artificial soil culture medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014076667A JP2015195779A (en) 2014-04-03 2014-04-03 Artificial soil particles and artificial soil culture medium

Publications (1)

Publication Number Publication Date
JP2015195779A true JP2015195779A (en) 2015-11-09

Family

ID=54545922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014076667A Pending JP2015195779A (en) 2014-04-03 2014-04-03 Artificial soil particles and artificial soil culture medium

Country Status (1)

Country Link
JP (1) JP2015195779A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001204245A (en) * 2000-01-28 2001-07-31 Yoshihiro Tokashiki Artificial compound granule and method for producing the same
JP2011057461A (en) * 2009-09-07 2011-03-24 Shinto Co Ltd Granular material and method for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001204245A (en) * 2000-01-28 2001-07-31 Yoshihiro Tokashiki Artificial compound granule and method for producing the same
JP2011057461A (en) * 2009-09-07 2011-03-24 Shinto Co Ltd Granular material and method for producing the same

Similar Documents

Publication Publication Date Title
JP5913452B2 (en) Artificial soil medium
CN105254224B (en) A kind of artificial soil granule body and preparation method thereof
JP5615461B2 (en) Artificial soil particles
US20110094967A1 (en) Composite material composed of polymer materials and a porous mineral matrix and the production and use thereof
EP2282628B1 (en) Soil additive
JP2000336356A (en) Aggregate-structural zeolite and seedling-raising culture soil using the same
JP2015195779A (en) Artificial soil particles and artificial soil culture medium
WO2015072549A1 (en) Artificial soil medium
JP5951952B2 (en) Water retention aggregate
JP2017079688A (en) Artificial soil particles, method for producing artificial soil particles, and artificial soil culture medium
JP2000212561A (en) Charcoal-containing granule, culturing medium by using the same and culturing method
JPH11302646A (en) Granular medium and mixed medium containing the same
JP2016198068A (en) Adjustment method of artificial soil culture medium, and foliage plant cultivation method
CN103553798A (en) Production method of compound type multifunctional super absorbent resin
WO2017110385A1 (en) Artificial soil medium
JP2009065974A (en) Vegetation base body and method for producing the same
JP2017176173A (en) Artificial soil particles, artificial soil medium, and method for producing artificial soil particles
JP2017018075A (en) Solidifying agent for artificial soil culture medium, and method for preparing artificial soil culture medium
JP2014193148A (en) Artificial soil medium
JP6165259B2 (en) Artificial soil particles and artificial soil medium
JP2016101160A (en) Artificial soil media adjustment method, and foliage plant cultivation method
JP2004305184A (en) Granular planting body used for tree planting
JP2017079686A (en) Method for producing artificial soil particles
JP2000262144A (en) Plant growing medium and growth of plant using the same
JPS63532A (en) Vegetation structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180515

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181106